Supporting Information

Cu-Catalyzed Transannulation Reaction of Pyridotriazoles – General Access to Fused Polycyclic Indolizines

Yi Shi and Vladimir Gevorgyan*

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, 4500 SES, *M/C* 111, Chicago, Illinois 60607-7061

E-mail: vlad@uic.edu

Table of Contents

General Information	S2
Part I. Preparation of Pyridotriazoles	S 3
Part II. Cu-Catalyzed Trasannulation Reaction	S15
References	S26
Copies of ¹ H and ¹³ C NMR Spectra for Compounds 1 , 2	S27

General Information

GC/MS analysis was performed on a Hewlett Packard Model 6890 GC interfaced to a Hewlett Packard Model 5973 mass selective detector (15 m x 0.25 mm capillary column, HP-5MS). NMR spectra were recorded on Bruker Avance DRX-500 (500 MHz) or DPX-400 (400 MHz) instrument (Overlapping signals in ¹³C spectrum exist in some compounds due to highly aromatic structure). LRMS and HRMS analyses were performed on Micromass 70 VSE mass spectrometer. Column chromatography was carried out employing Silicycle Silica-P flash silica gel (40-63 µm). Precoated silica gel plates F-254 were used for thin-layer analytical chromatography. All manipulations with transition metal catalysts were conducted in oven-dried glassware under inert atmosphere using a combination of glovebox and standard Schlenk techniques unless otherwise noted. Anhydrous DCM, toluene, ethyl ether and THF (BHT-free) was purchased from Aldrich, degassed with argon, and dried by passage through activated alumina on an Innovative Technology PureSolv system. Other dry solvent were prepared using CaH₂. All commercially available compounds were purchased from Acros Organics, Strem Chemicals, Aldrich, Gelest Inc., Alfa Aesar, Oakwood Products, Inc., Ark Pharm, Inc., AK Scientific Inc., Matrix Scientific, or Chem-Impex International and used without further purification.

Part I. Preparation of Pyridoriazoles

General Procedure A – synthesis of ester/amide tethered pyridotriazoles

Pyridotriazole 4 was known and prepared according to literature report¹.

Carboxylic acid **5** was prepared via hydrolysis of ester **4** under basic conditions. A suspension of pyridotriazole **4** (20 mmol) in 10% NaOH aqueous solution (20 mL) was heated at 80 °C until a clear solution is formed (about 1 h). Then, the reaction mixture was allowed to cool down to room temperature, and 2 M HCl was added to pH=2. White precipitate (carboxylic acid **5**) formed during acidification and was collected by filtration. It can be used directly in the next step without purification.

To a stirred suspension of compound **5** (10 mmol, 1.0 equiv), 2-iodophenol (12 mmol, 1.2 equiv), and 4-(dimethylamino)pyridine (DMAP, 10 mmol, 1.0 equiv) in DMF was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI, 15 mmol, 1.5 equiv). The mixture was stirred at room temperature for 2 h (until a clear solution is formed). Then water was added. The mixture was extracted with ethyl acetate twice, and the combined organic layers were washed with 1 M HCl, water, saturated aqueous Na₂CO₃, brine, and dried over anhydrous Na₂SO₄. Evaporation of solvent afforded yellow solid, which can be used directly in the next step without purification.

Alkynyl pyridotriazole **1** was prepared from compound **7** and terminal alkyne via Sonogashira cross-coupling reaction. A round-bottom flask equipped with a stirring bar was charged with $PdCl_2(PPh_3)_2$ (2 mol %), CuI (4 mol %), compound **7** (0.5 mmol, 1.0 equiv), terminal alkyne (0.75 mmol, 1.5 equiv), and solvent (THF/Et₃N=3:1) under N₂ atmosphere. The reaction mixture was stirred at 60 °C. Upon completion (about 4 h), the reaction mixture was cooled to room temperature, filtered through a short path of silica gel, concentrated under reduced pressure, and the crude product was purified by column chromatography to afford the corresponding alkynyl pyridotriazole substrate.

General Procedure B -- synthesis of ketone tethered pyridotriazoles

Pyridotriazole 8 was known and prepared according to literature report².

To a stirred solution of compound **8** (20 mmol, 1.0 equiv) in THF was added dropwise *n*-BuLi (2.5 M, 8 mL, 1.0 equiv.) at -78 °C under argon. After addition, the solution was allowed to stir for 30 min at the same temperature. Then, TIPSCI (24 mmol, 1.2 equiv.) was added dropwise and the solution was allowed to warm to room temperature. After stirring for 1 h, the reaction was quenched with saturated aqueous NH₄Cl and the aqueous layer was extracted with EtOAc three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford compound **9**.

To a stirred solution of compound **9** (1.0 mmol, 1.0 equiv) in THF was added dropwise *n*-BuLi (2.5 M, 0.44 mL, 1.1 equiv.) at -78 °C under argon. After addition, the solution was allowed to stir for 1 h at the same temperature. Then, 2-(alkynyl)benzaldehyde (1.2 mmol, 1.2 equiv) was added dropwise and the solution was allowed to warm to room temperature then stirred for 1 h. The reaction was quenched with saturated aqueous NH₄Cl and the aqueous layer was extracted with EtOAc three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford compound **10**.

To a DCM solution of compound **10** was added pyridinium chlorochromate (PCC, 1.2 equiv). The resulting mixture was allowed to react for 1 h at room temperature. Upon completion, the reaction mixture was filtered through a short path of silica gel, concentrated under reduced pressure, and purified by column chromatography to afford compound **11**.

To a THF solution of compound **11** was added TBAF (1.1 equiv, 1M solution in THF), and the reaction mixture was stirred at room temperature for 1 h. Upon completion, the mixture was

concentrated under reduced pressure, and the crude product was purified by column chromatography to afford the corresponding alkynyl pyridotriazole substrate **1**.

2-(phenylethynyl)phenyl [1,2,3]triazolo[1,5-a]pyridine-3-carboxylate 1aa

Compound **1aa** was prepared according to the **General Procedure A.** ¹H NMR (500 MHz, CDCl₃) δ ppm 8.88 (d, *J*=6.97 Hz, 1 H), 8.41 (d, *J*=8.80 Hz, 1 H), 7.64 (d, *J*=7.34 Hz, 1 H), 7.53 - 7.50 (m, 1 H), 7.45 - 7.40 (m, 2 H), 7.30 (t, *J*=7.34 Hz, 1 H), 7.23 - 7.14 (m, 6 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 159.10, 151.14, 132.98, 131.40, 129.81, 129.46, 128.33, 128.11, 126.11, 122.71, 122.55, 119.49, 117.40, 116.59, 94.58, 84.40. HRMS (ESI) calculated for C₂₁H₁₄N₃O₂ [M+H]⁺: 340.1086, found: 340.1080. Overlapping signals in ¹³C spectrum due to highly aromatic structure.

2-(p-tolylethynyl)phenyl [1,2,3]triazolo[1,5-a]pyridine-3-carboxylate 1ab

Compound **1ab** was prepared according to the **General Procedure A.** ¹H NMR (400 MHz, CDCl₃) δ ppm 8.87 (d, *J*=6.72 Hz, 1 H), 8.39 (d, *J*=9.06 Hz, 1 H), 7.62 (d, *J*=7.60 Hz, 1 H), 7.53 – 7.49 (m, 1 H), 7.41 – 7.38 (m, 2 H), 7.29 – 7.28 (m, 1 H), 7.18 (t, *J*=6.72 Hz, 1 H), 7.10 (d, *J*=7.89 Hz, 2H), 6.95 (d, *J*=7.89 Hz, 2 H), 2.25 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 158.98, 150.97, 138.50, 135.38, 132.84, 131.22, 129.81, 129.22, 128.83, 128.48, 126.06, 126.00, 122.44, 119.52, 117.50, 116.59, 94.76, 83.68, 21.35. HRMS (ESI) calculated for C₂₂H₁₆N₃O₂ [M+H]⁺: 354.1243, found: 354.1238.

2-((4-methoxyphenyl)ethynyl)phenyl [1,2,3]triazolo[1,5-a]pyridine-3-carboxylate 1ac

Compound **1ac** was prepared according to the **General Procedure A.** ¹H NMR (400 MHz, CDCl₃) δ ppm 8.87 (d, *J*=6.72 Hz, 1 H), 8.40 (d, *J*=8.77 Hz, 1 H), 7.61 (d, *J*=7.60 Hz, 1 H), 7.52 (t, *J*=7.89 Hz, 1 H), 7.40 – 7.39 (m, 2 H), 7.30 – 7.28 (m, 1 H), 7.20 – 7.13 (m, 3 H), 6.67 (d, *J*=8.48 Hz, 2 H), 3.72 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 159.57, 159.01, 150.92, 135.42, 132.84, 132.74, 129.79, 129.06, 128.55, 126.06, 126.01, 122.44, 119.41, 117.66, 116.61, 114.73, 113.72, 94.67, 83.10, 55.17. HRMS (ESI) calculated for C₂₂H₁₆N₃O₃ [M+H]⁺: 370.1192, found: 370.1183.

