Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Selective Recognition and Extraction of KBr via Cooperative Interactions with a Urea Functionalized Crown Ether Dual-host

Bidyut Akhuli and Pradyut Ghosh*

Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700 032, India

Table of Contents

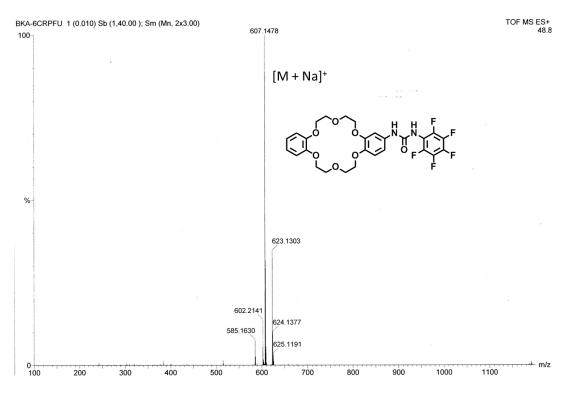
Synthesis of L	S3
¹ H-NMR Titrations Studies Details	
Isothermal Titration Calorimetric (ITC) Studies Details	
Solid-Liquid Extraction Studies Details	
Figure S1 ESI-MS (+ve) spectrum of L	S4
Figure S2 ¹ H-NMR spectrum of L	
Figure S3 ¹³ C-NMR spectrum of L	S5
Figure S4 ESI-MS (-ve) spectrum of L	S5
Figure S5 ESI-MS (-ve) spectrum of extracted mass of L with KCl	S6
Figure S6 ESI-MS (-ve) spectrum of extracted mass of L with KBr	S6
Figure S7 ESI-MS (-ve) spectrum of extracted mass of L with KNO ₃	S7
Figure S8 ESI-MS (-ve) spectrum of extracted mass of L with mixture of KCl, KBr and KNO ₃	S7
Figure S9 Comparative ¹ H-NMR spectra of extracted masses	S8
Figure S10 SEM-EDX experiments of extracted mass obtained from mixtures	S8
Figure S11 Qualitative ¹ H-NMR spectrum of L in presence of 1:1 ratio of TBA-anuions	
Figure S12 Equivalence plot of ¹ H-NMR titration of L with TBA-Cl	S9
Figure S13 Equivalence plot of ¹ H-NMR titration of L with TBA-Br	S10
Figure S14 Equivalence plot of ¹ H-NMR titration of L with TBA-NO ₃	S10
Figure S15 Equivalence plot of ¹ H-NMR titration of L with TBA-HSO ₄	S11
Figure S16 Equivalence plot of ¹ H-NMR titration of L with TBA-Cl in presence of K^+	S11
Figure S17 Equivalence plot of ¹ H-NMR titration of L with TBA-Br in presence of K^+	S12
Figure S18 Equivalence plot of ¹ H-NMR titration of L with TBA-NO ₃ in presence of K ⁺	S12
Figure S19 Equivalence plot of ¹ H-NMR titration of L with TBA-HSO ₄ in presence of K^+	S13
Figure S20 ITC profile of Cl^- binding to host L in absence of K^+	S13
Figure S21 ITC profile of Cl ⁻ binding to host L in presence of K^+	S14

Experimental Section

Synthesis of L^1 :

