An New Type of Oxidative Addition of an Iodoarene to a Pd(II) Complex

Inmaculada Vicente-Hernández,^a Maria-Teresa Chicote,^a José Vicente,^{*,a} and Delia Bautista^b

^aGrupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Apartado 4021, Murcia, 30071 Spain.

^bSAI, Universidad de Murcia, Apartado 4021, 30071 Murcia, Spain.

1. Experimental Section	2
¹ H NMR spectra of C_6H_4 {NHC(O)H}I-2	2
¹ H NMR spectra of $C_6H_4(NC)I-2$	2
Synthesis and properties of complex 1	2
Synthesis and properties of Complex 2	4
Synthesis and properties of complex 4	8
2. X-ray Crystallographic data of complex 4	9
3. Discussion on the NMR and IR spectra of complexes	19

1. Experimental Section

Unless otherwise stated the reactions were carried out at room temperature without special precautions against moisture. The 1H and 13C{1H} NMR spectra were recorded with Varian Unity-300, 400 and 600 spectrometers in CDCI3 solution and chemical shifts are referred to TMS [1H, $^{13}C{^1H}$]. The amide $C_6H_4{NHC(O)H}-2$ [T. Kesharwani, A. K. Verma, D. Emrich, J. A. Ward and R. C. Larock, *Org. Lett.* 2009, **11**, 2591] and the isocyanide $C_6H_4(NC)I-2$ [A. Lygin, A *Org. Lett.* 2009, **11**, 389] were prepared as reported in the literature.

 C_6H_4 {NHC(O)H}I-2: 1H NMR (300 MHz, d6-dmso): Major isomer, δ 6.93 (t, 1 H, H4 or H5, $3J_{HH} =$ 7.5 Hz), 7.37 (t, 1 H, H4 or H5, $3J_{HH} = 8.1$ Hz), 7.77 (d, 1 H, H3 or H6, $3J_{HH} = 8.1$ Hz), 7.89 (d, 1 H, H3 or H6, $3J_{HH} = 7.5$ Hz), 8.33 (s, 1 H, CHO), 9.52 (s, br, 1 N, NH). Minor isomer: 7.01 (t, 1 H, $3J_{HH} = 7.2$ Hz), 7.34 (t, 1 H, $3J_{HH} = 7.8$ Hz), 7.89 (d, 1 H, $3J_{HH} = 7.8$ Hz), 7.89 (d, 1 H, $3J_{HH} = 7.8$ Hz), 7.89 (d, 1 H, $3J_{HH} = 7.8$ Hz), 9.63 (s, br, 1 N, NH). The resonances at 7.77 and 8.33 ppm are coincident for both isomers which are in 1:0.32 molar ratio. IR(cm-1): v(NH), 3221; v(CO), 1659.

 $C_{6}H_{4}(NC)I-2$: 1H NMR (400 MHz,CDCI3): δ 7.11 (ddd, 1 H, H4 or H5,³J_{HH} = 8 Hz, ³J_{HH} = 7 Hz, ⁴J_{HH} = 2 Hz), 7.39 (dd, H3, ³J_{HH} = 8 Hz, ⁴J_{HH} = 1 Hz), 7.40 (m, H4 or H5), 7.90 (dd, H6, ³J_{HH} = 8 Hz, ⁴J_{HH} = 1 Hz). IR(cm⁻¹): v(CN), 2117.

Synthesis of $[Pd{C_6H_4{NHC(O)H}-2}I(^tBubpy)]$ (1). A suspension containing $Pd(dba)_2$ (1.69 g, 2.94 mmol), ^tBubpy (788 mg, 2.94 mmol) and $C_6H_4{NHC(O)H}I-2$ (725 mg, 2.94 mmol) in dry toluene (20 mL)

