Supporting information for:

Synthesis of Cyclic Diborenes with Unprecedented *cis* Configuration

Philipp Bissinger, Holger Braunschweig,* Mehmet Ali Celik, Christina Claes, Rian D. Dewhurst, Sebastian Endres, Hauke Kelch, Thomas Kramer, Ivo Krummenacher and Christoph Schneider

Experimental Section

General considerations:

All reactions were accomplished under an atmosphere of dry argon using standard Schlenk line and glovebox techniques. Deuterated benzene was degassed by three freeze-pump-thaw cycles and dried over molecular sieves. Other solvents were dried by storage over, and distillation from, sodium (diethyl ether), potassium (benzene, thf) or Na/K alloy (all other solvents) under an argon atmosphere. The solvents were then stored under argon over activated 4 Å molecular sieves. NMR spectra were obtained from a Bruker Avance 500 NMR spectrometer (¹H: 500.13 MHz, ¹¹B: 160.46 MHz, ¹³C{¹H}: 125.76 MHz, ${}^{31}P{}^{1}H$: 202.5 MHz) at room temperature. Chemical shifts (δ) are given in ppm and internally referenced to the carbon nuclei $({}^{13}C{}^{1}H{})$ or residual protons $({}^{1}H{})$ of the solvent. ${}^{11}B$ and $^{31}P{^{1}H}$ NMR spectra were referenced to external standards [BF₃·OEt₂] or 85% H₃PO₄, respectively. Microanalyses (C, H, N) were performed on an Elementar vario MICRO cube elemental analyzer. UV-vis spectra were measured on a JASCO V-660 UV-vis spectrometer. $B_2Br_2Mes_2$ (1),¹ $B_2Br_2Mes_2(PMe_3)$ (5)² and PMe₃³ were synthesized according to literature procedures. Potassium graphite (KC₈) was prepared by heating graphite (20.36 g, 1.695 mol; first heated to 180 °C under reduced pressure for ten hours) and freshly-cut potassium (8.35 g, 214 mmol) at 180 °C with stirring for two days, followed by filtering the powder through a tea strainer. Diphosphines dmpe and dppm were purchased from ABCR and used without further purification.

Preparation of *cis,cyclo*-[B₂Mes₂(dmpe)] 2:

A solution of **1** (198 mg, 472 μ mol) in benzene (20 mL) was added dropwise to a suspension of dmpe (80.2 mg, 534 μ mol) and KC₈ (336 mg, 2.49 mmol) in benzene (20 mL) at room temperature. The flask containing the diborane(4) was washed with benzene (2 mL) and the solution was added to the reaction mixture, which was filtered through celite after stirring overnight. The residue was washed with benzene (2×10 mL) and the filtrate was evaporated *in vacuo*. After three crystallisation cycles from a thf/pentane solution (1:1), **2** was obtained as pale yellow crystals (105 mg, 256 μ mol, 54%).

¹**H** NMR (500.13 MHz, C₆D₆): δ = 6.96 (s, 4H, *m*-C_{Mes}*H*), 2.65 (s, 12H, *o*-C_{Mes}C*H*₃), 2.26 (s, 6H, *p*-C_{Mes}C*H*₃), 1.39 (m, 4H, PC*H*₂C*H*₂P), 0.78 (vt, N = |²*J*_{H-P}+⁵*J*_{H-P}| = 9.55 Hz, 12H, PC*H*₃).

¹¹**B** NMR (160.46 MHz, C_6D_6): $\delta = 18.6$ ppm

¹³C{¹H} NMR (125.76 MHz, C₆D₆): δ = 145.43 (br s, *i*-C_{Mes}) 140.43 (vt, N = |³J_{C-P}+⁴J_{C-P}| = 5.62 Hz, *o*-C_{Mes}), 132.70 (vt, N = |⁴J_{C-P}+⁵J_{C-P}| = 4.30 Hz, *p*-C_{Mes}), 127.49 (m, *m*-C_{Mes}H), 24.94 (m, *o*-C_{Mes}CH₃), 21.37 (s, *p*-C_{Mes}CH₃), 20.86 (m, PCH₂CH₂P), 14.11 (m, PCH₃).

