Supporting Information

Palladium-Catalyzed Heck-type Reaction of Oximes with

Allylic Alcohols: Synthesis of Pyridines and Azafluorenones

Meifang Zheng, Pengquan Chen, Wanqing Wu, Huanfeng Jiang *

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China

E-mail: jianghf@scut.edu.cn; Fax and Tel.: (+86) 20-87112906

Lists of Contents

General Information	
General Procedure for the Synthesis of Pyridines	S2
Control Experiments	
Characterization Data for Products	
Reference	S14
NMR Spectra for Compounds	

General Information

¹H and ¹³C NMR spectra were recorded on BRUKER DRX-400 spectrometer using CDCl₃ as solvent and TMS as an internal standard. Gas chromatograph mass spectra were obtained with a SHIMADZU model GCMS-QP5000 spectrometer. High-resolution mass spectra (ESI) were obtained with a LCMS-IT-TOF mass spectrometer. Unless otherwise stated, all reagents and solvents were purchased from commercial suppliers and used without further purification. Oxime acetates were synthesized according to the literature procedure.

General Procedure for the Synthesis of Pyridines

To a tube was added oxime **1** (0.5 mmol), allylic alcohols **2** (1.0 mmol), $Pd(OAc)_2$ (0.025 mmol), $Cu(OAc)_2$ (0.1 mmol), K_2CO_3 (0.75 mol) and CH_3CN (1 mL). The mixture was stirred at 80 °C for overnight. After the reaction was finished, the reaction mixture was cooled to room temperature, diluted in diethyl ether, and washed with NaCl aqueous solution. The aqueous phase was re-extracted with diethyl ether. The combined organic extracts were dried over MgSO₄ and concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography using light petroleum ether/ethyl acetate as eluent to afford the desired products.

Control Experiments

To gain more insight into the mechanism of this oxidative cyclization, several control experiments were conducted. To a tube were added oxime (0.5 mmol), $Pd(OAc)_2$ (0.025 mmol), $Cu(OAc)_2$ (0.1 mmol), K_2CO_3 (0.75 mol), CH₃CN (1 mL) and other alkenes (1.0 mmol) accordingly. The reaction was operated at 80 °C and stirred for overnight. After the reaction was finished, the reaction mixture was cooled to room temperature, diluted in diethyl ether, and washed with NaCl aqueous solution. The aqueous phase was re-extracted with diethyl ether. The combined organic extracts were dried over MgSO₄ and concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography using light petroleum ether/ethyl acetate as eluent to afford the desired products.

The desired product **3aa** was obtained only in relatively low yield when 3-chlorobut-1-ene was added [eqn (1)] and but-3-en-2-one with good yield of 75% [eqn (2)]. However, with the addition of ethyl acrylate [eqn (3)], 3,3-dimethoxyprop-1-ene [eqn (4)] and allylbenzene [eqn (5)], no corresponding Heck reaction products were obtained.

Scheme 1. Scope of alkenes

Next, we tried to explore the role of dioxygen (Scheme 2). When the reaction was carried out in N_2 atmosphere, only trace amount of **3aa** was detected by GC-MS [eqn (2)]. Increasing the amount of [Pd] and [Cu] catalysts did not improve the yield of **3aa** [eqn (2) and (3)].

Scheme 2. Control experiments

Based on the experimental results and previous reports, herein, an alternative mechanism is proposed (Scheme 3). Firstly, the oxidative addition of the oxime N-O bond to Pd(0) species easily transformed to palladium enamide intermediate A'. Subsequent tautomerization affords the enamine-derived amido-Pd(II) species B'. Further condesation of B' with vinyl ketone results in imine species C'. Finally, the cyclization oxidation of intermediate C' gives the pyridine product 3.

