Supporting Information

Coupled molecular motions driven by light or chemical inputs: spiropyran to merocyanine isomerisation followed by pseudorotaxane formation

Denhy Hernández-Melo, Jorge Tiburcio*

Table of Contents

1. Experimental section.. 2
1.1. Synthesis and characterization of spiropyran-based molecules.. 2
1.2. Synthesis and characterization of merocyanine-based guests .. 18
2. Association study between spiropyran/merocyanine-based molecules and DB24C8 32

2.2. ${ }^{1} \mathrm{H}$ NMR titration experiment between [SP-Bipy][OTf] and DB24C8 in $\mathrm{CD}_{3} \mathrm{CN}$.................... 33
2.3. ${ }^{1} \mathrm{H}$ NMR titration experiment between [MEH-Bipy-H][OTf] $]_{3}$ and DB24C8 in $\mathrm{CD}_{3} \mathrm{CN}$........... 35

3. Exchange rate constant determination for the threading-dethreading motion between
[MEH-Bipy-Bn][OTf] $]_{3}$ and DB24C8... 40
4. UV-Vis titration experiment between [MEH-Bipy-Bn][OTf] $]_{3}$ and DB24C8 in $\mathrm{CH}_{3} \mathrm{CN} ~ 41$
5. Estimation of ε for zwitterionic species [ME-Bipy] ${ }^{+}$by deprotonation of [MEH-Bipy-H][OTf] $]_{3} . .42$
6. Synthesis of [2]Rotaxane complex induced photochemically by pseudorotaxane formation
between [ME-Bipy] ${ }^{+}$and DB24C8 .. 44
7. References... 44

1. Experimental section

Chemicals were purchased from Aldrich and were used without further treatment. Nuclear Magnetic Resonance spectra (NMR) were recorded on a Jeol 500, Jeol 400, Bruker 300 and Jeol 270. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts were reported in parts per million (ppm) considering $\mathrm{Me}_{4} \mathrm{Si}$ as external standard. J values are given in Hz ; multiplicity is denoted as follows: s (singlet), d (doublet), dd (doublet of doublets), td (triplet of doublets), br (broad signal). High-resolution mass spectra were recorded on an Agilent G1969A ESI-TOF mass spectrometer. Electronic spectra were recorded on an Agilent Cary 8454 UV-Visible spectroscopy system. UV light irradiation at 254 nm was performed during 1 min using a homemade photoreactor containing 7 UV light lamps ($30 \mathrm{~cm} / 8$ Watts each).

1.1.Synthesis and characterization of spiropyran-based molecules

Scheme S1: General synthesis of spiropyran-based molecules.

N -(2-Bromoethyl)spirobenzopyran, SP-Br, was obtained as described in literature. ${ }^{1}$
N-[2-(1-(4,4'-Bipyridyl))ethyl]spirobenzopyran triflate, [SP-Bipy][OTf]: 1.0 g de $\mathbf{S P - B r}$ (2.4 mmol) and 4,4 -Bipyridine ($1.1 \mathrm{~g}, 7.2 \mathrm{mmol}$) were mixed in 6 mL of $\mathrm{CH}_{3} \mathrm{CN}$ and heated for 72 hours under reflux. After cooling down to ambient temperature, the mixture was filtered. The resulting solid was washed with $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ and diethyl ether to afford [SP-Bipy][Br] ($1.08 \mathrm{~g}, 36 \%$) as a yellow solid. Anionic exchange was performed to obtain the corresponding triflate salt by dissolving the bromide salt in boiling water with 5 equivalents of sodium triflate. The solution was cooled to room temperature and filtered. The solid was washed with cold water and dried under vacuum to obtain [SP-Bipy][OTf] ($0.17 \mathrm{~g}, 74 \%$).
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right): 8.83\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{d}, \mathrm{c}} 6.0, \mathrm{H}_{\mathrm{d}}\right), 8.68\left(2 \mathrm{H}, \mathrm{d},{ }^{3}{ }_{\mathrm{J}, \mathrm{b}} 7.1, \mathrm{H}_{\mathrm{a}}\right), 8.28\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{b}, \mathrm{a}}\right.$ $=7.1, \mathrm{H}_{\mathrm{b}}$), $8.01\left(1 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J}_{7,6} 2.7, \mathrm{H}_{7}\right), 7.94\left(1 \mathrm{H}, \mathrm{dd},{ }^{4} \mathrm{~J}_{6,7} 2.7,{ }^{3} \mathrm{~J}_{6,5} 8.9, \mathrm{H}_{6}\right), 7.78\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{c}, \mathrm{d}}\right.$ $\left.6.0, \mathrm{H}_{\mathrm{c}}\right), 7.19\left(1 \mathrm{H}, \mathrm{td},{ }^{4} J_{3,1} 1.1,{ }^{3} J_{3,(2,4)} 7.8, \mathrm{H}_{3}\right), 7.15\left(1 \mathrm{H}, \mathrm{br} \mathrm{dd},{ }^{3} ل_{1,2} 7.6, \mathrm{H}_{1}\right), 6.94(1 \mathrm{H}, \mathrm{br}$ td, $\left.{ }^{3} J_{2,(1,3)} 7.6, \mathrm{H}_{2}\right), 6.81\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{8,9} 10.6, \mathrm{H}_{8}\right), 6.67\left(2 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{H}_{4}, \mathrm{H}_{5}\right), 5.08\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{9,8}\right.$ 10.6, H_{9}), $4.76\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{11}\right), 3.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{10}\right), 1.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\text {ме }}\right), 1.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\text {ме }}\right)$.
$\delta_{c}\left(100 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right): 158.7\left(\mathrm{C}_{\mathrm{q}}\right), 154.5\left(\mathrm{C}_{\mathrm{q}}\right)$, $151.3\left(\mathrm{C}_{\mathrm{d}}\right), 146.0\left(\mathrm{C}_{\mathrm{q}}\right), 145.6\left(\mathrm{C}_{\mathrm{a}}\right), 141.5\left(\mathrm{C}_{\mathrm{q}}\right)$, $141.0\left(\mathrm{C}_{\mathrm{q}}\right), 136.5\left(\mathrm{C}_{\mathrm{q}}\right), 129.3\left(\mathrm{C}_{8}\right), 128.0\left(\mathrm{C}_{1}\right), 125.9\left(\mathrm{C}_{b}\right), 123.0\left(\mathrm{C}_{7}\right), 122.3\left(\mathrm{C}_{3}\right), 121.9\left(\mathrm{C}_{\mathrm{c}}\right)$, $121.2\left(\mathrm{C}_{2}\right)$, 120.0($\left.\mathrm{C}_{9}\right)$, 118.7 $\left(\mathrm{C}_{\mathrm{q}}\right)$, 115.7 $\left(\mathrm{C}_{5}\right)$, 107.3($\left.\mathrm{C}_{4}\right)$, 106.2($\left.\mathrm{C}_{\mathrm{q}}\right)$, 60.2($\left.\mathrm{C}_{11}\right)$, 52.3($\left.\mathrm{C}_{\mathrm{q}}\right)$, 45.0(($_{10}$), 25.2(Cме), 19.3(Сме $^{\text {). }}$