³¹**P**{¹**H**} **NMR** (202.5 MHz, C_6D_6): $\delta = -21.4$ (br s).

Elemental analysis: calculated for C₂₄H₃₈B₂P₂: C 70.29; H 9.34; found: C 70.08; H 9.28.

UV-vis: (thf solution): 285 (shoulder), 339 nm (maximum).

Preparation of *cis,cyclo*-[B₂Mes₂(dppm)] 3:

Benzene (50 mL) was added to a solid mixture of $1(101 \text{ mg}, 240 \mu \text{mol})$, dppm (91.9 mg, 239 μ mol) and KC₈ (162 mg, 1.19 mmol). After stirring for two days at room temperature the mixture was filtered through celite. The residue was washed with benzene (3×5 mL) and the volume of the filtrate was reduced by half and layered with hexane (25 mL). After three crystallisation cycles, **3** was obtained as red crystals (60.6 mg, 94.0 μ mol, 40%).

¹**H** NMR (500.13 MHz, C₆D₆): δ = 7.45-7.41 (m, 8H, *m*-C_{Ph}H), 7.00-6.92 (m, 12H, *o/p*-C_{Ph}H), 6.87 (s, 4H, *m*-C_{Mes}H), 3.43 (t, ²J_{H-P} = 4.78 Hz, 2H, PCH₂P), 2.44 (s, 12H, *o*-C_{Mes}CH₃), 2.19 (s, 6H, *p*-C_{Mes}CH₃).

¹¹**B NMR** (160.46 MHz, C_6D_6): $\delta = 29.0$ (br s).

¹³C{¹H} NMR (125.76 MHz, C₆D₆): δ = 143.63 (br s, *i*-C_{Mes}), 140.98 (vt, N = |¹J_{C-P}+³J_{C-P}| = 5.76 Hz, *o*-C_{Mes}), 136.11 (vt, N = |³J_{C-P}+⁴J_{C-P}| = 49.69 Hz, *i*-C_{Ph}), 133.69 (m, *p*-C_{Mes}), 132.13 (vt, N = |²J_{C-P}+⁴J_{C-P}| = 9.61 Hz, *m*-C_{Ph}H), 130.19 (s, C_{Ph}H), 128.79 (vt, N = |³J_{C-P}+⁵J_{C-P}| = 9.62 Hz, C_{Ph}H), 128.59 (s, *m*-C_{Mes}H), 27.25 (t, ¹J_{C-P} = 44.59 Hz, PCH₂P), 24.74 (s, *o*-C_{Mes}CH₃), 21.30 (s, *p*-C_{Mes}CH₃). ³¹P{¹H} NMR (202.5 MHz, C₆D₆): δ = 2.4 (br s).

Elemental analysis: calculated for C₄₃H₄₄B₂P₂: C 80.15; H 6.88; found: C 80.57; H 7.01.

UV-vis: (thf solution): 315 (shoulder), 443 nm (maximum).

Preparation of *trans*-[B₂Mes₂(PMe₃)₂] (4):

A solution of $B_2Br_2Mes_2(PMe_3)$ (5) (1.27 g, 2.56 mmol) and PMe₃ (0.32 mL, 235 mg, 3.09 mmol) in benzene (25 mL) was added dropwise to a suspension of KC₈ (1.125 g, 8.322 mmol) in benzene (15 mL) within 10 minutes at room temperature. The flask containing $B_2Br_2Mes_2(PMe_3)$ and phosphine was washed with benzene (2×5 mL) and each solution was added to the reaction mixture. After five hours at room temperature the yellow suspension was filtered through celite. The residue was washed with benzene (2×10 mL) and the filtrate was evaporated *in vacuo*. After six crystallization cycles from a benzene/pentane solution (2:1), **4** was obtained as yellow crystals (568 mg, 1.38 mmol, 54%).

