Supplementary Information

Unified synthesis of tirandamycins and streptolydigins

Hikaru Yoshimura,^a Keisuke Takahashi,^b Jun Ishihara,^a and Susumi Hatakeyama*^a

[†]Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan

[‡]Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan susumi@nagsaki-u.ac.jp

Table of Contents

Experimental Procedure and Characterization of Compounds	Page
General	S2
Experiments in Scheme 2 and Table 1	S2
Experiments in Scheme 3	S14
Experiments in Scheme 4	S22
NMR Comparison of Synthetic Products with Natural Products	S27
References	S32
Chiral HPLC Data and ¹ H and ¹³ C NMR Spectra	S33

General. Where appropriate, reactions were performed in flame-dried glassware under argon atmosphere. All extracts were dried over MgSO₄ and concentrated by rotary evaporation below 30 °C at 25 Torr unless otherwise noted. Commercial reagents and solvents were used as supplied with following exceptions. Acetonitrile (MeCN), benzene, dichrolomethane (CH₂Cl₂), *N*,*N*-dimethylformamide (DMF), methanol (MeOH), triethylamine (NEt₃), and toluene were distilled from CaH₂. Thin layer chromatography (TLC) was performed using precoated silica gel plates (0.2 or 0.5 mm thickness) and silica gel 60 RP-18 (0.25 mm thickness). Column chromatography was performed using silica gel (particle size 100-210 µm (regular), 40-50 µm (flash), 74-210 µm (ODS)). Optical rotations were recorded on digital polarimeter at ambient temperature. Infrared spectra (FTIR) were measured on a Fourier transform infrared spectrometer. ¹H NMR (400 and 500 MHz) and ¹³C NMR (100 and 125 MHz) spectra were measured using CDCl₃, CD₂Cl₂ (¹H: 5.32 ppm; ¹³C: 53.8 ppm), CD₃OD (¹H: 3.31 ppm; ¹³C: 49.0 ppm). Mass (MS) and high resolution mass (HRMS) spectra were taken in ESI, EI or FAB mode.

OTIPS

5-Methyl-4-(((triisopropylsilyl)oxy)methyl)furan-2-carbaldehyde (7). To an ice-cooled suspension of LiAlH₄ (9.0 g, 288 mmol) in Et₂O (216 mL) was
Slowly added a solution of ethyl 2-methyl-3-furancarboxylate (30 g, 192 mmol)

in Et₂O (192 mL). After stirring at 0 °C for 1 h, the reaction was carefully quenched with H₂O (15 mL) and the mixture was stirred at room temperature for 1 h. The mixture was filtered through Celite which was thoroughly washed with Et₂O. The combined filtrate and washings are dried and concentrated to give the corresponding alcohol (25 g) which was used for the next reaction without purification. To a solution of the crude alcohol (25 g) in CH₂Cl₂ (180 mL) was added imidazole (33 g, 480 mmol) and TIPSCl (61 mL, 288 mmol). After being stirred at room temperature for 12 h, the mixture was diluted with saturated NH₄Cl (200 mL) at 0 °C, extracted with AcOEt, dried, and concentrated. The residue was purified by column chromatography (SiO₂ 1 kg, hexane/AcOEt = 100:1) to give the TIPS ether (63 g) containing silicon impurities, which was used for the next reaction without further purification. To a solution of the TIPS ether (63 g) in THF (1.2 L) were added sec-BuLi (1.04 M in hexane, 200 mL, 208 mmol) at -78 °C. After stirring at -78 °C for 1 h, a solution of DMF (72 mL, 900 mmol) in THF (120 mL) was added dropwise over 1 h, and the mixture was stirred at -78 °C for 1 h and then at -50 °C for 1 h. The reaction was guenched with saturated NH₄Cl (200 mL) at 0 °C and the mixture was extracted with AcOEt. The extract was washed with brine, dried, concentrated, and chromatographed (SiO₂ 1 kg, hexane/AcOEt = 15:1 to 10:1) to give 7 (50 g, 88%) as a yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 9.50 (s, 1H), 7.22 (s, 1H), 4.63 (s, 2H), 2.39 (s, 3H), 1.20-1.05 (m, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 176.4, 155.0, 150.1, 123.4, 122.8, 56.7, 17.6, 12.1, 11.6; FT-IR (neat) 2943, 2864, 1680, 1525, 1461, 1132, 1075, 881, 683 cm⁻¹; MS (ESI) *m/z* 319 [(M+Na)⁺]; HRMS (ESI) calcd for C₁₆H₂₈NaO₃Si [(M+Na)⁺] 319.1705, found 319.1694.