2-((4-(trifluoromethyl)phenyl)ethynyl)phenyl [1,2,3]triazolo[1,5-a]pyridine-3-carboxylate 1ad

Compound **1ad** was prepared according to the **General Procedure A.** ¹H NMR (400 MHz, CDCl₃) δ ppm 8.90 (d, *J*=6.72 Hz, 1 H), 8.37 (d, *J*=8.77 Hz, 1 H), 7.65 (d, *J*=7.60 Hz, 1 H), 7.58 – 7.54 (m, 1 H), 7.49 – 7.39 (m, 4 H), 7.33 – 7.30 (m, 3 H), 7.21 (t, *J*=6.58 Hz, 1 H), ¹³C NMR (100 MHz, CDCl₃) δ ppm 159.03, 151.25, 135.54, 133.00, 131.57, 130.09, 129.97, 129.69, 127.39 (q, *J*=183 Hz), 126.23, 126.15, 125.03 (q, *J*=5 Hz), 122.64, 122.34, 119.22, 116.75, 116.71, 92.99, 86.67. HRMS (ESI) calculated for C₂₂H₁₃F₃N₃O₂ [M+H]⁺: 408.0960, found: 408.0960. Overlapping signals in ¹³C spectrum due to highly aromatic structure.

2-((4-fluorophenyl)ethynyl)phenyl [1,2,3]triazolo[1,5-a]pyridine-3-carboxylate 1ae

Compound **1ae** was prepared according to the **General Procedure A.** ¹H NMR (400 MHz, CDCl₃) δ ppm 8.89 (d, *J*=7.02 Hz, 1 H), 8.38 (d, *J*=8.77 Hz, 1 H), 7.61 (d, *J*=7.02 Hz, 1 H), 7.56 – 7.52 (m, 1 H), 7.45 – 7.37 (m, 2 H), 7.29 (t, *J*=7.45 Hz, 1 H), 7.21 – 7.18 (m, 3 H), 6.85 (t, *J*=8.62 Hz, 2 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 162.42 (d, *J*=250.7 Hz), 159.01, 151.12, 135.49, 133.29 (d, *J*=6.3 Hz), 132.84, 129.83, 129.50, 128.46, 126.12, 126.09, 122.55, 119.30, 118.80 (d, *J*=3.8 Hz), 117.25, 116.62, 115.42 (d, *J*=21.4 Hz), 93.47, 84.09. HRMS (ESI) calculated for C₂₁H₁₃FN₃O₂ [M+H]⁺: 358.0992, found: 358.0982.

2-((4-acetylphenyl)ethynyl)phenyl [1,2,3]triazolo[1,5-a]pyridine-3-carboxylate 1af

C(O)Me

Compound **1af** was prepared according to the **General Procedure A.** ¹H NMR (500 MHz, CDCl₃) δ ppm 8.90 (d, *J*=6.24 Hz, 1 H), 8.38 (d, *J*=8.44 Hz, 1 H), 7.75 (d, *J*=7.70 Hz, 2 H), 7.65 (d, *J*=7.34 Hz, 1 H), 7.56 (t, *J*=7.52 Hz, 1 H), 7.48 -7.46 (m, 1 H), 7.41 - 7.40 (m, 1 H), 7.33 - 7.29 (m, 3 H), 7.22 - 7.20 (m, 1 H), 2.53 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 197.23, 159.03, 151.26, 136.15, 135.55, 133.05, 131.49, 130.09, 129.96, 128.37, 128.04, 127.55, 126.23, 126.18, 122.67, 119.30, 116.89, 116.69, 93.66, 87.62, 26.56. HRMS (ESI) calculated for C₂₃H₁₆N₃O₃ [M+H]⁺: 382.1192, found: 382.1189.

2-((3-chlorophenyl)ethynyl)phenyl [1,2,3]triazolo[1,5-a]pyridine-3-carboxylate 1ag

Compound **1ag** was prepared according to the **General Procedure A.** ¹H NMR (500 MHz, CDCl₃) δ ppm 8.90 (d, *J*=5.87 Hz, 1 H), 8.39 (d, *J*=8.07 Hz, 1 H), 7.62 (d, *J*=6.60 Hz, 1 H), 7.57 – 7.54 (m, 1 H), 7.45 – 7.39 (m, 2 H), 7.31 – 7.30 (m, 1 H), 7.20 – 7.16 (m, 2 H), 7.10 – 7.08 (m, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 159.01, 151.33, 147.11, 135.53, 133.86, 132.92, 131.15, 129.96, 129.86, 129.45, 129.37, 128.53, 128.40, 126.17, 124.39, 122.64, 119.27, 116.93, 116.64, 93.06, 85.63. HRMS (ESI) calculated for C₂₁H₁₃ClN₃O₂ [M+H]⁺: 374.0696, found: 374.0689.

2-((4-methoxy-2-methylphenyl)ethynyl)phenyl [1,2,3]triazolo[1,5-a]pyridine-3-carboxylate 1ah

Compound **1ah** was prepared according to the **General Procedure A.** ¹H NMR (400 MHz, CDCl₃) δ ppm 8.87 (d, *J*=7.02 Hz, 1 H), 8.38 (d, *J*=9.06 Hz, 1 H), 7.64 – 7.62 (m, 1 H), 7.54 – 7.51 (m, 1 H), 7.42 – 7.35 (m, 2 H), 7.31 – 7.27 (m, 1 H), 7.20 – 7.13 (m, 2 H), 6.59 – 6.58 (m, 1 H), 6.53 (dd, *J*=8.48, 2.34 Hz, 1 H), 3.72 (s, 3 H), 2.17 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 159.60, 159.10, 150.67, 141.88, 135.52, 133.19, 132.97, 129.74, 128.99, 126.13, 126.04, 122.53, 119.43, 118.15, 116.56, 114.83, 111.07, 93.57, 86.82, 55.12, 20.66. HRMS (ESI) calculated for C₂₃H₁₈N₃O₃ [M+H]⁺: 384.1348, found: 384.1343. Overlapping signals in ¹³C spectrum due to highly aromatic structure.

2-((6-methoxynaphthalen-2-yl)ethynyl)phenyl [1,2,3]triazolo[1,5-a]pyridine-3-carboxylate 1ai

Compound **1ai** was prepared according to the **General Procedure A.** ¹H NMR (500 MHz, CDCl₃) δ ppm 8.83 (d, *J*=6.97 Hz, 1 H), 8.38 (d, *J*=8.80 Hz, 1 H), 7.65 (d, *J*=7.34 Hz, 1 H), 7.58 (s, 1 H), 7.48 – 7.41 (m, 5 H), 7.31 – 7.29 (m, 1 H), 7.20 (dd, *J*=8.44, 1.47 Hz, 1 H), 7.11 (td, *J*=6.88, 1.28 Hz, 1 H), 7.05 (dd, *J*=8.99, 2.38 Hz, 1 H), 6.97 (d, *J*=2.20 Hz, 1 H), 3.84 (s, 3 H). ¹³C NMR (126

MHz, CDCl₃) δ ppm 159.01, 158.23, 151.17, 135.39, 133.98, 132.74, 131.15, 129.77, 129.24, 129.06, 128.52, 128.46, 128.05, 126.52, 126.08, 125.93, 122.47, 119.28, 119.24, 117.50, 117.43, 116.53, 105.59, 95.30, 84.07, 55.19. HRMS (ESI) calculated for C₂₆H₁₈N₃O₃ [M+H]⁺: 420.1348, found: 420.1340.

2-(thiophen-3-ylethynyl)phenyl [1,2,3]triazolo[1,5-a]pyridine-3-carboxylate 1aj

Compound **1aj** was prepared according to the **General Procedure A.** ¹H NMR (500 MHz, CDCl₃) δ ppm 8.87 (d, *J*=5.87 Hz, 1 H), 8.38 (d, *J*=8.44 Hz, 1 H), 7.60 (d, *J*=6.97 Hz, 1 H), 7.53 – 7.50 (m, 1 H), 7.42 – 7.39 (m, 2 H), 7.28 – 7.11 (m, 4 H), 6.85 (s, 1 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 158.96, 151.05, 135.40, 132.76, 129.81, 129.49, 129.33, 128.81, 128.49, 126.05, 125.18, 122.49, 121.71, 119.31, 117.30, 116.62, 89.74, 83.91. HRMS (ESI) calculated for C₁₉H₁₂N₃O₂S [M+H]⁺: 346.0650, found: 346.0645. Overlapping signals in ¹³C spectrum due to highly aromatic structure.

2-(cyclohex-1-en-1-ylethynyl)phenyl [1,2,3]triazolo[1,5-a]pyridine-3-carboxylate 1ak

Compound **1ak** was prepared according to the **General Procedure A.** ¹H NMR (500 MHz, CDCl₃) δ ppm 8.87 (d, *J*=6.60 Hz, 1 H), 8.37 (d, *J*=8.44 Hz, 1 H), 7.57 (t, *J*=7.70 Hz, 1 H), 7.48 (d, *J*=7.34 Hz, 1 H), 7.35 – 7.30 (m, 2 H), 7.21 – 7.19 (m, 2 H), 5.86 (m, 1 H), 1.90 – 1.83 (m, 4 H), 1.43 – 1.36 (m, 4 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 158.86, 150.83, 135.52, 135.30, 132.65, 129.68, 128.75, 128.55, 125.98, 125.92, 122.28, 120.24, 119.39, 117.83, 116.58, 96.59, 81.65, 28.57, 25.45, 21.92, 21.13. HRMS (ESI) calculated for C₂₁H₁₈N₃O₂ [M+H]⁺: 344.1399, found: 344.1389.