was stirred under nitrogen atmosphere for 5 h or heated at 60 °C for 1.5 h. The solvent was removed under vacuum, and the residue was extracted with CH₂Cl₂ (30 mL) and filtered through Celite. The filtrate was concentrated under vacuum to 5 mL and n-hexane was added. The sticky solid obtained was washed with hot n-hexane (10 x 20 mL) and then was stirred for 15 min with n-hexane (30 mL, in an ice/water bath). The suspension was filtered and the solid collected was dried under vacuum to give 1 as an orange solid. Yield: 1.47 g, 2.36 mmol. 80 %. Mp: 155 °C. ¹H NMR (600.1 MHz, CDCl₃); δ 1.38 (s, Me), 1.39 (s, Me), 1.433 (s, Me), 1.439 (s, Me), 1.44 (s, Me), 1.45 (s, Me), 6.69 (d, H3 or H6, ${}^{3}J_{HH}$ = 7 Hz), 6.75 (t, H4 or H5, ${}^{3}J_{HH}$ = 7.2 Hz), 6.86 (t, H4 or H5, ${}^{3}J_{HH}$ = 7.2 Hz), 6.92 (td, H4 or H5, ${}^{3}J_{HH}$ = 7.2 Hz, ${}^{4}J_{HH}$ = 1 Hz), 6.99-6.94 (overlapped signals, H3 and/or H6), 7.03 (td, H4 or H5, ${}^{3}J_{HH}$ = 7.2 Hz, ${}^{4}J_{HH}$ = 1.2 Hz), 7.15 (td, H4 or H5, ${}^{3}J_{HH}$ = 7.2 Hz, ${}^{4}J_{HH}$ = 1.2 Hz), 7.20 (t, H4 or H5, ${}^{3}J_{HH}$ = 7.2 Hz), 7.31 (dd, H18 or H18', ${}^{3}J_{HH}$ = 6 Hz, ${}^{4}J_{HH}$ = 1 Hz), 7.38-7.41 (overlapped signals, H19 or H19' and H3 or H6), 7.46 (d, H3 or H6, ${}^{3}J_{HH}$ = 7 Hz), 7.52 (d, H16 or H16', ${}^{4}J_{HH}$ = 2 Hz), 7.53 (d, H16 or H16', ${}^{4}J_{HH}$ = 2 Hz), 7.54 (d, 16 or H16', ${}^{4}J_{HH}$ = 2 Hz), 7.56 (d, H16 or H16', ${}^{4}J_{HH}$ = 2 Hz), 7.93 (d, 16 or H16', ${}^{4}J_{HH}$ = 2 Hz), 7.97-7.97 (several signals, H18 or H18'), 8.32-8.36 (several signals, ^tBubpy), 8.67 (d, H7, ${}^{3}J_{HH}$ = 11 Hz), 9.47 (d, H19 or H19', ${}^{3}J_{HH}$ = 6 Hz), 9.88 (d, H19 or H19', ${}^{3}J_{HH}$ = 6 Hz), NH not observed. 13C{1H} APT NMR (150.9 MHz, CDCl₃): δ 30.2 (Me), 30.4 (Me), 35.5 (Me), 117.2 (C3 or C6), 118.1 (C16 or C16'), 118.5 (C16 or C16'), 118.7 (C16 or C16'), 119.0 (C16 or C16'), 121.4 (C3 or C6), 123.8-124.4 (several signals, C18 or C18' and C4 or C5), 136.2 (C3 or C6), 136.4 (C1 or C2), 136.8 (C1 or C2), 137.7 (C3 or C6), 139.6 (C1 or C2), 139.7 (C1 or C2), 149.1 (C19 or C19'), 149.7 (C19 or C19'), 152.3 (C19 or C19'), 152.6 (C19 or C19'), 153.7 (C15 or C15'), 153.9 (C15 or C15'), 154.1 (C15 or C15'), 155.8 (C15 or C15'), 156.2 (C15 or C15'), 158.6 (C7), 161.5 (C7), 163.7 (C17 or C17'), 164.0 (C17 or C17'), 163.8 (C17 or C17'). IR (cm⁻¹): v(NH) 3341, 3320; v(CO) 1698, 1683. Anal. Calcd for C₂₅H₃₀IN₃OPd: C, 48.29; H, 4.86; N, 6.76. Found: C, 48.04; H, 4.76; N, 6.72.

¹H NMR spectrum of **1** in CDCl₃.

¹³C{¹H}-APT NMR spectrum of **1** in CDCl₃.

Synthesis of $[Pd{C(=NC_6H_4I-2)C_6H_4{NHCHO}-2]I(^{t}Bubpy)]$ (2). To a solution of 1 (203.6 mg, 0.33 mmol) in CH_2CI_2 (20 mL) was added 2-iodophenyl isocyanide (75 mg, 0.33 mmol). The solution was stirred for 20 min, filtered through a short pad of Celite and concentrated under vacuum to 1 mL. Upon the addition of pentane (15 mL) a suspension formed which was filtered and the solid collected was dried by

suction to give 2 as a yellow-orange solid. Yield 185 mg, 0.22 mmol, 66%. Mp: 157 °C (decomp). ¹H NMR (300 MHz, CDCl₃): δ 1.38 (s, Me), 1.40 (s, Me), 1.45 (s, Me), 6.67-7.75 (various overlapped multiplets of different intensities), 7.90 (s, NH), 7.94 (d, H16 or H16', ⁴J_{HH} = 1 Hz), 8.25 (d, ³J_{HH} = 6 Hz), 8.49 (d, ³J_{HH} = 7 Hz), 8.60 (d, H16 or H16', ⁴J_{HH} = 2 Hz), 8.63 (d, ³J_{HH} = 8 Hz), 9.38 (d, ³J_{HH} = 6 Hz), 9.48 (d, ³J_{HH} = 8 Hz), 9.85 (d, ³J_{HH} = 6 Hz), 13. 35 (s, br, NH). **2** is not enough stable in solution as to allow its ¹³C NMR spectrum to be measured. In the absence of HMQC and HMBC experiments, the ¹H NMR could not be assigned. IR (cm⁻¹): v(NH) not observed; v(C=O), v(C=N) 1687, 1576. Anal. Calcd for C₃₂H₃₄I₂N₄OPd: C, 45.17; H, 4.03; N, 6.58. Found: C, 44.97; H, 4.11; N, 6.32.

