Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

for

Cobalt(I)-catalyzed CH-alkylation of terminal olefins, and beyond

Maciej Giedyk, Katarzyna Goliszewska, Keith ó Proinsias and Dorota Gryko*

Table of Contents

1.	General information S4				
2.	 Description of general synthetic procedures Optimization studies 				
3. Optimization studies					
4.	Mecha	anistic considerations	S9		
	4a.	Proposed Mechanism	S9		
	4b.	EPR spectroscopy	S 10		
	4c.	Experiment with deuterated reagents	S11		
	4d.	Cobalester (2)-catalyzed saturation of double bonds	S12		
	4e.	Verification of cyclopropane-intermediate mechanism	S12		
	4f.	Mass spectrometry studies	S 13		
	4g. Background experiment for reactions of OTMS- and OTBDM				
		ketones 9 and 11	S16		
5. Scope					
6. References					
7. ¹ H and ¹³ C NMR spectra $S24$					
Ethyl 4,4-diphenylbutanoate ($5a$) - ¹ H NMR S24					
Ethyl 4,4-diphenylbutanoate $(5a) - {}^{13}C$ NMR S25					
t-Buty	l 4,4-di	phenylbutanoate (5b) - ¹ H NMR	S26		
t-Buty	l 4,4-di	phenylbutanoate $(5b) - {}^{13}C$ NMR	S27		
3-Pher	nyl- <i>n</i> -pr	opyl 4,4-diphenylbutanoate (5c) - ¹ H NMR	S28		
3-Pher	nyl- <i>n</i> -pr	ropyl 4,4-diphenylbutanoate ($5c$) – ¹³ C NMR	S29		
4,4-Di	phenyll	putanoic acid (5d) - 1 H NMR	S 30		
4,4-Di	phenyll	putanoic acid $(5d) - {}^{13}C$ NMR	S 31		
Ethyl 4	4,6-dipł	henyl-6-methylheptanate ($5e$) – ¹ H NMR	S32		
Ethyl 4,6-diphenyl-6-methylheptanate ($5e$) – ¹³ C NMR S33					
Ethyl 4-phenylbutanoate $(5f) - {}^{1}H$ NMR S34					
Ethyl 4-phenylbutanoate $(5f) - {}^{13}C$ NMR S35					
Ethyl 4	4-(4-flu	orophenyl)butanoate ($5g$) – ¹ H NMR	S36		
Ethyl 4	4-(4-flu	orophenyl)butanoate (5g) – 13 C NMR	S 37		
Ethyl 4	4-(4-me	thoxyphenyl)butanoate $(5j) - {}^{1}H NMR$	S38		

Ethyl 4-(4-methoxyphenyl)butanoate ($5j$) – ¹³ C NMR	S39
Ethyl 4-(3-methoxyphenyl)butanoate ($5k$) – ¹ H NMR	S40
Ethyl 4-(3-methoxyphenyl)butanoate (5 k) – ¹³ C NMR	S41
Ethyl 4-(2-methoxyphenyl)butanoate (5 l) $-$ ¹ H NMR	S42
Ethyl 4-(2-methoxyphenyl)butanoate (5 l) $-$ ¹³ C NMR	S43
Ethyl 3-(cyclopentyl)propionate $(5n) - {}^{1}H$ NMR	S44
Ethyl 3-(cyclopentyl)propionate $(5n) - {}^{13}C$ NMR	S45
Ethyl 4,4-di(2-methylphenyl)but-3-enoate (50) – ¹ H NMR	S46
Ethyl 4,4-di(2-methylphenyl)but-3-enoate (50) – ¹³ C NMR	S47
Ethyl 4-oxo-4-phenylbutanoate (10) $-$ ¹ H NMR	S48
Ethyl 4-oxo-4-phenylbutanoate (10) $-$ ¹³ C NMR	S49
Ethyl 4-phenyl-4-(tert-butyldimethylsiloxyl)but-3-enoate $(12) - {}^{1}H$ NMR	S 50
Ethyl 4-phenyl-4-(tert-butyldimethylsiloxyl)but-3-enoate (12) – 1D NOESY	S51
Ethyl 4-phenyl-4-(tert-butyldimethylsiloxyl)but-3-enoate $(12) - {}^{13}C$ NMR	S52
<i>E</i> - and <i>Z</i> - Ethyl 4-phenyl-4-(<i>N</i> -acetylamine)but-3-enoate $(14a) - {}^{1}H$ NMR	S53
<i>E</i> - and <i>Z</i> - Ethyl 4-phenyl-4-(<i>N</i> -acetylamine)but-3-enoate $(14a) - {}^{13}C$ NMR	S54
Ethyl 4-phenyl-4-(<i>N</i> -acetylamine)butanoate (14b) $-$ ¹ H NMR	S55
Ethyl 4-phenyl-4-(<i>N</i> -acetylamine)butanoate $(14b) - {}^{13}C$ NMR	S56
Ethyl 4-(phenylthio)butanoate (16) $-$ ¹ H NMR	S 57
Ethyl 4-(phenylthio)butanoate (16) $-$ ¹³ C NMR	S58

