Supporting information for

Fast microwave treatments of single source alkoxides for nanostructured Li-ion battery electrodes

Josefa Vidal Laveda,^a Vibhuti Chandhok,^a Claire A. Murray,^b Gary W. Paterson,^c Donald A. MacLaren,^c and Serena A. Corr^{*a}

^a School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom

^b Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, United Kingdom.

^c School of Physics and Astronomy, University of Glasgow G12 8QQ, United Kingdom

Experimental procedure

Synthesis of [Fe(O^tBu)₂(THF)]₂

NaO^tBu (5.766 g, 60 mmol, Sigma Aldrich) and FeBr₂ (6.470 g, 30 mmol, Sigma Aldrich) were weighed in an Ar-filled glovebox and transferred to a Schlenk flask. Dry THF (90 mL) was added and the mixture was stirred at room temperature for 24 hr. After that, a grey precipitate of NaBr was formed and the liquid phase was transferred into a separate flask using a glass syringe. Finally, the solvent was evaporated under vacuum to yield extremely air sensitive grey-greenish crystals of [Fe(O^tBu)₂(THF)]₂. All the manipulations were performed under Ar using a Schlenk line.

Synthesis of "[Mn(O^tBu)₂(THF)]₂"

The same preparation method was followed using NaO^tBu (5.766 g, 60 mmol, Sigma Aldrich) and MnBr₂ (6.443 g, 30 mmol, Sigma Aldrich) in 90 mL of dry THF in order to synthesise the equivalent Mn-containing alkoxide " $[Mn(O^tBu)_2(THF)]_2$ ".

Synthesis of "[Fe_{0.5}Mn_{0.5}(O^tBu)₂(THF)]₂"

Similar salt elimination reactions were conducted to prepare the bimetallic alkoxide " $[Fe_{0.5}Mn_{0.5}(O^{t}Bu)_{2}(THF)]_{2}$ ". FeBr₂ (3.235 g, 15 mmol), MnBr₂ (3.221 g, 15 mmol) and NaO^tBu (5.766 g, 60 mmol) in 90 mL of dry THF were used in the preparation of " $[Fe_{0.5}Mn_{0.5}(O^{t}Bu)_{2}(THF)]_{2}$ ".

Microwave synthesis of $LiFe_{1-x}Mn_xPO_4$ (x=0, 0.5 and 1) nanostructures from "[$M(O^tBu)_2(THF)$]₂" (M=Fe or Mn) and "[$Fe_{0.5}Mn_{0.5}(O^tBu)_2(THF)$]₂" alkoxide precursors

In order to access the olivine $LiFe_{1-x}Mn_xPO_4$ phases, the metal alkoxide precursors $[Fe(O^tBu)_2(THF)]_2$, " $[Mn(O^tBu)_2(THF)]_2$ " and " $[Fe_{0.5}Mn_{0.5}(O^tBu)_2(THF)]_2$ " (0.030 g, 0.050 mmol) were individually mixed with LiOH.H₂O (0.007 g, 0.150 mmol, Sigma Aldrich) and crystalline H₃PO₄ (0.015 g, 0.150 mmol, Sigma Aldrich) in 4 mL of benzyl alcohol (Sigma Aldrich) and then irradiated with microwaves for 15 min at 80 °C and 10 min at 240 °C using a CEM Discover SP microwave synthesizer (2.45 GHz). The resulting products were washed thoroughly with ethanol (2 x 30 mL) and acetone (2 x 30 mL) to obtain the $LiMPO_4$ (*M*=Fe and Mn) powders. Finally, the materials were carbon coated with sucrose by mixing the obtained powders with sucrose (Sigma Aldrich) to obtain a final mixture of 15% carbon content and heating in a tube furnace for 1 hr at 700 °C under Ar flow.