¹H NMR spectrum of **2** in CDCl₃.

Synthesis of OC-6-35-[Pd{C,C,N-C(=NC₆H₄-2)C₆H₄{NCHO}-2}I(^tBubpy)] (4). To a solution of 2 (250 mg, 0.29 mmol) in acetone (15 mL) was added Tl(acac) (acacH = acetylacetone, 89.2 mg, 0.29 mmol). A yellow suspension immediately formed which was stirred for 1 h and concentrated under vacuum to dryness. The residue was stirred with CH₂Cl₂ (20 mL) and the suspension was filtered through a short pad of Celite. The solution was concentrated (1 mL), pentane (20 mL) was added and the suspension was filtered. A CHCl₃ solution of the dark orange solid collected was heated at 50 °C for 5 h or, alternatively, stirred at room temperature for two days. The solution was concentrated under vacuum (1 mL), pentane (15 mL) was added, the suspension was filtered, and the red solid collected was dried, first by suction and then in an oven at at 40 °C overnight. Yield: 157 mg, 0.22 mmol, 75% . Mp: 202 °C (decomp). ¹H NMR (400 MHz, CDCl₃): δ 1.39 (s, 9 H, Me), 1.40 (s, 9 H, Me), 6.77 (dd, 1 H, H11 or H14, ${}^{3}J_{HH}$ = 8 Hz, ${}^{4}J_{HH}$ = 1 Hz), 6.85 (td, 1 H, H12 or H13, ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{HH} = 1$ Hz), 6.99 (ddd, 1 H, H5, ${}^{3}J_{HH} = 8$ Hz, ${}^{3}J_{HH} = 7$ Hz, ${}^{4}J_{HH} = 1$ Hz), 7.20 (td, 1 H, H12 or H13, ${}^{3}J_{HH}$ = 8 Hz, ${}^{4}J_{HH}$ = 1 Hz), 7.31 (dd, 1 H, H3, ${}^{3}J_{HH}$ = 8 Hz, ${}^{4}J_{HH}$ = 1 Hz), 7.37 (dd, 1 H, H18 or H18', ${}^{3}J_{HH}$ = 6 Hz, ${}^{4}J_{HH}$ = 2 Hz), 7.38 (s, 1 H, H7), 7.42 (dd, 1 H, H18 or H18', ${}^{3}J_{HH}$ = 6 Hz, ${}^{4}J_{HH}$ = 2 Hz), 7.46 (td, 1 H, H4, ${}^{3}J_{HH}$ = 8 Hz, ${}^{4}J_{HH}$ = 1 Hz), 7.54 (dd, 1 H, H6, ${}^{3}J_{HH}$ = 8 Hz, ${}^{4}J_{HH}$ = 1 Hz), 7.83 (d, 1 H, H6, ${}^{3}J_{HH}$ = 8 Hz, ${}^{4}J_{HH}$ = 1 Hz), 7.83 (d, 1 H, H6, ${}^{3}J_{HH}$ = 8 Hz, ${}^{4}J_{HH}$ = 1 Hz), 7.83 (d, 1 H, H6, ${}^{3}J_{HH}$ = 8 Hz, ${}^{4}J_{HH}$ = 1 Hz), 7.83 (d, 1 H, H6, ${}^{3}J_{HH}$ = 8 Hz, ${}^{4}J_{HH}$ = 1 Hz), 7.83 (d, 1 H, H6, ${}^{3}J_{HH}$ = 8 Hz, ${}^{4}J_{HH}$ = 1 Hz), 7.83 (d, 1 H, H6, ${}^{3}J_{HH}$ = 8 Hz, ${}^{4}J_{HH}$ = 1 Hz), 7.83 (d, 1 H, H6, ${}^{3}J_{HH}$ = 8 Hz, ${}^{4}J_{HH}$ = 1 Hz), 7.83 (d, 1 H, H6, {}^{3}J_{HH} = 8 Hz, ${}^{4}J_{HH}$ = 1 Hz), 7.83 (d, 1 H, H6, {}^{3}J_{HH} = 8 Hz, ${}^{4}J_{HH}$ = 1 Hz), 7.83 (d, 1 H, H6, {}^{3}J_{HH} H, H19 or H19', ${}^{3}J_{HH}$ = 6 Hz), 7.90 (d, 1 H, H16 or H16', ${}^{4}J_{HH}$ = 2 Hz), 7.92 (d, 1 H, H16 or H16', ${}^{4}J_{HH}$ = 2 Hz), 7.97 (dd, 1 H, H11 or H14, ³J_{HH} = 8 Hz, ⁴J_{HH} = 1 Hz), 9.45 (d, 1 H, H19 or H19', ³J_{HH} = 6 Hz). 13C{1H} APT NMR (150.9 MHz, CDCl₃): δ 30.28 (Me), 30.34 (Me,), 35.4 (CMe₃), 35.5 (CMe₃), 117.7 (C16 or C16'), 118,0 (C16 or C16'), 120.0 (C11 or C14), 122.6 (C12 or C13), 123.4 (C18 or C18'), 123.7 (C5), 123.8 (C18 or C18'), 126.1 (C3), 126.6 (C11 or C14), 128.2 (C12 or C13), 132.7 (C4), 137.4 (C9 or C10), 138.4 (C6), 141.4 (C2), 143.1 (C1), 149.0 (C7), 149.5 (C8), 150.2 (C19 or C19'), 152.7 (C19 or C19'), 153.8 (C15 or