HR-MS (ESI-TOF): [SP-Bipy] ${ }^{+}$, $\left(\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{3}\right)^{+}, \mathrm{m} / \mathrm{z}$ calculated: $491.2077 \mathrm{amu}, \mathrm{m} / \mathrm{z}$ found: 491.2089 amu, error: 2.4 ppm .

Single crystals were grown by slow evaporation of a saturated solution of [SP-Bipy][Br] in methanol. X-ray diffraction data was collected at 173 K on an Enraf-Nonius Kappa diffractometer fitted with a CCD-based detector by using MoKa radiation ($\mathrm{I}=0.71073 \AA \AA$). The structure was solved by direct methods using SHELXS-97-2 ${ }^{2}$ and refined with fullmatrix least-squares methods against F^{2} data. All non-hydrogen atoms were refined with anisotropic thermal parameters. H atoms were placed in calculated positions and refined anisotropically by using a riding model. Molecular structure drawings were generated by using DIAMOND for Windows. ${ }^{3}$ Chemical formula: $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{Br}_{1} \mathrm{O}_{3} \mathrm{~N}_{4}, \mathrm{Mw}=571.47$, triclinic, $P-1, a=8.1126(2), b=18.8402(6), c=19.4228(6) \AA, \alpha=88.825(1), \beta=88.363(2), \gamma=$ 84.224(2), $V=2951.90 \AA^{3}, Z=4 . C C D C 1418311$ (See Fig. S7).

Fig. S1 . ${ }^{1} \mathrm{H}$ NMR spectrum of [SP -Bipy][OTf] ($22 \mathrm{mM}, \mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}$)

Fig. S2 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of [SP -Bipy][OTf] ($22 \mathrm{mM}, \mathrm{CD}_{3} \mathrm{CN}, 100 \mathrm{MHz}$)

Fig. S3.2D-COSY NMR spectrum of [SP -Bipy][OTf] ($22 \mathrm{mM}, \mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}$)

Fig. S4. 2D-NOESY NMR spectrum of [SP -Bipy][OTf] ($22 \mathrm{mM}, \mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}$)

Fig. S5. 2D-HETCOR NMR spectrum of [SP -Bipy][OTf] ($22 \mathrm{mM}, \mathrm{CD}_{3} \mathrm{CN}, 300 \mathrm{MHz}$)

Fig. S6. HR-MS (ESI-TOF) spectrum of [SP -Bipy ${ }^{+},\left(\mathrm{C}_{30} \mathrm{H}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}\right)^{+}$

Fig. S7. Ball and stick representation of the X-ray structure of [SP-Bipy][Br]. Front view is shown. Hydrogen atoms and anions are omitted for clarity. C = grey; $\mathrm{O}=$ red; $\mathrm{N}=$ blue.