2-(3,3-dimethylbut-1-yn-1-yl)phenyl [1,2,3]triazolo[1,5-a]pyridine-3-carboxylate 1al

Compound **1al** was prepared according to the **General Procedure A.** ¹H NMR (400 MHz, CDCl₃) δ ppm 8.90 (d, *J*=7.02 Hz, 1 H), 8.38 (d, *J*=8.77 Hz, 1 H), 7.60 (dd, *J*=8.33, 7.16 Hz, 1 H), 7.48 (dd, *J*=7.75, 1.32 Hz, 1 H), 7.36 – 7.32 (m, 1 H), 7.28 – 7.26 (m, 1 H), 7.23 – 7.20 (m, 2 H), 0.98 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 158.92, 151.16, 135.36, 132.77, 129.72, 128.67,

128.59, 126.09, 125.97, 122.20, 119.41, 118.15, 116.59, 104.01, 73.92, 30.46, 27.82. HRMS (ESI) calculated for $C_{19}H_{18}N_3O_2$ [M+H]⁺: 320.1399, found: 320.1397.

2-(3-oxo-3-phenylprop-1-yn-1-yl)phenyl [1,2,3]triazolo[1,5-a]pyridine-3-carboxylate 1am

Compound **1am'** was prepared according to the **General Procedure A**, followed by oxidation using PCC to afford compound **1am**. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.88 (d, *J*=7.02 Hz, 1 H), 8.35 (d, *J*=9.06 Hz, 1 H), 8.03 (d, *J*=7.60 Hz, 2 H), 7.80 (d, *J*=6.72 Hz, 1 H), 7.61 – 7.55 (m, 2 H), 7.48 – 7.35 (m, 3 H), 7.24 – 7.17 (m, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 177.58, 158.85, 152.26, 136.42, 135.70, 134.84, 133.91, 132.14, 130.18, 129.40, 128.29, 126.40, 126.06, 123.00, 119.30, 116.75, 114.57, 91.24, 87.64. HRMS (ESI) calculated for C₂₂H₁₄N₃O₃ [M+H]⁺: 368.1035, found: 368.1030.

2-((tert-butyldimethylsilyl)ethynyl)phenyl [1,2,3]triazolo[1,5-a]pyridine-3-carboxylate 1an

Compound **1an** was prepared according to the **General Procedure A.** ¹H NMR (500 MHz, CDCl₃) δ ppm 8.90 (d, *J*=6.97 Hz, 1 H), 8.37 (d, *J*=8.80 Hz, 1 H), 7.61 – 7.57 (m, 2 H), 7.42 – 7.39 (m, 1 H), 7.30 – 7.20 (m, 3 H), 0.67 (s, 9 H), -0.12 (s, 6 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 158.93, 151.58, 141.62, 135.56, 133.48, 129.67, 128.64, 126.06, 122.49, 119.56, 117.67, 116.52, 100.13, 98.38. 25.70, 16.26, -5.04. HRMS (ESI) calculated for C₂₁H₂₄N₃O₂Si [M+H]⁺: 378.1638, found: 378.1632.

2-(phenylethynyl)phenyl 6-methyl-[1,2,3]triazolo[1,5-a]pyridine-3-carboxylate 1ao

Compound **1ao** was prepared according to the **General Procedure A.** ¹H NMR (500 MHz, CDCl₃) δ ppm 8.65 (s, 1 H), 8.26 (d, *J*=9.17 Hz, 1 H), 7.63 (dd, *J*=7.89, 1.28 Hz, 1 H), 7.44 – 7.34 (m, 3 H), 7.30 – 7.27 (m, 1 H), 7.22 – 7.19 (m, 3 H), 7.17 – 7.14 (m, 2 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 159.13, 151.23, 134.23, 132.98, 132.95, 131.45, 129.48, 128.33, 128.13, 127.23, 126.10, 123.77, 122.80, 122.61, 118.48, 117.49, 94.59, 84.48, 18.22. HRMS (ESI) calculated for C_{22H16}N₃O₂ [M+H]⁺: 354.1243, found: 354.1239.

2-((4-phenoxyphenyl)ethynyl)phenyl 6-methyl-[1,2,3]triazolo[1,5-a]pyridine-3-carboxylate 1ap

Compound **1ap** was prepared according to the **General Procedure A.** ¹H NMR (500 MHz, CDCl₃) δ ppm 8.65 (s, 1 H), 8.27 (d, *J*=8.80 Hz, 1 H), 7.62 (d, *J*=7.34 Hz, 1 H), 7.43 – 7.26 (m, 6 H), 7.17 (d, *J*=8.44 Hz, 2 H), 7.11 (t, *J*=7.15 Hz, 1 H), 6.95 (d, *J*=7.70 Hz, 2 H), 6.77 (d, *J*=8.44 Hz, 2 H), 2.46 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 159.16, 157.66, 156.26, 151.16, 134.26, 133.08, 132.95, 132.85, 129.85, 129.32, 128.33, 127.24, 126.11, 123.88, 123.80, 122.60, 119.39, 118.48, 118.11, 117.61, 117.33, 94.26, 83.89, 18.23. HRMS (ESI) calculated for C₂₈H₂₀N₃O₃ [M+H]⁺: 446.1505, found: 446.1495.

2-(phenylethynyl)phenyl [1,2,3]triazolo[1,5-a]quinoline-3-carboxylate 1aq

Compound **1aq** was prepared according to the **General Procedure A.** ¹H NMR (500 MHz, CDCl₃) δ ppm 8.88 (d, *J*=8.07 Hz, 1 H), 8.21 (d, *J*=9.54 Hz, 1 H), 7.91 (d, *J*=8.07 Hz, 1 H), 7.85 (t, *J*=7.70 Hz, 1 H), 7.75 (d, *J*=9.17 Hz, 1 H), 7.70 – 7.64 (m, 2 H), 7.46 – 7.41 (m, 2 H), 7.32 – 7.29 (m, 1 H), 7.25 – 7.24 (m, 2 H), 7.18 – 7.10 (m, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 159.21, 151.14, 139.52, 134.06, 132.98, 131.40, 131.02, 130.90, 130.40, 129.45, 128.73, 128.28, 128.08, 127.87, 126.12, 123.96, 122.70, 122.56, 117.43, 116.50, 115.40, 94.63, 84.40. HRMS (ESI) calculated for C₂₅H₁₆N₃O₂ [M+H]⁺: 390.1243, found: 390.1233.

3-(phenylethynyl)naphthalen-2-yl [1,2,3]triazolo[1,5-a]pyridine-3-carboxylate 1ar

Compound **1ar** was prepared according to the **General Procedure A.** ¹H NMR (500 MHz, CDCl₃) δ ppm 8.86 (d, *J*=6.97 Hz, 1 H), 8.40 (d, *J*=8.80 Hz, 1 H), 8.15 (s, 1 H), 7.84 – 7.81 (m, 3 H), 7.53 – 7.47 (m, 3 H), 7.23 – 7.13 (m, 6 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 159.36, 147.67, 135.48, 133.20, 131.37, 131.21, 129.80, 128.55, 128.33, 128.09, 127.61, 127.58, 127.34, 128.45, 126.00, 122.68, 119.86, 119.36, 116.56, 116.39, 94.33, 84.90. HRMS (ESI) calculated for C₂₅H₁₆N₃O₂ [M+H]⁺: 390.1243, found: 390.1234.

2-(phenylethynyl)cyclohexyl [1,2,3]triazolo[1,5-a]pyridine-3-carboxylate 1as

To a stirred suspension of carboxylic acid **5** (1.0 equiv), 2-(phenylethynyl)cyclohexan-1-ol (1.2 equiv) and 4-(dimethylamino)pyridine (DMAP, 1.0 equiv) in DMF was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI, 1.5 equiv). The mixture was stirred at room temperature for 2 h (until a clear solution is formed). After water was added, the mixture was extracted with ethyl acetate, and the organic layer was washed with 1 M HCl, water, saturated aqueous Na_2CO_3 , and brine, and dried over anhydrous Na_2SO_4 . The solution was concentrated under reduced pressure and the crude product was purified by column chromatography to afford compound **1as**.

¹H NMR (400 MHz, CDCl₃) δ ppm 8.77 (d, *J*=6.72 Hz, 1 H), 8.25 (d, *J*=9.06 Hz, 1 H), 7.47 (dd, *J*=8.33, 7.16 Hz, 1 H), 7.24 – 7.21 (m, 2 H), 7.14 – 7.07 (m, 4 H), 5.24 (td, *J*=9.06, 3.80 Hz, 1 H), 2.95 (td, *J*=9.35, 4.09 Hz, 1 H), 2.26 – 2.13 (m, 2 H), 1.83 – 1.75 (m, 2 H), 1.70 – 1.58 (m, 2 H), 1.53 – 1.45 (m, 1 H), 1.40 – 1.31 (m, 1 H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 160.49, 134.78, 131.30, 129.38, 128.99, 127.86, 127.48, 125.71, 123.23, 119.16, 116.18, 90.03, 82.08, 75.17, 35.20, 30.48, 30.39, 23.84, 23.34. HRMS (ESI) calculated for $C_{21}H_{20}N_3O_2$ [M+H]⁺: 346.1556, found: 346.1553.