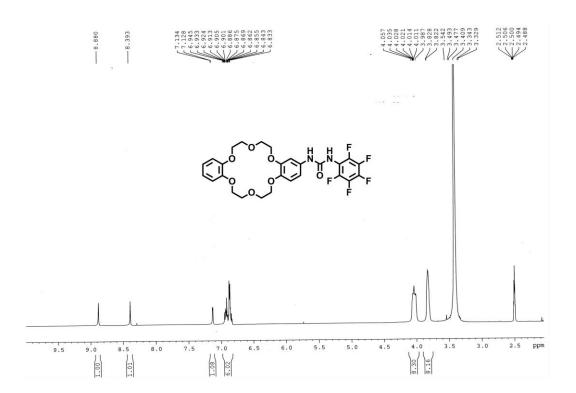
In a 50 ml round bottomed flask, 4'-aminodibenzo-18-crown-6 (100 mg, 0.27 mmol) was dissolved in 15 ml of dry DCM. The mixture was allowed to stir at 0°C temperature in nitrogen atmosphere for 15 min. 40 µL (0.3 mmol) of pentafluorophenyl isocyatate was dissolved in another 15 mL of dry DCM and taken in a 25 mL pressure equalizing funnel. This solution was added drop-wise for a period of 1 hour with constant stirring at 0°C temperature. After the addition, the reaction mixture was allowed to stir at room temperature in nitrogen atmosphere for another 12 h. The white precipitate was filtered, and washed three times with DCM. Then the precipitate was dried in vacuum to yield the desired product as white solid (145 mg, 92%). ESI-HRMS (+Ve): m/z calcd. for $C_{27}H_{25}F_5N_2NaO_7$ [M + Na]⁺, 607.1479, found 607.1478. <u>¹H-NMR (300 MHz, DMSO-d_6)</u>: δ 8.88 (s, 1H, -NH), 8.39 (s, 1H, -NH), 7.13 (d, 1H, *J* = 1.8 Hz Ar-*H*), 6.95-6.83 (m, 6H, Ar-*H*), 4.06-3.99 (m, 8H, -O-CH₂), 3.82 (s, 8H, -O-CH₂). <u>¹³C-NMR (100 MHz, DMSO-d_6)</u>: δ 152.1 (-C=O), 148.0 (Ar-C), 147.9 (Ar-C), 143.6 (Ar-C), 132.6 (Ar-C), 120.8 (Ar-C), 113.0 (Ar-C), 112.6 (Ar-C), 110.7 (Ar-C), 104.8 (Ar-C), 69.1 (-O-CH₂), 69.0 (-O-CH₂), 68.9 (-O-CH₂), 68.03 (-O-CH₂), 67.8 (-O-CH₂), 67.7 (-O-CH₂).

¹*H*-*NMR* Titrations Studies Details:


Binding constants were obtained by ¹H-NMR (300 MHz) titrations of L¹ with different anions (as TBA-salt) such as Cl⁻, Br⁻, NO₃⁻ and HSO₄⁻ in CD₃CN at 25°C. The initial concentration of L¹ was ~2 mM. Aliquots of anions were added from a stock solutions ~10-20 mM. Tetramethylsilane (TMS) in CD₃CN was used as an internal reference, and each titration was performed by 15-20 measurements at room temperature. All proton signals were referred to TMS. The association constant (*K*), values were calculated by fitting the change in the urea-NH chemical shift with a 1:1 association model with non-linear least square analysis. The equation $\Delta \delta = [([A]_0 + [L]_0 + 1/K) \pm \{([A]_0 + [L]_0 + 1/K)^2 - 4[L]_0[A]_0\}^{1/2}]\Delta \delta_{max}/2[L]_0$ was used to determine the *K* values.

Isothermal Titration Calorimetric (ITC) Studies Details:

The titrations were carried out at 298 K in freshly distilled acetonitrile. A solution of L in acetonitrile was placed in the measuring cell. This solution was then titrated with 30 injections of 10 μ L of TBACl solution that was prepared in acetonitrile. An interval of 220 s was allowed between each injection, and the stirring speed was set at 329 rpm. The obtained data was processed by using Origin 7.0 software that was supplied with the instrument and was fitted to a one-site binding model. A blank titration of plain solvent was also performed and subtracted from the corresponding titration to remove any effect from the heats of dilution from the titrant.


Solid-Liquid Extraction Studies Details:

For solid-liquid extraction studies, L (1.2 mg) was dissolved in 1 ml CD₃CN/CH₃CN (2 mM concentration) in a 2 ml glass vial. Then excess of respective solid Na⁺/K⁺ salt (5 equivalents with respect to L) was added in the solution of L. The solid salts remain insoluble in CD₃CN/CH₃CN. The mixture was allowed to sonicate for 1hr on a sonicator bath at room temperature. Then the solution was filtered through Whatman-42 filter paper and filtrate was allowed to different studies like ¹H-NMR, ESI-MS and EDX."