Scheme 3. Possible mechanism

Characterization Data for Products

2-Methyl-5,6-dihydrobenzo[h]quinoline (3aa)

Pale yellow oil. Yield (84.8 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, *J* = 7.6 Hz, 1H), 7.36 (m, 2H), 7.28 (t, *J* = 7.3 Hz, 1H), 7.21 (d, *J* = 7.3 Hz, 1H), 6.98 (d, *J* = 7.6 Hz, 1H), 2.90 (s, 4H), 2.59 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.3, 151.7, 138.2, 136.0, 134.7, 128.9, 128.7, 127.7, 127.1, 125.0, 121.8, 28.3, 27.7, 24.4. IR (KBr) v (cm⁻¹): 3483, 3407, 3243, 3271, 3068, 2967, 1630, 1437, 1366, 613, 483. ESI-HRMS calcd for [M + H]⁺ C₁₄H₁₄N, 196.1121; found, 196.1121.

8-Methoxy-2-methyl-5,6-dihydrobenzo[h]quinoline (3ba)

Pale yellow solid; mp: 60-62 °C. Yield (70.9 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.6 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 6.89 (m, 2H), 6.74 (s, 1H), 3.83 (s, 3H), 2.86 (s, 4H), 2.57 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.3, 156.2, 151.8, 140.0, 135.7, 127.9, 127.6, 126.6, 120.9, 113.1, 112.5, 55.3, 28.7, 27.8, 24.4. IR (KBr) v (cm⁻¹): 3519, 3442, 3304, 3172, 3127, 3075, 1432, 1375, 754. ESI-HRMS calcd for [M + H]⁺ C₁₅H₁₆NO, 226.1226; found, 226.1231.

2,6-Dimethyl-5,6-dihydrobenzo[h]quinoline (3ca)

Pale yellow oil. Yield (82.5 mg, 79%). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, J = 6.9 Hz, 1H), 7.35 (m, 3H), 7.25 (d, J = 5.7 Hz, 1H), 6.98 (d, J = 7.6 Hz, 1H), 3.04 (d, J = 13.0 Hz, 2H), 2.66 (m, 1H), 2.60 (s, 3H), 1.22 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.2, 151.3, 143.0, 136.6, 129.2, 127.4, 127.0, 126.3, 125.2, 121.9, 35.3, 32.4, 24.4, 20.2. IR (KBr) v (cm⁻¹): 3589, 3518, 3444, 3304, 3171, 3129, 3073, 1704, 1433, 1370, 660 ESI-HRMS calcd for [M + H]⁺ C₁₅H₁₆N, 210.1277; found, 210.1280.

9-Chloro-2-methyl-5*H*-chromeno[4,3-*b*]pyridine (3da)

Pale yellow solid; mp 87-89 °C. Yield (68.1 mg, 59%). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.31 (d, *J* = 7.7 Hz, 1H), 7.22 (d, *J* = 8.5 Hz, 1H), 7.06 (d, *J* = 7.7 Hz, 1H), 6.88 (d, *J* = 8.5 Hz, 1H), 7, 5.18 (s, 2H), 2.60 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.5, 154.8, 146.8, 132.4, 130.7, 127.5, 124. 124.6, 122.9, 122.5, 118.3, 67.91, 24.5. IR (KBr) v (cm⁻¹): 3648, 3519, 3443, 3305, 3127, 3075, 2925, 1704, 1434, 1375, 659. ESI-HRMS calcd for [M + H]⁺ C₁₃H₁₁ClNO, 232.0524, 233.0554, 234.0494; found, 232.0524, 233.0556, 234.0497.

2-(4-Bromophenyl)-6-methylpyridine (3ea)

Pale yellow solid; mp 73-75 °C. Yield (109.9 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 8.4 Hz, 2H), 7.59 (m, 3H), 7.47 (d, J = 7.9 Hz, 1H), 7.09 (d, J = 7.6 Hz, 1H), 2.61 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.6, 155.7, 138.6, 137.0, 133.40, 132.7, 131.8, 128.6, 123.2, 122.0, 117.3, 24.7. IR (KBr) v (cm⁻¹): 3518, 3444, 3304, 3129, 3073, 1705, 1433, 1370, 1204, 660. ESI-HRMS calcd for [M + H]⁺ C₁₂H₁₁BrN, 248.0069, 249.0101, 250.0052; found, 248,0074, 249.0101, 250.0050.