N-methyl-N-(2-(phenylethynyl)phenyl)-[1,2,3]triazolo[1,5-a]pyridine-3-carboxamide 1at

Compound **1at**' was prepared according to the **General Procedure A**, followed by methylation to form compound **1at**.

To a THF solution of **1at'** (1.0 equiv) was added NaH (95%, 1.2 equiv) under argon atmosphere at room temperature. After 2 h, MeI (1.5 equiv) was added and the reaction mixture was allowed to react until completion. Then, the mixture was concentrated under reduced pressure and the crude product was purified by column chromatography to afford compound **1at**.

¹H NMR (500 MHz, CDCl₃) δ ppm 8.54 (d, *J*=6.24 Hz, 1 H), 8.23 (d, *J*=8.44 Hz, 1 H), 7.49 – 7.40 (m, 5 H), 7.28 – 7.22 (m, 5 H), 6.92 (t, *J*=6.05 Hz, 1 H), 3.57 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 162.68, 146.30, 135.15, 132.84, 132.34, 131.43, 129.42, 128.46, 128.36, 128.17, 127.45, 127.34, 125.05, 122.72, 122.06, 119.87, 115.78, 93.63, 85.84, 37.54. HRMS (ESI) calculated for $C_{22}H_{17}N_4O$ [M+H]⁺: 353.1402, found: 353.1396.

[1,2,3]triazolo[1,5-a]pyridin-3-yl(2-(phenylethynyl)phenyl)methanone 1ba

Compound **1ba** was prepared according to the **General Procedure B**. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.83 (d, *J*=7.02 Hz, 1 H), 8.52 (d, *J*=8.77 Hz, 1 H), 7.92 – 7.90 (m, 1 H), 7.69 (dd, *J*=7.60, 0.88 Hz, 1 H), 7.61 (dd, *J*=8.48, 7.31 Hz, 1 H), 7.54 – 7.46 (m, 2 H), 7.25 – 7.16 (m, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 188.16, 140.64, 135.19, 133.16, 131.35, 130.62, 130.22, 129.55, 128.17, 128.05, 127.82, 125.72, 122.97, 122.19, 120.12, 116.89, 109.46, 93.47, 87.89. HRMS (ESI) calculated for C₂₁H₁₄N₃O [M+H]⁺: 324.1137, found: 324.1133.

[1,2,3]triazolo[1,5-a]pyridin-3-yl(2-(cyclohex-1-en-1-ylethynyl)phenyl)methanone 1bb

Compound **1bb** was prepared according to the **General Procedure B**. ¹H NMR (500 MHz, CDCl₃) δ ppm 8.85 (d, *J*=6.97 Hz, 1 H), 8.49 (d, *J*=8.80 Hz, 1 H), 7.82 (d, *J*=7.34 Hz, 1 H), 7.62 – 7.55 (m, 2 H), 7.47 – 7.39 (m, 2 H), 7.19 (t, *J*=6.79 Hz, 1 H), 5.90 (br, 1 H), 1.98 (br, 2 H), 1.87 (br, 2 H), 1.49 - 1.48 (m, 4 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 188.44, 140.48, 137.26, 135.33, 135.14, 132.95, 130.52, 130.03, 129.33, 127.28, 125.68, 122.77, 120.50, 120.18, 116.80, 95.65, 85.29, 28.52, 25.58, 22.08, 21.29. HRMS (ESI) calculated for C₂₁H₁₈N₃O [M+H]⁺: 328.1450, found: 328.1447.

[1,2,3]triazolo[1,5-a]pyridin-3-yl(2-(hex-1-yn-1-yl)phenyl)methanone 1bc

Compound **1bc** was prepared according to the **General Procedure B**. ¹H NMR (500 MHz, CDCl₃) δ ppm 8.86 (d, *J*=6.60 Hz, 1 H), 8.51 (d, *J*=8.44 Hz, 1 H), 7.75 (d, *J*=6.97 Hz, 1 H), 7.62 (t, *J*=7.52 Hz, 1 H), 7.54 (d, *J*=7.34 Hz, 1 H), 7.46 – 7.40 (m, 2 H), 7.20 (t, *J*=6.60 Hz, 1 H), 2.21 (t, *J*=6.60 Hz, 2 H), 1.27 – 1.16 (m, 4 H), 0.72 (t, *J*=6.97 Hz, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 188.91, 140.84, 137.26, 135.14, 133.23, 130.37, 130.06, 128.92, 127.08, 125.74, 122.89, 120.24, 116.81, 95.05, 78.88, 30.33, 21.63, 19.10, 13.45. HRMS (ESI) calculated for C₁₉H₁₈N₃O [M+H]⁺: 304.1450, found: 304.1450.

[1,2,3]triazolo[1,5-a]pyridin-3-yl(2-((tert-butyldimethylsilyl)ethynyl)phenyl)methanone 1bd

Compound **1bd**' was prepared according to the **General Procedure B**, followed by Sonogashira cross-coupling reaction to form **1bd**. ¹H NMR (500 MHz, CDCl₃) δ ppm 8.83 (d, *J*=6.97 Hz, 1 H), 8.45 (d, *J*=8.80 Hz, 1 H), 7.72 – 7.70 (m, 1 H), 7.62 – 7.59 (m, 2 H), 7.45 – 7.43 (m, 2 H), 7.18 (t, *J*=6.60 Hz, 1 H), 0.67 (s, 9 H), -0.12 (s, 6 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 188.83, 141.80, 137.17, 134.89, 133.24, 130.17, 128.27, 128.15, 125.68, 121.78, 119.97, 116.86, 103.41, 97.50, 25.66, 16.26, -5.14. HRMS (ESI) calculated for C₁₂H₂₄N₃OSi [M+H]⁺: 362.1689, found: 362.1681.

[1,2,3]triazolo[1,5-a]pyridin-3-yl(2-ethynylphenyl)methanone 1be

To a THF solution of compound **1bd** was added TBAF (1.1 equiv, 1M solution in THF), and the reaction mixture was stirred at room temperature for 1 h. Upon completion, the mixture was concentrated under reduced pressure, and the crude product was purified by column chromatography to afford compound **1be**.

¹H NMR (500 MHz, CDCl₃) δ ppm 8.87 (d, *J*=6.60 Hz, 1 H), 8.56 (d, *J*=8.80 Hz, 1 H), 7.94 – 7.92 (m, 1 H), 7.69 – 7.62 (m, 2 H), 7.51 – 7.49 (m, 2 H), 7.22 (t, *J*=6.79 Hz, 1 H), 3.14 (s, 1 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 187.75, 140.92, 136.93, 135.49, 134.27, 130.65, 130.39, 129.89, 128.27, 125.83, 121.06, 120.39, 117.03, 81.81, 81.24. HRMS (ESI) calculated for $C_{15}H_{10}N_{3}O$ [M+H]⁺: 248.0824, found: 248.0818.

(2-(phenylethynyl)phenyl)(7-(triisopropylsilyl)-[1,2,3]triazolo[1,5-a]pyridin-3-yl)methanone 1bf

Compound **1bf** was prepared according to the **General Procedure B**. ¹H NMR (500 MHz, CDCl₃) δ ppm 8.57 (d, *J*=8.44 Hz, 1 H), 7.91 (d, *J*=7.34 Hz, 1 H), 7.68 (d, *J*=7.34 Hz, 1 H), 7.58 (t, *J*=7.70 Hz, 1 H), 7.53 – 7.47 (m, 2 H), 7.32 (d, *J*=6.60 Hz, 1 H), 7.20 – 7.16 (m, 5 H), 1.77 (quin, *J*=7.43 Hz, 3 H), 1.09 (d, *J*=7.70 Hz, 18 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 188.58, 141.12, 139.99, 136.65, 135.20, 133.03, 131.39, 130.40, 129.40, 129.03, 128.09, 128.02, 127.89, 125.73, 123.08, 122.22, 120.21, 93.52, 88.06, 18.60, 11.48. HRMS (ESI) calculated for C₃₀H₃₄N₃OSi [M+H]⁺: 480.2471, found: 480.2467.

[1,2,3]triazolo[1,5-a]quinolin-3-yl(2-(phenylethynyl)phenyl)methanone 1bg

Compound **1bg** was prepared according to the **General Procedure B**. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.79 (d, *J*=8.48 Hz, 1 H), 8.30 (d, *J*=9.06 Hz, 1 H), 7.97 (d, *J*=7.02 Hz, 1 H), 7.89 (d, *J*=8.18 Hz, 1 H), 7.84 – 7.78 (m, 2 H), 7.71 (d, *J*=7.31 Hz, 1 H), 7.66 – 7.62 (m, 1 H), 7.56 – 7.48 (m, 2 H), 7.26 – 7.25 (m, 2 H), 7.18 – 7.13 (m, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 188.49, 140.59, 138.72, 133.68, 133.21, 131.35, 131.20, 131.14, 130.88, 130.72, 129.75, 128.56, 128.12, 127.99, 127.79, 127.70, 124.21, 122.94, 122.31, 116.37, 116.11, 93.57, 87.96. HRMS (ESI) calculated for C₂₅H₁₆N₃O [M+H]⁺: 374.1293, found: 374.1287.