C15'), 155.9 (C15 or C15), 162.8 (C17 or C17'), 162.9 (C17 or C17'). IR (cm-1): vC=O, vC=N, v(CC+CN)arom,1611, 1593, 1581, 1563 1683. Anal. Calcd for $C_{32}H_{33}IN_4OPd$: C, 53.16; H, 4.60; N, 7.75. Found: C, 52.98; H, 4.63; N, 7.70.

 $^{13}\text{C}\{1\text{H}\}\text{-}\text{APT}$ NMR spectrum of $\textbf{4}{\cdot}\text{CH}_2\text{Cl}_2$ in CDCl_3.

2. X-ray Crystallographic Data of 4·CH₂Cl₂

A crystal of $4 \cdot CH_2Cl_2$ suitable for X-ray diffraction studies were obtained by the liquid-liquid diffusion method from CH_2Cl_2 and Et_2O . Numerical details are presented in Table 1. The data were collected on Bruker D8 QUEST diffractometers using monochromated Mo- $K\alpha$ radiation in ω -scan mode. The structure was solved by direct methods and refined anisotropically on *F*2 using the program SHELXL-97 (G. M. Sheldrick, *SHELX*-97, University of Göttingen, Göttingen, Germany, 1997)

The hydrogens of the methyl groups were refined using rigid groups and the other hydrogens were refined using a riding mode.

Figure 1. Ortep drawing (50% probability ellipsoids) of complex 4·CH₂Cl₂.

Figure 2. Chain of dimers staked along the a axis in $4 \cdot CH_2CI_2$.

Table 1. Crystal data and structure refinement. Identification code ivh4d1_0m Empirical formula C33 H35 Cl2 I N4 O Pd Formula weight 807.85 Temperature 100(2) K Wavelength 0.71073 Å Crystal system Triclinic Space group P -1 a = 10.7622(11) Å Unit cell dimensions α= 114.432(3)° b = 12.8238(12) Å β= 100.558(3)° c = 13.4282(12) Å $\gamma = 93.044(3)^{\circ}$ Volume 1641.4(3) Å³ Ζ 2 Density (calculated) 1.634 Mg/m³ Absorption coefficient 1.701 mm⁻¹ F(000) 804 0.13 x 0.09 x 0.07 mm³ Crystal size Theta range for data collection 2.28 to 28.28° -14<=h<=14, -16<=k<=17, -17<=l<=17 Index ranges Reflections collected 59143 Independent reflections 8138 [R(int) = 0.0406] Completeness to theta = 27.50° 99.9 % Absorption correction Semi-empirical from equivalents 0.9281 and 0.8478 Max. and min. transmission Refinement method Full-matrix least-squares on F² Data / restraints / parameters 8138 / 0 / 385 Goodness-of-fit on F² 1.036 R1 = 0.0256, wR2 = 0.0519 Final R indices [I>2sigma(I)] R indices (all data) R1 = 0.0369, wR2 = 0.0552 0.851 and -0.566 e.Å-3 Largest diff. peak and hole