¹**H** NMR (500.13 MHz, C₆D₆): δ = 7.12-7.10 (br s, 4H, *m*-C_{Mes}*H*), 2.74 (s, 12H, *o*-C_{Mes}C*H*₃), 2.37 (s, 6H, *p*-C_{Mes}C*H*₃), 0.71 (vt, N = |²*J*_{H-P}+⁵*J*_{H-P}| = 9.75 Hz, 18H, PC*H*₃).

¹¹**B** NMR (160.46 MHz, C_6D_6): $\delta = 16.7$ (s).

¹³C{¹H} NMR (125.76 MHz, C₆D₆): δ = 149.42 (br s, *i*-C_{Mes}), 141.41 (m, *o*-C_{Mes}), 132.87 (m, *p*-C_{Mes}H), 127.35 (s, *m*-C_{Mes}), 26.32 (s, *o*-C_{Mes}CH₃), 21.49 (s, *p*-C_{Mes}CH₃), 14.12 (vt, N = |¹J_{C-P}+⁴J_{C-P}| = 35.14 Hz, PCH₃).

³¹**P**{¹**H**} **NMR** (202.5 MHz, C_6D_6): $\delta = -24.4$ (s).

Elemental analysis: calculated for $C_{24}H_{46}B_2P_2$: C 69.94; H 9.78; found: C 69.98; H 9.78. **UV-vis:** (Et₂O solution): 290 (shoulder), 365 nm (maximum).

Crystal structure determination

The crystal data of *cis,cyclo*-[B₂Mes₂(dmpe)] (2) were collected on a Bruker D8-QUEST, *cis,cyclo*-[B₂Mes₂(dppm)] (3) and *trans*-[B₂Mes₂(PMe₃)₂] (4) on a Bruker X8-APEX II diffractometer with a CCD area detector and multi-layer mirror monochromated Mo_{Ka} radiation. The structures were solved using direct methods, refined with the Shelx software package⁴ and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were assigned to idealised positions and were included in structure factor calculations.

Crystal data for **2**: $C_{24}H_{38}B_2P_2$, $M_r = 410.10$, colourless block, $0.151 \times 0.119 \times 0.069$ mm³, monoclinic space group $P2_1/c$, a = 9.367(4) Å, b = 15.172(3) Å, c = 17.348(4) Å, $\beta = 96.96(2)^\circ$, V = 2447.3(12) Å³, Z = 4, $\rho_{calcd} = 1.113$ g·cm⁻³, $\mu = 0.185$ mm⁻¹, F(000) = 888, T = 100(2) K, $R_1 = 0.0500$, $wR^2 = 0.1089$, 5100 independent reflections [20 \leq 53.5°] and 263 parameters.

Crystal data for **3**: C₄₆H₄₇B₂P₂, $M_r = 683.40$, orange block, $0.32 \times 0.28 \times 0.21$ mm³, triclinic space group *P*-1, *a* = 14.4599(13) Å, *b* = 16.0807(15) Å, *c* = 16.8670(16) Å, $\alpha = 79.939(3)^{\circ}$, $\beta = 86.355(3)^{\circ}$, $\gamma = 78.644(3)^{\circ}$, *V* = 3784.4(6) Å³, *Z* = 4, $\rho_{calcd} = 1.199$ g·cm⁻³, $\mu = 0.147$ mm⁻¹, *F*(000) = 1452, *T* = 100(2) K, *R_I* = 0.0536, *wR²* = 0.1044, 15467 independent reflections [20≤52.74°] and 913 parameters.

Crystal data for 4: $C_{24}H_{40}B_2P_2$, $M_r = 412.12$, yellow block, $0.29 \times 0.24 \times 0.16$ mm³, monoclinic space group $P2_1/c$, a = 9.4899(9) Å, b = 13.6443(12) Å, c = 9.7286(9) Å, $\beta = 99.393(3)^\circ$, V = 1242.8(2) Å³, Z = 2, $\rho_{calcd} = 1.101$ g·cm⁻³, $\mu = 0.183$ mm⁻¹, F(000) = 448, T = 100(2) K, $R_I = 0.0726$, $wR^2 = 0.1665$, 2533 independent reflections [$2\theta \le 52.74^\circ$] and 133 parameters.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary publication nos. CCDC-1418155 (2), CCDC-1418156 (3) and CCDC-1418157 (4). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif

Cyclic Voltammetry Experiments

Cyclic voltammetry experiments were performed in an argon-filled glovebox using a Gamry Instruments Reference 600 potentiostat. A standard three-electrode cell configuration was employed using a platinum disk working electrode, a platinum wire counter electrode, and a silver wire, separated by a *Vycor* tip, serving as the reference electrode. Formal redox potentials are referenced to the ferrocene/ferrocenium (Fc/Fc⁺) redox couple, either by using ferrocene or decamethylferrocene $(E_{1/2} = -427 \text{ mV vs. Fc/Fc^+})$ as internal standard. Tetra-*n*-butylammonium hexafluorophosphate ([*n*-Bu₄N][PF₆]) was employed as the supporting electrolyte. Compensation for resistive losses (*iR* drop) was employed for all measurements.

Figure S1. Cyclic voltammogram of **2** in THF with 0.1 M [nBu_4N][PF₆] as the supporting electrolyte. Formal potentials: $E_{1/2} = -1.00$ V, $E_{pa} = 0.00$ V.

Figure S2. Cyclic voltammogram of **3** in THF with 0.1 M [nBu_4N][PF₆] as the supporting electrolyte. Formal potentials: $E_{1/2} = -0.51$ V, $E_{pc} = -3.17$ V, $E_{pa} = +0.33$ V (not shown).

Figure S3. Cyclic voltammogram of **4** in THF with 0.1 M [nBu_4N][PF₆] as the supporting electrolyte. Formal potentials: $E_{1/2} = -1.06$ V, $E_{pa} = +0.11$ V.

Computational Details

Geometry optimization of the structures was carried out at the *meta*-hybrid functional M05-2X⁵ in conjunction with the def2-SVP⁶ basis set including solvent effects by using the PCM⁷ approach (THF for **2** and **3**, diethylether for **4**. The structures were characterized as minima by frequency calculation. All calculations were done using Gaussian 09, Revision D.01.⁸

4

 $\label{eq:table S1} \textbf{Table S1}. \ Cartesian \ coordinates (\mbox{\ref{A}}) \ and \ energy \ (a.u) \ of \ \textbf{2-4} \ calculated \ at \ PCM-M05-2X/def2-SVP.$

cis,cyclo-[B2Mes2(dmpe)]

E = -1668.707577

Р	-1.67019600	2.28494000	0.37557600
С	-0.53251100	3.72092800	0.54762800
Н	-1.13543500	4.64018400	0.50862900
Н	-0.07375300	3.66456600	1.54573200
В	-0.79329400	0.63616400	0.02181100
Р	1.67020000	2.28493900	-0.37557400
С	0.53251700	3.72093000	-0.54762200
Н	1.13544300	4.64018400	-0.50861800
Н	0.07375900	3.66457200	-1.54572700
В	0.79329500	0.63616400	-0.02181100
С	-2.60130600	2.28174600	1.95745600
Н	-1.89432100	2.14054200	2.78563700
Н	-3.30804600	1.43960700	1.94348700
Н	-3.15099200	3.22482900	2.09011400
С	-2.95701000	2.87026700	-0.80545400
Н	-3.41215200	3.80443500	-0.44639400
Н	-3.73124900	2.09505800	-0.88716600
Н	-2.51026300	3.02804000	-1.79645200
С	2.60130600	2.28174400	-1.95745700
Н	3.15099600	3.22482600	-2.09011500
Н	1.89431800	2.14054500	-2.78563700
Н	3.30804300	1.43960300	-1.94349200
С	2.95701800	2.87026200	0.80545300
Н	3.41216500	3.80442500	0.44639000
Н	3.73125200	2.09504800	0.88716900
Н	2.51027100	3.02804100	1.79645100
С	-1.81482300	-0.60123300	0.02297300
С	-1.94201100	-1.44265500	1.16019900
С	-2.84021800	-2.51102900	1.16095100
Н	-2.91446200	-3.14157500	2.05038700
С	-3.64266700	-2.80388900	0.05121900
С	-3.50533400	-1.99430600	-1.07189100
Н	-4.10236900	-2.21021500	-1.96179400
С	-2.61331200	-0.91024300	-1.10019400