3-phenylprop-2-yn-1-yl [1,2,3]triazolo[1,5-a]pyridine-3-carboxylate 1bh

Compound **1bh** was prepared according to the **General Procedure A**. ¹H NMR (500 MHz, CDCl₃) δ ppm 8.83 (d, *J*=6.60 Hz, 1 H), 8.28 (d, *J*=8.44 Hz, 1 H), 7.56 (t, *J*=7.52 Hz, 1 H), 7.44 (d, *J*=5.87 Hz, 2 H), 7.29 – 7.28 (m, 3 H), 7.16 (t, *J*=6.42 Hz, 1 H), 5.27 (s, 2 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 160.49, 135.15, 131.80, 129.49, 128.68, 128.18, 125.92, 122.00, 119.20, 116.46, 86.75, 82.69, 53.17. HRMS (ESI) calculated for C₁₆H₁₂N₃O₂ [M+H]⁺: 278.0930, found: 278.0929.

Part II. Cu-Catalyzed Intramolecular Transannulation Reaction

1. Optimization of the Cu-catalyzed Transannulation Reaction Conditions

Entry	Catalyst	Loading	Solvent	Temperature/°C	GC Yield/%
1	CuBr SMe ₂	15 mol %	DCE	140	85
2	Cu(MeCN) ₄ PF ₆	15 mol %	DCE	140	48
3	CuOAc	15 mol %	DCE	140	56
4	CuCl	15 mol %	DCE	140	73
5	CuBr	15 mol %	DCE	140	67
6	[Cu(OTf)] ₂ Bz	15 mol %	DCE	140	26
7	CuBr ₂	15 mol %	DCE	140	43
8	CuBr SMe ₂	15 mol %	PhCl	140	75
9	CuBr SMe ₂	15 mol %	PhCF ₃	140	74
10	CuBr SMe ₂	15 mol %	PhMe	140	63
11	CuBr SMe ₂	15 mol %	DCE	130	81
12	CuBr SMe ₂	15 mol %	DCE	150	86
13	CuBr SMe ₂	10 mol %	DCE	140	78
14	In(OTf) ₃	15 mol %	DCE	140	10
15	none		DCE	140	0

1aa (0.05 mmol) and catalyst (15 mol %) were dissolved in solvent (0.5 mL) and heated at the indicated temperature

$\begin{array}{c|c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

Entry Catalyst, 15 mol %		GC Yield/%	
1	TIPSOTf	30	
2	AlCl ₃	decompose	
3	HfCl ₄	HfCl ₄ decompose	
4	$ZnCl_2$	ZnCl ₂ <10, decompose	
5	BF ₃ Et ₂ O	BF ₃ Et ₂ O decompose	
6	Eu(OTf) ₃	48	
7	In(OTf)3	64	
8	Sm(OTf) ₃	57	
9	La(OTf) ₃	39	
10	Y(OTf) ₃	<20	
11	Sc(OTf) ₃	decompose	
12	Yb(OTf) ₃	20	
13	Zn(OTf) ₂	<20	

2. Employment of Lewis Acid in the Transannulation Reaction

3. Cu-Catalyzed Intramolecular Transannulation Reaction

General Procedure: An oven-dried 3.0 mL V-vial equipped with a stirring bar was charged with CuBr•SMe₂(15 mol %), alkynylpyridotriazole **1** (0.2 mmol) and DCE (2 mL) under N₂ atmosphere. The reaction vessel was capped with Mininert syringe valve and the reaction mixture was stirred at 140 °C. Upon completion the reaction mixture was cooled to room temperature, concentrated under reduced pressure, and the crude product was purified by column chromatography to afford the corresponding transannulation product.

12-phenyl-6H-chromeno[3,4-a]indolizin-6-one 2aa

Was prepared according to the general procedure in 83% yield. ¹H NMR (500 MHz, CDCl₃) δ ppm 8.37 (d, *J*=8.80 Hz, 1 H), 7.94 (d, *J*=6.60 Hz, 1 H), 7.66 – 7.60 (m, 3 H), 7.57 – 7.56 (m, 2 H), 7.36 – 7.34 (m, 2 H), 7.31 – 7.28 (m, 1 H), 7.21 (t, *J*=7.70 Hz, 1 H), 6.98 (t, *J*=7.52 Hz, 1 H), 6.87 (t, *J*=6.79 Hz, 1 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 158.92, 152.43, 134.40, 131.45, 130.06, 129.89, 129.77, 128.58, 123.74, 123.46, 123.31, 122.52, 119.46, 118.95, 117.62, 116.67, 114.64, 96.85. HRMS (ESI) calculated for C₂₁H₁₃NO₂ [M+H]⁺: 312.1025, found: 312.1016. Overlapping signals in ¹³C spectrum due to highly aromatic structure.

12-(p-tolyl)-6H-chromeno[3,4-a]indolizin-6-one 2ab

Was prepared according to the general procedure in 75% yield. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.37 (d, *J*=8.77 Hz, 1 H), 7.95 (d, *J*=7.02 Hz, 1 H), 7.46 - 7.27 (m, 7 H), 7.23 - 7.19 (m, 1 H), 6.99 (t, *J*=7.31 Hz, 1 H), 6.86 (t, *J*=6.72 Hz, 1 H), 2.52 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 159.00, 152.39, 139.82, 134.35, 131.23, 130.60, 128.49, 126.89, 123.79, 123.42, 123.38, 122.41, 119.42, 119.07, 117.59, 116.78, 114.54, 96.72, 21.52. HRMS (ESI) calculated for C₂₂H₁₅NO₂ [M+H]⁺: 326.1181, found: 326.1174.

12-(4-methoxyphenyl)-6H-chromeno[3,4-a]indolizin-6-one 2ac

Was prepared according to the general procedure in 85% yield. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.34 (d, *J*=8.77 Hz, 1 H), 7.93 (d, *J*=7.02 Hz, 1 H), 7.47 – 7.44 (m, 2 H), 7.38 – 7.27 (m, 3 H), 7.22 – 7.14 (m, 3 H), 7.01 – 6.97 (m, 1 H), 6.86 (td, *J*=6.87, 1.17 Hz, 1 H), 3.94 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 160.55, 158.97, 152.39, 134.28, 132.75, 128.46, 123.74, 123.36, 123.33, 122.51, 121.78, 119.38, 118.82, 117.57, 116.81, 115.30, 114.53, 96.63, 55.39. HRMS (ESI) calculated for C₂₂H₁₅NO₃ [M+H]⁺: 342.1130, found: 342.1124.

12-(4-(trifluoromethyl)phenyl)-6H-chromeno[3,4-a]indolizin-6-one 2ad

Was prepared according to the general procedure in 80% yield. ¹H NMR (500 MHz, CDCl₃) δ ppm 8.35 (d, *J*=8.44 Hz, 1 H), 7.96 – 7.88 (m, 3 H), 7.77 – 7.76 (m, 2 H), 7.33 – 7.29 (m, 3 H), 7.24 – 7.21 (m, 1 H), 7.04 – 6.98 (m, 1 H), 6.93 – 6.87 (m, 1 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 158.64, 152.46, 134.77, 134.11, 132.09, 131.76 (q, *J*=34.0 Hz), 129.00, 126.89 (q, *J*=3.78 Hz), 123.90, 123.82 (q, *J*=272.2 Hz), 123.62, 123.14, 122.97, 119.64, 117.84, 117.03, 116.19, 115.06, 97.24. HRMS (ESI) calculated for C₂₂H₁₂F₃NO₂ [M+H]⁺: 380.0898, found: 380.0893. Overlapping signals in ¹³C spectrum due to highly aromatic structure.

12-(4-fluorophenyl)-6H-chromeno[3,4-a]indolizin-6-one 2ae

Was prepared according to the general procedure in 73% yield. ¹H NMR (500 MHz, CDCl₃) δ ppm 8.34 (d, *J*=8.80 Hz, 1 H), 7.90 (d, *J*=6.97 Hz, 1 H), 7.58 – 7.55 (m, 2 H), 7.37 – 7.28 (m, 5 H), 7.21 (t, *J*=7.70 Hz, 1 H), 7.00 (t, *J*=7.15 Hz, 1 H), 6.88 (t, *J*=6.60 Hz, 1 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 163.47 (d, *J*=249.5 Hz), 158.79, 152.43, 134.45, 133.62, 133.55, 128.73, 126.04 (d, *J*=3.78 Hz), 123.68, 123.50, 123.15, 122.86, 119.49, 117.71, 117.62, 117.20 (d, *J*=21.4 Hz), 116.50, 114.80, 96.85. HRMS (ESI) calculated for C₂₁H₁₂FNO₂ [M+H]⁺: 330.0930, found: 330.0929.

2-(4-acetylphenyl)-6H-chromeno[3,4-a]indolizin-6-one 2af

Was prepared according to the general procedure in 78% yield. ¹H NMR (500 MHz, CDCl₃) δ ppm 8.38 (d, *J*=8.80 Hz, 1 H), 8.23 (d, *J*=8.07 Hz, 2 H), 7.97 (d, *J*=6.97 Hz, 1 H), 7.73 (d, *J*=8.07 Hz, 2 H), 7.35 – 7.31 (m, 3 H), 7.27 – 7.24 (m, 1 H), 6.99 (t, *J*=7.52 Hz, 1 H), 6.91 (t, *J*=6.79 Hz, 1 H), 2.74 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 197.35, 158.71, 152.49, 137.84, 135.02, 134.83, 131.80, 129.70, 128.98, 123.92, 123.59, 123.06, 119.70, 117.84, 117.55, 116.30, 115.03, 97.33, 26.76. HRMS (ESI) calculated for C₂₃H₁₅NO₃ [M+H]⁺: 354.1130, found: 354.1126.