1. General Information

✓ All solvents and chemicals used in the syntheses were of reagent grade and were used without further purification. High resolution ESI mass spectra were recorded on a Mariner and SYNAPT spectrometer. ¹H and ¹³CNMR spectra were recorded at rt on Bruker 400 and Varian 600 MHz instruments with TMS as an internal standard. EPR spectrum was recorded on Magnettech MS200 spectrometer. Thin layer chromatography (TLC) was performed using Merck Silica Gel GF254, 0.20 mm thickness.

- ✓ ND₄Cl used in deuterium experiment contained 98 atom% of deuterium.
- ✓ Photo-induced reactions were performed using a homemade photoreactor equipped with two LED light bulbs (300 Lm; warm light).

Emission spectrum of the LED light bulbs used:

- \checkmark Cobalester (Cble 2) was synthesized according to the reported procedure on 1 g scale.¹
- ✓ -OTBDMS-Protected ketone 11 was synthesized according to the reported procedure.²
- \checkmark Enamide 13 was synthesized according to the reported procedure.³

✓ In all reactions activated Zn powder was used. Activation process comprised: 1) washing with 10% HCl, 2) grinding, 3) washing with water, MeOH and Et₂O, 4) drying *in vacuo*.

2. Description of general synthetic procedures

Representative procedure for C-H functionalization of olefins:

$$R \longrightarrow + N_2 \longrightarrow CO_2Et \xrightarrow{Zn/NH_4Cl, \text{ cobalester } (2)} R \longrightarrow CO_2Et$$

A reaction vessel equipped with a stirring bar was charged with cobalester (2) (14 mg, 2 mol%), Zn (196 mg, 3.0 mmol) and NH₄Cl (90 mg, 1.7 mmol). Degassed MeCN (5.0 mL) was added and then the reaction mixture was vigorously stirred in anaerobic conditions until cobalester (2) was fully reduced (color change was observed from red to green). Subsequently, an olefin (0.5 mmol) and ethyl diazoacetate (156 μ l, 1.5 mmol) were added and the reaction was irradiated with visible light from LEDs (300 Lm; warm light). Progress of the reaction was monitored using thin layer chromatography (TLC). When the reaction was completed, it was diluted with Et₂O (20 mL), filtered through the cotton wool and concentrated in vacuo. The crude product was purified by flash chromatography (SiO₂).

Representative procedure for hydrogenation step:

Crude olefin was dissolved in EtOH (5.0 mL) and hydrogenated in a flow of hydrogen in the presence of Pd/C (30 mg) at room temperature for 2 h. The reaction mixture was filtered, washed with EtOH and concentrated in vacuo. The crude product was purified by flash chromatography (SiO_2).

3. Optimization studies

1. Background reactions

Entry	Light	Temperature [°C]	Conversion [%]	Yield [%]	4a:5a ratio
1	-	RT	63	34	1:1.4
2	LED	15	78	28	1:2.6
3	LED	-	94	74	1:2.6
4	-	42	94	65	1:1.3
5	-	60	86	68	1:1.5

Reaction conditions: Ph_2CCH_2 (0.5 mmol), EDA (3 equiv.), Zn (3 equiv.), NH₄Cl (3.4 equiv.), catalyst **2** (1 mol%), MeCN (2.5 mL), 18 h

2.	0	ptimi	zation	of	the	sol	vent

Entry	Solvent	Additive	Conversion [%]	Yield [%]
1	MeCN	-	n.d.	71
2	Dry MeCN	-	85	63
3	Dry DMF	-	56	15
4	Dry MeOH	-	16	9
5	MeCN	H ₂ O (1 equiv.)	82	46
6	THF	H ₂ O (1 equiv.)	80	58
7	Acetone	H ₂ O (1 equiv.)	74	49

Reaction conditions: Ph_2CCH_2 (0.5 mmol), EDA (3 equiv.), Zn (3 equiv.), NH₄Cl (3.4 equiv.), catalyst **2** (1 mol%), 18 h, light: 2x300 Lm LED warm light

Entry	NH ₄ Cl [equiv.]	Conversion [%]	Yield [%]	4a:5a ratio
1	1.1	12	10	n.d.
2	2.2	90	48	n.d.
3	3.4	94	74	2.7:1
4	4.9	95	70	n.d.
5	5.6	85	63	n.d.

