Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Chemical Communications

β-Strand mimics based on tetrahydropyridazinedione (tpd) peptide stitching

Chang Won Kang, Matthew P. Sarnowski, Sujeewa Ranatunga, Lukasz Wojtas, Rainer S. Metcalf, Wayne C. Guida, and Juan R. Del Valle*

Department of Chemistry, University of South Florida

CONTENTS (24 pages)

•	Synthetic procedures	S2
•	Quantum mechanics calculations	S6
•	X-ray diffraction analysis	S6
•	¹ H NMR spectra overlays for 1-4	S11
•	¹ H and ¹³ C NMR spectra for 7-12	S12
•	¹ H NMR and LCMS spectra for 13-19	S18

SYNTHETIC PROCEDURES

General notes. Unless stated otherwise, reactions were performed in flame-dried glassware under a positive pressure of argon or nitrogen gas using dry solvents. Commercial grade reagents and solvents were used without further purification except where noted. Diethyl ether, toluene, dimethylformamide dichloromethane, and tetrahydrofuran were purified by a Glass Contour column-based solvent purification system. Other anhydrous solvents were purchased directly from chemical suppliers. Thin-layer chromatography (TLC) was performed using silica gel 60 F254 pre-coated plates (0.25 mm). Flash chromatography was performed using silica gel (60 μ m particle size). The purity of all compounds was judged by TLC analysis (single spot/two solvent systems) using a UV lamp, CAM (ceric ammonium molybdate), ninhydrin, or basic KMnO₄ stain(s) for detection purposes. NMR spectra were recorded on a 400 MHz spectrometer. Proton chemical shifts are reported as δ values relative to residual signals from deuterated solvents (CDCl₃ or DMSO-*d*₆).

Solution-phase synthesis of acyclic dipeptide amides. Hydrazino acid derivative 5 or 6^1 was dissolved in neat *i*BuNH₂ or 7N NH₃/MeOH and stirred in a sealed tube at 50 °C. After TLC indicated completion of the reaction (24 - 48 h), the solution was concentrated to dryness under vacuum. The intermediate hydrazino amide (0.386 mmol) was then directly treated with 2,4,6-collidine (2.31 mmol) and Fmoc-D-Asp(Me)-Cl¹ (0.771 mmol) in 10 mL of THF at rt. After stirring for 18 h, the reaction was diluted with EtOAc and washed with 1 M aq. HCl, sat. aq. NaHCO₃ and brine. The organic layer was dried over anhydrous MgSO₄, filtered, and concentrated under vacuum. The residue was purified by silica gel flash chromatography (EtOAc/hexanes) to give the product as a white solid.

Synthesis of Fmoc-(D)Asp(Me)-(*N***-NHBoc)Ala-NH₂ (7).** Yield over 2 steps = 23%; ¹H NMR (400 MHz, CDCl₃, mixture of rotamers) δ 8.25 (bs, 0.4H), 7.79 (s, 1H), 7.76 (d, *J* = 7.5 Hz, 2H), 7.55 (d, *J* = 7.4 Hz, 2H), 7.40 (t, J=7.4 Hz, 2H), 7.30 (t, J=7.4 Hz, 2H), 6.98 (bs, 0.6H), 6.05 (s, 0.5H), 5.71 (m, 1.5H), 5.05 (m, 1H), 4.82 (m, 0.6H), 4.62 (m, 0.4H), 4.30 (m, 2H), 4.17 (t, J = 7.1 Hz, 1H), 3.73-3.61 (m, 3H), 3.03-2.55 (m, 2H), 1.48 (s, 9H), 1.40 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.1, 174.3, 173.8, 173.1, 172.2, 170.8, 156.6, 155.5, 155.3, 144.0, 143.7, 141.4, 127.9, 127.2, 125.2, 120.1, 83.7, 82.7, 67.6, 67.3, 58.7, 57.3, 52.3, 52.2 48.1, 47.2, 47.1, 46.8, 38.2, 36.1, 28.2, 14.3, 13.1; HRMS (ESI-TOF) *m/z* [M + H]⁺cald for C₂₈H₃₅N₄O₈ 555.2449, found 555.2469.