N-[2-(1-(1'-phenylmethyl)-4,4'-bipyridyl)ethyl] spirobenzopyran ditriflate,
[SP-Bipy-Bn][OTf] $2: 0.5 \mathrm{~g}(0.87 \mathrm{mmol})$ of [SP-Bipy][Br] and $517 \mu \mathrm{~L}$ of benzyl bromide (4.35 mmol) were combined with 6 mL of $\mathrm{CH}_{3} \mathrm{CN}$ and heated to $35^{\circ} \mathrm{C}$ for 24 hours. Reaction mixture was cooled to room temperature and then diethyl ether was added to precipitate the desired compound. The mixture was cooled with an ice bath and filtered. The solid was washed with diethyl ether and dried under vacuum to yield [SP-Bipy-Bn][Br]2 $(0.43 \mathrm{~g}, 67 \%)$ as a dark orange solid. Triflate salt was obtained by dissolving the bromide salt in boiling water with 12 equiv. of sodium triflate. The solution was cooled to room temperature and filtered. The solid was washed with cold water and dried under vacuum to obtain [SP-Bipy-Bn][OTf] 2 as a brown solid ($0.27 \mathrm{~g}, 54 \%$).
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): 9.01\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{d}, \mathrm{c}} 6.7, \mathrm{H}_{\mathrm{d}}\right), 8.82\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{a}, \mathrm{b}} 6.7, \mathrm{H}_{\mathrm{a}}\right), 8.43(2 \mathrm{H}, \mathrm{d}$, $\left.{ }^{3} J_{\mathrm{c}, \mathrm{d}} 6.7, \mathrm{H}_{\mathrm{c}}\right), 8.40\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{b}, \mathrm{a}} 6.7, \mathrm{H}_{\mathrm{b}}\right), 8.02\left(1 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J}_{7,6} 2.8, \mathrm{H}_{7}\right), 7.96\left(1 \mathrm{H}, \mathrm{dd},{ }^{4} \mathrm{~J}_{6,7} 2.8\right.$, $\left.{ }^{3} J_{6,5} 9.2, H_{6}\right), 7.50\left(5 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{f}}\right), 7.20\left(1 \mathrm{H}, \mathrm{td},{ }^{4} \mathrm{~J}_{3,1} 1.4,{ }^{3} J_{3,(2,4)} 7.8, \mathrm{H}_{3}\right), 7.15\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, ${ }^{3} \mathrm{~J}_{1,2}$ $\left.7.4, \mathrm{H}_{1}\right), 6.94\left(1 \mathrm{H}, \mathrm{br} \mathrm{td},{ }^{3} \mathrm{~J}_{2,(1,3)} 7.4, \mathrm{H}_{2}\right), 6.82\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J_{8,9} 10.2, \mathrm{H}_{8}\right), 6.69\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{4,3} 7.8\right.$, H_{4}), 6.67 ($1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{5,6} 9.2, \mathrm{H}_{5}$), $5.83\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{e}}\right), 5.05\left(1 \mathrm{H}, \mathrm{d},{ }^{3}{ }_{9}, 810.2, \mathrm{H}_{9}\right), 4.82(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{11}\right), 3.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{10}\right), 1.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\text {ме }}\right), 1.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\text {ме }}\right)$.
$\delta_{c}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): 158.7\left(\mathrm{C}_{\mathrm{q}}\right), 150.3\left(\mathrm{C}_{\mathrm{q}}\right), 150.1\left(\mathrm{C}_{\mathrm{q}}\right), 146.4\left(\mathrm{C}_{\mathrm{a}}\right), 146.0\left(\mathrm{C}_{\mathrm{q}}\right)$, 145.7($\left.\mathrm{C}_{\mathrm{d}}\right)$, $141.6\left(\mathrm{C}_{\mathrm{q}}\right)$, 136.5($\left.\mathrm{C}_{\mathrm{q}}\right)$, 132.8($\left.\mathrm{C}_{\mathrm{q}}\right)$, 130.2($\left.\mathrm{C}_{\mathrm{f}}\right)$, 129.7($\left.\mathrm{C}_{\mathrm{f}}\right)$, 129.5($\left.\mathrm{C}_{\mathrm{f}}\right)$, 129.4($\left.\mathrm{C}_{8}\right), 128.0\left(\mathrm{C}_{3}\right)$, $127.6\left(\mathrm{C}_{\mathrm{c}}\right), 127.2\left(\mathrm{C}_{\mathrm{b}}\right), 125.9\left(\mathrm{C}_{6}\right)$, 123.1($\left.\mathrm{C}_{7}\right)$, 122.3($\left.\mathrm{C}_{1}\right)$, 121.2($\left.\mathrm{C}_{2}\right), 119.9\left(\mathrm{C}_{9}\right), 118.7\left(\mathrm{C}_{\mathrm{q}}\right)$, 115.7($\left.\mathrm{C}_{4}\right)$, 107.4($\left.\mathrm{C}_{5}\right)$, 106.2($\left.\mathrm{C}_{q}\right)$, 64.8($\left.\mathrm{C}_{e}\right)$, 60.8($\left.\mathrm{C}_{11}\right)$, 52.3($\left.\mathrm{C}_{q}\right)$, 45.2($\left.\mathrm{C}_{10}\right)$, 25.3($\left.\mathrm{C}_{\text {ме }}\right)$, 19.3(Сме).

HR-MS (ESI-TOF): [SP-Bipy-Bn] ${ }^{2+}$, $\left(\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{3}\right)^{2+}, \mathrm{m} / \mathrm{z}$ calculated: $291.1309 \mathrm{amu}, \mathrm{m} / \mathrm{z}$ found: 291.1316 amu , error: 2.4 ppm.