,	, , , ,			U	,
	x	у	Z	U(eq)	
Pd(1)	4185.5(2)	5988.4(1)	2912.6(1)	12.2(1)	
l(1)	2595.1(1)	4494.0(1)	3067.2(1)	17.7(1)	
N(1)	2741.6(18	8)7016.8(16)	2772.8(16)	17.0(4)	
C(1)	3498(2)	5119.1(19)	1265.6(18)	14.0(4)	
N(4)	4052.4(18	3)4281.9(16)	721.7(15)	15.4(4)	
C(2)	2454(2)	5626.8(19)	855.6(19)	15.4(4)	
C(3)	2064(2)	6605.3(19)	1653(2)	16.6(5)	
C(4)	1046(2)	7085(2)	1269(2)	22.2(5)	
C(5)	469(2)	6610(2)	140(2)	24.4(5)	
C(6)	874(2)	5665(2)	-643(2)	23.8(5)	
C(7)	1869(2)	5169(2)	-284(2)	19.1(5)	
C(8)	2586(2)	7994(2)	3632(2)	21.0(5)	
O(1)	1882.6(17	7)8712.8(15)	3632.9(15)	25.8(4)	
C(9)	5393(2)	4808.8(18)	2566.6(18)	13.7(4)	
C(10)	5084(2)	4076.2(19)	1407.7(19)	14.9(4)	
C(11)	5820(2)	3210(2)	962(2)	20.3(5)	
C(12)	6861(2)	3091(2)	1666(2)	23.0(5)	
C(13)	7183(2)	3827(2)	2796(2)	21.3(5)	
C(14)	6450(2)	4701(2)	3259(2)	17.3(5)	
N(2)	5558.4(18	3)7144.9(16)	2847.4(15)	13.9(4)	
N(3)	5072.7(18	8)7057.7(16)	4673.9(15)	14.4(4)	
C(21)	5859(2)	7060.2(19)	1898.2(18)	15.4(4)	
C(22)	6700(2)	7891(2)	1872.6(18)	15.4(4)	
C(23)	7248(2)	8878.1(19)	2853.1(18)	13.4(4)	
C(24)	6948(2)	8936.3(19)	3843.6(18)	14.5(4)	
C(25)	6136(2)	8060.2(19)	3834.2(18)	13.7(4)	
C(26)	5870(2)	8002.0(19)	4863.3(18)	13.4(4)	
C(27)	6419(2)	8829.2(19)	5940.3(18)	14.0(4)	
C(28)	6160(2)	8688.0(19)	6868.0(18)	13.9(4)	
C(29)	5358(2)	7700.1(19)	6651.9(19)	15.7(4)	
C(30)	4831(2)	6916(2)	5551.8(19)	16.6(5)	
C(31)	8119(2)	9864(2)	2860.3(18)	14.1(4)	
C(32)	8481(2)	9530(2)	1728(2)	21.4(5)	
C(33)	9343(2)	10193(2)	3779.9(19)	18.7(5)	

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters

(Å 2x 10³). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

C(34)	7395(2)	10913(2)	3100(2)	22.2(5)
C(35)	6764(2)	9601(2)	8056.7(18)	16.6(5)
C(36)	8226(2)	9701(2)	8223(2)	27.7(6)
C(37)	6341(2)	10767(2)	8200.8(19)	20.1(5)
C(38)	6367(3)	9284(2)	8948(2)	25.8(6)
C(99)	10071(3)	6480(3)	4323(3)	40.6(7)
CI(1)	9445.4(7)	6541.3(7)	5462.3(7)	41.8(2)
CI(2)	9053.0(7)	6878.8(7)	3414.4(7)	39.4(2)