Fmoc-(D)Asp(Me)-(*N***-NHBoc)Phe-NH***i***Bu (8).** Yield over 2 steps = 63%; ¹H NMR (400 MHz, CDCl₃, mixture of rotamers) δ 8.26 (s, 0.2H), 7.77 (d, *J* = 7.4 Hz, 2H), 7.57 (dd, *J* = 7.4, 2.9 Hz, 2H), 7.40 (dd, *J* = 9.7, 5.0 Hz, 2H), 7.35 – 7.17 (m, 7H), 6.99 (s, 0.7H), 6.79 (s, 0.7H), 5.78 (d, *J* = 8.8 Hz, 0.7H), 5.46 (d, *J* = 8.3 Hz, 0.3H), 5.25 (d, *J* = 9.3 Hz, 0.3H), 5.01 (m, 0.7H), 4.89 (m, 0.3H), 4.44 – 4.13 (m, 4H), 3.69 (s, 2H), 3.51 (s, 1H), 3.28 (m, 1.5H), 3.13 – 2.76 (m, 3.5H), 2.57 (dd, *J* = 15.5, 7.9 Hz, 1H), 1.65 (m, 1H), 1.49 (s, 3H), 1.44 (s, 6H), 0.88 (d, *J* = 6.4 Hz, 2H), 0.83 – 0.74 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 174.6, 173.0, 170.6, 168.3, 155.7, 155.6, 143.8, 143.6, 141.2, 137.6, 137.2, 129.2, 128.9, 127.8, 127.1, 125.1, 120.0, 83.2, 67.4, 67.2, 67.0, 52.1, 48.2, 47.0, 38.1, 36.5, 34.7, 33.5, 28.3, 28.0, 20.0, 20.0; HRMS (ESI-TOF) *m*/*z* [M + H]⁺cald for C₃₈H₄₇N₄O₈ 687.3388, found 687.3409.

¹ Kang, C.; Ranatunga, S.; Sarnowski M. P.; Del Valle J. R. Org. Lett. 2014, 16, 5434.

Fmoc-(D)Asp(Me)-(*N***-NHBoc)Ala-NH***i***Bu (9).** Yield over 2 steps = 66%; ¹H NMR (400 MHz, CDCl₃, mixture of rotamers) δ 8.19 (bs, 0.3H), 7.76 (d, *J* = 7.5 Hz, 2H), 7.56 (d, *J* = 7.4 Hz, 2H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.31 (t, *J* = 7.4 Hz, 2H), 6.61 (bs, 0.3H), 5.85 and 5.42 (2m, 1H), 5.12 – 5.01 (m, 1H), 4.87 (d, *J* = 7.4 Hz, 0.6H), 4.69 (d, *J* = 7.5 Hz, 0.4H), 4.33 (d, *J* = 7.9 Hz, 2H), 4.21 (m, 1H), 3.70 and 3.68 (2s, 3H), 3.11 – 2.67 (m, 4H), 1.74 (m, 1H), 1.48 (s, 9H), 1.41 (d, *J* = 7.2 Hz, 3H), 0.84 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 173.7, 172.0, 171.1, 170.7, 170.3, 156.2, 155.4, 155.0, 143.6, 141.2, 127.81, 127.66, 127.1, 125.1, 125.0, 120.0, 120.0, 83.4, 82.5, 67.5, 67.2, 58.9, 58.8, 52.3, 52.1, 52.0, 48.2, 48.0, 47.0, 38.4, 36.2, 28.3, 28.0, 20.1, 20.0, f 14.6, 13.3; HRMS (ESI-TOF) *m/z* [M + H]⁺cald for C₃₂H₄₃N₄O₈ 611.3075, found 611.3076.

Solution-phase synthesis of tpd dipeptide amides. The dipeptide amides above were treated with 2-5 mL of 4N HCl/dioxane and stirred at rt for 5 h. After removing volatiles under vacuum, the residue was taken up in 5 mL of toluene and heated at 100 °C for 3 h. The reaction was cooled to rt and stirred for 12 h. The volatiles were removed under vacuum and the residue purified by silica gel flash chromatography (CHCl₃/MeOH) to give the product as an off white solid.