12-(3-chlorophenyl)-6H-chromeno[3,4-a]indolizin-6-one 2ag

Was prepared according to the general procedure in 58% yield. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.39 (d, *J*=8.48 Hz, 1 H), 7.94 (d, *J*=6.72 Hz, 1 H), 7.60 – 7.59 (m, 3 H), 7.49 (br, 1 H), 7.38 – 7.33 (m, 3 H), 7.28 – 7.24 (m, 1 H), 7.03 (t, *J*=6.87 Hz, 1 H), 6.92 (t, *J*=6.72 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 158.79, 152.46, 135.71, 134.60, 131.95, 131.48, 131.25, 130.06, 129.82, 128.89, 123.82, 123.64, 123.61, 123.17, 122.97, 119.60, 117.79, 117.16, 116.30, 114.97, 97.03. HRMS (ESI) calculated for C₂₁H₁₂ClNO₂ [M+H]⁺: 346.0635, found: 346.0630.

12-(4-methoxy-2-methylphenyl)-6H-chromeno[3,4-a]indolizin-6-one 2ah

Was prepared according to the general procedure in 76% yield. ¹H NMR (500 MHz, CDCl₃) δ ppm 8.40 (d, *J*=8.80 Hz, 1 H), 7.71 (d, *J*=6.60 Hz, 1 H), 7.38 – 7.36 (m, 1 H), 7.32 – 7.29 (m, 2 H), 7.27 – 7.24 (m, 1 H), 7.19 (d, *J*=7.70 Hz, 1 H), 7.03 – 6.96 (m, 3 H), 6.89 (t, *J*=6.60 Hz, 1 H), 3.93 (s, 3 H), 2.00 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 160.90, 159.05, 152.45, 141.26, 134.37, 133.20, 128.46, 123.67, 123.55, 123.33, 123.27, 122.84, 121.11, 119.49, 118.09, 117.52, 116.97, 116.47, 114.64, 112.59, 96.60, 55.31, 19.49. HRMS (ESI) calculated for C₂₃H₁₇NO₃ [M+H]⁺: 356.1287, found: 356.1279.

12-(6-methoxynaphthalen-2-yl)-6H-chromeno[3,4-a]indolizin-6-one 2ai

Was prepared according to the general procedure in 81% yield. ¹H NMR (500 MHz, DMSO-*d*6) δ ppm 8.25 (d, *J*=8.44 Hz, 1 H), 8.18 – 8.16 (m, 2 H), 8.12 (d, *J*=8.44 Hz, 1 H), 7.94 (d, *J*=8.80 Hz, 1 H), 7.64 (d, *J*=8.07 Hz, 1 H), 7.51 (s, 1 H), 7.45 (t, *J*=7.52 Hz, 1 H), 7.38 – 7.35 (m, 2 H), 7.28 – 7.26 (m, 2 H), 7.09 (t, *J*=6.42 Hz, 1 H), 7.01 (t, *J*=6.60 Hz, 1 H), 3.94 (s, 3 H). ¹³C NMR (126 MHz, DMSO-*d*6) δ ppm 158.91, 158.04, 152.36, 135.27, 134.25, 131.41, 130.36, 129.49, 129.35, 129.07, 129.01, 125.35, 124.88, 124.54, 124.32, 123.74, 122.02, 119.96, 119.74, 118.70, 117.88, 116.76, 115.95, 106.62, 96.07, 55.90. HRMS (ESI) calculated for C₂₆H₁₇NO₃ [M+H]⁺: 392.1287, found: 292.1277.

12-(thiophen-3-yl)-6H-chromeno[3,4-a]indolizin-6-one 2aj

Was prepared according to the general procedure in 64% yield. ¹H NMR (500 MHz, CDCl₃) δ ppm 8.34 (d, *J*=8.44 Hz, 1 H), 7.98 (d, *J*=5.87 Hz, 1 H), 7.67 (br, 2 H), 7.43 (d, *J*=6.97 Hz, 1 H), 7.33 – 7.29 (m, 3 H), 7.21 – 7.19 (m, 1 H), 7.05 – 7.02 (m, 1 H), 6.90 – 6.87 (m, 1 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 158.86, 152.45, 134.64, 129.81, 129.18, 128.70, 128.15, 127.89, 123.77, 123.67, 123.58, 123.55, 123.40, 119.43, 117.64, 116.65, 114.71, 113.58, 96.85. HRMS (ESI) calculated for C₁₉H₁₁NO₂S [M+H]⁺: 318.0589, found: 318.0584.

12-(cyclohex-1-en-1-yl)-6H-chromeno[3,4-a]indolizin-6-one 2ak

Was prepared according to the general procedure in 47% yield. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.31 (d, *J*=8.77 Hz, 1 H), 8.08 (d, *J*=7.02 Hz, 1 H), 7.95 (d, *J*=7.60 Hz, 1 H), 7.37 – 7.35 (m, 2 H), 7.24 – 7.18 (m, 2 H), 6.94 (td, *J*=6.87, 0.88 Hz, 1 H), 6.21 – 6.19 (m, 1 H), 2.38 – 2.37 (m, 2 H), 2.29 - 2.28 (m, 2 H), 1.95 – 1.85 (m, 4 H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 159.03, 152.33,

135.71, 133.94, 128.27, 128.20, 123.83, 123.67, 123.29, 122.91, 121.13, 120.96, 119.49, 117.60, 117.08, 114.42, 96.25, 27.96, 25.85, 22.86, 21.85. HRMS (ESI) calculated for $C_{21}H_{17}NO_2$ [M+H]⁺: 316.1338, found: 316.1330.

12-(tert-butyl)-6H-chromeno[3,4-a]indolizin-6-one

Was prepared according to the general procedure in 41% yield. ¹H NMR (500 MHz, acetone-*d*6) δ ppm 8.97 (d, *J*=7.34 Hz, 1 H), 8.37 (d, *J*=8.80 Hz, 1 H), 8.19 – 8.17 (m, 1 H), 7.44 – 7.41 (m, 1 H), 7.34 – 7.30 (m, 3 H), 7.06 – 7.03 (m, 1 H), 1.83 (s, 9 H). ¹³C NMR (126 MHz, acetone-*d*6) δ ppm 157.84, 152.28, 135.05, 129.63, 128.66, 128.23, 127.86, 125.74, 124.55, 122.82, 119.02, 117.74, 117.45, 113.76, 97.95, 34.07, 28.94. HRMS (ESI) calculated for C₁₉H₁₇NO₂ [M+H]⁺: 292.1338, found: 292.1338.

12-benzoyl-6H-chromeno[3,4-a]indolizin-6-one 2am

Was prepared according to the general procedure in 50% yield. ¹H NMR (500 MHz, CDCl₃) δ ppm 9.25 (d, *J*=6.97 Hz, 1 H), 8.56 (d, *J*=8.80 Hz, 1 H), 7.85 (d, *J*=7.70 Hz, 2 H), 7.59 – 7.56 (m, 1 H), 7.52 (t, *J*=7.70 Hz, 1 H), 7.44 – 7.41 (m, 2 H), 7.35 – 7.33 (m, 1 H), 7.30 – 7.28 (m, 1 H), 7.13 (t, *J*=6.79 Hz, 1 H), 6.97 (d, *J*=8.07 Hz, 1 H), 6.75 (t, *J*=7.52 Hz, 1 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 187.69, 158.23, 153.11, 139.06, 137.30, 133.48, 130.40, 129.87, 129.83, 129.17, 127.92, 127.70, 127.56, 123.14, 119.50, 117.72, 117.36, 116.53, 114.89, 96.06. HRMS (ESI) calculated for C₂₂H₁₃NO₃ [M+H]⁺: 340.0974, found: 340.0970.

12-(tert-butyldimethylsilyl)-6H-chromeno[3,4-a]indolizin-6-one 2an

An oven-dried 3.0 mL V-vial equipped with a stirring bar was charged with $[Rh*CpCl_2]_2$ (5 mol %), alkynylpyridotriazole **1** (0.2 mmol) and mesitylene (2 mL) under N₂ atmosphere. The reaction vessel was capped with Mininert syringe valve and the reaction mixture was stirred at 140 °C. Upon completion the reaction mixture was cooled to room temperature, concentrated under reduced pressure, and the crude product was purified by column chromatography to afford the transannulation products in 67% yield.

¹H NMR (500 MHz, CDCl₃) δ ppm 8.54 (d, *J*=6.97 Hz, 1 H), 8.49 (d, *J*=8.80 Hz, 1 H), 8.11 (d, *J*=8.07 Hz, 1 H), 7.41 (d, *J*=3.67 Hz, 2 H), 7.33 – 7.30 (m, 1 H), 7.25 – 7.22 (m, 1 H), 6.95 (t,

J=6.79 Hz, 1 H), 1.20 (s, 9 H), 0.55 (s, 6 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 158.93, 152.39, 139.11, 136.30, 128.93, 128.59, 126.89, 124.27, 122.46, 119.90, 117.81, 117.37, 117.15, 114.14, 99.96, 27.58, 20.35, -1.37. HRMS (ESI) calculated for C₂₁H₂₃NO₂Si [M+H]⁺: 350.1576, found: 350.1570.

