CF₃-Substituted semisquarate: A pluripotent building block for the divergent synthesis of trifluoromethylated functional molecules

Yoshihiko Yamamoto,* Takashi Kurohara, and Masatoshi Shibuya

Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan

Table of Contents

General Information	
General Methods	S2
Reagents and Solvents	S2
Reaction Mechanisms	S3
Experimental Procedures	
Synthesis of 2a from 3a	S4
Conversion of 2a into 1a	S5
Sequential Procedure for Conversion of 3a into 1a	S6
Synthesis of 5a from 1a	S6
Conversion of 5a into 6a	S7
Sequential Procedure for Conversion of 1a into 6a	S7
Synthesis of 7a from 1a	S12
Synthesis of 9a from 1a	S14
Synthesis of 11 from 1a	S15
Single Crystal X-ray Diffraction	S16
NMR Charts	S19

General Experimental

General methods: All air- and moisture-sensitive reactions were performed under an argon (Ar) atmosphere in dried glassware. Analytical this layer chromatography was performed using 0.25 mm silica gel plate (Merck TLC Silica gel 60 F₂₅₄). Column chromatography was performed on silica gel (Cica silica gel 60N) with solvents specified below. For purification of carboxylic acid, SO₃H silica gel (CHROMATOREX[®], Fuji Silysia Chemical LTD) was used. Bulb-to-bulb distillation was performed on SIBATA GTO-250RS. Melting points were recorded on SRS OptiMelt MPA100. NMR spectra were recorded on JEOL ESC-400 spectrometer (¹H/400 MHz, ¹³C/100 MHz, and ¹⁹F/376MHz) for samples in CDCl₃ solutions at 25 °C. ¹H NMR chemical shifts are reported in terms of chemical shift (δ , ppm) relative to the singlet at δ 7.26 ppm for chloroform. ¹³C NMR spectra were fully decoupled and are reported in terms of chemical shift (δ , ppm) relative to the triplet at δ 77.0 ppm for $CDCl_{3}$. ¹⁹F NMR spectra are reported in terms of chemical shift (δ , ppm) relative to the singlet at δ -63.7 ppm for α, α, α -trifluorobenzene as an external standard. Splitting patterns are designated as follows: s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; sext, sextet; sept, septet; m, multiplet. Coupling constants are reported in Hz. Infrared spectra were recorded on JASCO FT/IR-230 specrometer. High-resolution mass spectra were recorded on JEOL JMS-T100LP mass spectrometer.

Reagents and Solvents: Diisopropyl squarate **3a** (Aldrich), CF₃SiMe₃ (Fluorochem), Re₂O₇ (Strem Chemicals), Fe(pc) (TCI), Pb(OAc)₄ (TCI), *n*-BuLi (Mitsuwa), and isopropylmagnesium bromide (Wako) were purchased and used as received. Other Grignard reagents were also purchased from Aldrich and used as received with the following exceptions: *p*-ethoxycarbonylphenyl,¹ 2-furyl,² 2-thienyl,² 2-benzofuryl,² 2benzothienyl,² *N*-Boc-3-indolyl,³ and *N*-Boc-2-indolyl⁴ Grignard reagents were prepared according to the reported procedures. Other solvents and reagents were purchased from chemical suppliers (Aldrich, Kanto Chemical, TCI, and Wako) and

¹ W. Dohle, D. M. Lindsay, and P. Knochel, *Org. Lett.*, 2001, **3**, 2871.

² (a) P. Jiao, M. Kawasaki, and H. Yamamoto, *Angew. Chem. Int. Ed.*, 2009, **48**, 3333. (b) L. I. Rosquete, M. G. Cabrera-Serra, J. E. Piñero, P. Martín-Rodríguez, L. Fernández-Pérez, J. G. Luis, G. McNaughton-Smith, and T. Abad-Grillo, *Bioorg. Med. Chem.*, 2010, **18**, 4530.

³ M. Abarbri, F. Dehmel, and P. Knochel, *Tetrahedron Lett.*, 1999, 40, 7449.

⁴ J. T. Kuethe and D. L. Comins, J. Org. Chem., 2004, 69, 2863.

used as received. Ph₃SiOReO₃ was prepared according to the reported method.⁵

Reaction Mechanisms

Plausible mechanisms of transformations depicted in eqs 1-4 are proposed based on literatures.⁶ The transformation of **2a** to **1a** catalyzed by Re₂O₇ (eq. 1) started with the reaction of 2a with Re₂O₇. The resultant intermediate S1 underwent [3,3] rearrangement to afford 1a with extrusion of 'PrOReO₃ from S2. As shown in eq 2, thermal electrocyclic ring opening of 5a generate vinylketene S3, which underwent 6π electrocyclization and subsequent tautomerization. The iron-catalyzed aerobic oxidation of the resultant hydroquinone S4 afforded 6a. Similarly, the transformation of 1a to 9a proceeded via thermal electrocyclic ring opening of the corresponding 4hydroxycyclobutenone and subsequent 6π electrocyclization of the resultant vinylketene intermediate. Radical-mediated ring transformation of 5a to 7a proceeded via a sequential process involving two single-electron oxidations (eq 3). The first singeelectron oxidation of 5a generated oxy radical S5. Spontaneous ring opening of S5 generated S6, which underwent ionic ring closure to produce S7. The second singleelectron oxidation of S7 was followed by the capture of the resultant cationic intermediate with acetate to afford 7a. Finally, the ring expansion of 1a to 11 is shown in eq 4. Adduct **S8** underwent ring expansion in a similar manner with pinacol rearrangement to generate S9, which was protonated to afford 11.