Fmoc-tpd-Ala-NH₂ (10). Yield over 2 steps = 80%; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.5 Hz, 2H), 7.55 (d, *J* = 6.0 Hz, 2H), 7.36 (t, *J* = 7.5 Hz, 2H), 7.31 – 7.24 (m, 4H), 6.47 (d, *J* = 35.0 Hz, 2H), 5.90 (d, *J* = 5.8 Hz, 1H), 5.30 (d, *J* = 6.8 Hz, 1H), 4.61 (s, 1H), 4.37 (s, 2H), 4.22 – 4.12 (m, 1H), 2.94 (m, 1H), 2.52 (m, 1H), 1.44 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 168.0, 166.6, 155.9, 143.7, 143.5, 141.2, 127.8, 127.1, 125.0, 120.0, 67.3, 52.7, 48.0, 47.0, 34.5, 15.0; HRMS (ESI-TOF) *m/z* [M + H]⁺cald for C₂₂H₂₃N₄O₅ 423.1663, found 423.1663.

Fmoc-tpd-Phe-NH*i***Bu (11).** Yield over 2 steps = 80%; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.5 Hz, 2H), 7.57 (d, *J* = 7.4 Hz, 2H), 7.39 (t, *J* = 7.5 Hz, 2H), 7.35 – 7.23 (m, 5H), 7.20 (d, *J* = 7.3 Hz, 2H), 6.18 (t, *J* = 5.7 Hz, 1H), 5.53 (m, 2H), 4.46 (m, 1H), 4.37 (d, *J* = 7.3 Hz, 2H), 4.17 (t, *J* = 6.9 Hz, 1H), 3.30 – 3.15 (m, 2H), 3.10 (dt, *J* = 13.4, 6.6 Hz, 1H), 3.06 – 2.95 (m, 1H), 2.73 (dd, *J* = 15.4, 4.6 Hz, 1H), 1.80 – 1.65 (m, 1H), 1.35 – 1.22 (m, 1H), 0.89 – 0.84 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 169.8, 167.2, 166.4, 155.6, 143.6, 141.3, 134.6, 129.2, 128.9, 127.8, 127.6, 127.1, 125.0, 120.0, 67.2, 56.7, 48.0, 47.0, 47.0, 35.9, 34.4, 28.3, 20.0, 19.9; HRMS (ESI-TOF) *m*/*z* [M + H]⁺cald for C₃₂H₃₅N₄O₅ 555.2602, found 555.2589.

Fmoc-tpd-Ala-NH*i***Bu (12)**. Yield over 2 steps = 90%; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.5 Hz, 2H), 7.60 (d, *J* = 6.4 Hz, 2H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.31 (td, *J* = 7.5, 0.9 Hz, 2H), 6.14 (t, *J* = 5.9 Hz, 1H), 5.79 (d, *J* = 5.4 Hz, 1H), 5.25 (m, 1H), 4.59 (d, *J* = 13.9 Hz, 1H), 4.42 (d, *J* = 4.8 Hz, 2H), 4.22 (t, *J* = 6.9 Hz, 1H), 3.17 – 2.95 (m, 3H), 2.57 – 2.40 (m, 1H), 1.83 – 1.70 (m, 1H), 1.48 (d, *J* = 7.0 Hz, 3H), 0.90 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 170.7, 167.0, 165.9, 155.7, 143.7, 143.6, 141.3, 127.8, 127.1, 125.1, 120.2, 67.3, 67.1, 52.3, 48.0, 47.1, 46.9, 34.9, 29.7, 28.3, 20.0, 19.9 15.8; HRMS (ESI-TOF) *m*/*z* [M + H]⁺cald for C₂₆H₃₁N₄O₅ 479.2289, found 479.2284.