9-methyl-12-phenyl-6H-chromeno[3,4-a]indolizin-6-one 2ao

Was prepared according to the general procedure in 78% yield. ¹H NMR (500 MHz, CDCl₃) δ ppm 8.27 (d, *J*=9.17 Hz, 1 H), 7.71 (s, 1 H), 7.68 – 7.61 (m, 3 H), 7.56 (d, *J*=6.24 Hz, 2 H), 7.36 – 7.27 (m, 3 H), 7.08 (d, *J*=9.17 Hz, 1 H), 6.97 (t, *J*=7.52 Hz, 1 H), 2.28 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 159.03, 152.45, 133.19, 131.57, 130.36, 129.92, 129.73, 128.42, 126.61, 124.67, 123.70, 123.44, 121.21, 118.88, 118.63, 117.67, 116.91, 109.58, 96.61, 18.63. HRMS (ESI) calculated for C₂₂H₁₆NO₂ [M+H]⁺: 326.1181, found: 326.1177.

9-methyl-12-(4-phenoxyphenyl)-6H-chromeno[3,4-a]indolizin-6-one 2ap

Was prepared according to the general procedure in 71% yield. ¹H NMR (500 MHz, CDCl₃) δ ppm 8.24 (d, *J*=9.17 Hz, 1 H), 7.73 (s, 1 H), 7.50 (d, *J*=8.44 Hz, 2 H), 7.47 – 7.44 (m, 2 H), 7.38 – 7.28 (m, 3 H), 7.25 – 7.20 (m, 5 H), 7.06 – 7.00 (m, 2 H), 2.29 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 159.00, 155.91, 152.44, 133.16, 133.11, 130.08, 128.42, 126.58, 124.66, 124.41, 124.30, 123.66, 123.46, 122.57, 121.20, 120.07, 119.10, 118.83, 118.04, 117.68, 116.95, 96.52, 18.66. HRMS (ESI) calculated for C₂₈H₂₀NO₃ [M+H]⁺: 418.1443, found: 418.1441.

14-phenyl-6H-chromeno[3',4':3,4]pyrrolo[1,2-a]quinolin-6-one 2aq

PhCl was used as solvent and heated at 180 °C to afford the product in 60% yield. ¹H NMR (500 MHz, CDCl₃) δ ppm 8.45 (d, *J*=9.17 Hz, 1 H), 7.79 (d, *J*=7.70 Hz, 1 H), 7.71 – 7.69 (m, 3 H), 7.63 – 7.62 (m, 2 H), 7.54 (d, *J*=9.17 Hz, 1 H), 7.39 – 7.35 (m, 3 H), 7.28 – 7.27 (m, 1 H), 7.19 (t, *J*=7.70 Hz, 1 H), 6.92 – 6.92 (m, 2 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 159.21, 152.23, 134.37, 134.08, 133.80, 131.58, 130.18, 130.08, 129.33, 128.24, 128.06, 126.05, 125.21, 124.98, 123.61, 123.43, 122.00, 117.92, 117.68, 117.62, 116.99, 99.56. HRMS (ESI) calculated for C₂₅H₁₅NO₂ [M+H]⁺: 362.1181, found: 362.1181.

13-phenyl-7H-benzo[6,7]chromeno[3,4-a]indolizin-7-one 2ar

Was prepared according to the general procedure in 68% yield. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.39 (d, *J*=9.06 Hz, 1 H), 7.98 (d, *J*=7.02 Hz, 1 H), 7.82 (s, 1 H), 7.77 (d, *J*=8.18 Hz, 1 H), 7.73 – 7.68 (m, 4 H), 7.65 – 7.63 (m, 2 H), 7.50 (d, *J*=8.18 Hz, 1 H), 7.43 – 7.40 (m, 1 H), 7.33 – 7.30 (m, 1 H), 7.25 – 7.21 (m, 1 H), 6.88 (td, *J*=6.87, 1.17 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 158.91, 150.46, 134.78, 133.05, 131.49, 130.07, 130.00, 129.96, 129.71, 127.87, 127.14, 126.60, 124.97, 123.70, 123.39, 123.02, 122.22, 119.61, 119.52, 117.00, 114.67, 113.30, 96.88. HRMS (ESI) calculated for C₂₅H₁₅NO₂ [M+H]⁺: 362.1181, found: 362.1168.

12-phenyl-1,2,3,4,4a,12b-hexahydro-6H-chromeno[3,4-a]indolizin-6-one 2as

Was prepared according to the general procedure in 60% yield. ¹H NMR (500 MHz, CDCl₃) δ ppm 8.18 (d, *J*=8.80 Hz, 1 H), 7.76 (d, *J*=6.97 Hz, 1 H), 7.52 – 7.48 (m, 3 H), 7.38 (br, 2 H), 7.12 – 7.09 (m, 1 H), 6.67 (t, *J*=6.60 Hz, 1 H), 4.13 (td, *J*=11.19, 4.03 Hz, 1 H), 2.99 (td, *J*=11.46, 3.48 Hz, 1 H), 1.71 (qd, *J*=12.29, 3.85 Hz, 1 H), 1.58 – 1.56 (m, 1 H), 1.36 – 1.18 (m, 2 H), 1.00 (qd, *J*=12.78, 3.12 Hz, 1 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 164.23, 135.11, 131.31, 130.55, 129.52, 129.00, 123.43, 123.24, 120.53, 119.02, 113.02, 99.38, 83.32, 38.66, 31.67, 27.86, 25.17, 24.30. HRMS (ESI) calculated for C₂₁H₁₉NO₂ [M+H]⁺: 318.1494, found: 318.1489.

5-methyl-12-phenylindolizino[1,2-c]quinolin-6(5H)-one 2at

Was prepared according to the general procedure in 52% yield. ¹H NMR (500 MHz, CDCl₃) δ ppm 8.63 (d, *J*=8.80 Hz, 1 H), 7.91 (d, *J*=6.97 Hz, 1 H), 7.66 – 7.55 (m, 6 H), 7.39 – 7.39 (m, 2 H), 7.17 – 7.14 (m, 1 H), 6.95 (dt, *J*=7.89, 4.13 Hz, 1 H), 6.82 (t, *J*=6.42 Hz, 1 H), 3.81 (s, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 160.27, 139.01, 132.23, 131.73, 131.51, 129.87, 129.37, 127.78, 124.40, 122.40, 122.30, 121.30, 120.97, 120.05, 117.77, 117.61, 115.06, 114.03, 102.72, 28.67. HRMS (ESI) calculated for C₂₂H₁₆N₂O [M+H]⁺: 325.1341, found: 325.1332.

6-phenyl-11H-indeno[2,1-a]indolizin-11-one 2ba

Was prepared according to the general procedure in 91% yield. ¹H NMR (500 MHz, CDCl₃) δ ppm 7.98 (d, *J*=6.97 Hz, 1 H), 7.70 (d, *J*=8.80 Hz, 1 H), 7.62 – 7.48 (m, 6 H), 7.18 – 7.15 (m, 3

H), 7.04 (t, J=7.52 Hz, 1 H), 6.56 (t, J=6.60 Hz, 1 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 185.16, 142.48, 138.76, 135.48, 132.43, 132.21, 129.59, 129.42, 129.36, 128.92, 128.03, 125.55, 124.93, 123.49, 120.65, 120.50, 118.96, 113.56, 112.83. HRMS (ESI) calculated for C₂₁H₁₃NO [M+H]⁺: 296.1075, found: 296.1074.

6-(cyclohex-1-en-1-yl)-11H-indeno[2,1-a]indolizin-11-one 2bb

Was prepared according to the general procedure in 87% yield. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.78 (d, *J*=7.02 Hz, 1 H), 7.64 (d, *J*=8.77 Hz, 1 H), 7.53 (d, *J*=7.31 Hz, 1 H), 7.29 – 7.22 (m, 2 H), 7.16 – 7.13 (m, 1 H), 7.01 – 6.97 (m, 1 H), 6.57 (t, *J*=6.43 Hz, 1 H), 6.14 (br, 1 H), 2.34 – 2.32 (m, 4 H), 1,91 – 1.80 (m, 4 H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 185.04, 142.66, 139.11, 133.96, 133.36, 132.08, 132.01, 127.61, 127.42, 125.68, 124.97, 123.39, 122.98, 120.93, 118.85, 112.84, 112.40, 28.03, 25.63, 22.73, 21.96. HRMS (ESI) calculated for C₂₁H₁₇NO [M+H]⁺: 300.1388, found: 300.1386.