Ultrasonic-assisted synthesis of Mn_3O_4 hausmannite from "[$Mn(O^tBu)_2(THF)$]₂" alkoxide precursor

As previously reported by Gun'ko *et al.*, the careful hydrolysis and ultrasonic treatment of $[Fe(O^tBu)_2(THF)]_2$ affords nanoparticles of magnetite (Fe_3O_4) . In this work, the remaining " $[Mn(O^tBu)_2(THF)]_2$ " and NaBr precipitate obtained after syringing out the " $[Mn(O^tBu)_2(THF)]_2$ " liquid phase was hydrolysed with 60 mL of degassed H₂O and kept in the ultrasonic bath for 1 hr to yield nanostructured Mn₃O₄ hausmannite. The addition of degassed H₂O and the ultrasonic treatment were repeated 6 times. After that, the obtained precipitate was washed again 4 times with 30 mL of distilled H₂O to completely remove the remaining NaBr. Mn₃O₄ nanoparticles were carbon coated with sucrose by mixing the obtained powders with sucrose to obtain a final mixture of 15% carbon content. Heat treatment of the mixture at 700 °C under Ar atmosphere leaded to the formation of the reduced oxide MnO due to the sucrose acting as a reducing agent. C/Mn₃O₄ powders were obtained simply by heating for 1 hr at 500 °C under air (heat treatment for 1 hr at 700 °C under air produced the oxidation of Mn₃O₄ to Mn₂O₃).

Structural characterization of $LiFe_{1-x}Mn_xPO_4$ (x=0, 0.5 and 1) and Mn_3O_4 hausmannite nanostructures

High resolution powder x-ray diffraction (XRD) analysis of the LiFe_{1-x}Mn_xPO₄ (x=0, 0.5 and 1) nanostructures prepared using the " $[M(O^{t}Bu)_{2}(THF)]_{2}$ " (*M*=Fe or Mn) and " $[Fe_{0.5}Mn_{0.5}(O^{t}Bu)_{2}(THF)]_{2}$ " alkoxide precursors were conducted at the I11 beamline at Diamond Light Source using 0.5 mm diameter glass capillaries. These high intensity X-rays (λ =0.825704 Å) can probe more deeply into the sample than conventional laboratory XRD diffractometers and allow to perform a more detailed structural analysis of our materials.

Powder x-ray diffraction (XRD) characterization of the brownish Mn_3O_4 hausmannite powders was carried out with a PANalytical X' Pert powder diffractometer using Cu K α radiation operated at 40 kV and 40 mA. The diffraction data were collected in the 2 θ range between 10 and 80° in steps size of 0.017 (2 θ) and an integration time of 2 s per step.

Electron microscopy of LiFe_{1-x}Mn_xPO₄ (x=0, 0.5 and 1) and Mn₃O₄ hausmannite nanostructures

Scanning electron microscopy (SEM) analysis were conducted using a Carl Zeiss Sigma variable pressure analytical SEM. SEM samples were prepared on carbon adhesive stubs and coated with 99:1 Au:Pt using a plasma sputter coater to avoid charging feedback. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were performed on a FEI Tecnai TF20 microscope fitted with a field emission gun, operated at 200 keV. TEM samples were dispersed in ethanol and the resulting solution was then dropped onto an amorphous holey carbon coated grid.

Electrochemical performance of $LiFe_{1-x}Mn_xPO_4$ (x=0 and 0.5) and Mn_3O_4 hausmannite nanostructures

Galvanostatic cycling with potential limitation of the electrode materials were conducted in a BioLogic VSP potentiostat using Swagelok type cells. The working electrode consisted of a mixture of C/LiFePO₄ (C/LiFe_{0.5}Mn_{0.5}PO₄ or C/Mn₃O₄):carbon black KET JENBACK EC-600JD (AkzoNobel):PTFE (polytetrafluoroethylene) (Fischer Scientific) in a 60:30:10 weight ratio pressed into a pellet. A thin plate of lithium metal (Sigma Aldrich, ribbon, thickness x W 0.75 mm x 45 mm 99.9% trace metal basis) was used as a counter electrode and the electrolyte solution employed was 1 M LiPF₆ dissolved in EC (ethylene carbonate):DEC (dymethyl carbonate) 1:1 molar ratio (Solvionic). (De)Assembly of the electrochemical cells were performed in an Ar-filled glovebox (0.5 ppm O₂; 0.5 ppm H₂O). The electrodes were thoroughly washed with THF and dried prior to XRD analysis of the cycled material.