(*S*)-1,1,1,3,3,3-Hexafluoropropan-2-yl2-(Hydroxy(5-methyl-4-(((triisopropylsilyl)oxy)-methyl)furan-2-yl)methyl)acrylate

CF₃ (((triisopropylsilyl)oxy)-methyl)furan-2-yl)methyl)acrylate (8).
 F₃ β-ICD (1.04 g, 1.4 mmol) was dissolved in THF (10 mL) and the solution was evaporated. After repeating this operation three times,

the amorphous residue was dried under vacuum at room temperature for 20 min. A solution of the dried β -ICD and aldehyde 7 (5.0 g, 16.9 mmol) in DMF (56 mL) was cooled to -55 °C, and HFIPA (3.7 mL, 22.0 mmol) was then added. After the mixture was stirred at -55 °C for 3 days, the reaction was quenched by the addition of 0.1 M HCl (50 mL). The mixture was extracted with EtOAc, washed with saturated NaHCO₃ and brine, dried, and concentrated. The residue was purified by column chromatography (SiO₂ 200 g, hexane/AcOEt = 20:1) to give **8** (6.14 g, 70%) as a colorless oil: $[\alpha]_D^{22}$ -28.4 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.61 (s, 1H), 6.31 (s, 1H), 6.20 (s, 1H), 5.80 (septet, *J* = 6.0 Hz, 1H), 5.58 (d, *J* = 5.2 Hz, 1H), 4.52 (s, 2H), 2.23 (s, 3H), 1.18-1.02 (m, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 162.3, 150.5, 148.3, 137.4, 130.0, 123.4 (q, ^{*I*}*J*_{C, *F*} = 281 Hz), 120.4, 109.1, 66.6 (septet, ^{*I*}*J*_{C, *F*} = 35 Hz), 66.2, 57.3, 17.9, 11.9, 11.7; FTIR (neat) 3382, 2946, 2868, 1757, 1638, 1464, 1385, 1230, 1203, 1117 cm⁻¹; MS (ESI) *m/z* 541 [(M+Na)⁺]; HRMS (ESI) calcd for C₂₂H₃₂F₆NaO₅Si [(M+Na)⁺] 541.1820, found 541.1813.

(S)-Methyl 2-(Hydroxy(5-methyl-4-(((triisopropylsilyl)oxy)methyl)furan-2-yl)methyl)acrylate (9). To a solution of 8 (5.19 g, 10.0 mmol) in MeOH (100 mL) was added NEt₃ (6.9 mL, 50 mmol) at 0 °C. After

⁹ stirring at room temperature for 1 h, the reaction was quenched by the addition of Dowex-50 (5 g) at 0 °C. The mixture was filtered, concentrated, and chromatographed (flash, SiO₂ 100 g, hexane/AcOEt = 10:1) to give **9** (3.83 g, 100%) as a yellow oil which was determined to be 99% ee by HPLC analysis on a chiral stationary phase: $[\alpha]_D^{23}$ –13.5 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.35 (s, 1H), 6.16 (s, 1H), 5.95 (s, 1H), 5.50 (s, 1H), 4.51 (s, 2H), 3.73 (s, 3H), 3.10 (brs, 1H), 2.23 (s, 3H), 1.18-1.01 (m, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 151.4, 147.8, 139.5, 130.0, 126.4, 120.1, 108.6, 67.0, 57.4, 51.9, 17.9, 11.9, 11.8; FTIR (neat) 3448, 2943, 2865, 1725, 1630, 1437, 1219, 1144,

1062 cm⁻¹; MS (ESI) *m/z* 405 [(M+Na)⁺]; HRMS (ESI) calcd for $C_{20}H_{34}NaO_5Si$ [(M+Na)⁺] 405.2073, found 405.2080. HPLC conditions: Danicel Chiralcel AD-H, 2-propanol/hexane = 1/100 (1 mm/min), t_R = 17.8 min (*S*) and 20.8 min (*R*).