Figure S1 ESI-MS (+ve) spectrum of ligand L.

Figure S2 300 MHz ¹H-NMR spectrum of **L** in DMSO- d_6 at 25°C.

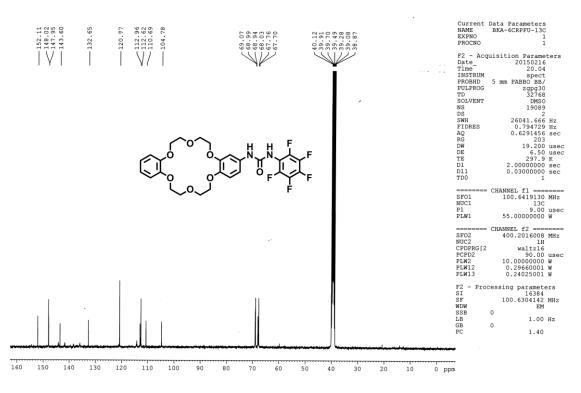
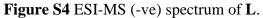
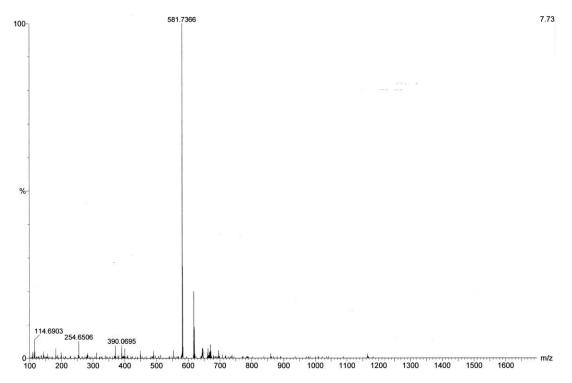




Figure S3 100 MHz ¹³C-NMR spectrum of L in DMSO- d_6 at 25°C.

Figure S5 ESI-MS (-ve) spectrum of extracted mass obtained from the solid-liquid extraction of L with KCl.

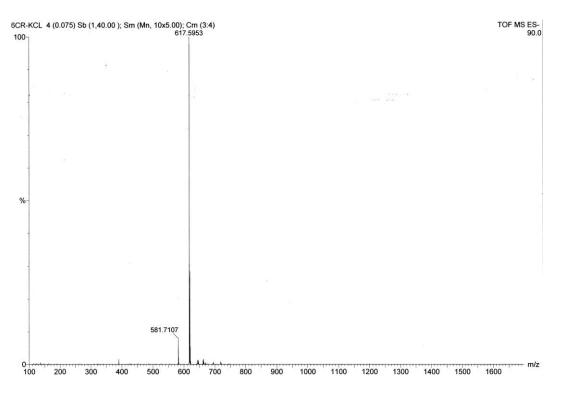
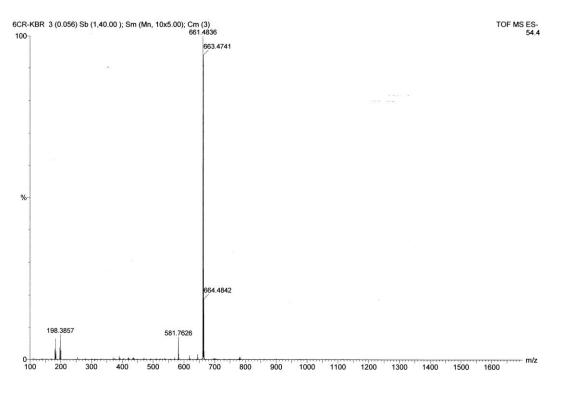



Figure S6 ESI-MS (-ve) spectrum of extracted mass obtained from the solid-liquid extraction of L with KBr.

Figure S7 ESI-MS (-ve) spectrum of extracted mass obtained from the solid-liquid extraction of L with KNO₃.