⁵ C. Morrill, G. L. Beutner, and G. N. Grubbs, J. Org. Chem., 2006, 71, 7813.

⁶ (a) I. Volchkov and D. Lee, *Chem. Soc. Rev.*, 2014, **43**, 4381. (b) H. W. Moore and B. R. Yerxa, *Chemtracts–Org. Chem.*, 1992, **5**, 273. (c) A. G. Birchler, F. Liu, and L. S. Liebeskind, *J. Org. Chem.*, 1994, **59**, 7737. (d) Y. Yamamoto, M. Ohno, and S. Eguchi, *J. Am. Chem. Soc.*, 1995, **117**, 9653. (e) L. Sun and L. S. Liebeskind, *J. Org. Chem.*, 1994, **59**, 6856.

Experimental Procedures

Synthesis of 2a from 3a: To a degassed solution of 3a (99.9 mg, 0.50 mmol), NaOAc (4.2 mg, 0.05 mmol), and ^{*n*}Bu₄NCl (13.8 mg, 0.05 mmol) in dry THF (1 mL) was added CF₃SiMe₃ (111 μ L, 0.75 mmol) at room temperature under an argon atmosphere. The solution was stirred at room temperature for 20 min. To this solution was added TBAF (1 M THF solution, 1 mL, 1.0 mmol) and then H₂O (20 mL) at room temperature. The reaction mixture was extracted with Et₂O (3 × 20 mL). The combined organic layer was washed with brine (10 mL) and dried over MgSO₄. The solvents were evaporated *in vacuo*, and the obtained crude product was purified by silica gel column chromatography (hexane:AcOEt = 10:1) to afford **2a** (92.4 mg, 69% yield) as a colorless solid (mp 76.8–78.3 °C); ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.31 (d, *J* = 6.4 Hz, 3 H), 1.32 (d, *J* = 6.4 Hz, 3 H), 1.42 (d, *J* = 6.4 Hz, 6 H), 3.00 (s, 1 H), 4.94 (sept, *J* = 6.4 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃, 25

°C): δ 22.1, 22.3, 22.46, 22.53, 74.7, 78.6, 84.8 (q, J = 33.4 Hz), 122.9 (q, J = 281.9 Hz), 135.3, 160.1, 176.9; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –76.7; IR (neat) 3380 (OH), 1781 (C=O), 1618 (C=C) cm⁻¹; HRMS (DART) *m*/*z* calcd for C₁₁H₁₅F₃O₄•NH₄ 286.1266, found 286.1273 [M+NH₄]⁺.

Compound **2b** was also obtained according to the above procedure.

^tBuO O'Bu Analytical data for 2b: colorless solid (mp 71.0–73.2 °C); ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.50 (s, 9 H), 1.55 (s, 9 H), 1.42 (d, J = 6.4 Hz, 6 H), 3.00 (br s, 1 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 28.2, 28.6, 82.0, 83.6 (q, J = 33.0 Hz), 85.7, 123.1 (q, J = 282.2 Hz), 133.3, 160.2, 177.1; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –76.9; IR (neat) 3379 (OH), 1772 (C=O), 1597 (C=C) cm⁻¹; HRMS (DART) m/z calcd for C₁₇H₁₆O₃•NH₄ 314.1579, found 314.1594 [M+NH₄]⁺.

Conversion of 2a into 1a: To a degassed solution of **2a** (128.5 mg, 0.48 mmol) in dry CH₂Cl₂ (25 mL) was added Re₂O₇ (7.8 mg, 0.016 mmol) at room temperature under an argon atmosphere. The solution was stirred at room temperature for 10 h. The reaction mixture was filtered through a pad of alumina under an argon stream. The filtrate was concentrated in vacuo to afford **1a** as yellow oil (99.2 mg, 99% yield), which was solidified in a freezer (mp 32.7–35.5 °C); ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.54 (d, *J* = 6.4 Hz, 6 H), 5.53 (sept, *J* = 6.4 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 22.5, 83.4, 118.8 (q, *J* = 268.9 Hz), 162.1 (q, *J* = 40.0 Hz), 184.8, 193.0, 195.6; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –63.9; IR (neat) 1817 (C=O), 1786 (C=O), 1631 (C=C) cm⁻¹; HRMS (DART) *m/z* calcd for C₈H₇F₃O₃•NH₄ 226.0691, found 226.0700 [M+NH₄]⁺.

Sequential Procedure for Conversion of 3a into 1a: To a degassed solution of 3a (2.98 g, 15.0 mmol), NaOAc (61.0 mg, 0.74 mmol), and "Bu₄NCl (206.2 mg, 0.74 mmol) in dry THF (15 mL) was added CF₃SiMe₃ (3.1 \Box L, 21.0 mmol) at room temperature under an argon atmosphere. The solution was stirred at room temperature for 90 min. To this solution was added TBAF (1 M THF solution, 21 mL, 21.0 mmol) and the mixture was stirred for 15 min at room temperature. After addition of H₂O (30 mL), the reaction mixture was extracted with Et₂O (3 × 30 mL). The combined organic layer was washed with brine (30 mL) and dried over Na₂SO₄. The solvents were evaporated *in vacuo* to obtain crude products, which was dried under reduced pressure for 2 h.