Fig. S9. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of [SP-Bipy-Bn][OTf$]_{2}\left(\mathrm{CD}_{3} \mathrm{CN}, 100 \mathrm{MHz}\right)$

Fig. S11. 2D-NOESY NMR spectrum of [SP-Bipy-Bn][OTf] ${ }_{2}\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$

Fig. S12. 2D-HETCOR NMR spectrum of [SP-Bipy-Bn][OTf] $]_{2}\left(\mathrm{CD}_{3} \mathrm{CN}, 270 \mathrm{MHz}\right)$

1.2.Synthesis and characterization of merocyanine-based guests

Spiropyran based axles described previously, were transformed into their protonated merocyanine isomer (MEH) in situ by adding 3 equiv. of trifluoromethanesulfonate acid (triflic acid, HOTf) to a solution of each axle, in $\mathrm{CD}_{3} \mathrm{CN}$. The transformation is quantitative. Characterization of these guests is described below.
[MEH-Bipy-H][OTf] $]_{3}$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta=9.08\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{a}, \mathrm{b}} 7.0, \mathrm{H}_{\mathrm{a}}\right), 8.89\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{d}, \mathrm{c}}\right.$ $\left.7.0, \mathrm{H}_{\mathrm{d}}\right), 8.63\left(1 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J}_{7,6} 2.8, \mathrm{H}_{7}\right), 8.48\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{b}, \mathrm{a}} 7.0, \mathrm{H}_{\mathrm{b}}\right), 8.36\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J_{8,9} 16.3, \mathrm{H}_{8}\right)$, $8.25\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{c}, \mathrm{d}} 7.0, \mathrm{H}_{\mathrm{c}}\right), 8.20\left(1 \mathrm{H}, \mathrm{dd},{ }^{4} \mathrm{~J}_{6,7} 2.8,{ }^{3} \mathrm{~J}_{6,5} 9.2, \mathrm{H}_{6}\right), 7.77\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1}, \mathrm{H}_{4}\right), 7.68$ ($1 \mathrm{H}, \mathrm{br} \operatorname{td},{ }^{4} J_{2,4} 1.2,{ }^{3} J_{2,(1,3)} 7.5, \mathrm{H}_{2}$), $7.63\left(1 \mathrm{H}, \mathrm{br}\right.$ td, $\left.{ }^{4} J_{3,1} 1.2,{ }^{3} J_{3,(2,4)} 7.5, \mathrm{H}_{3}\right), 7.36(1 \mathrm{H}, \mathrm{d}$, $\left.{ }^{3} J_{9,8} 16.3, H_{9}\right), 7.18\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J_{5,6} 9.2, \mathrm{H}_{5}\right), 5.26\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{11,10} 5.7, \mathrm{H}_{11}\right), 5.19\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{10,11} 5.7\right.$, $\left.\mathrm{H}_{10}\right), 1.82\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\text {ме }}\right)$.
$\delta_{C}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$: $185.7\left(\mathrm{C}_{\mathrm{q}}\right)$, $163.4\left(\mathrm{C}_{\mathrm{q}}\right), 151.6\left(\mathrm{C}_{\mathrm{q}}\right), 150.8\left(\mathrm{C}_{8}\right), 146.5\left(\mathrm{C}_{\mathrm{a}}\right), 143.8\left(\mathrm{C}_{\mathrm{q}}\right)$, $142.9\left(\mathrm{C}_{\mathrm{d}}\right)$, 141.3($\left.\mathrm{C}_{\mathrm{q}}\right)$, 140.3($\left.\mathrm{C}_{\mathrm{q}}\right)$, 130.7($\left.\mathrm{C}_{3}\right)$, 130.2($\left.\mathrm{C}_{6}\right)$, 129.7($\left.\mathrm{C}_{2}\right)$, 128.2($\left.\mathrm{C}_{7}\right)$, 128.1($\left.\mathrm{C}_{b}\right)$, $126.5\left(\mathrm{C}_{\mathrm{c}}\right), 123.4\left(\mathrm{C}_{4}\right), 122.9\left(\mathrm{C}_{\mathrm{q}}\right), 120.7\left(\mathrm{C}_{\mathrm{q}}\right), 118.7\left(\mathrm{C}_{5}\right), 114.9\left(\mathrm{C}_{1}\right)$, 113.5($\left.\mathrm{C}_{9}\right), \quad 58.4\left(\mathrm{C}_{11}\right)$, 53.4($\left.\mathrm{C}_{\mathrm{q}}\right), \quad 46.8\left(\mathrm{C}_{10}\right), \quad 26.0\left(\mathrm{C}_{\text {ме }}\right)$.

HR-MS (ESI-TOF): [(MEH-Bipy-H)(OTf) ${ }^{2+},\left(\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~F}_{3} \mathrm{~S}\right)^{2+}$, m / z calculated: 321.0874 $\mathrm{amu}, m / z$ found: 321.0885 amu , error: 3.4 ppm .

Fig. S14. ${ }^{1} \mathrm{H}$ NMR spectrum of $[\mathrm{MEH}-\mathrm{Bipy}-\mathrm{H}][\mathrm{OTf}]_{3}\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$

JT-Denhy3
Brucker 300
1H (SP-bipy-bn) OTf2 +3 HOT
Denhy H.
Fig. S15. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[$ MEH-Bipy- H$][\mathrm{OTf}]_{3}\left(\mathrm{CD}_{3} \mathrm{CN}, 75 \mathrm{MHz}\right)$

Fig. S16. 2D-COSY NMR spectrum of [MEH-Bipy-H][OTf] $]_{3}\left(\mathrm{CD}_{3} \mathrm{CN}, 300 \mathrm{MHz}\right)$

Fig. S17. 2D-NOESY NMR spectrum of [MEH-Bipy-H][OTf] $]_{3}\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$