1.989(2)	C(28)-C(29)	1.386(3)
2.010(2)	C(28)-C(35)	1.528(3)
2.0767(19)	C(29)-C(30)	1.385(3)
2.1224(19)	C(31)-C(32)	1.530(3)
2.1763(18)	C(31)-C(33)	1.533(3)
2.5992(3)	C(31)-C(34)	1.538(3)
1.351(3)	C(35)-C(37)	1.532(3)
1.404(3)	C(35)-C(38)	1.534(3)
1.273(3)	C(35)-C(36)	1.539(3)
1.462(3)	C(99)-Cl(2)	1.742(3)
1.417(3)	C(99)-Cl(1)	1.756(3)
1.395(3)		
1.417(3)	C(1)-Pd(1)-C(9) 80.84(9)
1.405(3)	C(1)-Pd(1)-N(2	97.00(8)
1.381(4)	C(9)-Pd(1)-N(2) 88.48(8)
1.391(4)	C(1)-Pd(1)-N(1) 82.94(8)
1.387(3)	C(9)-Pd(1)-N(1) 163.66(8)
1.223(3)	N(2)-Pd(1)-N(1) 91.51(7)
1.383(3)	C(1)-Pd(1)-N(3) 173.84(8)
1.408(3)	C(9)-Pd(1)-N(3	99.06(8)
1.391(3)	N(2)-Pd(1)-N(3) 76.85(7)
1.387(3)	N(1)-Pd(1)-N(3) 96.85(7)
1.378(4)	C(1)-Pd(1)-I(1)	85.08(6)
1.401(3)	C(9)-Pd(1)-I(1)	88.47(6)
1.335(3)	N(2)-Pd(1)-I(1)	175.99(5)
1.362(3)	N(1)-Pd(1)-I(1)	92.15(5)
1.332(3)	N(3)-Pd(1)-I(1)	101.08(5)
1.350(3)	C(8)-N(1)-C(3)	125.1(2)
1.376(3)	C(8)-N(1)-Pd(1) 123.96(16)
1.393(3)	C(3)-N(1)-Pd(1) 110.69(14)
1.399(3)	N(4)-C(1)-C(2)	129.7(2)
1.529(3)	N(4)-C(1)-Pd(1) 117.99(16)
1.381(3)	C(2)-C(1)-Pd(1) 112.09(15)
1.492(3)	C(1)-N(4)-C(10)113.58(19)
1.385(3)	C(7)-C(2)-C(3)	121.1(2)
1.404(3)	C(7)-C(2)-C(1)	121.1(2)
	1.989(2)2.010(2)2.0767(19)2.1224(19)2.1763(18)2.5992(3)1.351(3)1.404(3)1.273(3)1.462(3)1.417(3)1.395(3)1.417(3)1.405(3)1.381(4)1.391(4)1.387(3)1.408(3)1.391(3)1.387(3)1.387(3)1.387(3)1.387(3)1.378(4)1.401(3)1.335(3)1.362(3)1.350(3)1.390(3)1.399(3)1.529(3)1.381(3)1.404(3)	1.989(2)C(28)-C(29)2.010(2)C(28)-C(35)2.0767(19)C(29)-C(30)2.1224(19)C(31)-C(32)2.1763(18)C(31)-C(33)2.5992(3)C(31)-C(34)1.351(3)C(35)-C(37)1.404(3)C(35)-C(38)1.273(3)C(35)-C(36)1.462(3)C(99)-Cl(2)1.417(3)C(99)-Cl(1)1.395(3)C(1)-Pd(1)-C(9)1.405(3)C(1)-Pd(1)-N(2)1.381(4)C(9)-Pd(1)-N(2)1.381(4)C(9)-Pd(1)-N(2)1.391(3)C(1)-Pd(1)-N(1)1.387(3)C(1)-Pd(1)-N(1)1.383(3)C(1)-Pd(1)-N(3)1.391(3)N(2)-Pd(1)-N(3)1.387(3)N(1)-Pd(1)-N(3)1.378(4)C(1)-Pd(1)-N(3)1.378(4)C(1)-Pd(1)-I(1)1.335(3)N(2)-Pd(1)-I(1)1.335(3)N(2)-Pd(1)-I(1)1.335(3)C(3)-N(1)-Pd(1)1.335(3)C(3)-N(1)-Pd(1)1.335(3)C(3)-N(1)-Pd(1)1.335(3)C(3)-N(1)-Pd(1)1.335(3)C(3)-N(1)-Pd(1)1.335(3)C(3)-N(1)-Pd(1)1.335(3)C(3)-N(1)-Pd(1)1.335(3)C(3)-N(1)-Pd(1)1.335(3)C(3)-N(1)-Pd(1)1.339(3)C(3)-N(1)-Pd(1)1.338(3)C(2)-C(1)-Pd(1)1.381(3)C(2)-C(1)-Pd(1)1.385(3)C(7)-C(2)-C(3)1.404(3)C(7)-C(2)-C(1)

Table 3. Bond lengths [Å] and angles [°].

C(3)-C(2)-C(1) 117.7	(2)	C(24)-C(23)-C(31)	120.99(19)
N(1)-C(3)-C(4) 125.4	(2)	C(25)-C(24)-C(23)	121.1(2)
N(1)-C(3)-C(2) 116.5	(2)	N(2)-C(25)-C(24)	120.4(2)
C(4)-C(3)-C(2) 118.1	(2)	N(2)-C(25)-C(26)	115.30(19)
C(5)-C(4)-C(3) 119.9	(2)	C(24)-C(25)-C(26)	124.2(2)
C(4)-C(5)-C(6) 121.8	(2)	N(3)-C(26)-C(27)	121.7(2)
C(7)-C(6)-C(5) 119.4	(2)	N(3)-C(26)-C(25)	115.00(19)
C(6)-C(7)-C(2) 119.6	(2)	C(27)-C(26)-C(25)	123.3(2)
O(1)-C(8)-N(1) 130.0	(2)	C(26)-C(27)-C(28)	119.9(2)
C(14)-C(9)-C(10)	120.5(2)	C(29)-C(28)-C(27)	117.4(2)
C(14)-C(9)-Pd(1)	129.97(17)	C(29)-C(28)-C(35)	122.8(2)
C(10)-C(9)-Pd(1)	109.37(15)	C(27)-C(28)-C(35)	119.9(2)
C(11)-C(10)-C(9)	119.8(2)	C(30)-C(29)-C(28)	119.6(2)
C(11)-C(10)-N(4)	121.9(2)	N(3)-C(30)-C(29)	122.8(2)
C(9)-C(10)-N(4)	118.19(19)	C(23)-C(31)-C(32)	111.60(18)
C(12)-C(11)-C(10)	119.3(2)	C(23)-C(31)-C(33)	110.20(18)
C(13)-C(12)-C(11)	120.8(2)	C(32)-C(31)-C(33)	108.95(18)
C(12)-C(13)-C(14)	120.5(2)	C(23)-C(31)-C(34)	108.10(18)
C(9)-C(14)-C(13)	118.9(2)	C(32)-C(31)-C(34)	108.62(19)
C(21)-N(2)-C(25)	119.20(19)	C(33)-C(31)-C(34)	109.34(19)
C(21)-N(2)-Pd(1)	123.76(15)	C(28)-C(35)-C(37)	109.18(18)
C(25)-N(2)-Pd(1)	116.99(14)	C(28)-C(35)-C(38)	111.79(19)
C(30)-N(3)-C(26)	118.68(19)	C(37)-C(35)-C(38)	108.6(2)
C(30)-N(3)-Pd(1)	126.74(15)	C(28)-C(35)-C(36)	108.56(19)
C(26)-N(3)-Pd(1)	114.37(14)	C(37)-C(35)-C(36)	109.5(2)
N(2)-C(21)-C(22)	122.3(2)	C(38)-C(35)-C(36)	109.2(2)
C(21)-C(22)-C(23)	120.3(2)	Cl(2)-C(99)-Cl(1)	112.95(16))
C(22)-C(23)-C(24)	116.6(2)		
C(22)-C(23)-C(31)	122.44(19)		