To a degassed solution of the above crude products in dry CH_2Cl_2 (35 mL) was added Re_2O_7 (218 mg, 0.45 mmol) at room temperature under an argon atmosphere. The solution was stirred at room temperature for 10 h. The reaction mixture was concentrated in vacuo and the obtained crude product was purified by bulb-to-bulb distillation (bp. 70 °C/3 hPa) to afford **1a** as a yellow solid (2.61 g, 84% yield).

Synthesis of 5a from 1a: To a degassed solution of 1a (104.1 mg, 0.50 mmol) in dry Et₂O (2 mL) was added PhMgBr (0.1 M in Et₂O, 10 \Box L, 1.0 mmol) at -90 °C under an argon atmosphere via syringe pump (20 mL/h). After stirring for 30 min, the reaction was quenched with sat. NH₄Cl (2 mL) at -90 °C. After addition of H₂O (20 mL) at room temperature, the reaction mixture was extracted with Et₂O (3 × 20 mL). The combined organic layer was washed with brine (10 mL) and dried over Na₂SO₄. The solvents were evaporated *in vacuo*, and the obtained crude product was purified by silica gel column chromatography (hexane:AcOEt = 10:1) to afford **5a** (112.0 mg, 78% yield) as a colorless solid (mp 113.1–114.2 °C); ¹H NMR (400 MHz, CDCl₃, 25 °C): δ

1.14 (d, J = 6.4 Hz, 3 H), 1.43 (d, J = 6.4 Hz, 3 H), 4.87 (sept, J = 6.4 Hz, 1 H), 5.09 (br s, 1 H), 7.34–7.43 (m, 3 H), 7.45–7.49 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 22.0, 22.4, 82.4, 93.4, 114.2 (q, J = 37.8 Hz), 117.3 (q, J = 268.9 Hz), 125.3, 128.9, 129.0, 134.6, 183.5, 184.2; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –61.0; IR (neat) 3378 (OH), 1775 (C=O), 1637 (C=C), 1621 (C=C) cm⁻¹; HRMS (DART) *m/z* calcd for C₁₄H₁₃F₃O₃•H 287.0895, found 287.0889 [M+H]⁺.

Conversion of 5a into 6a: A solution of **5a** (143.2 mg, 0.5 mmol) in *p*-xylene (10 mL) was stirred at 140 °C under an Ar atmosphere for 10 min. After cooling to room temperature, to this solution was added Fe(II) phthalocyanine complex (8.5 mg, 0.015 mmol) and AcOH (1 mL). The solution was stirred at room temperature under an O₂ atmosphere for 1 h. The solution was filtered through a pad of celite, and the filtrate was concentrated *in vacuo*. The obtained crude product was purified by silica gel column chromatography (hexane:AcOEt = 10:1) to afford **6a** (121.0 mg, 85% yield) as yellow oil; ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.43 (d, *J* = 6.4 Hz, 6 H), 5.44 (sept, *J* = 6.4 Hz, 1 H), 7.76 (dt, *J* = 7.2, 1.6 Hz, 1 H), 7.82 (dt, *J* = 7.2, 1.6 Hz, 1 H), 8.08 (dd, *J* = 7.2, 1.6 Hz, 1 H), 8.15 (dd, *J* = 7.2, 1.6 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 22.9, 79.7, 120.6 (q, *J* = 27.3 Hz), 122.0 (q, *J* = 275.6 Hz), 126.5, 126.6, 130.6, 131.7, 133.7, 135.0, 159.8, 180.4, 181.4; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ -58.2; IR (neat) 1684 (C=O), 1666 (C=O), 1603 (C=C), 1580 (C=C) cm⁻¹; HRMS (ESI) *m/z* calcd for C14H11F3O3•H 285.0739, found 285.0748 [M+H]⁺.

Sequential Procedure for Conversion of 1a into 6a: To a degassed solution of 1a (104.2 mg, 0.50 mmol) in dry Et₂O (2 mL) was added PhMgBr (0.1 M in Et₂O, 10 \Box L,

1.0 mmol) at -90 °C under an argon atmosphere via syringe pump (20 mL/h). After stirring for 30 min, the reaction was quenched with sat. NH₄Cl (2 mL) at -90 °C. The reaction mixture was extracted with Et₂O (3×10 mL). The combined organic layer was washed with brine (10 mL) and dried over Na₂SO₄. The organic layer was diluted with *p*-xylene (10 mL) and Et₂O was evaporated *in vacuo*. The obtained solution of crude **5a** in *p*-xylene (ca. 10 mL) was stirred at 140 °C under an Ar atmosphere for 10 min. After cooling to room temperature, to this solution was added Fe(II) phthalocyanine complex (8.4 mg, 0.015 mmol) and AcOH (0.5 mL). The solution was stirred at room temperature under an O₂ atmosphere for 1 h. The solution was filtered through a pad of celite, and the filtrate was concentrated *in vacuo*. The obtained crude product was purified by silica gel column chromatography (hexane:AcOEt = 10:1) to afford **6a** (103.8 mg, 73% yield) as yellow oil.

Other quinones were synthesized according to the above procedure.