Fig S1. Powder XRD pattern of LiFe_{0.5}Mn_{0.5}PO₄ prepared from stoichiometric mixture of $[Fe(O^tBu)_2(THF)]_2$ and "[Mn(O^tBu)₂(THF)]₂" alkoxide precursors. * indicates Fe₃O₄ impurities.

High resolution powder XRD data of LiFe_{1-x}Mn_xPO₄ (x=0, 0.5 and 1) nanostructures were fit by Rietveld analysis to the orthorhombic *Pnma* space group using Fullprof programme. The structural and profile parameters were refined according to a Thompson-Cox-Hastings pseudo-Voigt profile function and the refinement process order was the following: (i) scale factor (ii) the background was carefully modelled using a 6-coefficient polynomial function (iii) zero point and sample displacement correction, (iv) cell parameters, (v) profile parameters, (vi) atomic positions and finally (vii) atomic thermal displacement parameters (B_{iso})

Sample	LiFePO ₄	LiFe _{0.5} Mn _{0.5} PO ₄	LiMnPO ₄
Space group	Pnma	Pnma	Pnma
<i>a</i> (Å)	10.3267	10.3662	10.4492
<i>b</i> (Å)	6.0056	6.0348	6.1016
<i>c</i> (Å)	4.6925	4.7093	4.7459
$V(\text{\AA}^{-3})$	291.017	294.609	302.589
R_{wp}	19.0 %	20.5 %	25.0 %
R _{exp}	10.8 %	13.5 %	16.9 %
X^2	3.107	2.320	2.187

Table S1. Calculated lattice parameters from Rietveld refinements for the LiFe1-xMnxPO4 (x=0, 0.5 and 1)nanostructures prepared from metal alkoxide precursors.

Fig S2. Rietveld analysis of powder XRD data from hausmannite Mn_3O_4 nanoparticles [R_{wp} =19.5%, R_{exp} =15.87%, *a*=5.765502 Å, *b*=5.765502 Å and *c*=9.463403 Å].

Fig S3. High resolution TEM images of **(a)** and **(d)** LiFePO₄, **(b)** and **(e)** LiFe_{0.5}Mn_{0.5}PO₄ and **(c)** and **(f)** LiMnPO₄ nanostructures prepared from metal alkoxide precursors.

Fig S4. Voltage-composition profile between 2.2 and 4.0 V of C/LiFePO₄ (15% C sucrose), C black and PTFE in a 60:30:10 weight ratio cycled at C/20.

Fig S5. Cycling performance of C/LiFe_{0.5}Mn_{0.5}PO₄ (60% active material, 30% carbon black, 10% PTFE binder) cycled between 2.2 V and 4.0 V at C/20 rate.

Fig S6. Powder XRD of cycled C/LiFePO₄ between 2.2 and 4.0 V at different rates and for 20 cycles at C/20 in the discharge state.

Fig S7. Powder XRD of cycled C/LiFe $_{0.5}$ Mn $_{0.5}$ PO $_4$ between 2.2 and 4.3 V at different rates in the discharge state.

Fig S8. Cyclic voltammogram of (a) C/LiFePO₄ and (b) C/LiFe_{0.5}Mn_{0.5}PO₄ at 0.1 mV/s scan rate between 2.5 V and 4.5 V.

Fig S9 Cycling performance of C/Mn₃O₄, C black, PTFE (60:30:10 weight ratio) over the potential range of 0.01- 3.00 V at 100 mAh·g⁻¹.

Fig S10. Powder XRD of C/Mn₃O₄ hausmannite after heating for 1 hr at 500 $^{\circ}$ C and after 20 cycles between 0.01 and 3.00 V at a current density of 100 mA g⁻¹.

Fig S11. Close up of powder XRD of C/Mn₃O₄ hausmannite after 20 cycles, showing the possible presence of conversion product Li_2O after repeated cycles.

Fig S12. Cyclic voltammogram of C/Mn $_3O_4$ hausmannite at 0.1 mV/s scan rate between 0.01 and 3.00 V.