3. The influence of an amount of NH₄Cl

Reaction conditions: Ph₂CCH₂ (0.5 mmol), EDA (3 equiv.), Zn (3 equiv.), NH₄Cl, catalyst **2** (1 mol%), MeCN (2.5 mL), 18 h, light: 2x300 Lm LED warm light

4. Optimization of reaction time

Entry	Time [h]	Conversion [%]	Yield [%]
1	3	34	12
2	6	53	30
3	18	94	74

Reaction conditions: Ph₂CCH₂ (0.5 mmol), EDA (3 equiv.), Zn (3 equiv.), NH₄Cl (3.4 equiv.), catalyst **2** (1 mol%), MeCN (2.5 mL), light: 2x300 Lm LED warm light

5. Optimization of EDA equivalents

Entry	EDA [equiv.]	Conversion [%]	Yield [%]
1	2.0	95	34
2	3	94	74
3	4.0	93	48

Reaction conditions: Ph_2CCH_2 (0.5 mmol), EDA, Zn (3 equiv.), NH₄Cl (3.4 equiv.), catalyst **2** (1 mol%), MeCN (2.5 mL), 18 h light: 2x300 Lm LED warm light

6. Determination of the optimal concentration

Entry	Solvent [mL]	Conversion [%]	Yield [%]
1	1	98	56
2	2.5	94	74
3	5	82	42

Reaction conditions: Ph_2CCH_2 (0.5 mmol), EDA (3 equiv.), Zn (3 equiv.), NH_4Cl (3.4 equiv.), catalyst **2** (1 mol%), MeCN, 18 h light: 2x300 Lm LED warm light

7. The influence of a catalyst loading on the alkylation reaction

Entry	Catalyst 2 [% mol]	Conversion [%]	Yield [%]	4a:5a ratio
1^{a}	0	33	3	n.d.
2	0.5	61	7	n.d.
3	1	94	74	2.7:1
4	2	97	80	3:1
5 ^b	2	91	86	3.7:1
6	3	99	76	4:1
7	5	100	91	6:1

Reaction conditions: Ph_2CCH_2 (0.5 mmol), EDA (3 equiv.), Zn (3 equiv.), NH_4Cl (3.4 equiv.), catalyst **2**, MeCN (2.5 mL), 18 h light: 2x300 Lm LED warm light; [a] 5.6 equiv of NH_4Cl was used; [b] 5 mL of MeCN was used

Entry	Zn [equiv.]	NH4Cl [equiv.]	Conversion [%]	Yield [%]	4a:5a ratio
1	0.9	3.4	50	38	2:1
2	1.8	3.4	93	85	2:1
3	3	3.4	91	86	3.7:1
4	6	3.4	99	91	5:1
5	6	2.2	91	80	8:1
6	6	1.1	90	79	13:1

8. Determination of the optimal amount of Zn

Reaction conditions: Ph₂CCH₂ (0.5 mmol), EDA (3 equiv.), Zn, NH₄Cl, catalyst **2** (2 mol%), MeCN (5 mL), 18 h light: 2x300 Lm LED warm light

Entry	Light	Temperature [°C]	Conversion [%]	Yield [%]	4a:5a ratio
1	LED	-	99	91	1:5.0
2	-	42	80	76	1:1.8
3	-	60	90	62	1:2.5

9. Thermally induced reactions

Reaction conditions: Ph₂CCH₂ (0.5 mmol), EDA (3 equiv.), Zn (6 equiv.), NH₄Cl (3.6 equiv.), catalyst **2** (2 mol%), MeCN (5 mL), 18 h light: 2x300 Lm LED warm light

4. Mechanistic considerations

4a. Proposed Mechanism

4b. EPR spectroscopy

EPR spectra of the reaction mixture was recorded at 9,3 GHz, after 15 min of stirring;

spin trap:	<i>N-tert</i> -Butyl-α-phenylnitrone;
central magnetic field:	333 mT;
sweep width:	7,9 mT;
modulation amplitude:	0,06 mT;
microwave strength:	6,3 mW;
sweep time:	30 s;
number of scans:	16

The experiment revealed the presence of radicals in the reaction mixture, suggesting radical mechanism of the reaction.

Conditions: substrate (0.5 mmol, 1.0 equiv.), EDA (1.5 mmol, 3 equiv.), cobalester 2 (2 mol%), Zn (6 equiv.), ND₄Cl (3.4 equiv.), CD₃CN (5 mL), light, 18 h

36 634 632 630 628 626 624 622 620 428 426 424 422 420 418 416 414 412 410 408 406 404 324 322 320 3.18 3.16 3.14 3.12 3.10 3.08 3.06 3.04 3.0

To prove the hypothesis of external proton incorporation at the α -position to the ester group, the experiment with ND₄Cl in CD₃CN was performed. The integration 1.22 for the signal at 3.14 ppm demonstrates that deuterated product is present, though in the mixture with protonated species (which can be explained by the presence of moisture), in 0.78 : 0.22 ratio. This result supports the proposed mechanism, in which alkylated cobalester **18** forms from the reaction of nucleophilic Co(I) species **17** with EDA.