Analytical data for 6b: yellow solid (mp 89.2–92.3 °C); ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.41 (d, J = 6.4 Hz, 6 H), 2.51 (s, 3 H), 5.42 (sept, J = 6.4 Hz, 1 H), 7.53 (d, J = 7.6 Hz, 1 H), 7.91 (s, 1 H), 7.94 (d, J = 7.6 Hz, 1 H); ¹³C NMR (100 MHz,

CDCl₃, 25 °C): δ 22.0, 22.9, 79.6, 120.5 (q, *J* = 27.0 Hz), 122.0 (q, *J* = 275.5 Hz), 126.8, 127.0, 128.4, 131.6, 134.4, 146.6, 159.9, 180.7, 181.1; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –58.1; IR (neat) 1682 (C=O), 1665 (C=O), 1597 (C=C) cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₅H₁₃F₃O₃•H 299.0895, found 299.0914 [M+H]⁺.

Analytical data for 6c: yellow solid (mp 69.7–73.5 °C); ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.41 (d, J = 6.4 Hz, 6 H), 3.96 (s, 3 H), 5.47 (sept, J = 6.4 Hz, 1 H), 7.19 (dd, J = 8.4, 2.4 Hz, 1 H), 7.55 (d, J = 2.4 Hz, 1 H), 8.00 (d, J = 8.4 Hz, 1

H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 23.0, 56.2, 79.8, 109.9, 120.3 (q, J = 27.0 Hz), 120.6, 122.2 (q, J = 275.5 Hz), 124.2, 129.3, 134.1, 160.4, 165.2, 180.1, 180.5; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –58.2; IR (neat) 1675 (C=O), 1594 (C=C) cm⁻¹; HRMS (ESI) *m*/*z* calcd for C₁₅H₁₃F₃O₄•H 315.0844, found 315.0825 [M+H]⁺.

MeOOAnalytical data for 6d:yellow solid (mp 113.0–114.7 °C); 1 HNMR (400 MHz, CDCl_3, 25 °C): δ 1.42 (d, J = 6.4 Hz, 6 H), 4.02 (s,3 H), 5.33 (sept, J = 6.4 Hz, 1 H), 7.26–7.32 (m, 1 H), 7.68–7.76 (m,2 H); 13 C NMR (100 MHz, CDCl_3, 25 °C): δ 22.9, 56.5, 79.5,

117.2, 118.6 (q, J = 27.7 Hz), 118.9, 119.1, 121.9 (q, J = 275.2 Hz), 134.0, 136.0, 159.6, 161.0, 179.4, 180.3; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ – 59.5; IR (neat) 1676 (C=O), 1588 (C=C) cm⁻¹; HRMS (DART) *m*/*z* calcd for C₁₅H₁₃F₃O₄•H 315.0844, found 315.0870 [M+H]⁺.

Analytical data for 6e: yellow-brown solid (mp 93.2–94.2 O^{i} Pr $^{O'}$ C); ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.42 (d, J = 6.4 Hz, 6 H), 5.45 (sept, J = 6.4 Hz, 1 H), 7.70 (dd, J = 8.4, 2.0 Hz, 1 H), 8.00 (d, J = 8.4 Hz, 1 H), 8.07 (d, J = 2.0 Hz, 1 H); ¹³C NMR

(100 MHz, CDCl₃, 25 °C): δ 23.0, 80.1, 120.5 (q, J = 27.6 Hz), 121.8 (q, J = 275.9 Hz), 126.8, 128.3, 128.8, 132.9, 133.8, 142.3, 159.9, 179.2, 180.5; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –58.3; IR (neat) 1685 (C=O), 1667 (C=O), 1586 (C=C) cm⁻¹; HRMS (DART) m/z calcd for C₁₄H₁₀ClF₃O₃•H 319.0349, found 319.0369 [M+H]⁺.

F CF₃

Analytical data for 6f: yellow solid (mp 80.1–81.2 °C); ¹H O'Pr NMR (400 MHz, CDCl₃, 25 °C): δ 1.41 (d, J = 6.4 Hz, 6 H), 5.45 (sept, J = 6.4 Hz, 1 H), 7.40 (dt, J = 8.4, 2.4 Hz, 1 H), 7.73 (dd, J= 8.8, 1.6 Hz, 1 H), 8.09 (dd, J = 8.4, 5.2 Hz, 1 H); ¹³C NMR

(100 MHz, CDCl₃, 25 °C): δ 22.9, 80.1, 113.5 (d, J = 23.9 Hz), 120.6 (q, J = 27.7 Hz), 121.1 (d, J = 22.9 Hz), 121.8 (q, J = 275.9 Hz), 127.2 (d, J = 2.9 Hz), 130.0 (d, J = 8.6 Hz), 134.5 (d, J = 8.6 Hz), 160.0, 166.8 (d, J = 258.4 Hz), 179.1, 180.0; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –59.4, –101.0; IR (neat) 1670 (C=O), 1586 (C=C) cm⁻¹; HRMS (DART) m/z calcd for C₁₄H₁₀F₄O₃•NH₄ 320.0910, found 320.0907 [M+NH₄]⁺.

(d, J = 1.6 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 14.2, 22.9, 62.0, 80.0, 121.0 (q, J = 27.3 Hz), 121.9 (q, J = 275.9 Hz), 126.8, 127.9, 131.8, 133.1, 134.2, 136.3, 159.8, 164.6, 179.5, 181.1; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –59.3; IR (neat) 1727 (C=O), 1686 (C=O), 1668 (C=O), 1604 (C=C) cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₇H₁₅F₃O₅•NH₄ 374.1215, found 374.1190 [M+ NH₄]⁺.