MeO

2-(4-Methoxyphenyl)-6-methylpyridine (3fa)

Pale yellow oil. Yield (79.6 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.1 Hz, 2H), 7.59 (t, *J* = 7.7 Hz, 1H), 7.45 (d, *J* = 7.9 Hz, 1H), 7.04 (d, *J* = 7.6 Hz, 1H), 6.98 (d, *J* = 8.2 Hz, 2H), 3.85 (s, 3H), 2.61 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.3, 158.2, 156.6, 136.9, 132.3, 128.3, 120.9, 116.9, 114.1, 55.3, 24.7. IR (KBr) v(cm⁻¹): 3651, 3519, 3444, 3242, 3128, 3072, 2920, 1708, 1436, 1368, 566. ESI-HRMS calcd for [M + H]⁺ C₁₃H₁₄NO, 200.1070; found, 200.1069.

2-(3-Methoxyphenyl)-6-methylpyridine (3ga)

Pale yellow oil. Yield (68.6mg, 69%).¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.4 Hz, 2H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.46 (d, *J* = 7.8 Hz, 1H), 7.01 (m, 3H), 3.86 (s, 3H), 2.62 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.0, 157.0, 155.5, 135.8, 133.8, 131.2, 129.7, 122.1, 121.2, 121.1, 111.4, 55.6, 24.7. IR (KBr) v (cm⁻¹): 3587, 3518, 3443, 3304, 3127, 3075, 2972, 1433, 1374, 660. ESI-HRMS calcd for [M + H]⁺ C₁₃H₁₄NO, 200.1070; found, 200.1072.

2-(3-Chlorophenyl)-6-methylpyridine (3ha)

Pale yellow oil. Yield (58.9 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.88 (d, J = 6.6 Hz, 1H), 7.67 (t, J = 7.7 Hz, 1H), 7.52 (d, J = 7.8 Hz, 1H), 7.40 (d, J = 6.6 Hz, 2H), 7.15 (d, J = 7.6 Hz, 1H), 2.66 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.6, 155.4, 141.4, 137.1, 134.8, 129.9, 128.7, 127.2, 125.1, 122.2, 117.7, 24.6. IR (KBr) v (cm⁻¹): 3650, 3519, 3444, 3303, 3129, 3073, 2850, 1706, 1433, 1370, 662. ESI-HRMS calcd for [M + H]⁺ C₁₂H₁₁ClN, 204.0575, 205.0596, 206.0597; found, 204.0570, 205.0607, 206.0547.

2-(Furan-2-yl)-6-methylpyridine (3ia)

Pale yellow oil. Yield (44.5 mg, 56%). ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 4.8 Hz, 1H), 7.52 (s, 2H), 7.05 (s, 1H), 6.98 (d, J = 4.5 Hz, 1H), 6.52 (d, J = 1.4 Hz, 1H), 2.4 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.6, 149.2, 149.1, 147.91, 143.18, 123.0, 119.4, 112.0, 108.5, 21.2. IR (KBr) v (cm⁻¹): 3589, 3518, 3444, 3304, 3129, 3073, 2923, 1705, 1434, 1370, 661, 563. ESI-HRMS calcd for [M + H]⁺ C₁₀H₁₀NO, 160.0757; found, 160.0759.

2-(Furan-3-yl)-6-methylpyridine (3ja)

Pale yellow oil. Yield (58.8 mg, 74%).¹H NMR (400 MHz, CDCl₃) δ 7.60 (t, J = 7.7 Hz, 1H), 7.50 (m, 2H), 7.03 (m, 2H), 6.51 (s, 1H), 2.60 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 158.4, 143.3, 136.9, 121.6, 115.8, 111.9, 108.6, 24.6. IR (KBr) v (cm⁻¹): 3652, 3520, 3442, 3240, 3127, 3074, 2931, 1707, 1438, 1364, 566. ESI-HRMS calcd for [M + H]⁺ C₁₀H₁₀NO, 160.0757; found, 160.0751.