С	-1.08558000	-1.21460900	2.38318100
Н	-0.02061800	-1.28922500	2.12172900
Н	-1.31584200	-1.95325400	3.16478800
Н	-1.23643000	-0.20694600	2.79724900
С	-4.61181200	-3.96071700	0.08252500
Н	-4.10344400	-4.89565600	0.36188600
Н	-5.08343200	-4.10655100	-0.89888400
Н	-5.40998300	-3.78917800	0.82130800
С	-2.52406900	-0.12178500	-2.38997400
Н	-1.69814900	0.60085000	-2.34909700
Н	-3.45893300	0.42324200	-2.59468900
Н	-2.35247200	-0.79835600	-3.24157800
С	1.81482200	-0.60123600	-0.02297300
С	2.61331200	-0.91024600	1.10019300
С	3.50533500	-1.99430800	1.07188900
Н	4.10237300	-2.21021500	1.96179000
С	3.64266700	-2.80389100	-0.05122100
С	2.84022000	-2.51102800	-1.16095400
Н	2.91446800	-3.14157100	-2.05039300
С	1.94201300	-1.44265500	-1.16020100
С	2.52407000	-0.12178800	2.38997300
Н	3.45893700	0.42323300	2.59469000
Н	2.35246800	-0.79835800	3.24157600
Н	1.69815300	0.60085100	2.34909600
С	4.61178700	-3.96073900	-0.08251900
Н	5.08363900	-4.10637800	0.89880600
Н	5.40977900	-3.78937100	-0.82153300
Н	4.10333600	-4.89573000	-0.36156000
С	1.08558400	-1.21460600	-2.38318500
Н	1.23642900	-0.20693800	-2.79724400
Н	0.02062200	-1.28923000	-2.12173600
Н	1.31585300	-1.95324400	-3.16479600

cis,cyclo-[B₂Mes₂(dppm)]

E=-2395.7304027

0.79211400 0.62027400 0.01820700 В

В	-0.80882200	0.61891600	0.01524200
Р	-1.47877400	-1.16681700	0.03594800
С	-0.00816300	-2.26732100	0.16175400
Н	0.00732500	-2.98759200	-0.66620100
Н	-0.02826900	-2.82732800	1.10531600
Р	1.46437100	-1.16391900	0.10051300
С	1.80572800	1.85085000	-0.08463300
С	2.65527000	2.23979400	0.97656000
С	3.52485100	3.32989200	0.83556200
Н	4.15885300	3.61115800	1.68000000
С	3.59856800	4.06613500	-0.34484500
С	2.74159700	3.70025200	-1.38674000
Н	2.75827600	4.27690300	-2.31450500
С	1.85145200	2.62870900	-1.27173900
С	2.64736700	1.52078700	2.30615300
Н	2.83999400	2.22763400	3.12688000
Н	3.42582500	0.74304200	2.34928500
Н	1.68115300	1.02991300	2.48186700
С	4.57076200	5.20959500	-0.50130200
Н	4.12993700	6.02731900	-1.08900000
Н	5.48300600	4.88170800	-1.02478900
Н	4.87314400	5.60781200	0.47708900
С	0.92071200	2.35026000	-2.42913800
Н	1.19874000	2.95462200	-3.30458100
Н	-0.11467200	2.59519300	-2.15038300
Н	0.92343700	1.28792400	-2.71198200
С	-1.81985800	1.85491800	0.02091400
С	-1.87735200	2.70714000	1.15591100
С	-2.75802400	3.79086700	1.18775500
Н	-2.78647600	4.42392000	2.07783600
С	-3.59489000	4.09654400	0.10942200
С	-3.51853900	3.27866900	-1.01484900
Н	-4.14586900	3.50309600	-1.88084100
С	-2.65622000	2.17402300	-1.07189200
С	-0.97750300	2.48136400	2.34842400
Н	-1.25695100	3.14765200	3.17724400
Н	0.06984000	2.67970200	2.07803800