Fig. S18. 2D-HETCOR NMR spectrum of [MEH-Bipy-H][OTf] $]_{3}\left(\mathrm{CD}_{3} \mathrm{CN}, 300 \mathrm{MHz}\right)$

[MEH-Bipy-Bn][OTf] $]_{3} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): 9.09\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{a}, \mathrm{b}} 7.1, \mathrm{H}_{\mathrm{a}}\right), 8.96\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{d}, \mathrm{c}}\right.$ 7.1, H_{d}), $8.63\left(1 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J}_{7,6} 2.8, \mathrm{H}_{7}\right), 8.50\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{b}, \mathrm{a}} 7.1, \mathrm{H}_{\mathrm{b}}\right), 8.37\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{8,9} 16.3, \mathrm{H}_{8}\right)$, $8.26\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{c}, \mathrm{d}} 7.1, \mathrm{H}_{\mathrm{c}}\right), 8.07\left(1 \mathrm{H}, \mathrm{dd},{ }^{4} \mathrm{~J}_{6,7} 2.8,{ }^{3} \mathrm{~J}_{6,5} 9.2, \mathrm{H}_{6}\right), 7.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1}, \mathrm{H}_{4}\right), 7.71$ (1 H , br td, ${ }^{4} J_{2,4} 1.1,{ }^{3} J_{2,(1,3)} 7.5, \mathrm{H}_{2}$), $7.66\left(1 \mathrm{H}, \mathrm{br}\right.$ td, $\left.{ }^{4} J_{3,1} 1.1,{ }^{3} J_{3,(2,4)} 7.8, \mathrm{H}_{3}\right), 7.52(5 \mathrm{H}, \mathrm{m}$, $\left.H_{f}\right), 7.34\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{9,8} 16.3, \mathrm{H}_{9}\right), 7.19\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{5,6} 9.2, \mathrm{H}_{5}\right), 5.81\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{e}}\right), 5.28(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{11}\right), 5.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{10}\right), 1.84\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{Me}}\right)$.
$\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): 185.7\left(\mathrm{C}_{\mathrm{q}}\right), 181.0\left(\mathrm{C}_{\mathrm{q}}\right), 163.4\left(\mathrm{C}_{\mathrm{q}}\right), 151.1\left(\mathrm{C}_{\mathrm{q}}\right), 150.7\left(\mathrm{C}_{8}\right), 149.3\left(\mathrm{C}_{\mathrm{q}}\right)$, $146.5\left(\mathrm{C}_{\mathrm{a}}\right), 145.6\left(\mathrm{C}_{\mathrm{d}}\right), 143.8\left(\mathrm{C}_{\mathrm{q}}\right), 141.3\left(\mathrm{C}_{\mathrm{q}}\right), 140.3\left(\mathrm{C}_{\mathrm{q}}\right), 130.7\left(\mathrm{C}_{3}\right), 130.2\left(\mathrm{C}_{\mathrm{f}}\right), 130.1\left(\mathrm{C}_{6}\right)$, $129.7\left(\mathrm{C}_{2}\right)$, 129.6($\left.\mathrm{C}_{\mathrm{f}}\right)$, 129.3($\left.\mathrm{C}_{\mathrm{f}}\right), 128.1\left(\mathrm{C}_{7}\right), 128.0\left(\mathrm{C}_{\mathrm{b}}\right), 127.3\left(\mathrm{C}_{\mathrm{c}}\right), 123.4\left(\mathrm{C}_{4}\right), 120.7\left(\mathrm{C}_{\mathrm{q}}\right)$, $118.4\left(\mathrm{C}_{5}\right), 114.9\left(\mathrm{C}_{1}\right), 113.4\left(\mathrm{C}_{9}\right), 64.8\left(\mathrm{C}_{e}\right), 58.5\left(\mathrm{C}_{11}\right), 53.5\left(\mathrm{C}_{\mathrm{q}}\right), 46.9\left(\mathrm{C}_{10}\right), 26.0\left(\mathrm{C}_{\text {ме }}\right)$.

HR-MS (ESI-TOF): [(MEH-Bipy-Bn)(OTf) $\left.)_{2}\right]^{+},\left(\mathrm{C}_{39} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{~F}_{6} \mathrm{~S}_{2}\right)^{+}, \mathrm{m} / \mathrm{z}$ calculated: 881.1744 $\mathrm{amu}, m / z$ found: 881.1739 amu , error: 0.6 ppm .

Fig. S20. ${ }^{1} \mathrm{H}$ NMR spectrum of $[\mathrm{MEH}-\mathrm{Bipy-Bn}][\mathrm{OTf}]_{3}\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}\right)$

Fig. S21. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[\mathrm{MEH}-\mathrm{Bipy}-\mathrm{Bn}][\mathrm{OTf}]_{3}\left(\mathrm{CD}_{3} \mathrm{CN}, 75 \mathrm{MHz}\right)$

Fig. S23. 2D-NOESY NMR spectrum of [MEH-Bipy-Bn][OTf] $]_{3}\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right)$

+TOF MS: 0.112 to 0.129 min from DH-151014-MEHBn-01 .wiff Agilent, subtracted (1.104 to .Max. 2.0e5 counts.