2-Benzyl-6-methyl-3-phenylpyridine (3ka)

Pale yellow oil. Yield (99.7 mg, 77%). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.3 Hz, 2H), 7.39 (t, J = 7.6 Hz, 2H), 7.29 (m, 5H), 7.22 (d, J = 14.9 Hz, 1H), 4.09 (s, 2H), 2.48 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.0, 146.2, 138.8, 134.2, 128.9, 128.8, 128.6, 128.4, 127.8, 126.4, 125.46, 33.0, 14.1.

IR (KBr) v (cm⁻¹): 3450, 3373, 3301, 3128, 3072, 1590, 1435, 1367, 648, 590, 510. ESI-HRMS calcd for $[M + H]^+ C_{19}H_{18}N$, 260.1434; found, 260.1438.

MeO

2-(4-Methoxyphenyl)-3,6-dimethylpyridine (3la)

Pale yellow oil. Yield (89.4 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (t, *J* = 8.6 Hz, 3H), 6.98 (m, 3H), 3.84 (s, 3H), 2.55 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.3, 157.6, 155.3, 138.8, 133.5, 130.3, 127.3, 121.3, 113.6, 55.3, 24.2, 19.7. IR (KBr) v (cm⁻¹): 3587, 3519, 3443, 3305, 3174, 3074, 1438, 1364, 782, 653, 554. ESI-HRMS calcd for [M + H]⁺ C₁₄H₁₆NO, 214.1226; found, 214.1230.

2-(2-Fluorophenyl)-3,6-dimethylpyridine (3ma)

Pale yellow oil. Yield (71.4 mg, 71%). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.8 Hz, 1H), 7.37 (m, 2H), 7.22 (t, *J* = 7.4 Hz, 1H), 7.10 (m, 2H), 2.56 (s, 3H), 2.17 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.9, 158.5, 155.5, 153.3 138.2, 131.3, 131.3, 129.9, 129.8, 129.3, 128.7, 128.5, 124.4, 124.4, 122.4, 115.7, 115.5, 24.1, 18.4, 18.4. IR (KBr) v (cm⁻¹): 3586, 3519, 3443, 3305, 3173, 3127, 3074, 1436, 1374, 816, 756. ESI-HRMS calcd for [M + H]⁺ C₁₃H₁₃FN, 202.1027; found, 202.1028.

2-(4-Fluorophenyl)-3,6-dimethylpyridine (3na)¹

Pale yellow oil. Yield (89.4 mg, 84%). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 7.8 Hz, 1H), 7.38 (m, 2H), 7.23 (t, J = 7.5 Hz, 1H), 7.11 (m, 2H), 2.57 (s, 3H), 2.18 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.9, 158.5, 155.5, 153.3, 138.2, 131.3, 129.9, 129.3, 128.6, 124.4, 122.4, 115.7, 115.5, 24.1, 18.4. IR (KBr) v (cm⁻¹): 3518, 3305, 3170, 3127, 3075, 1703, 1430, 1375, 660. *m/z* (EI): 201.

2-Methyl-6,7,8,9-tetrahydro-5*H*-cyclohepta[*b*]pyridine (30a)²

Pale yellow oil. Yield (49.9 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 7.28 (s, 1H), 6.87 (d, J = 7.5 Hz, 1H), 3.02 (m, 2H), 2.73 (m, 2H), 2.49 (s, 3H), 1.85 (m, 2H), 1.66 (m, 4H). ¹³C NMR (101 MHz, CDCl3) δ 162.4, 154.2, 137.1, 135.0, 120.6, 39.1, 34.8, 32.5, 28.1, 26.5, 23.7. IR (KBr) v (cm⁻¹): 3518, 3305, 3170, 3127, 3075, 1703, 1430, 1375, 660. *m/z* (EI): 161.