4d. Cobalester (2)-catalyzed saturation of double bonds

Conditions: cobalester 2 (2 mol%), Zn (6 equiv.), ND₄Cl (3.4 equiv.), MeCN (5 mL), light, 18 h

The mixture of unsaturated product **4a** and byproduct **5a** (ratio 4:1) was treated with cobalester (**2**) in reductive conditions and irradiated with light. After 18 h composition of the mixture changed to 1.4:1 showing that hydrogenation of olefin **4a** can occur after the desired C-H functionalization, during the reaction.

4e. Verification of cyclopropane-intermediate mechanism

Substituted cyclopropane was synthesized using standard rhodium-catalyzed approach.⁴ It was subsequently subjected to our model, cobalt-catalyzed reaction conditions. No conversion was observed (cyclopropane species was recovered), thus excluding cyclopropane-intermediate pathway from the considered reaction mechanism.

4f. Mass spectrometry studies

1) Composition of reaction mixtures were studied using LR mass spectrometry

Initially, only the catalyst and the catalyst-product complex was observed suggesting high reaction rate for the alkylation of the catalyst with EDA and subsequent reaction with olefin. Presumably hydrocobaltation is the slowest step and after 6 h , when the concentration of EDA decreases, the interaction between the catalyst and olefin **5** becomes competitive.

LR ESI spectrum shows peak at 1718.9 corresponding to the catalyst alkylated with product **4a**. We assume that initially formed unsaturated product can undergo hydrogenation catalyzed by cobalester (**2**).

LR ESI experiment revealed that upon treatment of the reduced catalyst **17** with only EDA, alkylated cobalester **18** is formed (peaks at 1506.8 and 1538.8). Hence, vitamin B_{12}

derivatives can be alkylated with diazocompounds. Subjecting EDA to standard reaction conditions results in dimers, trimers etc. formation.

4)

When TEMPO was used as a radical scavenger, a cobalester-product-TEMPO adduct was observed, which further supports the radical mechanism.

4g. Background experiment for reactions of OTMS- and OTBDMS-protected ketones 9 and 11

Ph +
$$N_2$$
 CO₂Et $\frac{Zn/NH_4Cl, \text{ cobalester (2)}}{MeCN, hv}$ Ph CO₂Et CO₂Et

Standard conditions: substrate (0.5 mmol, 1.0 equiv.), EDA (1.5 mmol, 3 equiv.), cobalester 2 (2 mol%), Zn (6 equiv.), NH₄Cl (3.4 equiv.), MeCN (5 mL), light, 18 h

In order to prove that the presence of double bond is necessary for C-H functionalization at the α -position, the reaction of acetophenone with EDA was performed. The reaction led only to the recovery of ketone, thus excluding the mechanism proposed by Gutsche and Hillman.⁵

5. Scope and analytical data for newly synthesized compounds

Ethyl 4,4-diphenylbutanoate (5a)⁶

Anal. calcd for $C_{18}H_{20}O_2$: C 80.56, H. 7.51, found: C 80.66, H 7.59 HRMS ESI calcd for $C_{18}H_{20}O_2$ [M+H]⁺ 268.1463, found: 268.1461 ¹H (400 MHz, CDCl₃): δ = 7.31-7.23 (m, 8H), 7.20-6.97 (m, 2H), 4.10 (q, *J* = 7.1 Hz, 2H), 3.94 (t, *J* = 8.2 Hz, 1H), 2.43-2.35 (m, 2H), 2.30-2.24 (m, 2H), 1.23 (t, *J* = 7.2 Hz, 3H) ppm.⁶ ¹³C NMR (100 MHz, CDCl₃): δ = 173.4, 144.2, 128.5, 127.9, 126.3, 60.3, 50.6, 32.8, 30.6, 14.2 ppm.

t-Butyl 4,4-diphenylbutanoate (5b)

Ph Ph CO₂(*t*-Bu)

Anal. calcd for $C_{20}H_{24}O_2$: C 81.04, H. 8.16, found: C 80.91, H 8.15 HRMS ESI calcd for $C_{20}H_{24}O_2Na$ [M+Na]⁺ 319.1667, found: 319.1674 ¹H (400 MHz, CDCl₃): δ = 7.29-7.22 (m, 8H), 7.19-7.15 (m, 2H), 3.92 (t, *J* = 7.9 Hz, 1H), 2.36-2.31 (m, 2H), 2.19-2.15 (m, 2H), 1.43 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 172.8, 144.3, 128.5, 127.9, 126.3, 80.15, 50.5, 34.0, 30.8, 28.1 ppm.