6-butyl-11H-indeno[2,1-a]indolizin-11-one 2bc

Was prepared according to the general procedure in 73% yield. ¹H NMR (500 MHz, acetone-*d*6) δ ppm 8.12 (d, *J*=6.97 Hz, 1 H), 7.56 (d, *J*=8.80 Hz, 1 H), 7.48 (d, *J*=7.34 Hz, 1 H), 7.43 (d, *J*=7.34 Hz, 1 H), 7.36 (t, *J*=7.34 Hz, 1 H), 7.19 (t, *J*=7.52 Hz, 1 H), 7.15 – 7.12 (m, 1 H), 6.77 (t, *J*=6.42 Hz, 1 H), 3.11 (t, *J*=7.52 Hz, 2 H), 1.73 – 1.67 (m, 2 H), 1.50 – 1.42 (m, 2 H), 0.94 (t, *J*=7.34 Hz, 3 H). ¹³C NMR (126 MHz, acetone-*d*6) δ ppm 183.62, 142.61, 139.38, 133.91, 132.30, 131.72, 127.44, 125.61, 124.96, 122.82, 121.17, 117.98, 112.65, 29.63, 24.19, 22.16, 13.26. HRMS (ESI) calculated for C₁₉H₁₇NO [M+H]⁺: 276.1388, found: 276.1391.

6-(tert-butyldimethylsilyl)-11H-indeno[2,1-a]indolizin-11-one 2bd

Was prepared according to the general procedure in 90% yield. ¹H NMR (500 MHz, CDCl₃) δ ppm 8.12 (d, *J*=7.34 Hz, 1 H), 7.72 (d, *J*=8.44 Hz, 1 H), 7.55 (d, *J*=7.34 Hz, 1 H), 7.48 (d, *J*=7.70 Hz, 1 H), 7.30 – 7.27 (m, 1 H), 7.17 (t, *J*=7.34 Hz, 1 H), 7.05 (t, *J*=7.52 Hz, 1 H), 6.57 (t, *J*=6.60 Hz, 1 H), 1.03 (s, 9 H), 0.57 (s, 6 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 185.07, 148.57, 142.70, 139.74, 135.28, 132.03, 129.36, 127.80, 125.68, 123.25, 122.89, 119.59, 118.72, 115.86, 112.50, 26.50, 19.45, -2.63. HRMS (ESI) calculated for C₂₁H₂₃NOSi [M+H]⁺: 334.1627, found: 334.1624.

11H-indeno[2,1-a]indolizin-11-one 2be

Was prepared according to the general procedure in 23% yield. ¹H NMR (500 MHz, CDCl₃) δ ppm 7.83 (d, *J*=6.97 Hz, 1 H), 7.67 (d, *J*=9.17 Hz, 1 H), 7.54 (d, *J*=7.34 Hz, 1 H), 7.32 – 7.27 (m, 2 H), 7.18 (t, *J*=7.34 Hz, 1 H), 7.09 (s, 1 H), 7.05 – 7.01 (m, 1 H), 6.60 (t, *J*=6.79 Hz, 1 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 185.14, 142.43, 138.49, 137.86, 132.37, 128.11, 127.62, 125.48, 123.52, 121.22, 118.93, 113.93, 112.89, 107.22. HRMS (ESI) calculated for C₁₅H₉NO [M+H]⁺: 220.0762, found: 220.0765.

6-phenyl-4-(triisopropylsilyl)-11H-indeno[2,1-a]indolizin-11-one 2bf

Was prepared according to the general procedure in 95% yield. ¹H NMR (500 MHz, CDCl₃) δ ppm 7.78 (d, *J*=8.07 Hz, 1 H), 7.53 – 7.47 (m, 6 H), 7.11 – 7.09 (m, 2 H), 7.01 – 6.98 (m, 2 H), 6.84 – 6.83 (m, 1 H), 0.96 (d, *J*=7.34 Hz, 18 H), 0.76 (dt, *J*=14.76, 7.47 Hz, 3 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 185.48, 142.39, 141.12, 139.14, 137.81, 135.14, 132.58, 132.17, 130.81, 129.03, 128.59, 127.84, 126.92, 125.05, 123.43, 123.30, 120.00, 119.87, 114.37, 19.30, 13.16. HRMS (ESI) calculated for C₃₀H₃₃NOSi [M+H]⁺: 452.2410, found: 452.2400.

12-phenyl-7H-indeno[2',1':3,4]pyrrolo[1,2-a]quinolin-7-one 2bg

Was prepared according to the general procedure in 85% yield. ¹H NMR (500 MHz, CDCl₃) δ ppm 7.72 (d, *J*=9.17 Hz, 1 H), 7.66 – 7.57 (m, 7 H), 7.37 (d, *J*=9.17 Hz, 1 H), 7.32 (d, *J*=8.80 Hz, 1 H), 7.28 – 7.26 (m, 1 H), 7.18 – 7.12 (m, 3 H), 6.90 (d, *J*=6.97 Hz, 1 H). ¹³C NMR (126 MHz, CDCl₃) δ ppm 186.43, 142.00, 139.36, 135.25, 134.83, 133.47, 132.72, 131.36, 130.05, 129.20, 129.11, 128.38, 127.74, 126.80, 125.39, 124.24, 124.21, 123.77, 120.43, 117.67, 117.33, 116.24. HRMS (ESI) calculated for C₂₅H₁₅NO [M+H]⁺: 346.1232, found: 346.1228.

4-phenyl-1H,3H-furo[3,4-a]indolizin-1-one 2bh

Was prepared according to the general procedure in 40% yield.

Rh condition: An oven-dried 3.0 mL V-vial equipped with a stirring bar was charged with $Rh(esp)_2$ (1.0 mol %), alkynylpyridotriazole **1** (0.2 mmol) and PhMe (2 mL) under N₂ atmosphere. The reaction vessel was capped with Mininert syringe valve and the reaction mixture was stirred at 120 °C. Upon completion the reaction mixture was cooled to room temperature, concentrated under reduced pressure, and the crude product was purified by column chromatography to afford **2bh** in 84% yield.

¹H NMR (500 MHz, CDCl₃) δ ppm 8.40 (d, *J*=6.97 Hz, 1 H), 7.87 (d, *J*=8.80 Hz, 1 H), 7.54 – 7.48 (m, 4 H), 7.42 – 7.40 (m, 1 H), 7.15 – 7.12 (m, 1 H), 6.84 (t, *J*=6.60 Hz, 1 H), 5.35 (s, 2 H). ¹³C NMR (126 MHz, DMSO-*d*6) δ ppm 166.50, 138.50, 129.88, 129.82, 129.44, 128.38, 127.98, 125.14, 123.85, 117.93, 116.66, 114.79, 103.57, 66.25. HRMS (ESI) calculated for $C_{16}H_{11}NO_2$ [M+H]⁺: 250.0868, found: 250.0871.

References:

- 1. Y. Shi, A. V. Gulevich, V. Gevorgyan, Angew. Chem. Int. Ed. 2014, 53, 14191-14195; Angew. Chem. 2014, 126, 14415–14419;
- 2. V. Helan, A. V. Gulevich, V. Gevorgyan, *Chem. Sci.*, **2015**, *6*, 1928-1931.

¹H NMR Spectrum of **1aa**

¹H NMR Spectrum of **1ab**

¹H NMR Spectrum of **1ac**

120 110 100 Chemical Shift (ppm) 230 220 210 200 190 180 170 160 150 140

¹³C NMR Spectrum of **1af**

¹H NMR Spectrum of **1ag**

¹H NMR Spectrum of **1ah**

¹H NMR Spectrum of **1ai**

120 110 100 Chemical Shift (ppm) 90 80

70 60 50 40 30 20 10 0

-10

¹H NMR Spectrum of **1ak**

¹H NMR Spectrum of **1al**

¹H NMR Spectrum of **1am**

¹H NMR Spectrum of **1an**

¹H NMR Spectrum of **1ao**

¹H NMR Spectrum of **1ap**

¹H NMR Spectrum of **1aq**

¹H NMR Spectrum of **1as**

¹H NMR Spectrum of **1at**

¹H NMR Spectrum of **1ba**

¹H NMR Spectrum of **1bb**

-10

¹H NMR Spectrum of **1bc**

¹H NMR Spectrum of **1bd**

¹H NMR Spectrum of **1be**

¹H NMR Spectrum of **1bf**

¹H NMR Spectrum of **1bg**

¹H NMR Spectrum of **1bh**

¹H NMR Spectrum of **2aa**

¹H NMR Spectrum of **2ab**

¹H NMR Spectrum of **2ac**

¹H NMR Spectrum of **2ad**

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Chemical Shift (ppm)

¹H NMR Spectrum of **2ae**

¹H NMR Spectrum of **2ag**

¹H NMR Spectrum of **2ah**

¹H NMR Spectrum of **2ai**

¹H NMR Spectrum of 2aj

¹H NMR Spectrum of **2ak**

¹H NMR Spectrum of **2al**

¹H NMR Spectrum of **2am**

¹H NMR Spectrum of **2an**

¹H NMR Spectrum of **2ao**

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Chemical Shift (ppm)

¹H NMR Spectrum of **2ap**

120 110 100 Chemical Shift (ppm) 90 80 70 60 50

230 220 210 200 190 180 170 160 150 140 130

-10

0

20 10

40 30

¹H NMR Spectrum of **2as**

¹H NMR Spectrum of **2ba**

¹H NMR Spectrum of **2bc**

¹H NMR Spectrum of **2be**

¹H NMR Spectrum of **2bf**

¹H NMR Spectrum of **2bg**

¹H NMR Spectrum of **2bh**