2-Methyl-5,6,7,8,9,10-hexahydrocycloocta[b]pyridine (3pa)

Pale yellow oil. Yield (43.1 mg, 49%). ¹H NMR (400 MHz, CDCl₃) δ = 7.27 (d, *J*=6.1, 1H), 6.92 (d, *J*=7.6, 1H), 2.95 (m, 2H), 2.73 (m, 2H), 2.51 (s, 3H), 1.78 (m, 2H), 1.67 (m, 2H), 1.38 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 155.2, 137.1, 132.9, 121.1, 34.4, 32.2, 31.5, 30.7, 26.0, 25.9, 23.9. IR (KBr) v (cm⁻¹): 3519, 3444, 3381, 3172, 3128, 3073, 1706, 1434, 1370, 662. ESI-HRMS calcd for [M + H]⁺ C₁₂H₁₈N, 176.1434; found, 176.1438.

2,6-Dimethylpyridine (3qa)

Colorless oil. Yield (27.8 mg, 52%). ¹H NMR (400 MHz, CDCl3) δ 7.43 (m, 1H), 6.93 (m, 2H), 2.51 (s, 6H). ¹³C NMR (101 MHz, CDCl3) δ 157.6, 136.5, 120.1, 24.4. IR (KBr) v (cm⁻¹): 3519, 3444, 3381, 3172, 3128, 3073, 1706, 1434, 1370, 662. *m/z* (EI) 107.

(S)-2,8-Dimethyl-5-(prop-1-en-2-yl)-5,6-dihydroquinoline (3ra)

Pale yellow oil. Yield (42.8 mg, 43%). ¹H NMR (400 MHz, CDCl3) δ 7.23 (d, J = 7.7 Hz, 1H), 6.91 (d, J = 7.7 Hz, 1H), 6.05 (s, 1H), 4.90 (s, 1H), 4.75 (s, 1H), 3.56 (t, J = 8.7 Hz, 1H), 2.52 (s, 3H), 2.39 (m, , 2H), 2.14 (s, 3H), 1.71 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.3, 153.5, 146.1, 134.6, 129.3, 127.6, 121.0, 113.6, 45.5, 29.7, 27.7, 24.2, 19.7, 18.2. IR (KBr) v (cm⁻¹): 3519, 3444, 3381, 3172, 3128, 3073, 1706, 1434, 1370, 662. ESI-HRMS calcd for [M + H]⁺ C₁₄H₁₈N, 200.1434; found, 200.1433.

5,6-Dihydrobenzo[h]quinoline (3ab)

Pale yellow oil. Yield (68.8 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 4.1 Hz, 1H), 8.32 (d, J = 7.5 Hz, 1H), 7.51 (d, J = 7.4 Hz, 1H), 7.36 (d, J = 7.5 Hz, 1H), 7.31 (s, 1H), 7.24 (m, 2H), 7.14 (d, J = 6.5 Hz, 1H), 2.94 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 152.5, 147.6, 138.2, 135.8, 132.0, 129.2,

127.8, 127.2, 125.0, 122.3, 28.1, 28.0. IR (KBr) v (cm⁻¹): 3518, 3303, 3129, 3073, 2967, 1433, 1370, 661, 582. ESI-HRMS calcd for [M + H]⁺ C₁₃H₁₂N, 182.0964; found, 182.0970.

2-Ethyl-5,6-dihydrobenzo[h]quinoline (3ac)

Pale yellow oil. Yield (85.7 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, *J* = 7.6 Hz, 1H), 7.44 (d, *J* = 7.7 Hz, 1H), 7.39 (t, *J* = 7.4 Hz, 1H), 7.32 (t, *J* = 7.2 Hz, 1H), 7.24 (d, *J* = 7.3 Hz, 1H), 7.03 (d, *J* = 7.7 Hz, 1H), 2.91 (m, 6H), 1.40 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.4, 151.6, 138.2, 136.0, 128.8, 127.7, 127.1, 125.1, 120.5, 31.2, 28.3, 27.7, 13.9. IR (KBr) v (cm⁻¹): 3587, 3518, 3443, 3304, 3127, 3075, 2972, 1433, 1374, 660. ESI-HRMS calcd for [M + H]⁺ C₁₅H₁₆N, 210.1277; found, 210.1278.

