Supporting Information

A Near Infrared Luminescent Metal–Organic Framework for Temperature Sensing in Physiological Range

Xiusheng Lian, Dian Zhao, Yuanjing Cui*, Yu Yang, Guodong Qian*

1. Materials and characterization.

All reagents and solvents are commercially available and were used as received without further purification. H_2BDC-F_4 was purchased from J&K Chemicals (Shanghai, China). All other reagents were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

Thermogravimetric analyses (TGA) were carried out on a Netzsch TG209F3 heated from room temperature to 600°C under nitrogen atmosphere with a heating rate of 10 °C· min⁻¹. Inductively coupled plasma spectroscopy (ICP) was performed on a Thermo IRIS Intrepid II XSP spectrometer. The scanning electron microscopy (SEM) images were recorded using a field-emission scanning electron microscopy (FE-SEM, Hitachi S4800). Powder X-ray diffraction (PXRD) patterns were collected in the $2\theta =$ 5° -50° range on an X'Pert PRO diffractometer with Cu K α ($\lambda = 1.542$ Å) radiation at room temperature. The emission spectra for the samples were recorded by a Hitachi F4600 fluorescence spectrometer using 808 nm laser as the light source. The temperature-dependent emission spectra were recorded by a Hitachi F4600 fluorescence spectrometer with a PolyScience Temperature Control Solution PD07R-20.

2. Characterization Results

Table S1. The molar ratio of the starting Nd/Yb salt and that in the synthesized product calculated by ICP analysis

sample	The molar ratio of the starting	The Nd/Yb ratios calculated by
	Nd/Yb salt	ICP analysis
Nd _{0.577} Yb _{0.423} BDC-F ₄	0.55:0.45	0.577:0.423

Fig. S1 PXRD patterns of the coordination polymers NdBDC-F₄, YbBDC-F₄, Nd_{0.577}Yb_{0.423}BDC-F₄ and Nano-Nd_{0.577}Yb_{0.423}BDC-F₄

Fig. S2 TGA curve of YbBDC-F₄

(a)

(b)

Fig. S3 Emission spectra of NdBDC-F₄ (a) and Nd_{0.577}Yb_{0.423}BDC-F₄ (b) at room temperature excited at 808 nm

(a)

(b)

Fig. S4 (a) Emission spectra of NdBDC-F₄ recorded between 293 and 313 K excited at 808 nm; (b) Temperature-dependent intensity of the ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ transition of NdBDC-F₄

Fig. S5 The normalized intensity ratio of Nd^{3+} (1060 nm) to Yb^{3+} (980 nm) for $Nd_{0.577}Yb_{0.423}BDC-F_4$ in cycles of heating and cooling

Fig. S6 Relative sensitivity of Nd_{0.577}Yb_{0.423}BDC-F₄

(a)

Fig. S7 (a) Emission spectra of nano-particles of Nd_{0.577}Yb_{0.423}BDC-F₄ between 293 and 313 K excited at 808 nm; (b) Temperature-dependent intensity of the

 ${}^4F_{3/2} \rightarrow {}^4I_{11/2} \text{ transition of nano-particles of } Nd_{0.577}Yb_{0.423}BDC\text{-}F_4$

Fig. S8 Temperature-dependent intensity ratio of Nd^{3+} (1060 nm) to Yb^{3+} (980 nm) and the fitted curve for nano-particles of $Nd_{0.577}Yb_{0.423}BDC-F_4$.

Fig. S9 Relative sensitivity for nano-particles of Nd_{0.577}Yb_{0.423}BDC-F₄.

Fig. S10 The normalized intensity ratio of Nd³⁺ (1060 nm) to Yb³⁺ (980 nm) for nanoparticles of Nd_{0.577}Yb_{0.423}BDC-F₄ in cycles of heating and cooling