Analytical data for 6h: yellow solid (mp 112.7–114.5 °C); ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.43 (d, J = 6.4 Hz, 6 H), 5.36 °CF₃ (sept, J = 6.4 Hz, 1 H), 7.60–7.69 (m, 2 H), 7.84 (d, J = 7.6 Hz, 1 H), 7.99 (d, J = 8.0 Hz, 1 H), 8.06 (d, J = 8.0 Hz, 1 H), 9.25 (d, J =

8.4 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 22.9, 79.2, 121.2, 121.5 (q, J = 27.0 Hz), 122.0 (q, J = 275.2 Hz), 127.8, 128.2, 128.6, 129.2, 130.0, 130.5, 134.6, 136.9, 157.4, 182.2, 183.5; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –58.2; IR (neat) 1680 (C=O), 1654 (C=O), 1605 (C=C), 1591 (C=C) cm⁻¹; HRMS (DART) *m/z* calcd for C₁₈H₁₃F₃O₃•H 335.0895, found 335.0903 [M+H]⁺.

Analytical data for 6i: dark-yellow oil; ¹H NMR (400 MHz, O^{i} Pr CDCl₃, 25 °C): δ 1.41 (d, J = 6.4 Hz, 6 H), 5.42 (sept, J = 6.4 Hz, 1 H), 6.89 (d, J = 2.0 Hz, 1 H), 7.76 (d, J = 2.0 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 23.0, 80.6, 108.9, 118.8 (q, J = 27.7 Hz),

122.0 (q, J = 275.5 Hz), 129.7, 148.9, 150.0, 159.5, 170.1, 177.3; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –57.8; IR (neat) 1692 (C=O), 1674 (C=O) cm⁻¹; HRMS (DART) m/z calcd for C₁₂H₉F₃O₄•NH₄ 292.0797, found 292.0778 [M+NH₄]⁺.

Ö

Analytical data for 6j: orange solid (mp 128.1–129.9 °C); O^{*i*}Pr ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.44 (d, J = 6.4 Hz, 6 H), 5.43 (sept, J = 6.4 Hz, 1 H), 7.47 (ddd, J = 8.0, 6.8, 1.2 Hz, 1 H), 7.59 (dt, J = 6.8, 1.6 Hz, 1 H), 7.64 (d, J = 8.4 Hz, 1 H), 8.18 (d,

J = 8.4 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 22.8, 80.5, 112.8, 118.7 (q, J = 27.3 Hz), 121.9 (q, J = 275.5 Hz), 122.0, 122.8, 123.9, 126.4, 130.3, 149.3, 157.0, 158.8, 172.1, 178.3; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –57.6; IR (neat) 1686 (C=O), 1670 (C=O) cm⁻¹; HRMS (DART) *m*/*z* calcd for C₁₆H₁₁F₃O₄•NH₄ 342.0953, found 342.0953 [M+NH₄]⁺.

Analytical data for 6k: yellow oil; ¹H NMR (400 MHz, CDCl₃, $S \rightarrow O'Pr$ 25 °C): δ 1.40 (d, J = 6.4 Hz, 6 H), 5.41 (sept, J = 6.4 Hz, 1 H), 7.54 (d, J = 4.6 Hz, 1 H), 7.77 (d, J = 4.6 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 22.8, 80.2, 119.1 (q, J = 27.3 Hz), 122.0 (q, J = 275.5 Hz), 126.6, 135.9, 140.0, 141.7, 160.4, 175.2, 176.9; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ -57.9; IR (neat) 1662 (C=O), 1590 (C=C) cm⁻¹; HRMS (ESI) m/zcalcd for C₁₂H₉F₃O₃S•H 291.0303, found 291.0307 [M+H]⁺.

Analytical data for 61: orange solid (mp 158.6–161.1 °C); ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.44 (d, J = 6.4 Hz, 6 H), 5.40 (sept, J = 6.4 Hz, 1 H), 7.52–7.58 (m, 2 H), 7.85–7.92 (m, 1 H), 8.68–8.75 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C):

δ 22.9, 80.1, 119.7 (q, J = 27.0 Hz), 122.0 (q, J = 275.5 Hz), 122.9, 127.3, 127.5, 130.0, 133.9, 135.4, 142.1, 142.9, 159.1, 177.1, 178.2; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –57.7; IR (neat) 1666 (C=O), 1655 (C=O) cm⁻¹; HRMS (DART) *m/z* calcd for C₁₆H₁₁F₃O₃S•H 341.0459, found 341.0469 [M+H]⁺.

Analytical data for 6m: orange solid (mp 230.8–233.8 °C); ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.44 (d, J = 6.4 Hz, 6 H), 1.66 (s, 9 H), 5.47 (sept, J = 6.4 Hz, 1 H), 7.42 (t, J = 7.6 Hz, 1 H), 7.51 (t, J = 7.6 Hz, 1 H), 8.02 (d, J = 8.8 Hz, 1 H), 8.20 (d, J

= 7.6 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 23.0, 27.4, 79.7, 86.6, 114.5, 118.6 (q, *J* = 28.0 Hz), 119.3, 122.0 (q, *J* = 274.9 Hz), 122.7, 122.9, 125.8, 128.8, 136.0, 138.5, 148.0, 158.8, 173.5, 178.5; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –58.0; IR (neat) 1759 (C=O), 1748 (C=O), 1669 (C=O) cm⁻¹; HRMS (DART) *m/z* calcd for C₂₁H₂₀F₃NO₅•H 424.1372, found 424.1393 [M+H]⁺.