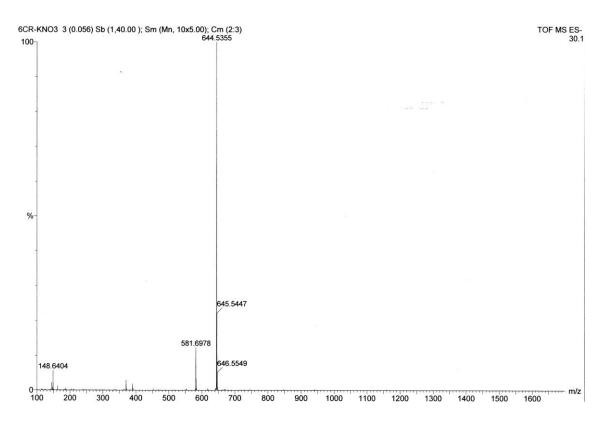


Figure S8 ESI-MS (-ve) spectrum of extracted mass obtained from the solid-liquid extraction of L with mixtures of KCl, KBr and KNO₃.

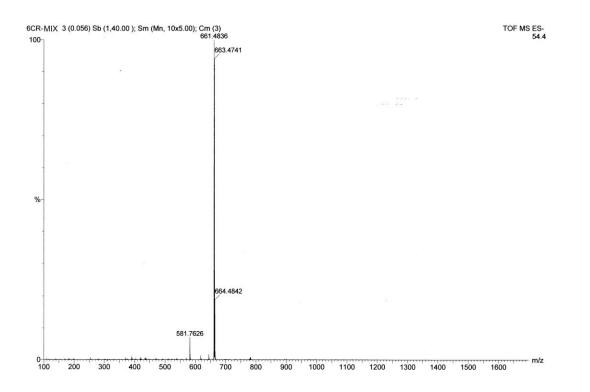


Figure S9 Comparative ¹H-NMR spectra of extracted mass obtained from the solid-liquid extraction of L with mixtures of K^+ salts and ¹H-NMR spectra of extracted mass obtained from the solid-liquid extraction of L only with KBr in CD₃CN at 25°C.

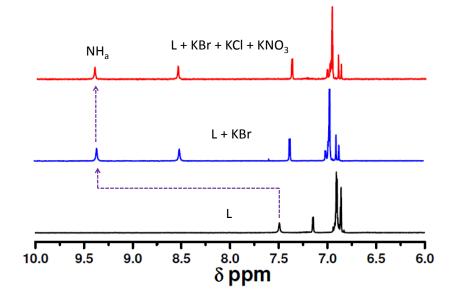


Figure S10 SEM-EDX experiments of of extracted mass obtained from the solid-liquid extraction of L with mixtures of KCl, KBr and KNO₃.

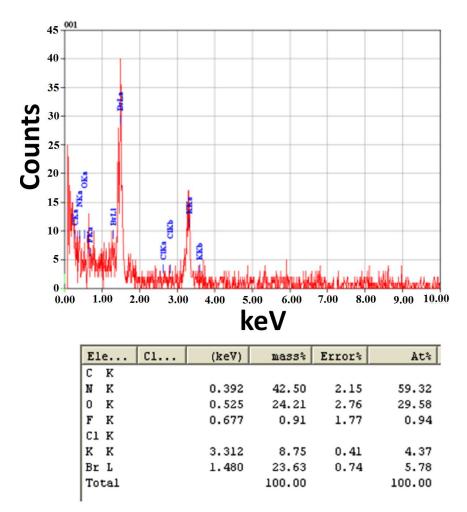


Figure S11 Qualitative ¹H-NMR spectrum of L in presence of 1:1 ratio of TBA-anuions in CD₃CN at 25° C showing the chemical shifts of urea-NH_a proton.

