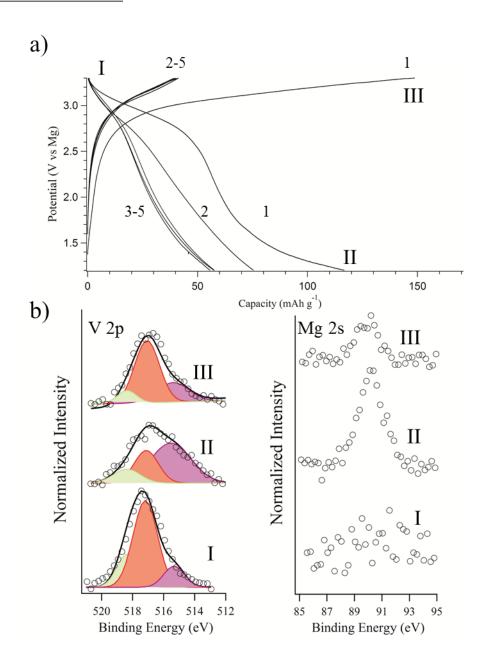
Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

<u>Electronic Supplementary Information (ESI): Amorphous V₂O₅-P₂O₅ as high-voltage cathodes for magnesium batteries</u>

Timothy S. Arthur,*a Keiko Kato,a Jason Germain, Jinghua Guo,b Per-Anders Glans,b Yi-Sheng Liu,b Daniel Holmes, Xudon Fan,d and Fuminori Mizuno

Experimental Methods:


Materials: V₂O₅ and P₂O₅ powder were purchased from Sigma-Aldrich and used as received. 1 M Mg(ClO₄)₂ / Acentonitrile with less than 50 ppm of water was purchased from KishidaChemicals. All chemicals were stored in an Ar-filled glovebox.

Ball-milling: V_2O_5 and P_2O_5 powders (total mass of 1 g) were loaded into a 45 ml ZrO_2 ball-milling vessel with 10 x 10mm and 10 x 5mm ZrO_2 balls in an Ar-glove box. Powders were milled for 20 h at 370 rpm using Fritsch© Planetary Ball-mill P7. Cathode preparation: The cathode was prepared by mixing the active material or SiO_2 , Acetylene Black (HS-100, Denkikagaku Kogyo) and PVDF binder (KF polymer, 5 wt % in NMP, Kureha) in a 2:1:1 wt. ratio. The resulting paste was painted onto a SUS mesh current collector, dried for 1 h at 120 °C and finally dried under vacuum for 12 h at 120 °C. Typical active material loading is ~ 2 mg/cm².

Methods: X-ray photoelectron spectroscopy was collected using a Phi 5600 and analyzed using the Multipack software. For peak de-convolution, the spectra were aligned using a SiO₂ standard and FWHM of the fitted peaks were constrained within 1.5-1.7 eV. X-ray diffraction was collected on a Rigaku SmartLab system. Differential scanning calorimety was collected on a TA Instruments DSC-Q100 in hermetically sealed aluminum pans. The temperature was ramped from 30 °C to 450 °C at a rate of 5 °C min⁻¹, then reversed from 450 °C to 30 °C and finally from 30 °C to 450 °C again. X-ray absorption spectra were collected at beamline 6.3.1.2 at the Advanced Light Source using a total electron yield (TEY) detector. Energies are aligned by periodically collecting an O K-edge spectra of a TiO₂ reference. Scanning electron microscopy was collected with a JEOL 77800F FE-SEM equipped with an energy dispersive X-ray detector. Transmission electron microscopy was collected on a JOEL 2200FS microscope at the Center for Advanced Microscopy at Michigan State University. TEM grids were prepared by dropcasting the cathode from acetonitrile. Magic-angle spinning nuclear magnetic resonance was collected on a Varian Infinity-Plus 400 MHz and aligned to a H₃PO₄ standard.

Electrochemistry: Three-electrode cyclic voltammetry (CV) was performed in an argon-filled glovebox. Magnesium foil was used as counter electrode, Ag/Ag⁺ (0.1 M AgNO₃ and 0.01 M tetrabutylammonium perchlorate as reference solution) was used as a reference electrode, and 1 M Mg(ClO₄)₂ / Acetonitrile was used as electrolyte. CV was tested within [-1.6V, 1V] potential window at the scanning rate of 0.25 mV s⁻¹. Potentials are converted to Mg/Mg²⁺ by using a ferrocene standard (0.087 V vs. Ag/Ag⁺). The current density (mA g⁻¹) of the cathodes is normalized to the mass of the active material, or SiO₂, in the cathode.

i. Additional Results:

Fig. S1 – a) Three-electrode galvanic charge/discharge of 75:25 V_2O_5 : P_2O_5 . b) V 2p and Mg 2s XPS of the electrode taken at I-As-prepared, II-After 1st discharge and III-After 1st charge.