3-Phenyl-*n*-propyl 4,4-diphenylbutanoate (5c)

Anal. calcd for C₂₅H₂₆O₂: C 83.76, H. 7.31, found: C 83.85, H 7.26

HRMS ESI calcd for $C_{25}H_{26}O_2Na \ [M+Na]^+ 381.1830$, found: 381.1832

¹H (400 MHz, CDCl₃): δ = 7.28-7.22 (m, 10H), 7.18-7.13 (m, 5H), 4.05 (t, *J* = 6.5 Hz, 2H), 3.93 (t, *J* = 7.8 Hz, 1H), 2.64 (t, *J*=7.7 Hz, 2H), 2.38 (q, *J*=7.6 Hz, 2H), 2.26 (t, *J* = 7.5 Hz, 2H), 1.92 (m, 2H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 173.4, 144.2, 141.2, 128.6, 128.5, 128.4, 127.9, 126.4, 126.1, 63.8, 50.6, 32.8, 32.3, 30.7, 30.3 ppm.

4,4-Diphenylbutanoic acid (5d)⁶

Ph Ph CO₂H

¹H (400 MHz, CDCl₃): δ = 11.25 (s(br), 1H), 7.29-7.22 (m, 8H), 7.19-7.15 (m, 2H), 3.94 (t, *J* = 7.6 Hz, 1H), 2.42-2.36 (m, 2H), 2.33-2.29 (m, 2H) ppm.⁶ ¹³C NMR (100 MHz, CDCl₃): δ = 179.7, 143.9, 128.6, 127.8, 126.4, 50.4, 32.5, 30.3 ppm.

Ethyl 4,6-diphenyl-6-methylheptanate (5e)

Anal. calcd for C₂₂H₂₈O₂: C 81.44, H. 8.70, found: C 81.34, H 8.82

HRMS ESI calcd for C₂₂H₂₈O₂ [M+H]⁺ 324.2089, found: 324.2095

¹H NMR (400 MHz, CDCl₃): δ = 7.26-7.09 (m, 8.9H, overlapping with CHCl₃), 6.97-6.94 (m, 2H), 4.04-3.96 (m, 2H), 2.38-2.30 (m, 1H), 2.12-1.97 (m, 2H), 1.95-1.82 (m, 2H), 1.91-1.65 (m, 2H), 1.24 (s, 3H), 1.16 (t, *J* = 7.1 Hz, 3H), 1.11 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 173.5, 149.1, 145.9, 128.2, 127.9, 127.8, 125.9, 125.8, 125.4, 60.1, 51.3, 42.2, 38.4, 34.0, 32.4, 30.7, 28.3, 14.2 ppm.

¹H NMR (400 MHz, CDCl₃): δ = 7.31-7.25 (m, 2H), 7.21-7.16 (m, 3H), 4.13 (q, *J* = 7.2 Hz, 2H), 2.65 (t, *J* = 7.8 Hz, 2H), 2.32 (t, *J* = 7.6 Hz, 2H), 1.96 (quin, *J* = 7.6 Hz, *J* = 7.5 Hz, 2H), 1.25 (t, *J* = 7.1 Hz, 3H) ppm.⁷

¹³C NMR (100 MHz, CDCl₃): δ = 173.5, 141.4, 128.5, 128.4, 125.9, 60.2, 35.1, 33.7, 26.5, 14.2 ppm.

Ethyl 4-(4-fluorophenyl)butanoate (5g)⁸

¹H NMR (400 MHz, CDCl₃): δ = 7.13 (dd, *J* = 8.5, 5.5 Hz, 2H), 7.01 – 6.92 (m, 2H), 4.13 (q, *J* = 7.1 Hz, 2H), 2.62 (t, *J* = 7.6 Hz, 2H), 2.30 (t, *J* = 7.4 Hz, 2H), 1.94 (m, 2H), 1.25 (t, *J* = 7.1 Hz, 3H). ppm.⁸

¹³C NMR (100 MHz, CDCl₃): δ = 173.3, 162.5, 160.1, 137.03, 137.00 129.8, 129.7, 115.2, 115.0, 60.3, 34.3, 33.5, 26.6, 14.2 ppm.