Fig. S25. HR-MS (ESI-TOF) spectrum of $\left[(M E H-B i p y-B n)(O T f)_{2}\right]^{+},\left(\mathrm{C}_{39} \mathrm{H}_{35} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{~S}_{2}\right)^{+}$
Intensity, counts

2. Association study between spiropyran/merocyanine-based molecules and DB24C8

2.1. General procedure for estimation of association constants, $K_{\mathrm{a} \text {, }}$ for slow and fast chemical exchange

Association constants were determined by analysis of ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CD}_{3} \mathrm{CN}, 25{ }^{\circ} \mathrm{C}\right.$, 500 MHz).

A 22 mM solution of [SP-Bipy][OTf] was prepared, then increasing amounts of DB24C8 were added in solid to avoid solvent effects (see Fig. S26 and S27). The solid was weighed by using a Mettler Toledo XP26 Microbalance (0.001 mg of readability).

Merocyanine-based axles, [MEH-Bipy-H][OTf $]_{3}$ and $[\text { MEH-Bipy-Bn][OTf }]_{3}$, were obtained in situ by adding $3 \mu \mathrm{~L}$ of triflic acid (0.033 mmol) to a solution 22 mM of the corresponding spiropyran-based compound. After maintaining acidic solution in the dark over 12 hours for completion of the isomerization process, DB24C8 was added in solid.

Merocyanine axle, [MEH-Bipy-H][BF $\left.\mathrm{BF}_{4}\right]_{3}$ was obtained by anion exchange between
 solution of tetrafluoroboric. After maintaining this solution in the dark over 12 hours for completion of the isomerization process, DB24C8 was added in solid.

Association constant of the complex with fast chemical exchange on the NMR time scale, was estimated by titrating a solution of [MEH-Bipy-H][OTf] $]_{3}(22 \mathrm{mM})$ with increasing amounts of DB24C8 until saturation was reached. Changes in chemical shifts of H_{11} and H_{10} resonances were fitted using the software WinEQNMR2. ${ }^{4}$ (See Fig. S28 and S29).

For pseudorotaxane with slow chemical exchange on the NMR time scale, a 22 mM solution of [MEH-Bipy-Bn][OTf] $]_{3}$ or [MEH-Bipy-Bn][BF $\left.{ }_{4}\right]_{3}$ with 3 equivalents of DB24C8 ($0.033 \mathrm{mmol}, 15 \mathrm{mg}$) was prepared. The concentration at equilibrium of the species in solution was determined using the initial thread and macrocycle concentrations, besides the integration of $\mathrm{H}_{\mathrm{Ar}}, \mathrm{H}_{7}, \mathrm{H}_{8}$ or H_{Me} signals of free and complexed species. For guest [MEH-Bipy-Bn][OTf] $]_{3}$ the association constant was determined as $K_{\mathrm{a}}=11(\pm 2) \mathrm{M}^{-1}$ and for guest [MEH-Bipy-Bn][BF $\left.{ }_{4}\right]_{3}, K_{a}=15(\pm 2) \mathrm{M}^{-1}$.
2.2. ${ }^{1} \mathrm{H}$ NMR titration experiment between [SP-Bipy][OTf] and DB24C8 in $\mathrm{CD}_{3} \mathrm{CN}$

Fig. S27. Change in chemical shift of (top to bottom) H_{a}, H_{b} and H_{11} in [SP-Bipy][OTf] (22mM, CD ${ }_{3} \mathrm{CN}$) after addition of increasing amounts of DB24C8
2.3. ${ }^{1} \mathrm{H}$ NMR titration experiment between $[\mathrm{MEH}-\mathrm{Bipy}-\mathrm{H}][\mathrm{OTf}]_{3}$ and DB24C8 in $\mathrm{CD}_{3} \mathrm{CN}$

Fig. S29. Change in chemical shift of H_{10} (top) and H_{11} (bottom) in [MEH-Bipy-H][OTf] $]_{3}\left(22 \mathrm{mM}, \mathrm{CD}_{3} \mathrm{CN}\right)$ after addition of increasing amounts of DB24C8

2.4. Characterization of [2]pseudorotaxane complex formed between [MEH-Bipy-Bn] ${ }^{3+}$ and DB24C8

Proton assignation was confirmed by analysis of 2D T-ROESY NMR experiment.
[2]Pseudorotaxane [(MEH-Bipy-Bn).DB24C8][OTf] $]_{3}$; $\delta_{H}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right): 8.94$ (2H, d, $\left.{ }^{3} \mathrm{~J}_{\mathrm{a}^{\prime}, b^{\prime}} 6.2, \mathrm{H}_{\mathrm{a}^{\prime}}\right), 9.01\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{d}^{\prime}, \mathrm{c}^{\prime}} 6.2, \mathrm{H}_{\mathrm{d}^{\prime}}\right.$, $8.87\left(1 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J}_{7^{\prime}, 6^{\prime}} 2.5, \mathrm{H}_{7^{\prime}}\right), 7.84\left(\mathrm{H}_{\mathrm{b}^{\prime}}\right), 8.82$ (1H, d, $\left.{ }^{3} J_{8^{\prime}, 9^{\prime}} 16.3, \mathrm{H}_{8^{\prime}}\right), 8.08\left(\mathrm{H}_{\mathrm{c}^{\prime}}\right), 8.17\left(\mathrm{H}_{6^{\prime}}\right), 7.85\left(\mathrm{H}_{1^{\prime}}\right), 8.19\left(\mathrm{H}_{4^{\prime}}\right), 7.72\left(\mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}\right), 7.51\left(\mathrm{H}_{\mathrm{f}}\right)$, $7.96\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{9}, 8^{\prime} 16.3, \mathrm{H}_{9^{\prime}}\right), 7.23\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{5^{\prime}, 6^{\prime}} 9.2, \mathrm{H}_{5^{\prime}}\right), 6.59\left(8 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{Ar}^{\prime}-\mathrm{DB24C}}\right), 5.84(\mathrm{~s}$, $\left.\mathrm{H}_{\mathrm{e}^{\prime}}\right), 5.85\left(\mathrm{~m}, \mathrm{H}_{11^{\prime}}\right), 5.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{10^{\prime}}\right), 4.16\left(\mathrm{H}_{\alpha^{\prime}-\text { DB24C8 }}\right), 3.89\left(\mathrm{H}_{\alpha^{\prime}-\text { DB24C8 }}\right), 3.68\left(\mathrm{H}_{\beta^{\prime}-\text { dB24C8 }}\right)$, $3.48\left(8 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\gamma^{\prime} \text {-DB24C8, }}\right), 1.89\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\text {ме }}\right)$.