Analytical data for 6n: yellow oil; ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.36 (d, J = 6.4 Hz, 6 H), 2.04 (s, 3 H), 2.05 (d, J = 1.2 Hz, 3 H), 5.17 (sept, J = 6.4 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 12.1, 12.5, 22.8, 79.3, 118.3 (q, J = 27.7 Hz), 121.8 (q, J = 274.9 Hz),

139.3, 142.1, 157.3, 182.6, 183.1; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –58.4; IR

(neat) 1658 (C=O), 1610 (C=C) cm⁻¹; HRMS (ESI) m/z calcd for C₁₂H₁₃F₃O₃•NH₄ 280.1161, found 280.1151 [M+NH₄]⁺.

Synthesis of 7a from 1a: To a degassed solution of 1a (104.3 mg, 0.50 mmol) in dry Et_2O (2 mL) was added PhMgBr (0.1 M in Et_2O , 10 \Box L, 1.0 mmol) at -90 °C under an argon atmosphere via syringe pump (20 mL/h). After stirring for 30 min, the reaction was quenched with sat. NH₄Cl (10 mL) at -90 °C. The reaction mixture was extracted with Et_2O (3 × 10 mL). The combined organic layer was washed with brine (10 mL) and dried over Na₂SO₄. The solvent was removed *in vacuo*, and the obtained crude product was diluted with toluene (1 mL).

To a suspension of Pb(OAc)₄ (445.2 mg, 1.0 mmol) in toluene (2 mL) was added the above obtained solution. The reaction mixture was stirred under an Ar atmosphere for 1 h. After adding H₂O (10 mL), the reaction mixture was filtered through a pad of celite, and the residue was washed with CH₂Cl₂. The filtrate was separated and the aqueous solution was extracted with CH₂Cl₂ (3 × 10 mL). The conbined organic layer was washed with brine (10 mL) and dried over Na₂SO₄. The solvent was removed *in vacuo*. The obtained crude product was purified by silica gel column chromatography (hexane:AcOEt = 6:1) to afford **7a** (131.9 mg, 77% yield) as colorless oil; ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.18 (d, *J* = 6.0 Hz, 3 H), 1.27 (d, *J* = 6.0 Hz, 3 H), 2.21 (s, 3 H), 4.92 (sept, *J* = 6.0 Hz, 1 H), 7.41–7.47 (m, 3 H), 7.50–7.55 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 21.2, 22.0, 22.1, 80.9 (q, *J* = 2.9 Hz), 93.7 (q, *J* = 37.5 Hz), 99.9, 120.7 (q, *J* = 267.9 Hz), 125.5, 128.8, 128.9, 130.4, 133.4, 164.3, 167.9, 175.0; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –58.4; IR (neat) 1792 (C=O), 1658 (C=C) cm⁻¹; HRMS (DART) *m*/z calcd for C₁₆H₁₅F₃O₅•NH₄ 362.1215, found 362.1202 [M+NH₄]⁺.

Similarly, 7b-c were obtained according to the above procedure.

Analytical data for 7b: colorless oil; ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.18 (d, J = 6.0 Hz, 3 H), 1.23 (d, J = 6.0 Hz, 3 H), 2.18 (s, 3 H), 3.80 (s, 3 H), 4.90 (sept, J = 6.0 Hz, 1 H), 6.90–6.94 (m, 2 H), 7.40–7.45 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 21.1, 22.0, 22.1, 55.3, 80.8 (q, J = 2.8

Hz), 93.5 (q, J = 37.2 Hz), 100.0, 114.1, 120.7 (q, J = 267.9 Hz), 125.1, 126.9, 161.1, 164.3, 167.9, 175.2; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –58.7; IR (neat) 1787 (C=O), 1762 (C=O), 1653 (C=C) cm⁻¹; HRMS (DART) *m/z* calcd for C₁₇H₁₇F₃O₆•NH₄ 392.1321, found 392.1309 [M+NH₄]⁺.

°C): δ 14.2, 21.0, 21.8, 22.0, 61.3, 81.3 (q, J = 3.8 Hz), 93.6 (q, J = 37.5 Hz), 99.6, 120.5 (q, J = 267.9 Hz), 125.6, 129.9, 132.3, 137.8, 164.0, 165.6, 167.7, 174.5; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –58.3; IR (neat) 1794 (C=O), 1722 (C=O), 1659 (C=C) cm⁻¹; HRMS (DART) *m*/*z* calcd for C₁₉H₁₉F₃O₇•NH₄ 434.1427, found 434.1411 [M+NH₄]⁺.

Analytical data for 7d: yellow oil; ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.26 (d, J = 6.0 Hz, 3 H), 1.29 (d, J = 6.0 Hz, 3 H), 2.25 (s, 3 H), 5.11 (sept, J = 6.0 Hz, 1 H), 7.10 (s, 1 H), 7.29 (dt, J = 8.0, 1.0 Hz, 1 H), 7.37 (dt, J = 8.0, 1.0 Hz, 1 H), 7.51 (d, J = 8.0 Hz, 1 H), 7.63 (d, J = 8.0 Hz, 1 H); ¹³C NMR (100 MHz,

CDCl₃, 25 °C): δ 21.0, 22.1, 22.2, 81.2 (q, J = 2.9 Hz), 95.0 (q, J = 37.2 Hz), 96.4, 107.4, 111.7, 120.5 (q, J = 267.9 Hz), 122.0, 123.7, 126.0, 126.8, 147.3, 155.2, 163.4, 167.3, 173.1; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –59.3; IR (neat) 1794 (C=O), 1664 (C=C) cm⁻¹; HRMS (DART) *m*/*z* calcd for C₁₈H₁₅F₃O₆•NH₄ 402.1164, found 402.1172 [M+NH₄]⁺.