Solid-phase synthesis of tpd-constrained β -strand mimics. Solid-phase peptide synthesis was carried out on Fmoc-capped polystyrene rink amide MBHA resin (59 µmol/g loading, 100-200 mesh, 0.1 mmol scale). The following side-chain protected amino acid derivatives suitable for Fmoc SPPS were used: Fmoc-Tyr(tBu)-OH, Fmoc-Ala-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Asn(Trt)-OH, Fmoc-Asp(tBu)-OH, Fmoc-Glu(tBu)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Trp(Boc)-OH. Dry resin was washed with DMF 3x and

allowed to swell in DMF for 2 h prior to use. All reactions were carried out using gentle agitation. Fmoc deprotection steps were carried out by treating the resin with a solution of 20% piperidine/DMF at 50 °C (15 min x 2). Coupling of Fmoc-protected amino acids as well as $(N^{\circ}-Boc)$ -hydrazino acids was effected using 5 equiv. HATU (0.5 M in DMF), 10 equiv. DIEA (1.0 M in DMF), and 5 equiv. of the carboxylic acid in 5:1 DMF:DCM at 50 °C (1 h x 2). Coupling of the D-Asp subunit to the resin-bound Bochydrazine was carried out with 9 equiv. collidine and 3 equiv. of Fmoc-D-Asp(Me)-Cl¹ in THF at 50 °C (1 h x 3). Acetvlation of the peptide N-terminus was carried out using 10 equiv. of Ac₂O and 20 equiv. of pyridine in DCM at rt (1 h x 2). After each reaction the resin was washed with DMF 3x, DCM 2x, then DMF 1x. Prior to cleavage, the resin was washed with MeOH 5x and dried thoroughly under vacuum. Compounds were cleaved by incubating the dried resin in 2 mL of 95:5 TFA:H₂O at rt for 4 h. The cleavage mixture was filtered and the resin was rinsed with an additional 1 mL of cleavage solution. The filtrate was concentrated to remove the bulk of the TFA and the remaining residue was treated with 8 mL of cold Et₂O to induce precipitation. The mixture was centrifuged and the supernatant was removed. The remaining solid was washed 2 more times with Et₂O and dried under vacuum. The crude peptides were purified by RP-HPLC on a C8 semi-preparative column using linear gradients of MeCN in 0.1% ag. formic acid, then lyophilized to afford white powders. All peptides were characterized by LCMS (ESI), HRMS (ESI-TOF), and ¹H NMR.

Ac-tpd-Ala-tpd-Phe-Tyr-NH₂ (13). Overall yield = 14%; ¹H NMR (400 MHz, DMSO-d₆) δ 9.15 (bs, 1H), 8.40 (d, *J* = 8.0 Hz, 1H), 8.20 (d, *J* = 7.6 Hz, 1H), 8.12 (d, *J* = 7.9 Hz, 1H), 7.36 (s, 1H), 7.25 – 7.09 (m, 5H), 7.02 (s, 1H), 6.95 (d, *J* = 8.5 Hz, 2H), 6.58 (d, *J* = 8.5 Hz, 2H), 5.39 (dd, *J* = 11.9, 4.6 Hz, 1H), 4.96 (q, *J* = 7.1 Hz, 1H), 4.59 (ddd, *J* = 13.9, 7.9, 4.8 Hz, 1H), 4.46 (ddd, *J* = 14.5, 7.7, 4.7 Hz, 1H), 4.30 (dd, *J* = 14.1, 8.0 Hz, 1H), 3.20 (dd, *J* = 14.5, 4.4 Hz, 1H), 3.03 (dd, *J* = 14.2, 12.3 Hz, 1H), 2.85 (dd, *J* = 13.8, 5.7 Hz, 1H), 2.74 – 2.54 (m, 2H), 2.37 (dd, *J* = 15.3, 4.8 Hz, 1H), 2.07 (dd, *J* = 15.1, 4.6 Hz, 1H), 1.82 (s, 3H), 1.34 (t, *J* = 14.8 Hz, 1H), 1.22 (d, *J* = 7.1 Hz, 3H); HRMS (ESI-TOF) m/z [M + H]+ calcd for C₃₁H₃₇N₈O₉ 665.2678, found 665.2661.