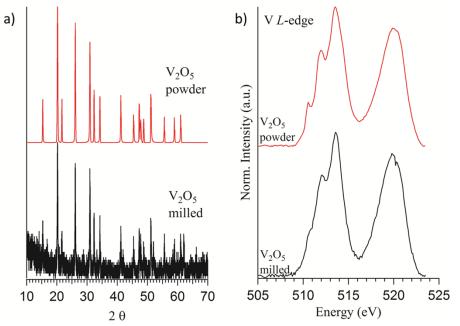
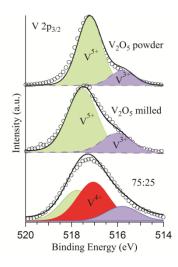
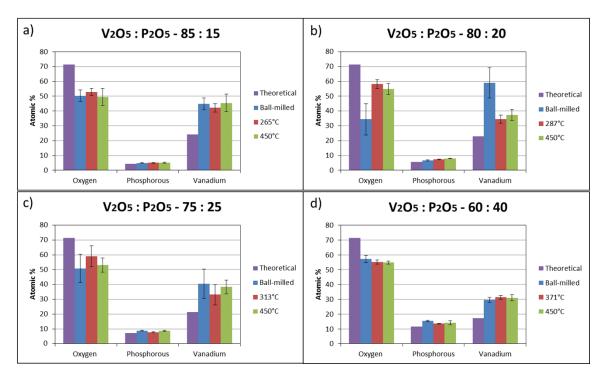


Fig. S2 – a) XRD patterns and b) V L_3 NEXAFS for V_2O_5 powders before and after milling.

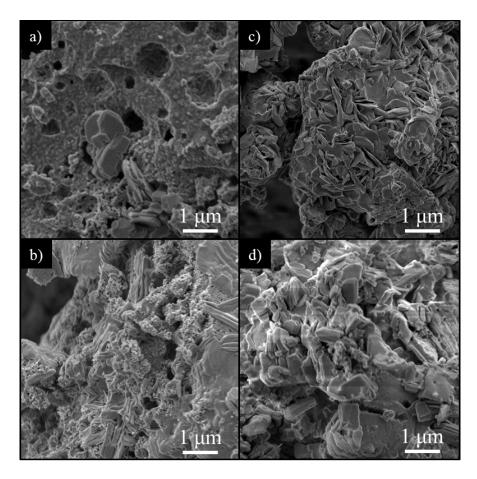

Fig. S3 - V $2p_{3/2}$ XPS spectra and peak-fitting of commercial and milled V_2O_5 compared to a V_2O_5 : P_2O_5 (75:25) powder.

Fig. S4 - Atomic ratios calculated by Energy dispersive X-ray spectroscopy (EDS) for a) 85:15, b) 80:20, c) 75:25 and d) 60:40 V₂O₅ : P₂O₅ ratios.

Table $S1-T_g, \Delta T$ and T_c temperatures for the amorphous $V_2O_5\text{-}P_2O_5$ system

	V:P	T_g (°C)	T_{c1} (°C)	$\Delta T(T_{c1}-T_g)$	T_{c2} (°C)
-	85:15	234.7	265.2	30.6	423.1
	80:20	236.1	287.0	51.0	390.8
	75:25	244.5	313.3	68.9	391.4
	70:30	256.8	409.4	152.7	
	65:35	285.5	389.3	103.8	
	60:40	309.8	371.3	61.5	

Fig. S5 – SEM images of a V_2O_5 : P_2O_5 (75:25) powders annealed to a) 313 °C and b) 450 °C, and V_2O_5 : P_2O_5 (60:40) annealed to c) 371 °C and d) 450 °C.

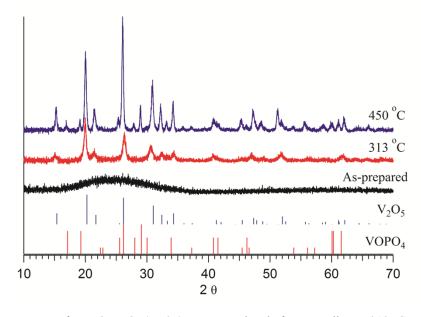


Fig. S6 – XRD patterns for V_2O_5 : P_2O_5 (75:25) as prepared and after annealing at 313 °C and 450 °C. The reference patterns are assigned to PDF 00-009-0387 for V_2O_5 and PDF 00-027-0948 for $VOPO_4$.