Н	-1.01739200	1.43911300	2.69730400
С	-4.52543800	5.28338200	0.16493300
Н	-5.15468200	5.33343600	-0.73402400
Н	-3.96023600	6.22514300	0.23822100
Н	-5.18495500	5.22855000	1.04399900
С	-2.64920200	1.35665400	-2.34325400
Н	-2.85479100	1.99632600	-3.21427900
Н	-3.41982800	0.57022300	-2.32068800
Н	-1.67997700	0.86178900	-2.48838100
С	-2.59146300	-1.65133900	1.40684100
С	-2.81523400	-2.99968500	1.71708200
Н	-2.33772800	-3.78693000	1.13083600
С	-3.66000200	-3.34346700	2.77040100
Н	-3.82708700	-4.39293700	3.01162200
С	-4.29421900	-2.34314300	3.51165400
Н	-4.95673300	-2.61309800	4.33383800
С	-4.08210500	-1.00089200	3.19917600
Н	-4.57926500	-0.21968400	3.77343400
С	-3.22815200	-0.65272400	2.15049400
Н	-3.05935700	0.39625100	1.90462400
С	-2.35851800	-1.81092900	-1.44791800
С	-1.62796300	-1.91968700	-2.63787100
Н	-0.56508800	-1.66255600	-2.65161100
С	-2.25595800	-2.32496000	-3.81237900
Н	-1.68054300	-2.40980000	-4.73387000
С	-3.62404200	-2.61078400	-3.80925600
Н	-4.11823100	-2.92058900	-4.72985300
С	-4.35576700	-2.49771200	-2.62811800
Н	-5.42300600	-2.71823100	-2.62249800
С	-3.72506200	-2.10108400	-1.44624300
Н	-4.30508200	-2.01237200	-0.52789400
С	2.46143500	-1.68632000	1.55735500
С	3.83492200	-1.92894300	1.46981300
Н	4.34036700	-1.88573700	0.50529700
С	4.56812100	-2.21964200	2.62273000
Н	5.63971300	-2.40355600	2.54873800
С	3.93245600	-2.27492500	3.86217400

Н	4.50617000	-2.50299200	4.76024000
С	2.55853200	-2.03581100	3.95227600
Н	2.05797000	-2.07433500	4.91944300
С	1.82838300	-1.73512800	2.80569200
Н	0.76186300	-1.51081900	2.88822700
С	2.47847000	-1.75780700	-1.30524800
С	3.04995700	-0.82181200	-2.17284000
Н	2.89201000	0.24304900	-1.99954200
С	3.82751800	-1.25145100	-3.25039100
Н	4.27413500	-0.51813400	-3.92120700
С	4.02801600	-2.61408700	-3.46778500
Н	4.62978300	-2.94864400	-4.31260400
С	3.46096800	-3.55220200	-2.60133800
Н	3.62063400	-4.61731300	-2.76729600
С	2.69381600	-3.12614700	-1.51906800
Н	2.27228000	-3.86475600	-0.83487900

trans-[B2Mes2(PMe3)2]

E=-1669.8978578

В	0.63186000	-0.47300500	0.00648200
Р	0.26597500	-2.35546800	0.00083900
С	-1.48356900	-2.88813800	0.03825200
Н	-1.51972300	-3.98720600	0.04113200
Н	-2.01268400	-2.49622700	-0.83932800
Н	-1.97294900	-2.49365900	0.93742800
С	1.01384700	-3.29841900	1.39541900
Н	0.88803000	-4.37962500	1.23879800
Н	0.52649700	-3.00534600	2.33525200
Н	2.08467300	-3.05667000	1.45432700
С	0.94603800	-3.27874400	-1.44121500
Н	0.80591100	-4.36099200	-1.30486700
Н	2.01840100	-3.05539300	-1.53364300
Н	0.43074600	-2.95495300	-2.35582000
С	2.21330400	-0.21302400	0.00324300
С	2.94132300	-0.09112200	1.21072000
С	4.32573100	0.11660800	1.19347900