HR-MS (ESI-TOF): [(MEH-Bipy-Bn)(DB24C8)(OTf) $\left.)_{2}\right]^{+} ;\left(\mathrm{C}_{63} \mathrm{H}_{67} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{17} \mathrm{~S}_{2}\right)^{+}, \mathrm{m} / \mathrm{z}$ calculated: $1329.3841 \mathrm{amu}, \mathrm{m} / \mathrm{z}$ found: 1329.3850 amu , error: 0.7 ppm .

Fig. S30. Full ${ }^{1} \mathrm{H}$ NMR spectrum of a mixture of $[\mathrm{MEH}-\mathrm{Bipy}-\mathrm{Bn}][\mathrm{OTf}]_{3}(22 \mathrm{mM})$ and 3 equiv. of
DB24C8 $\left(\mathrm{CD}_{3} \mathrm{CN}, 500 \mathrm{MHz}, 298 \mathrm{~K}\right)$
+TOF MS: 0.120 to 0.137 min from DH-031012-DHM-4-07.wiff Agilent, subtracted (1.110 to $1 \ldots$ Max. 3.7 e counts.

Fig. S31. HR-MS (ESI-TOF) spectrum of $\left[(M E H-B i p y-B n)(D B 24 C 8)(O T f)_{2}\right]^{+},\left(\mathrm{C}_{63} \mathrm{H}_{6} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{17} \mathrm{~S}_{2}\right)^{+}$

3. Exchange rate constant determination for the threading-dethreading motion between [MEH-Bipy-Bn][OTf] $]_{3}$ and DB24C8

Exchange rate constant (\boldsymbol{k}) was estimated by 2D T-ROESY NMR experiment recorded on a 500 MHz spectrometer at 298 K with $\tau_{\mathrm{m}}=1 \mathrm{sec}$, using the equations (1) and (2). ${ }^{5}$ $I_{A A}$ and $I_{B B}$ are the diagonal peak intensities; $I_{A B}$ and $I_{B A}$ are the cross-peak intensities.

An equimolar solution of $[\mathrm{MEH}-\mathrm{Bipy}-\mathrm{Bn}][\mathrm{OTf}]_{3}$ with DB24C8 $(0.1 \mathrm{M})$ in $\mathrm{CD}_{3} \mathrm{CN}$ was used for this experiment.

The estimated value of the exchange rate constant was $1.18 \mathrm{~s}^{-1}$.

$$
\begin{gather*}
r=\frac{\boldsymbol{I}_{A A}+\boldsymbol{I}_{B B}}{\boldsymbol{I}_{A B}+\boldsymbol{I}_{B A}} \tag{1}\\
\boldsymbol{k}=\frac{1}{\tau_{m}} \ln \frac{r+1}{r-1} \tag{2}
\end{gather*}
$$

Fig. S32. 2D T-ROESY NMR experiment of an equimolar mixture of [MEH-Bipy-Bn][OTf] $]_{3}$ and DB24C8 ($0.1 \mathrm{M}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$). Diagonal peak intensities and cross-peak intensities of signals corresponding to H_{7} and H_{b} are shown.

4. UV-Vis titration experiment between [MEH-Bipy-Bn][OTf] $]_{3}$ and DB24C8 in $\mathrm{CH}_{3} \mathrm{CN}$

A stock solution of [MEH-Bipy-Bn][OTf] $]_{3}(2 \mathrm{mM})$ was prepared by dissolving 8.8 mg (0.01 mmol) of [SP-Bipy-Bn][OTf] $]_{2}$ and $3 \mu \mathrm{~L}$ of HOTf (0.03 mmol) in 5 mL of dry $\mathrm{CH}_{3} \mathrm{CN}$. After maintaining acidic solution in the dark overnight (to achieve completion of the isomerization process into the merocyanine isomer), a 0.025 mM solution was prepared by dilution in the absence of light. 2 mL of this solution were placed into a quartz cell (path length: 1 cm). Then, increasing amounts of DB24C8 were added to the cell (using a 5 mM solution in $\mathrm{CH}_{3} \mathrm{CN}$) and electronic spectra were collected.

The absorbance of the band corresponding to the protonated guest was followed (422 $\mathrm{nm})$. There are no significant changes in the absorbance neither in the position of the band after addition of the macrocycle.