Analytical data for 7e: pale-yellow oil; ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.33 (d, *J* = 6.4 Hz, 3 H), 1.35 (d, *J* = 6.4 Hz, 3 H), 2.22 (s, 3 H), 5.05 (sept, *J* = 6.0 Hz, 1 H), 7.37–7.44 (m, 2 H), 7.54 (s, 1 H), 7.77–7.87 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 21.1, 22.1, 22.2, 81.5 (q, *J* = 3.8 Hz), 93.5 (q, *J*

= 37.5 Hz), 98.7, 120.6 (q, J = 268.0 Hz), 122.3, 123.9, 124.5, 124.9, 125.8, 136.2, 138.4, 140.1, 163.4, 167.6, 173.9; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –58.4; IR (neat) 1789 (C=O), 1771 (C=O), 1658 (C=C) cm⁻¹; HRMS (DART) *m/z* calcd for C₁₈H₁₅F₃O₅S•NH₄ 418.0936, found 418.0933 [M+NH₄]⁺.

Synthesis of 9a from 1a: To a degassed solution of 1a (104.6 mg, 0.50 mmol) in dry Et₂O (8 mL) was added 2-lithiopyridine (0.3 M in THF, 1.8 mL, 0.55 mmol), which was prepared by adding *n*-BuLi (1.6 M in hexane, 580 µL, 0.93 mmol) to a solution of 2-bromopyridine (93 µL, 0.96 mmol) in THF (2.5 mL), at -90 °C under an argon atmosphere. After stirring for 30 min, Ac₂O (103 mL, 1.1 mmol) was added to the reaction mixture. The reaction mixture was stirred for 1 h at -90 °C and then, quenched with sat. NH₄Cl (10 mL). The reaction mixture was extracted with AcOEt (3×20 mL). The combined organic layer was washed with brine (10 mL) and dried over Na₂SO₄. The organic layer was diluted with p-xylene (10 mL) and AcOEt was evaporated in vacuo. The resultant crude product solution was stirred at 100 °C under an Ar atmosphere for 30 min. After cooling to room temperature, the reaction mixture was concentrated in vacuo. The obtained crude product was purified by silica gel column chromatography (hexane: AcOEt = 2:1) to afford 9a (88.1 mg, 54% yield) as a brown ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 1.32 (d, J = 6.4 Hz, 6 H), 2.40 (s, 3 H), oil: 4.67 (sept, J = 6.4 Hz, 1 H), 7.03 (dd, J = 7.2, 6.4 Hz, 1 H), 7.42 (d, J = 8.8 Hz, 1 H), 7.52 (dd J = 8.8, 6.4 Hz, 1 H), 9.09 (d, J = 7.2 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 20.3, 22.3, 79.0, 100.9 (q, J = 28.6 Hz), 115.1, 118.5, 120.6, 123.7 (q, J = 272.1 Hz), 128.1, 133.6, 138.5, 154.9, 157.7, 168.3; ¹⁹F NMR (376 MHz, CDCl₃,

25 °C): δ –58.8; IR (neat) 1781 (C=O), 1675 (C=O), 1631 (C=C) cm⁻¹; HRMS (DART) *m/z* calcd for C₁₅H₁₄F₃NO₄•H 330.0953, found 330.0946 [M+H]⁺.

Similarly, **9b** and **9c** were obtained according to the above procedure.

Analytical data for 9b: brown oil; ¹H NMR (400 MHz, CDCl₃, $S \rightarrow O^{i}Pr$ 25 °C): δ 1.33 (d, J = 6.4 Hz, 6 H), 2.37 (s, 3 H), 4.65 (sept, J = 6.4Hz, 1 H), 7.00 (d, J = 4.8 Hz, 1 H), 8.15 (d, J = 4.8 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 20.2, 22.3, 79.1, 102.0 (q, J = 29.2 Hz), 112.0, 121.7, 123.5 (q, J = 272.1 Hz), 125.4, 145.9, 155.0, 159.0, 167.1; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –58.8; IR (neat) 1784 (C=O), 1661 (C=O), 1577 (C=C) cm⁻¹; HRMS (ESI) *m/z* calcd for C₁₃H₁₂F₃NO4S•H 336.0517, found 336.0515 [M+H]⁺.

 $\begin{array}{c} \text{Me} \\ N \\ N \\ N \\ N \\ N \\ N \\ O \\ \end{array} \begin{array}{c} O^{i}\text{Pr} \\ O \\ CF_{3} \end{array} \begin{array}{c} \text{Analytical data for 9c: pale-brown oil; } ^{1}\text{H NMR (400 MHz, } \\ \text{CDCl}_{3}, 25 ^{\circ}\text{C}\text{): } \delta 1.28 (d, J = 6.4 \text{ Hz, } 6 \text{ H}\text{), } 2.34 (s, 3 \text{ H}\text{), } 3.75 (s, 3 \text{ H}\text{), } \\ 4.53 (\text{sept, } J = 6.4 \text{ Hz, } 1 \text{ H}\text{), } 6.88 (d, J = 2.2 \text{ Hz, } 1 \text{ H}\text{), } 6.67 (d, J = 2.2 \text{ Hz, } 1 \text{ H}\text{), } 6.67 (d, J = 2.2 \text{ Hz, } 1 \text{ H}\text{), } \\ \text{Hz, } 1 \text{ H}\text{); } \ \ ^{13}\text{C NMR} \quad (100 \text{ MHz, } \text{CDCl}_{3}, 25 ^{\circ}\text{C}\text{): } \delta 20.2, 22.2, 34.7, \end{array}$

78.2, 94.1 (q, J = 28.9 Hz), 109.9, 111.0, 122.5, 124.6 (q, J = 270.8 Hz), 136.4, 152.4, 157.4, 169.1; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –57.3; IR (neat) 1780 (C=O), 1666 (C=O), 1589 (C=C) cm⁻¹; HRMS (DART) m/z calcd for C₁₄H₁₅F₃N₂O₄•H 333.1062, found 333.1069 [M+H]⁺.