Н	4.86131900	0.21203700	2.14106000
С	5.03945000	0.21751300	-0.00247100
С	4.31923100	0.12748900	-1.19541500
Н	4.84972700	0.23142400	-2.14495800
С	2.93472400	-0.07986400	-1.20701100
С	2.22919400	-0.09967300	2.54422900
Н	2.94845300	-0.06835100	3.37548800
Н	1.58851700	-0.98278900	2.66165500
Н	1.55641000	0.76899000	2.62394300
С	6.53764100	0.40041400	-0.00567200
Н	6.86718600	0.95357900	-0.89637200
Н	7.05387500	-0.57292300	-0.01018100
Н	6.87171400	0.94770000	0.88697600
С	2.21569000	-0.07541800	-2.53689100
Н	2.93061200	-0.02754200	-3.37109200
Н	1.53671500	0.78956300	-2.60089000
Н	1.58113800	-0.96166500	-2.66396400
В	-0.63186000	0.47300700	0.00648300
Р	-0.26597700	2.35546900	0.00084200
С	1.48356900	2.88813600	0.03825800
Н	1.51972600	3.98720400	0.04114700
Н	1.97294900	2.49364800	0.93742900
Н	2.01268100	2.49623000	-0.83932700
С	-0.94603400	3.27874700	-1.44121300
Н	-0.80591000	4.36099500	-1.30486200
Н	-0.43073700	2.95495900	-2.35581500
Н	-2.01839600	3.05539500	-1.53364700
С	-1.01385100	3.29841800	1.39542200
Н	-0.88803200	4.37962400	1.23880300
Н	-2.08467800	3.05666900	1.45432500
Н	-0.52650400	3.00534200	2.33525500
С	-2.21330300	0.21302200	0.00324400
С	-2.93472300	0.07986500	-1.20701100
С	-4.31923100	-0.12748600	-1.19541500
Н	-4.84972700	-0.23142000	-2.14495800
С	-5.03945000	-0.21751100	-0.00247100
С	-4.32573100	-0.11660900	1.19347900

Н	-4.86131800	-0.21203900	2.14106000
С	-2.94132300	0.09111900	1.21072000
С	-2.21568900	0.07542000	-2.53689100
Н	-2.93061100	0.02752600	-3.37109100
Н	-1.58115400	0.96167900	-2.66397200
Н	-1.53669900	-0.78954800	-2.60088400
С	-6.53764100	-0.40041000	-0.00567500
Н	-6.87172300	-0.94764400	0.88700200
Н	-7.05387400	0.57292700	-0.01024600
Н	-6.86717900	-0.95362600	-0.89634600
С	-2.22919500	0.09966600	2.54423000
Н	-2.94845500	0.06837500	3.37548900
Н	-1.55643800	-0.76901700	2.62395600
Н	-1.58849000	0.98276300	2.66164400

References

- 1 H. Hommer, H. Nöth, J. Knizek, W. Ponikwar and H. Schwenk-Kircher, *Eur. J. Inorg. Chem.*, 1998, **1998**, 1519.
- 2 H. Braunschweig, A. Damme, R. D. Dewhurst, T. Kramer, T. Kupfer, K. Radacki, E. Siedler, A. Trumpp, K. Wagner and C. Werner, *J. Am. Chem. Soc.*, 2013, **135**, 8702.
- 3 W. Wolfsberger and H. Schmidbaur, Synth. React. Inorg. Met.-Org. Chem., 1974, 4, 149.
- 4 G. Sheldrick, *Acta Cryst.*, 2008, A64, 112.
- 5 Y. Zhao, N. E. Schultz, D. G. Truhlar, J. Chem. Theory Comput., 2006, 2, 364.
- 6 A. Schäfer, H. Horn, R. Ahlrichs J. Chem. Phys., 1992, 97, 2571.
- 7 M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Chem. Phys., 2002, 117, 43.
- 8 Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.