Fig. S33. UV-Vis titration experiment of a [MEH-Bipy-Bn][OTf] $]_{3}$ solution (0.025 mM) with increasing amounts of DB24C8 ($\mathrm{CH}_{3} \mathrm{CN}, 298 \mathrm{~K}$). a) Partial UV-Vis spectra showing the absorption band corresponding to [MEH-Bipy-Bn][OTf]3 (422 nm) after addition of the macrocycle. Top spectrum corresponds to the initial point of the titration; bottom spectrum corresponds to the final point (after addition of 10 equivalents of DB24C8). b) Change in the absorbance of the band at 422 nm after addition of increasing amounts of DB24C8.

5. Estimation of ε for zwitterionic species [ME-Bipy]+ by deprotonation of [MEH-Bipy-H][OTf] ${ }_{3}$

Photoconversion yield of [SP-Bipy][OTf] into [ME-Bipy][OTf] was obtained by the estimation of the ε value corresponding to the zwitterionic species [ME-Bipy] ${ }^{+}$at 582 nm . The procedure used is described below.

A stock solution of [MEH-Bipy-H][OTf] $]_{3}(2 \mathrm{mM})$ was prepared from dissolving 6.4 mg (0.01 mmol) of [SP-Bipy][OTf] and $3 \mu \mathrm{~L}$ of HOTf (0.03 mmol) in 5 mL of dry $\mathrm{CH}_{3} \mathrm{CN}$. After maintaining acidic solution in the dark overnight (to achieve completion of the isomerization process into the merocyanine isomer), solutions at lower concentrations were prepared by dilution in the absence of light ($0.04,0.03,0.02,0.01$ and 0.008 mM respectively).

2 mL of each solution were placed into a quartz cell (path length: 1 cm). After recording an absorption spectrum at $293 \mathrm{~K}, 10$ equiv. of pyridine (using a 0.08 mM solution in $\mathrm{CH}_{3} \mathrm{CN}$) were added as a base; immediately another spectrum was collected.

Considering a complete deprotonation of the MEH species; we hypothesized that the concentration of the zwitterion [ME-Bipy] ${ }^{+}$obtained in situ, is practically the same than the concentration of the initial solution of $\left[\right.$ MEH-Bipy-H] ${ }^{3+}$ used.

We plotted the absorbance observed at 582 nm vs the apparent concentration of [ME-Bipy] ${ }^{+}$to obtain a linear fitting of the data. Considering Lambert-Beer's law, the slope corresponds to absorption coefficient.

$$
A(582 \mathrm{~nm})=\varepsilon[\mathrm{ME}]
$$

The absorption coefficient estimated by this method was $31082 \mathrm{~cm}^{-1} \mathrm{M}^{-1}$.

Fig. S34. Estimation of ε at 582 nm for the zwitterionic species [ME-Bipy] ${ }^{+}$from deprotonation of [MEH-Bipy-H][OTf] $]_{3}$ with pyridine $\left(\mathrm{CH}_{3} \mathrm{CN}, 293 \mathrm{~K}\right)$ by UV-Vis spectroscopy. Electronic spectra at each concentration before and after base addition (top) and linear fitting of the data (bottom) are shown.

6. Synthesis of [2]Rotaxane complex induced photochemically by pseudorotaxane formation between [ME-Bipy] ${ }^{+}$and DB24C8

30 mg (0.047 mmol) of [SP-Bipy][OTf], $106 \mathrm{mg}(0.24 \mathrm{mmol})$ of DB24C8 and $44 \mu \mathrm{~L}$ (0.24 mmol) of 4-tertbutylbenzyl bromide, as end-capping agent, were dissolved in 0.5 mL of $\mathrm{CD}_{3} \mathrm{CN}$ and poured into a Suprasil® quartz NMR tube. This solution was irradiated with UV light (254 nm) for 18 h at $30{ }^{\circ} \mathrm{C}$, to obtain [ME-Bipy] ${ }^{+}$in situ and promote pseudorotaxane formation followed by capping. A precipitated is formed and filtered. The filtrate was recovered; HR-MS of this solution show evidence of the presence of a [2]rotaxane complex.

HR-MS (ESI-TOF): [(ME-Bipy-Bn)(DB24C8)(OTf) $]^{+} ;\left(\mathrm{C}_{66} \mathrm{H}_{74} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{14} \mathrm{~S}\right)^{+}, m / z$ calculated: $1235.4869 \mathrm{amu}, \mathrm{m} / \mathrm{z}$ found: 1235.4852 amu , error: 1.4 ppm .

7. References

1. Inouye M. et al. J. Org. Chem., 1992, 57, 5377.
2. G. M. Sheldrick, SHELXS-97- 2. Program for Crystal Structure Refinement, University of Göttingen, Göttingen, (Germany), 1997.
3. H. Putz, K. Brandenburg, Crystal Impact GbR, Diamond, Bonn.
4. M. J. Hynes, J. Chem. Soc., Dalton Trans., 1993, 311.
5. (a) C. L. Perrin, T. J. Dwyer, Chem. Rev. 1990, 90, 935; (b) K. Zhu, V. N. Vukotic, S. J. Loeb, Angew. Chem. Int. Ed., 2012, 51, 2168; (c) C-F. Lee, D. A. Leigh, R. G. Pritchard, D. Schultz, S. J. Teat, G. A. Timco, R. E. P. Winpenny, Nature, 2009, 458, 314.