Hydrogenation of Ester 8 (Entry 1). To an ice-cooled solution of **8** (52 mg, 0.10 mmol) in CH_2Cl_2 (2 mL) were added 10% Pd/C (5 mg). After being stirred under hydrogen atmosphere at 0 °C for 1 h, the mixture was filtered through Celite which was washed with CH_2Cl_2 . The combined filtrate and washings were concentrated and purified by preparative TLC (hexane/AcOEt = 5:1) to give the corresponding *syn*-product (13 mg, 24%) and *anti*-product (37 mg, 72%).

syn-Product, a colorless oil: $[\alpha]_D^{27}$ –1.6 (*c* 0.78, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.26 (s, 1H), 5.73 (septet, *J* = 6.0 Hz, 1H), 4.96 (d, *J* = 6.4 Hz, 1H), 4.52 (s, 2H), 3.20-3.10 (m, 1H), 2.30-2.21 (m, 4H), 1.34 (d, *J* = 6.8 Hz, 3H), 1.12-1.05 (m, 21H); ¹³C NMR (100

MHz, CDCl₃) δ 171.1, 150.7, 147.8, 120.3 (q, ${}^{l}J_{C, F} = 282$ Hz), 120.2, 108.8, 68.3, 66.4 (septet, ${}^{l}J_{C, F} = 34$ Hz), 57.4, 44.1, 17.9, 12.0, 11.9, 11.7; FTIR (neat) 3412, 2946, 2863, 1779, 1467, 1384, 1292, 1234, 1115 cm⁻¹; MS (EI) *m/z* 103, 131, 253, 329, 459, 477(100), 520 (M)⁺; HRMS (ESI) calcd for C₂₂H₃₄F₆O₅Si (M)⁺ 520.2087, found 520.2080.

anti-Product, a colorless oil: $[\alpha]_D^{27}$ -14.5 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.30 (s, 1H), 5.83 (septet, *J* = 6.0 Hz, 1H), 4.76 (d, *J* = 8.4 Hz, 1H), 4.55 (s, 2H), 3.26-3.19 (m, 1H), 2.46 (brs, 1H), ³ 2.24 (s, 3H), 1.14 (d, *J* = 6.8 Hz, 3H), 1.12-1.00 (m, 21H); ¹³C NMR

(100 MHz, CDCl₃) δ 171.9, 150.2, 148.1, 120.4 (q, ${}^{I}J_{C,F} = 279$ Hz), 120.2, 109.8, 69.4, 66.4 (septet, ${}^{I}J_{C,F} = 35$ Hz), 57.3, 44.6, 17.9, 13.8, 11.9, 11.8; FTIR (neat) 3461, 2946, 2866, 1735, 1459, 1376, 1205, 1065, 885, 807 cm⁻¹; MS (ESI) *m/z* 543 [(M+Na)⁺]; HRMS (ESI) calcd for C₂₂H₃₄F₆NaO₅Si [(M+Na)⁺] 543.2079, found 543.2053.

Hydrogenation of Ester 9 (Entry 2). To an ice-cooled solution of **9** (38 mg, 0.10 mmol) in CH_2Cl_2 (2 mL) were added 10% Pd/C (4 mg). After being stirred under hydrogen atmosphere at 0 °C for 1 h, the mixture was filtered through Celite which was washed with CH_2Cl_2 . The combined filtrate and washings were concentrated, and purified by preparative TLC (hexane/AcOEt = 5:1) to give the corresponding *syn*-product **10** (10 mg, 26%) and *anti*-product (27 mg, 72%).