Ac-tpd-Ala-tpd-Ala-Tyr-NH₂ (14). Overall yield = 21%; ¹H NMR (400 MHz, DMSO-d₆) δ 8.35 (d, J = 7.8 Hz, 1H), 8.20 (d, J = 8.0 Hz, 2H), 7.35 (s, 1H), 7.04 (s, 1H), 6.97 (d, J = 8.4 Hz, 2H), 6.61 (d, J = 8.4 Hz, 2H), 5.06 (q, J = 7.1 Hz, 1H), 4.97 (q, J = 7.1 Hz, 1H), 4.79 – 4.47 (m, 2H), 4.28 (dd, J = 14.0, 8.1 Hz, 1H), 2.97 – 2.61 (m, 4H), 2.46 – 2.37 (m, 2H), 1.87 (s, 3H), 1.34 (d, J = 7.4 Hz, 3H), 1.32 (d, J = 7.2 Hz, 3H); HRMS (ESI-TOF) m/z [M + H]+ calcd for C₂₅H₃₃N₈O₉ 589.2365, found 589.2356.

H-Leu-tpd-Phe-tpd-Leu-Asn-NH₂ (15). Overall yield = 16%; ¹H NMR (400 MHz, DMSO-d₆) δ 8.69 (d, *J* = 7.8 Hz, 1H), 8.44 – 8.38 (m, 2H), 8.18 (s, 1H), 7.42 (s, 1H),), 7.29 – 7.16 (m, 5H), 7.07 (s, 1H), 6.95 (s, 1H), 5.58 (dd, *J* = 11.8, 4.9 Hz, 1H), 5.08 (dd, *J* = 11.1, 4.1 Hz, 1H), 4.86 – 4.70 (m, 1H), 4.60 – 4.49 (m, 1H), 4.44 (dd, *J* = 13.5, 7.9 Hz, 1H), 3.61 (d, *J* = 3.2 Hz, 1H), 3.51 (dd, *J* = 13.8, 8.0 Hz, 1H), 3.31 (dd, *J* = 14.4, 4.6 Hz, 1H), 3.10 (dd, *J* = 14.0, 12.2 Hz, 1H), 2.73 (m, 1H), 2.66 (dd, *J* = 35.1, 5.7 Hz, 1H), 2.55 (dd, *J* = 24.7, 5.2 Hz, 1H), 2.54 – 2.49 (m, 1H), 2.36 (dd, *J* = 15.2, 8.0 Hz, 1H), 2.17 (dd, *J* = 14.9, 4.5 Hz, 1H), 1.83 – 1.74 (m, 1H), 1.70 – 1.55 (m, 2H), 1.47 – 1.20 (m, 3H), 0.90 – 0.79 (m, 12H); HRMS (ESI-TOF) m/z [M + H]+ calcd for C₃₃H₄₉N₁₀O₉ 729.3679, found 729.3680.

H-Leu-tpd-Ile-tpd-Leu-Asp-NH₂ (16). Overall yield = 15%; ¹H NMR (400 MHz, DMSO- d₆) δ 9.13 (d, *J* = 7.8 Hz, 1H), 8.52 (d, *J* = 6.9 Hz, 1H), 8.42 (d, *J* = 7.6 Hz, 1H), 8.24 (s, 1H), 7.22 (s, 1H), 7.06 (s, 1H), 5.04 - 4.96 (m, 1H), 4.96 (d, *J* = 10.4 Hz, 1H), 4.85 - 4.74 (m, 1H), 4.71 - 4.58 (m, 1H), 4.41 (dd, *J* = 13.5, 6.7 Hz, 1H), 3.43 (dd, *J* = 8.7, 5.2 Hz, 1H), 2.86 - 2.56 (m, 3H), 2.55 - 2.37 (m, 2H), 2.12 - 2.00 (m, 1H), 1.86 - 1.75 (m, 1H), 1.74 - 1.61 (m, 2H), 1.51 - 1.27 (m, 4H), 1.09 - 0.98 (m, 1H), 0.91 - 0.75 (m, 18H); HRMS (ESI-TOF) m/z [M + H]+ calcd for C₃₀H₅₀N₉O₁₀ 696.3675, found 696.3680.