2-Pentyl-5,6-dihydrobenzo[h]quinoline (3ad)

Pale yellow oil. Yield (110.4 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 7.5 Hz, 1H), 7.39 (d, J = 7.6 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 7.28 (t, J = 7.3 Hz, 1H), 7.20 (d, J = 7.4 Hz, 1H), 6.97 (d, J = 7.7 Hz, 1H), 2.90 (s, 4H), 2.83 (t, J = 7.7 Hz, 2H), 1.80 (m, 2H), 1.38 (m, 4H), 0.91 (t, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.4, 151.6, 138.1, 135.9, 128.8, 127.6, 127.1, 125.1, 121.1, 31.6, 29.5, 28.2, 27.7, 22.6, 14.1. IR (KBr) v (cm⁻¹): 3651, 3519, 3444, 3242, 3128, 3072, 2920, 1708, 1436, 1368, 566. ESI-HRMS calcd for [M + H]⁺ C₁₅H₁₆N, 252.1745; found, 252.1747.

2-Phenyl-5,6-dihydrobenzo[*h*]quinoline (3ae)

Pale yellow solid; mp 103-105 °C. Yield (93.4 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 7.4 Hz, 1H), 8.14 (d, J = 7.3 Hz, 2H), 7.57 (m, 2H), 7.49 (t, J = 7.4 Hz, 2H), 7.40 (m, 3H), 7.33 (d, J = 7.9 Hz, 1H), 2.97 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 155.1, 152.1, 139.7, 138.2, 136.4, 134.9, 130.3, 129.1, 128.7, 128.2, 127.8, 127.1, 126.8, 125.3, 118.7, 28.2, 27.8. IR (KBr) v (cm⁻¹): ESI-HRMS calcd for [M + H]⁺ C₁₉H₁₆N, 258.1277; found, 258.1283.

2-(4-Methoxyphenyl)-5,6-dihydrobenzo[h]quinoline (3af)

Pale yellow solid; mp 121-123 °C. Yield (101.9 mg, 71%). ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 7.6 Hz, 1H), 8.02 (d, *J* = 8.6 Hz, 2H), 7.45 (s, 2H), 7.31 (t, *J* = 7.4 Hz, 1H), 7.24 (t, *J* = 7.3 Hz, 1H), 7.16 (d, *J* = 7.7 Hz, 1H), 6.93 (d, *J* = 8.6 Hz, 2H), 3.79 (s, 3H), 2.88 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 160.3, 154.8, 151.8, 138.2, 136.3, 134.0, 132.4, 129.6, 129.0, 128.0, 127.7, 127.1, 125.2, 118.0, 114.0, 55.4, 28.2, 27.8. IR (KBr) v (cm⁻¹): 3516, 3440, 3240, 3126, 3074, 1512, 1400, 1360, 1248, 1176, 1031, 822, 752. ESI-HRMS calcd for [M + H]⁺ C₂₀H₁₈NO, 288.1383; found, 288.1386.

2-(4-Fluorophenyl)-5,6-dihydrobenzo[h]quinoline (3ag)

Pale yellow solid; mp 134-136 °C. Yield (108.6 mg, 79%). ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 7.3 Hz, 1H), 8.12 (s, 2H), 7.55 (m, 2H), 7.36 (m, 3H), 7.17 (t, *J* = 8.6 Hz, 2H), 2.97 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 154.0, 138.3, 136.7, 130.4, 129.3, 128.7, 128.6, 127.8, 127.2, 125.4, 118.6, 115.6, 115.42, 28.1, 27.8. IR (KBr) v (cm⁻¹): 3589, 3518, 3445, 3303, 3128, 3073, 2929, 1584, 1435, 1368, 661, 513. ESI-HRMS calcd for [M + H]⁺ C₁₉H₁₅FN, 276.1183; found, 276.1180.