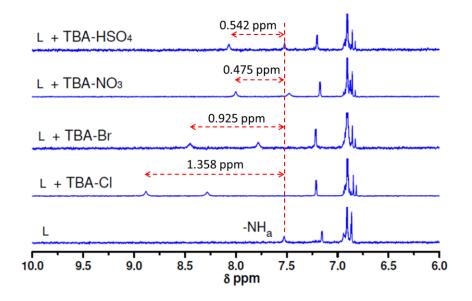
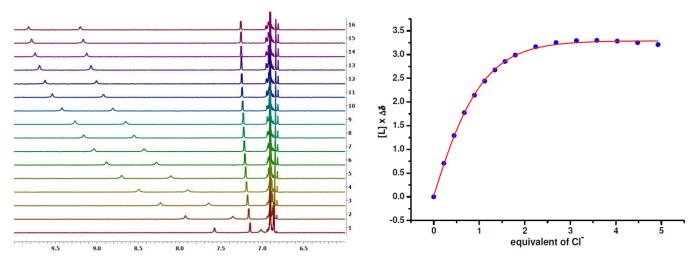



Figure S12 Plot of change in chemical shift of the urea- NH_a proton of L with increasing amounts of TBA-Cl in CD₃CN at 298 K.

L: 2.0565 mmol; TBA-Cl: 23.0282 mmol.

Figure S13 Plot of change in chemical shift of the urea- NH_a proton of L with increasing amounts of TBA-Br in CD₃CN at 298 K.

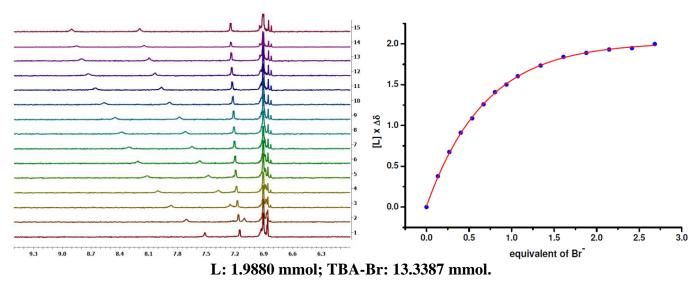
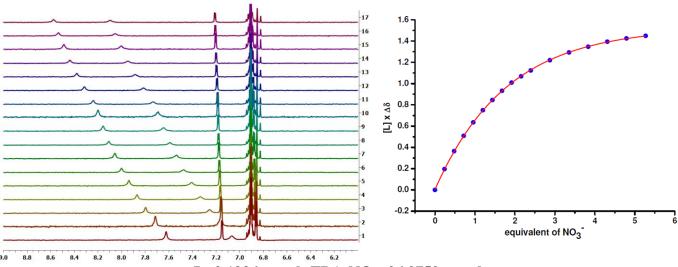
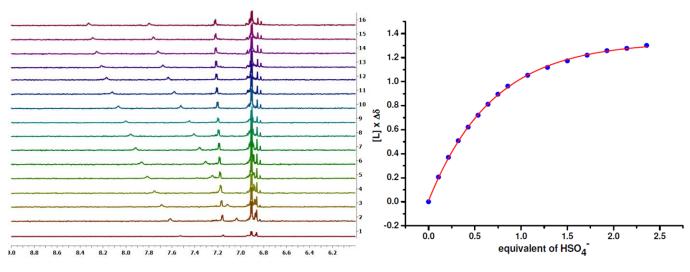




Figure S14 Plot of change in chemical shift of the urea- NH_a proton of L with increasing amounts of TBA- NO_3 in CD₃CN at 298 K.

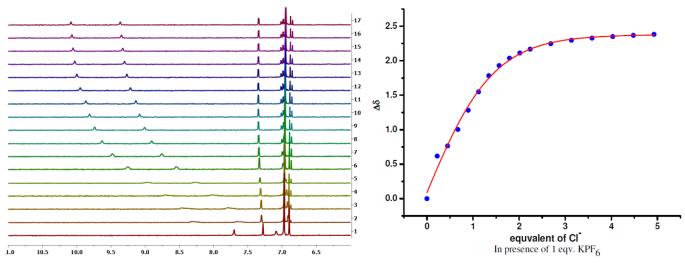

L: 2.1936 mmol; TBA-NO₃: 26.2752 mmol.

Figure S15 Plot of change in chemical shift of the urea- NH_a proton of L with increasing amounts of TBA-HSO₄ in CD₃CN at 298 K.

L: 2.3307 mmol; TBA-HSO₄: 12.4878 mmol.

Figure S16 Plot of change in chemical shift of the urea- NH_a proton of L with increasing amounts of TBA-Cl in presence of K⁺ in CD₃CN at 298 K.