Ethyl 4-(4-methoxyphenyl)butanoate (5j)⁸

¹H NMR (400 MHz, CDCl₃): δ = 7.11-7.07 (m, 2H), 6.85-6.80 (m, 2H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.78 (s, 3H), 2.59 (t, *J* = 7.6 Hz, 2H), 2.30 (t, *J* = 7.7 Hz, 2H), 1.92 (quin, *J* = 7.6 Hz, *J* = 7.5 Hz, 2H), 1.25 (t, *J* = 7.2 Hz, 3H) ppm.⁸

¹³C NMR (100 MHz, CDCl₃): δ = 173.5, 157.9, 133.5, 129.4, 113.8, 60.2, 55.2, 34.2, 33.6, 26.8, 14.2 ppm.

Ethyl 4-(3-methoxyphenyl)butanoate (5k)⁸

¹H NMR (400 MHz, CDCl₃): δ = 7.21-7.16 (m, 1H), 6.79-6.72 (m, 3H), 4.12 (q, *J* = 7.2 Hz, 2H), 3.79 (s, 3H), 2.63 (t, *J* = 7.8 Hz, 2H), 2.32 (t, *J* = 7.3 Hz, 2H), 1.95 (quin, *J* = 7.6 Hz, *J* = 7.4 Hz, 2H), 1.25 (t, *J* = 7.2 Hz, 3H) ppm.⁸

¹³C NMR (100 MHz, CDCl₃): δ = 173.4, 159.7, 143.1, 129.3, 120.9, 114.2, 111.3, 60.2, 55.1, 35.2, 33.7, 26.4, 14.2 ppm.

Ethyl 4-(2-methoxyphenyl)butanoate (5l)⁸

¹H NMR (400 MHz, CDCl₃): δ = 7.20-7.09 (m, 2H), 6.90-6.81 (m, 2H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.81 (s, 3H), 2.66 (t, *J* = 7.7 Hz, 2H), 2.32 (t, *J* = 7.8 Hz, 2H), 1.92 (quin, *J* = 7.6 Hz, *J* = 7.5 Hz, 2H), 1.25 (t, *J* = 7.2 Hz, 3H) ppm.⁸

¹³C NMR (100 MHz, CDCl₃): δ = 173.7, 157.5, 130.0, 127.2, 120.4, 110.2, 60.1, 55.2, 34.0, 29.5, 25.1, 14.2 ppm.

Ethyl 3-(cyclopentyl)propionate (5n)⁹

¹H NMR (400 MHz, CDCl₃): δ = 4.11 (q, *J* = 7.2 Hz, 2H), 2.30 (t, *J* = 7.8 Hz, 2H), 1.81-1.44 (m, 9H), 1.24 (t, *J* = 7.2 Hz, 3H), 1.15-1.02 (m, 2H) ppm.⁹ ¹³C NMR (100 MHz, CDCl₃): δ = 174.0, 60.1, 39.7, 33.7, 32.4, 31.2, 25.1, 14.2 ppm.

Ethyl 4,4-di(2-methylphenyl)but-3-enoate (50)

Anal. calcd for C₂₀H₂₂O₂: C 81.60, H 7.53, found: C 81.53, H 7.43 HRMS ESI calcd for C₂₀H₂₂O₂Na [M+Na]⁺ 317.1517, found: 317.1513 ¹H NMR (400 MHz, CDCl₃): $\delta = \delta$ 7.22-7.06 (m, 8H), 5.96 (t, 7.2 Hz, 1H), 4.13 (q, *J* = 7.2 Hz, 2H), 3.08 (t, *J* = 7.4 Hz, 2H), 2.32 (s, 3H), 2.09 (s, 3H), 1.25 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 171.8$, 143.6, 141.7, 139.2, 136.3, 135.6, 130.9, 130.5, 130.4, 129.8, 127.4, 127.0, 125.5, 124.7, 60.6, 35.3, 21.0, 19.9, 14.2 ppm.

Ethyl 4-oxo-4-phenylbutanoate (10)¹⁰

Ph CO₂Et

¹H NMR (400 MHz, CDCl₃): δ = 8.00-7.94 (m, 2H), 7.58-7.52 (m, 3H), 4.15 (q, *J* = 7.2 Hz, 2H), 3.30 (t, *J* = 7.1 Hz, 2H), 2.74 (t, *J* = 7.2 Hz, 2H), 1.25 (t, *J* = 7.2 Hz, 3H) ppm.¹⁰ ¹³C NMR (100 MHz, CDCl₃): δ = 198.1, 172.8, 136.6, 133.1, 128.6, 128.0, 60.6, 33.4, 28.3, 14.2 ppm.