2-(2-Methoxyphenyl)-5,6-dihydrobenzo[h]quinoline (3ah)

Pale yellow solid; mp 131-133 °C. Yield (47.4 mg, 33%). ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 7.6 Hz, 1H), 8.02 (d, J = 7.6 Hz, 1H), 7.73 (d, J = 7.9 Hz, 1H), 7.51 (d, J = 7.9 Hz, 1H), 7.36 (m, 2H), 7.29 (t, J = 7.3 Hz, 1H), 7.22 (d, J = 7.3 Hz, 1H), 7.13 (d, J = 7.4 Hz, 1H), 7.01 (d, J = 8.3 Hz, 1H), 3.88 (s, 3H), 2.97 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 157.2, 153.7, 151.9, 138.0, 135.2, 135.0, 131.4, 129.8, 129.6, 129.5, 128.8, 127.7, 127.0, 125.2, 123.6, 121.1, 111.5, 55.7, 28.2, 27.8. IR (KBr) v (cm⁻¹): 3650, 3519, 3444, 3303, 3228, 3073, 2939, 1434, 1369, 663, 586. *m/z* (EI): 287.

3-Methyl-5,6-dihydrobenzo[h]quinoline (3ai)

Pale yellow oil. Yield (72.1 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 8.26 (d, J = 7.5 Hz, 1H), 7.32 (m, 3H), 7.21 (d, J = 7.2 Hz, 1H), 2.90 (s, 4H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.8, 137.9, 136.6, 128.8, 127.8, 127.2, 124.7, 28.1, 28.0, 18.2. IR (KBr) v (cm⁻¹): 3592, 3518, 3446, 3300, 3132, 3069, 2965, 1709, 1436, 1368, 662, 571. ESI-HRMS calcd for [M + H]⁺ C₁₄H₁₄N, 196.1121; found, 196.1126.

2-(Prop-1-en-1-yl)-5,6-dihydrobenzo[h]quinoline (3aj)

Pale yellow oil. Yield (49.7 mg, 45%). ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 7.2 Hz, 1H), 7.41 (d, J = 7.7 Hz, 1H), 7.35 (t, J = 7.4 Hz, 1H), 7.30 (d, J = 7.2 Hz, 1H), 7.21 (d, J = 7.2 Hz, 1H), 7.06 (d, J = 7.7 Hz, 1H), 6.86 (m, 1H), 6.55 (d, J = 15.4 Hz, 1H), 2.91 (s, 4H), 1.95 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.1, 138.2, 136.0, 131.4, 129.8, 128.9, 127.7, 127.0, 125.1, 119.4, 28.2, 27.9, 18.3. IR (KBr) v (cm⁻¹): 3649, 3519, 3444, 3241, 3128, 3073, 1595, 1435, 1369, 759, 698. ESI-HRMS calcd for [M + H]⁺ C₁₆H₁₆N, 222.1277; found, 222.1284.

2-(Thiophen-3-yl)-5,6-dihydrobenzo[h]quinoline (3ak)

Pale yellow solid; mp 145-147 °C. Yield (86.8mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 7.6 Hz, 1H), 7.97 (s, 1H), 7.77 (d, J = 4.0 Hz, 1H), 7.50 (d, J = 7.5 Hz, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.38 (t, J = 7.1 Hz, 2H), 7.31 (t, J = 7.3 Hz, 1H), 7.22 (s, 1H), 2.95 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 151.5, 138.2, 136.3, 134.7, 130.0, 129.1, 127.7, 127.1, 126.4, 126.0, 125.2, 122.9, 118.6, 28.2, 27.8. IR (KBr) v (cm⁻¹): 3587, 3519, 3443, 3305, 3174, 3074, 1438, 1364, 782, 653, 554. ESI-HRMS calcd for [M + H]⁺ C₁₇H₁₄NS, 264.0841; found, 264.0842.