L: 2.0565 mmol; TBA-Cl: 23.0282 mmol.

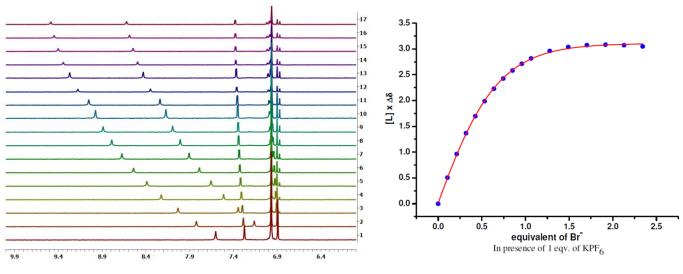
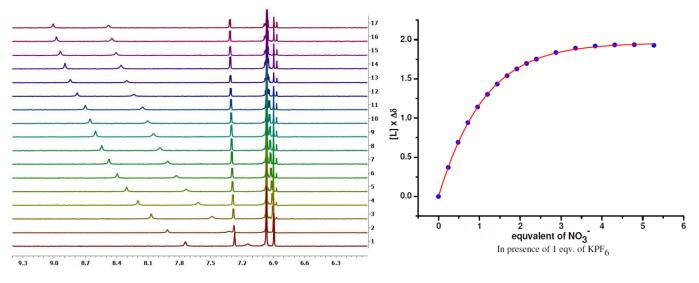



Figure S17 Plot of change in chemical shift of the urea- NH_a proton of L with increasing amounts of TBA-Br in presence of K⁺ in CD₃CN at 298 K.

L: 2.3307 mmol; TBA-Br: 12.4081 mmol.

Figure S18 Plot of change in chemical shift of the urea- NH_a proton of L with gradual addition of TBA-NO₃ in presence of K⁺ in CD₃CN at 298 K.

L: 2.1936 m.mol; TBA-NO₃: 26.2752 m.mol

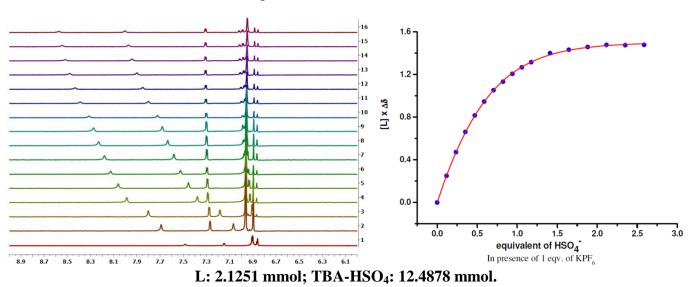
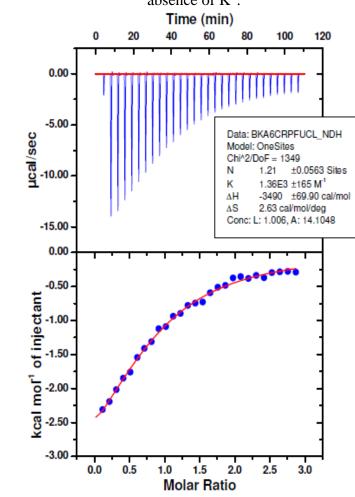




Figure S19 Plot of change in chemical shift of the urea- NH_a proton of L with gradual addition of TBA-HSO₄ in presence of K⁺ in CD₃CN at 298 K.

Figure S20 ITC profile of Cl⁻ (14.1048 mM) binding to host L (1.006 mM) in dry CH₃CN at 298 K in absence of K⁺.

The upper panel shows the heat pulses experimentally observed in each titration step. The lower panel reports the respective time integrals translating as the heat absorbed for each aliquot and its coherence to a 1:1 binding model.

Figure S21 ITC profile of Cl⁻ (14.1048 mM) binding to host L (1.006 mM) in dry CH₃CN at 298 K in presence of 1 equivalent of K⁺.

The upper panel shows the heat pulses experimentally observed in each titration step. The lower panel reports the respective time integrals translating as the heat absorbed for each aliquot and its coherence to a 1:1 binding model.