H-Leu-tpd-Leu-Glu-NH₂ (17). Overall yield = 13%; ¹H NMR (400 MHz, DMSO- d₆) δ 8.65 (d, *J* = 7.9 Hz, 1H), 8.57 (d, *J* = 7.2 Hz, 1H), 8.32 (d, *J* = 7.3 Hz, 1H), 8.22 (s, 1H), 7.27 (s, 1H), 7.04 (s, 1H), 5.10 (dd, *J* = 11.1, 3.9 Hz, 1H), 4.98 (d, *J* = 10.9 Hz, 1H), 4.81 – 4.65 (m, 2H), 4.14 – 4.03 (m, 1H), 3.52 – 3.43 (m, 1H), 2.83 – 2.62 (m, 2H), 2.46 – 2.35 (m, 2H), 2.26 – 2.08 (m, 2H), 1.92 – 1.80 (m, 3H), 1.79 – 1.65 (m, 2H), 1.64 – 1.54 (m, 2H), 1.52 – 1.29 (m, 4H), 0.90 – 0.80 (m, 18H); HRMS (ESI-TOF) m/z [M + H]+ calcd for C₃₁H₅₂N₉O₁₀ 710.3831, found 710.3831.

H-Leu-tpd-Val-tpd-Val-Gln-NH₂ (18). Overall yield = 11%; ¹H NMR (400 MHz, DMSO- d₆) δ 9.05 (d, *J* = 7.8 Hz, 1H), 8.70 (d, *J* = 7.1 Hz, 1H), 8.63 (d, *J* = 7.2 Hz, 1H), 8.19 (s, 1H), 7.39 (s, 1H), 7.29 (s, 1H), 7.03 (s, 1H), 6.77 (s, 1H), 4.88 – 4.77 (m, 2H), 4.76 – 4.66 (m, 1H), 4.13 (dd, *J* = 13.6, 7.7 Hz, 1H), 3.52 (dd, *J* = 14.2, 8.5 Hz, 1H), 2.83 (dt, *J* = 23.9, 14.7 Hz, 2H), 2.54 – 2.48 (m, 2H), 2.27 – 2.11 (m, 2H), 2.06 (dd, *J* = 8.4, 7.5 Hz, 2H), 1.90 – 1.78 (m, 1H), 1.77 – 1.63 (m, 2H), 1.54 – 1.44 (m, 1H), 1.43 – 1.32 (m, 1H), 0.95 (d, *J* = 6.2 Hz, 3H), 0.94 (d, *J* = 5.5 Hz, 3H), 0.89 – 0.79 (m, 12H); HRMS (ESI-TOF) m/z [M + H]+ calcd for C₂₉H₄₉N₁₀O₉ 681.3679, found 681.3670.

H-tpd-Ala-tpd-Ala-Trp-NH₂ (19). Overall yield = 11%; ¹H NMR (400 MHz, DMSO- d₆) δ 10.76 (s, 1H), 8.34 (d, *J* = 7.8 Hz, 1H), 8.28 (d, *J* = 8.1 Hz, 1H), 8.24 (s, 1H), 8.19 (d, *J* = 7.7 Hz, 1H), 7.52 (d, *J* = 7.8 Hz, 1H), 7.34 (s, 1H), 7.24 (d, *J* = 7.9 Hz, 1H), 7.05 (d, *J* = 1.4 Hz, 1H), 7.01 (d, *J* = 1.2 Hz, 1H), 6.98 (t, *J* = 7.4 Hz, 1H), 6.90 (t, *J* = 7.4 Hz, 1H), 5.04 (q, *J* = 7.0 Hz, 1H), 5.04 (q, *J* = 7.0 Hz, 1H), 4.95 (q, *J* = 7.8 Hz, 1H), 4.70 – 4.62 (m, 1H), 4.62 – 4.54 (m, 1H), 4.36 (dd, *J* = 13.8, 7.5 Hz, 1H), 3.58 (dd, *J* = 12.6, 5.2 Hz, 1H), 3.52 – 3.46 (m, 1H), 3.08 (dd, *J* = 14.6, 5.8 Hz, 1H), 2.92 (dd, *J* = 14.9, 8.3 Hz, 1H), 2.74 (dd, *J* = 30.6, 15.4 Hz, 2H), 2.48 – 2.34 (m, 3H), 1.30 (d, *J* = 7.3 Hz, 3H), 1.28 (d, *J* = 7.2 Hz, 3H), 1.25 (d, *J* = 7.1 Hz, 3H); HRMS (ESI-TOF) m/z [M + H]+ calcd for C₃₂H₄₁N₁₂O₁₀ 753.3063, found 753.3072.