Ethyl 4-phenyl-4-(*tert*-butyldimethylsiloxyl)but-3-enoate (12)

Ph CO₂Et

Anal. calcd for C₁₈H₂₈O₃Si: C 67.46, H. 8.81, found: C 67.48, H 8.73

HRMS ESI calcd for $C_{18}H_{28}O_3NaSi [M+Na]^+$ 343.1705, found: 343.1707

¹H NMR (400 MHz, CDCl₃): δ = 7.47-7.43 (m, 2H), 7.31-7.25 (m, 3H, overlapping with CHCl₃), 5.29 (t, *J* = 7.0 Hz, 1H), 4.16 (q, *J* = 7.2 Hz, 2H), 3.25 (d, *J* = 7.1 Hz, 2H), 1.27 (t, *J* = 7.1 Hz, 3H), 0.98 (s, 9H), -0.06 (s, 6H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 172.1, 151.6, 139.0, 127.92, 127.90, 126.2, 103.0, 60.5, 31.9, 25.8, 18.3, 14.3, -4.1 ppm

Ethyl 4-phenyl-4-(N-acetylamine)but-3-enoate (14a)

NHAc Ph CO₂Et

as a mixture of E/Z stereoisomers with restricted rotation of the C-N amide bond

Anal. calcd for $C_{14}H_{17}NO_3$: C 68.00, H 6.93, N 5.66, found: C 68.14, H 6.98, N 5.43 HRMS ESI calcd for $C_{14}H_{17}NO_3Na [M+Na]^+ 270.1106$, found: 270.1111 ¹H NMR (400 MHz, CDCl₃): $\delta = 7.49-7.22$ (m, 5H), 7.24 (br s, 0.4H), 6.93 (br s, 0.1H), 6.64 (br s, 0.5H), 6.52 (t, J = 8.0 Hz, 0.5H), 6.02 (t, J = 7.4 Hz, 0.1H), 5.94 (t, J = 7.2 Hz, 0.4H), 4.21-4.08 (m, 2H), 3.28 (d, J = 7.4 Hz, 0.2H), 3.20 (d, J = 7.1 Hz, 0.8H), 3.04 (d, J = 7.8 Hz, 1H), 2.16 (s, 1.2H), 2.04 (s, 1.5H) 1.73 (s, 0.3H), 1.30-1,23 (m, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.0$, 171.9, 168.2, 137.3, 136.7, 136.5, 128.9, 128.7, 128.5, 128.4, 125.9, 116.0, 110.0, 61.0, 60.7, 34.2, 34.0, 24.5, 23.5, 14.2 ppm

Ethyl 4-phenyl-4-(*N*-acetylamine)butanoate (14b)

Ph CO₂Et

Anal. calcd for C₁₄H₁₉NO₃: C 67.45, H 7.68, N 5.62, found: C 67.33, H 7.48, N 5.50

HRMS ESI calcd for C₁₄H₁₉NO₃Na [M+Na]⁺ 272.1263, found: 272.1265

¹H NMR (400 MHz, CDCl₃): δ = 7.37-7.23 (m, 5H, overlapping with CHCl₃), 6.01 (d, *J* = 4.2 Hz, 1H), 4.98 (q, *J* = 8.3 Hz, 1H), 4.11 (q, *J* = 7.2 Hz, 2H), 2.41-2.26 (m, 2H), 2.21-2.03 (m, 2H), 1.97 (s, 3H), 1.24 (t, *J* = 7.2 Hz, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 173.6, 169.3, 141.5, 128.8, 127.6, 126.5, 60.6, 53.2, 31.3, 30.8, 23.4, 14.2 ppm

Ethyl 4-(phenylthio)butanoate (16)¹¹

Ph_s CO₂Et

¹H NMR (400 MHz, CDCl₃): δ = 7.36-7.25 (m, 4H), 7.20-7.15 (m, 1H), 4.12 (q, *J* = 7.2 Hz, 2H), 2.96 (t, *J* = 7.0 Hz, 2H), 2.45 (t, *J* = 7.2 Hz, 2H), 1.96 (quin, *J* = 7.4 Hz, *J* = 7.3 Hz, 2H), 1.25 (t, *J* = 7.2 Hz, 3H) ppm.¹¹

¹³C NMR (100 MHz, CDCl₃): δ = 172.9, 136.1, 129.4, 128.9, 126.0, 60.4, 33.0, 32.9, 24.4, 14.2 ppm.