2-Methyl-5*H*-indeno[1,2-*b*]pyridin-5-one (4a)³

Pale yellow solid; mp 140-143 °C. Yield (43.9mg, 45%). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 7.3 Hz, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.70 (d, J = 7.3 Hz, 1H), 7.57 (t, J = 7.2 Hz, 1H), 7.41 (t, J = 7.3 Hz, 1H), 7.05 (d, J = 7.6 Hz, 1H), 2.64 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.8, 165.2, 164.4, 143.5, 135.2, 135.0, 131.6, 130.8, 125.9, 124.0, 122.7, 120.9, 25.0. IR (KBr) v (cm⁻¹): 3651, 3592, 3518, 3301, 3132, 3069, 2925, 1708, 1436, 1368, 663, 571. *m/z* (EI): 195.

5H-Indeno[1,2-b]pyridin-5-one (4b)

Pale yellow solid; mp 138-141 °C. Yield (60.6 mg, 67%). ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, J = 3.4 Hz, 1H), 7.89 (m, 2H), 7.73 (d, J = 7.4 Hz, 1H), 7.61 (t, J = 7.5 Hz, 1H), 7.44 (t, J = 7.4 Hz, 1H), 7.22 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 191.7, 165.0, 153.8, 143.4, 135.4, 134.8, 131.6, 131.1, 124.2, 123.4, 121.1. IR (KBr) v (cm⁻¹): 3587, 3518, 3443, 3305, 3127, 3074, 2921, 1717, 1437, 1365, 741, 662, 560. ESI-HRMS calcd for [M + H]⁺ C₁₂H₈NO, 182.0600; found, 182.0595.

3-Methyl-5*H*-indeno[1,2-*b*]pyridin-5-one (4c)³

Pale yellow solid; mp 137-140 °C. Yield (45.8 mg, 47%). ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 7.82 (d, *J* = 6.8 Hz, 1H), 7.71 (d, *J* = 7.1 Hz, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.41 (d, *J* = 7.2 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.2, 135.3, 132.0, 130.5, 124.1, 120.6, 18.6. IR (KBr) v (cm⁻¹): 3590, 3518, 3445, 3302, 3130, 3071 2924, 1710, 1435, 1369, 821, 747, 660. *m/z* (EI): 195.

5H-Cyclopenta[2,1-b:3,4-b']dipyridin-5-one (4d)⁴

Pale yellow solid; mp 210-212 °C. Yield (35.5 mg, 39%). ¹H NMR (400 MHz, CDCl₃) δ 8.82 (d, J = 4.9 Hz, 2H), 8.01 (d, J = 7.5 Hz, 2H), 7.37 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 189.6, 163.4, 155.2, 131.5, 129.4, 124.8. IR (KBr) v (cm⁻¹): 3651, 3519, 3444, 3242, 3128, 3072, 2920, 1708, 1436, 1368, 566. ESI-HRMS calcd for [M + H]⁺ C₁₁H₇N₂O, 183.0553; found, 183.0553.

References

- 1 L. Ackermann, H. K. Potukuchi, A. R. Kapdi and C. Schulzke, Chem. Eur. J., 2010, 16, 3300.
- 2 D. Craig, F. Painaa and S. C. Smith, Chem. Commun., 2008, 44, 3408.
- 3 N. Mokato, J. Chem. Soc., 1991, **12**, 3371.
- 4 M. Jean-Paul, Eur. J. Org. Chem., 2001, 10, 1821.

NMR Spectra for Compounds

3aa

3ba

3ca

3da

3ga

3ha

3ia

3ja

3ka

3la

3ma

3na

3oa

3pa

3qa

3ra

3ac

3af

3ai

3aj

S40

3ak