QUANTUM MECHANICS CALUCULATIONS

All quantum calculations were performed with the Jaguar^{2,3} quantum chemistry program from Schrödinger, Inc. Ramachandran-type energy surfaces of ϕ_2 vs ψ_2 dihedral angles were generated by combinatorialy fixing ϕ and ψ angles (Figure 2) at every 15° from 0° to 360°. No other constraints were imposed. The ω angle for all molecules was constructed in a trans configuration for all simulations. A relaxed coordinate scan was performed with geometry optimization and energy calculations determined at the M06-2X-D3/6-31G* level⁴ with the SM6 implicit solvent model⁵.

X-RAY DIFFRACTION ANALYSIS

² Bochevarov, A.D.; Harder, E.; Hughes, T.F.; Greenwood, J.R.; Braden, D.A.; Philipp, D.M.; Rinaldo, D.; Halls, M.D.; Zhang, J.; Friesner, R.A *Int. J. Quantum Chem.*, **2013**, *113*, 2110.

³ Jaguar, version 8.3, Schrödinger, LLC, New York, NY, 2014.

⁴ Zhao; Yan; Schultz, N.E.; Truhlar, D.G.; J. Chem. Theory Comput. 2, 2006, 2, 364.

⁵ Kelly, C.P.; Cramer, C.J.; Truhlar, D.G. J. Chem. Theory Comput. 1, 2005, 6, 1133.

The X-ray diffraction data for 10 and 11 were measured on a Bruker D8 Venture PHOTON 100 CMOS system equipped with a Cu K α INCOATEC Imus micro-focus source ($\lambda = 1.54178$ Å). Indexing was performed using APEX26 (Difference Vectors method). Data integration and reduction were performed using SaintPlus 6.01.7 Absorption correction was performed by multi-scan method implemented in SADABS⁸. Space groups were determined using XPREP implemented in APEX2⁶. The structure was solved using SHELXS-97 (direct methods) and refined using SHELXL-2013⁹ (full-matrix least-squares on F2) contained in APEX2^{6,9}, WinGX v1.70.01^{9,10,11,12} and OLEX2^{9,13}. Part of the molecule is disordered over two positions with 0.84:0.16 occupancy ratio (refined as FVAR 2/-2). Non-disordered atoms and those in major part of the disorder were refined anisotropically and atoms with low occupancy were refined isotropically and with geometry and isotropic displacement parameters restraints. Hydrogen atoms of -NH groups have been found from difference Fourier map and were refined freely or with Uiso(H) = 1.2Ueq(-NH). Hydrogen atoms of -CH, -CH2 and -CH3 groups were placed in geometrically calculated positions and included in the refinement process using riding model with isotropic thermal parameters: Uiso(H) = 1.2(1.5)Ueq(-CH,-CH2(-CH3)). The contents of asymmetric units (with the exception of minor part of disorder) has been shown on Figs.1 and 2. Crystal data and refinement conditions are shown in Tables 1 and 2.

 Table 1. Crystal data and structure refinement for 10.

⁶ Bruker (2013). APEX2 (Version 2013.6-2). Bruker AXS Inc., Madison, Wisconsin, USA.

⁷ Bruker (2013). SAINT-V8.32A. Data Reduction Software.

⁸ Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption Correction. University of Gottingen, Germany.

⁹ Sheldrick, G. M. Acta Cryst. 2008, A64, 112.

¹⁰ Farrugia L. J. Appl. Cryst. **1999**, 32, 837.

¹¹ Sheldrick, G.M. (1997) SHELXL-97. Program for the Refinement of Crystal

¹² Sheldrick, G.M. Acta Cryst. 1990, A46, 467.

¹³ Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. J. Appl. Cryst., 2009, 42, 339.