6. References

- 1. M. Giedyk, S. N. Fedosov, D. Gryko, Chem. Commun., 2014, 50, 4674.
- 2. D. L. Ventura, Z. Li, M. G. Coleman, H. M. L. Davies, *Tetrahedron*, 2009, 65, 3052.
- 3. K. D. Hesp, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc., 2011, 133, 11430.
- 4. P. Müller, C. Baud, D. Ené, S. Motallebi, M. P. Doyle, B. D. Brandes, A. B. Dyatkin, M. M. See, *Helv. Chim. Acta*, 1995, **78**, 459.
- 5. C. D. Gutsche, M. Hillman, J. Am. Chem. Soc., 1954, 76, 2236.
- L. M. Ferreira, M. M. B. Marques, P. M. C. Glória, H. T. Chaves, J.-P. P. Franco, I. Mourato, J.-R. T. Antunes, H. S. Rzepa, A. M. Lobo, S. Prabhakar, *Tetrahedron*, 2008, 64, 7759.
- 7. D. A. Everson, R. Shrestha, D. J. Weix, J. Am. Chem. Soc., 2010, 132, 920.
- 8. R. R. Nani, S. E. Reisman, J. Am. Chem. Soc., 2013, 135, 7304.
- Y. Takahashi, K. Yuasa, M. Tokuda, M. Itoh, A. Suzuki, *Bull. Chem. Soc. Jpn.*, 1978, 51, 339.
- 10. N. J. Howe, K. Blades, G. M. Lamont, Synlett, 2015, 26, 228.
- 11. D. M. Gapinski, B. E. Mallett, L. L. Froelich, W. T. Jackson, *J. Med. Chem.*, 1990, **33**, 2807.

7. ¹H and ¹³C NMR spectra

Ethyl 4,4-diphenylbutanoate (5a) - ¹H NMR

Ethyl 4,4-diphenylbutanoate (5a) – ¹³C NMR

t-Butyl 4,4-diphenylbutanoate (5b) - ¹H NMR

t-Butyl 4,4-diphenylbutanoate (5b) – ¹³C NMR

3-Phenyl-*n*-propyl 4,4-diphenylbutanoate (5c) - ¹H NMR

3-Phenyl-*n*-propyl 4,4-diphenylbutanoate (5c) – ¹³C NMR

4,4-Diphenylbutanoic acid (5d) - ¹H NMR

4,4-Diphenylbutanoic acid (5d) – ¹³C NMR

Ethyl 4,6-diphenyl-6-methylheptanate (5e) – ¹H NMR

Ethyl 4-phenylbutanoate (5f) – ¹H NMR

-10

10 -

- 20

- 09

Ethyl 4-phenylbutanoate (5f) – ¹³C NMR

Ethyl 4-(4-fluorophenyl)butanoate (5g) – ¹H NMR

Ethyl 4-(4-fluorophenyl)butanoate (5g) – ¹³C NMR

Ethyl 4-(4-methoxyphenyl)butanoate (5j) – ¹H NMR

Ethyl 4-(4-methoxyphenyl)butanoate (5j) – ¹³C NMR

Ethyl 4-(3-methoxyphenyl)butanoate (5k) – ¹H NMR

Ethyl 4-(3-methoxyphenyl)butanoate (5k) – ¹³C NMR

Ethyl 4-(2-methoxyphenyl)butanoate (5l) – ¹H NMR

Ethyl 4-(2-methoxyphenyl)butanoate (5l) – ¹³C NMR

Ethyl 3-(cyclopentyl)propionate (5n) – ¹H NMR

Ethyl 3-(cyclopentyl)propionate (5n) – ¹³C NMR

Ethyl 4,4-di(2-methylphenyl)but-3-enoate (50) – ¹H NMR

Ethyl 4,4-di(2-methylphenyl)but-3-enoate (50) – ¹³C NMR

Ethyl 4-oxo-4-phenylbutanoate (10) – ¹H NMR

Ethyl 4-oxo-4-phenylbutanoate (10) – ¹³C NMR

Ethyl 4-phenyl-4-(tert-butyldimethylsiloxyl)but-3-enoate (12) – ¹H NMR

Ethyl 4-phenyl-4-(tert-butyldimethylsiloxyl)but-3-enoate (12) – 1D NOESY

Upon irradiation of the vinyl proton, the interaction with aromatic proton in *-orto* position was observed, thus proving the *Z* configuration of the compound.

Ethyl 4-phenyl-4-(tert-butyldimethylsiloxyl)but-3-enoate (12) – ¹³C NMR

E- and *Z*- Ethyl 4-phenyl-4-(*N*-acetylamine)but-3-enoate (14a) – ¹H NMR

E- and *Z*- Ethyl 4-phenyl-4-(*N*-acetylamine)but-3-enoate $(14a) - {}^{13}C$ NMR

Ethyl 4-phenyl-4-(N-acetylamine)butanoate (14b) – ¹H NMR

Ethyl 4-phenyl-4-(N-acetylamine)butanoate (14b) – ¹³C NMR

Ethyl 4-(phenylthio)butanoate (16) – ¹H NMR

Ethyl 4-(phenylthio)butanoate (16) – ¹³C NMR