Synthesis of 11 from 1a: A 0.3 M solution of 1-(*tert*-Butylimino)pentyllithium was prepared by the addition of *n*-BuLi (1.6 M in hexane, 480 μ L, 0.75 mmol) to *tert*-BuNC (85 μ L, 0.75 mmol) in Et₂O (2.0 mL) at -15 °C and the solution was stirred at this temperature for 30 min. To a degassed solution of **1a** (104.3 mg, 0.50 mmol) in dry Et₂O (10 mL) was added 1-(*tert*-butylimino)pentyllithium (0.3 M in Et₂O/hexane, 1.7 mL, 0.51 mmol) at -78 °C under an argon atmosphere. After stirring for 30 min, the

reaction was quenched with sat. NH₄Cl (10 mL). The reaction mixture was extracted with Et₂O (3 × 10 mL). The combined organic layer was washed with brine (10 mL), dried over Na₂SO₄, and concentrated *in vacuo*. The obtained crude product was purified by silica gel column chromatography (hexane:AcOEt = 6:1) to afford **11** (87.2 mg, 50% yield) as a dark-red solid (mp 61.6–63.4 °C); ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 0.83 (t, *J* = 7.2 Hz, 3 H), 1.01 (s, 9 H), 1.02–1.27 (m, 4 H), 1.41 (d, *J* = 6.0 Hz, 3 H), 1.42 (d, *J* = 6.0 Hz, 3 H), 1.57 (br s, 1 H), 1.66 (dt, *J* = 9.8, 7.2 Hz, 1 H), 1.68 (dt, *J* = 9.8, 7.2 Hz, 1 H), 2.68 (dd, *J* = 14.0, 7.2 Hz, 1 H), 5.91 (sept, *J* = 6.0 Hz, 1 H),; ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 13.5, 22.7, 23.0, 23.2, 25.4, 31.9, 38.7, 52.4, 66.0, 78.0, 120.8 (q, *J* = 272.7 Hz), 122.1 (q, *J* = 31.8 Hz), 165.1, 196.7, 203.9; ¹⁹F NMR (376 MHz, CDCl₃, 25 °C): δ –63.0; IR (neat) 3449 (NH), 1713 (C=O), 1619 (C=C) cm⁻¹; HRMS (DART) *m/z* calcd for C₁₇H₂₆F₃NO₃•H 350.1943, found 350.1945 [M+H]⁺.

Single Crystal X-Ray Diffraction

Single crystals of **6m** was mounted on a glass fiber, and diffraction data were collected in θ ranges specified in Table S1 at 103 K on a Brucker D8 QUEST diffractomter with graphite monochromatized Mo K α radiation ($\lambda = 0.71073$ Å). The absorption correction was made using SADABS. The structure was solved by direct methods and refined by the full-matrix least-squares on F^2 by using SHELXL-2013.⁷ All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in calculated positions. Final refinement details are compiled in Table S1. The supplementary crystallographic data for this paper (CCDC of 1416765) can also be obtained free charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.ac.uk).

⁷ Sheldrick, G. M. SHELXL-2013, Bruker AXS Inc., Madison, Wisconsin, **2013**.

Figure S1. ORTEP drawing of 6m.

formula	$C_{21}H_{20}F_{3}NO_{5}$
fw	423.38
crystal system	monoclinic
space group	P2(1)/c
<i>a</i> , Å	14.1742(13)
<i>b</i> , Å	11.9882(11)
<i>c</i> , Å	11.3206(10)
β , deg	90.796(3)
volume, Å ³	1923.4(3)
Ζ	4
D (calcd), Mg m ⁻³	1.462
μ , mm ⁻¹	0.123
<i>F</i> (000)	880
crystal size, mm	0.5 x 0.4 x 0.2
θ range for data collection, deg	2.23 to 25.07
index ranges	-16≤h≤15, -14≤k≤14, -13≤l≤13
reflections collected	12346
independent reflections [R(int)]	3328 [R(int) = 0.0597]
coverage of independent reflections	97.5%
data / restraints / parameters	3328 / 0 / 276
goodness-of-fit on F^2	0.969
R_1 [4730 data; $I > 2 \Box(I)$]	0.0472
wR_2 [4730 data; $I > 2 \Box(I)$]	0.1250
R_1 (all data)	0.0497
wR_2 (all data)	0.1279
largest diff. peak and hole, e Å ⁻³	0.262 and -0.378
R.M.S. deviation from mean, e Å ⁻³	0.074

 Table S1. Selected Crystallographic data and collection parameters for 6m.

 $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|. \ wR_2 = \{ \Sigma [(\Box (F_o^2 - F_c^2)^2)] / \Sigma [\Box (F_o^2)^2 \} \}^{1/2}.$

NMR Charts

ł