Table 4. Anisotropic displacement parameters ($Å^2x \ 10^3$). The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Pd(1)	15.7(1)	9.9(1)	9.1(1)	2.3(1)	3.0(1)	2.2(1)
l(1)	18.5(1)	16.0(1)	19.7(1)	8.1(1)	6.1(1)	2.4(1)
N(1)	20.1(10)	14.5(9)	16.5(10)	5.7(8)	5.7(8)	5.8(8)
C(1)	15.9(11)	12.2(10)	11.0(10)	3.6(9)	0.1(8)	-0.9(8)
N(4)	18.4(10)	13.8(9)	11.4(9)	3.5(8)	2.0(7)	3.1(8)
C(2)	15.1(11)	14.9(11)	16.3(11)	7.5(9)	2.6(9)	0.1(9)
C(3)	14.9(11)	15.0(11)	21.6(12)	9.2(10)	5.3(9)	2.0(9)
C(4)	19.6(12)	18.9(12)	28.7(13)	10.6(11)	5.5(10)	5.1(10)

C(5)	16.9(12)	26.1(13)	34.4(14)	18.8(12)	1.1(10)	5.4(10)
C(6)	17.5(12)	30.4(14)	22.9(13)	14.8(11)	-3.6(10)	-1.3(10)
C(7)	17.4(11)	20.5(12)	18.1(12)	8.3(10)	1.2(9)	0.6(9)
C(8)	19.2(12)	18.4(12)	27.8(13)	10.9(11)	8.2(10)	5.4(10)
O(1)	24.7(9)	20.9(9)	28.3(10)	6.3(8)	6.9(8)	7.6(7)
C(9)	15.8(10)	10.6(10)	13.9(10)	4.3(9)	3.7(8)	1.5(8)
C(10)	16.5(11)	14.1(11)	15.1(11)	6.8(9)	4.4(9)	2.7(9)
C(11)	24.4(12)	17.1(12)	18.3(12)	4.7(10)	8.7(10)	4.8(10)
C(12)	24.9(13)	20.0(12)	30.8(14)	13.7(11)	12.9(11)	10.5(10)
C(13)	16.9(11)	23.6(13)	28.4(13)	17.1(11)	2.7(10)	4.1(10)
C(14)	19.1(11)	16.6(11)	16.7(11)	8.7(10)	1.9(9)	0.1(9)
N(2)	17.8(9)	12.5(9)	9.9(9)	3.1(7)	3.1(7)	3.8(7)
N(3)	18.6(9)	12.4(9)	11.2(9)	3.9(8)	3.7(7)	1.9(7)
C(21)	20.1(11)	14.6(11)	10.0(10)	3.7(9)	3.2(9)	4.4(9)
C(22)	18.1(11)	18.8(11)	10.6(10)	6.6(9)	4.7(9)	5.3(9)
C(23)	12.3(10)	15.7(11)	15.1(11)	8.6(9)	3.8(8)	6.8(8)
C(24)	16.3(11)	12.6(10)	12.1(10)	3.3(9)	1.6(8)	3.3(8)
C(25)	17.6(11)	12.5(10)	10.3(10)	3.3(9)	4.4(8)	5.7(8)
C(26)	15.3(10)	14.2(11)	11.4(10)	5.6(9)	3.2(8)	4.8(8)
C(27)	16.1(11)	12.3(10)	12.5(10)	4.3(9)	3.1(9)	2.8(8)
C(28)	13.1(10)	16.1(11)	11.9(10)	5.3(9)	1.7(8)	6.7(8)
C(29)	20.2(11)	16.0(11)	13.4(11)	8.1(9)	4.5(9)	5.3(9)
C(30)	20.9(12)	15.1(11)	14.1(11)	6.1(9)	4.6(9)	3.1(9)
C(31)	12.4(10)	16.4(11)	13.8(11)	7.9(9)	0.2(8)	2.1(8)
C(32)	20.2(12)	28.1(13)	17.0(12)	11.4(11)	3.6(9)	-0.8(10)
C(33)	16.7(11)	22.3(12)	17.3(11)	10.5(10)	0.1(9)	0.9(9)
C(34)	19.7(12)	19.0(12)	31.5(14)	14.6(11)	5.0(10)	5.2(10)
C(35)	17.6(11)	19.9(12)	8.8(10)	4.0(9)	0.8(9)	1.9(9)
C(36)	17.9(12)	35.6(15)	21.5(13)	6.8(12)	-1.3(10)	3.4(11)
C(37)	24.0(12)	17.5(12)	13.5(11)	1.5(9)	4.1(9)	2.4(10)
C(38)	32.9(14)	28.9(14)	12.1(11)	8.2(11)	-0.1(10)	-1.9(11)
C(99)	31.0(16)	57(2)	44.9(18)	28.7(17)	14.3(14)	21.0(15)
CI(1)	39.5(4)	49.1(5)	39.0(4)	24.1(4)	5.5(3)	-5.2(3)
Cl(2)	37.4(4)	44.4(4)	43.8(4)	27.0(4)	6.5(3)	7.8(3)