Identification code	10		
Empirical formula	$C_{24}H_{28}N_4O_6$		
Moiety Formula	C ₂₂ H ₂₂ N ₄ O ₅ , C ₂ H ₆ O		
Formula weight	468.50		
Temperature/K	100		
Crystal system	orthorhombic		
Space group	P2 ₁ 2 ₁ 2 ₁		
a/Å	6.1328(2)		
b/Å	16.7206(4)		
c/Å	22.9284(6)		
a/°	90		
β/°	90		
γ/°	90		
Volume/Å ³	2351.17(11)		
Ζ	4		
$\rho_{calc}g/cm^3$	1.324		
µ/mm ⁻¹	0.798		
F(000)	992.0		
Crystal size/mm ³	$0.11 \times 0.09 \times 0.01$		
Radiation	$CuK\alpha \ (\lambda = 1.54178)$		
2Θ range for data collection/° 6.542 to 134.8			
Index ranges	$-7 \le h \le 6, -19 \le k \le 19, -27 \le l \le 27$		
Reflections collected	19352		
Independent reflections	4184 [$R_{int} = 0.0419$, $R_{sigma} = 0.0307$]		
Data/restraints/parameters	4184/70/378		
Goodness-of-fit on F ²	1.051		
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0395, wR_2 = 0.0932$		
Final R indexes [all data]	$R_1 = 0.0449, wR_2 = 0.0963$		
Largest diff. peak/hole / e Å ⁻³ 0.20/-0.17			
Flack parameter	-0.15(11)		

Table 2. Crystal data and structure refinement for 11.			
Identification code	11		
Empirical formula	C32H34N4O5		
Formula weight	554.63		
Temperature/K	100.0		
Crystal system	orthorhombic		
Space group	P212121		
a/Å	11.0349(3)		
b/Å	14.8582(3)		
c/Å	17.2323(4)		
$\alpha/^{\circ}$	90		
β/°	90		
γ/°	90		
Volume/Å3	2825.39(12)		
Ζ	4		
pcalcg/cm3	1.304		
μ/mm-1	0.724		
F(000)	1176.0		
Crystal size/mm3	$0.14 \times 0.06 \times 0.04$		
Radiation	$CuK\alpha (\lambda = 1.54178)$		
2@ range for data collection/°	7.856 to 149.374		
Index ranges	$-13 \le h \le 12, -18 \le k \le 18, -21 \le l \le 21$		
Reflections collected	42988		
Independent reflections	5797 [Rint = 0.0395, Rsigma = 0.0196]		
Data/restraints/parameters	5797/0/384		
Goodness-of-fit on F2	1.085		
Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.0294, wR2 = 0.0697		
Final R indexes [all data]	R1 = 0.0312, $wR2 = 0.0707$		
Largest diff. peak/hole / e Å-30.23/-0.22			
Flack parameter	0.07(5)		

¹H NMR OVERLAYS for 1-4

Ac-Leu-ala-(N-NHBoc)Ala-Phe-NH₂ 4

¹H and ¹³C NMR SPECTRA for 7-12

¹H NMR 400 MHz (CDCl₃)

¹H NMR 400 MHz (CDCl₃)

¹H NMR 400 MHz (CDCl₃)

¹H NMR 400 MHz (CDCl₃)

¹³C NMR 101 MHz (CDCl₃)

¹H NMR 400 MHz (CDCl₃)

LCMS and ¹H NMR SPECTRA for 13-19

RP-LC/MS (C $_{18}$ column, 5-95% MeOH in 0.1M aq. HCO₂H linear gradient):

¹H NMR 400 MHz (DMSO-d₆):

¹H NMR 400 MHz (DMSO-d₆):

RP-LC/MS (C₁₈ column, 5-95% MeOH in 0.1M aq. HCO₂H linear gradient):

¹H NMR 400 MHz (DMSO- d_6):

RP-LC/MS (C₁₈ column, 5-95% MeOH in 0.1M aq. HCO₂H linear gradient):

¹H NMR 400 MHz (DMSO-d₆):

¹H NMR 400 MHz (DMSO-d₆):

¹H NMR 400 MHz (DMSO-d₆):