	х	у	Z	U(eq)
H(4)	754	7735	1785	27
H(5)	-224	6938	-109	29
H(6)	472	5362	-1418	29
H(7)	2152	4521	-811	23
H(8)	3101	8145	4345	25
H(11)	5611	2706	183	24
H(12)	7359	2494	1366	28
H(13)	7908	3742	3264	26
H(14)	6675	5212	4037	21
H(21)	5480	6403	1217	18
H(22)	6907	7792	1184	19
H(24)	7309	9589	4534	17
H(27)	6969	9491	6051	17
H(29)	5171	7562	7255	19
H(30)	4274	6248	5418	20
H(32A)	8931	8854	1559	32
H(32B)	9038	10179	1762	32
H(32C)	7705	9344	1139	32
H(33A)	9124	10468	4515	28
H(33B)	9905	10809	3761	28
H(33C)	9782	9514	3651	28
H(34A)	6654	10727	2479	33
H(34B)	7963	11578	3176	33
H(34C)	7107	11104	3799	33
H(36A)	8493	8947	8098	42
H(36B)	8628	10269	8990	42
H(36C)	8490	9953	7686	42
H(37A)	6574	10973	7626	30
H(37B)	6765	11365	8947	30
H(37C)	5413	10710	8121	30
H(38A)	5434	9183	8824	39
H(38B)	6738	9906	9696	39
H(38C)	6677	8562	8895	39

H(99A) 10896 7000 4612 49 H(99B) 10240 5682 3899 49

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³).

D-HA d(D-H) d(HA))d(DA)<(DHA))	
C(24)-H(24)O(1)#1	0.95	2.48	3.426(3)	176.3
C(27)-H(27)O(1)#1	0.95	2.39	3.334(3)	172.5
C(33)-H(33C)O(1)#2	0.98	2.53	3.399(3)	147.3

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+2,-z+1 #2 x+1,y,z

3. Discussion on the NMR and IR spectra of complexes.

The ¹H NMR spectrum of N-(2-iodophenyl)formamide, measured in d₆-dmso solution at room temperature shows the presence of an equilibrium between two isomers in 0.32:1 molar ratio. In complexes **1** and **2** isomers may form not only because of the cis/trans equilibrium for the NH=CHO moiety they contain, but also because of the likely restricted rotation about the bond joining the nitrogen and the aromatic ring caused by the big steric demand of the I- or PdI(tBubpy)-ortho substituents in **1** and **2**, respectively. Additionally, the 2-iodiophenyl fragment in the iminobenzoyl moiety in 2 could adopt two orientations.

The presence of various isomers in the CDCl₃ solution of **1** is evidenced by the various Me (tBubpy) resonances. In spite of the fact that we carried out APT, HMQC and HMBC experiments in a Varian 600 spectrometer at room temperature and at - 60 °C, many of the 1H and 13C resonances can not be distinguished since they are overlapped, which also impeded to get accurate integrals from the ¹H NMR spectra. The presence of two v(NH) and two v(CO) bands in the IR spectrum of 1, at 3341, 3320 and 1698, 1683 cm⁻¹, respectively, suggests the presence of two isomers in the solid state.

The ¹H NMR spectrum of **2** in CDCl₃ shows three Me resonances, the central one having an intensity equal to the sum of the two others which is compatible with the presence of two isomers in solution in roughly 2:1 molar ratio. A continuum of multiplets in the 6.6-7.5 ppm region impedes any distinction. When we tried to measure a short-time ¹³C experiment (APT) abundant decomposition occurred and hence, no 2D spectra could be obtained which made also impossible to assign the ¹H NMR spectrum. We could not isolate complex **3**.