 $\begin{array}{l} \begin{array}{l} \text{anti-Product, a colorless oil: } [\alpha]_{D}^{27} -23.0 \ (c \ 1.00, \ CHCl_{3}); \ ^{1}H \ NM \\ R \ (400 \ MHz, \ CDCl_{3}) \ \delta \ 6.25 \ (s, \ 1H), \ 4.69 \ (dd, \ J = \ 6.4, \ 7.6 \ Hz, \ 1 \\ H), \ 4.54 \ (s, \ 2H), \ 3.74 \ (s, \ 3H), \ 3.00 \ (qd, \ J = \ 7.6, \ 14.2 \ Hz, \ 1H), \ 2. \\ 93 \ (d, \ J = \ 6.4 \ Hz, \ 1H), \ 1.18-1.01 \ (m, \ 24H); \ ^{13}C \ NMR \ (100 \ MHz, \ CDCl_{3}) \ \delta \ 175.9, \ 151.2, \ 147.6, \ 120.0, \ 109.1, \ 69.8, \ 57.4, \ 51.9, \ 44.4, \ 17.9, \ 14.3, \ 11.9, \ 11.8; \ FTIR \ (neat) \ 3473, \ 2944, \ 2866, \ 1740, \ 1461, \ 1378, \ 1169, \ 1063, \ 883, \ 804 \ cm^{-1}; \ MS \ (ESI) \ m/z \ 407 \ [(M+Na)^+]; \ HRMS \ (ESI) \ calcd \ for \ C_{20}H_{36}NaO_{5}Si \ [(M+Na)^+] \ 407.2229, \ found \ 407.2226. \end{array}$

MgBr₂-mediated Hydrogenation of Ester 8 (Entry 3). To an ice-cooled solution of **8** (56 mg, 0.11 mmol) in CH₂Cl₂ (1 mL) were added MgBr₂ (30 mg, 0.16 mmol) and 10% Pd/C (28 mg). After being stirred under hydrogen atmosphere at 0 °C for 5 h and then at room temperature for 1 h, the mixture was filtered through Celite which was washed with CH₂Cl₂. The combined filtrate and washings were washed with saturated NaHCO₃ and brine, dried, concentrated, and purified by preparative TLC (hexane/AcOEt = 5:1) to give the corresponding the *syn*-product (28 mg, 49%) and the *anti*-product (28 mg, 49%) as a colorless oil, respectively.

Synthesis of Compound 10 by MgBr₂-mediated Hydrogenation of Ester 9 (Entry 4). To an ice-cooled solution of 9 (27.6 g, 72 mmol) in CH_2Cl_2 (500 mL) were added MgBr₂ (20.0 g, 108 mmol) and 10% Pd/C (14.0 g). After being stirred under hydrogen atmosphere at 0 °C for 5 h and then at room temperature for 1 h, the mixture was filtered through Celite which was washed with CH_2Cl_2 . The combined filtrate and washings were washed with saturated NaHCO₃ and brine, dried, concentrated, and chromatographed (SiO₂ 350 g, hexane/AcOEt = 7:1) to give **10** (26.0 g, 94%) as a colorless oil.

OTIPS (2S,3S)-Methyl 2-Methyl-3-(5-methyl-4-(((triisopropylsilyl)oxy)methyl)furan-2-yl)-3-((triethylsilyl)oxy)propanoate. To an ice-cooled II O solution of 10 (23.8 g, 62 mmol) in CH₂Cl₂ (124 mL) were added TESCl TESŌ (25.8 mL, 155 mmol), DIPEA (42.2 mL, 248 mmol), and DMAP (0.76 g, 6.2 mmol), and the mixture was stirred at 0 °C for 30 min. The mixture was diluted with CH₂Cl₂, and washed with saturated NH₄Cl, dried, concentrated, and chromatographed (SiO₂ 300 g, hexane/AcOEt = 70:1) to give the TES ether (29.6 g, 96%) as a colorless oil: $[\alpha]_D^{28}$ –21.1 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.14 (s, 1H), 4.90 (d, J = 6.7 Hz, 1H), 4.51 (s, 2H), 3.58 (s, 3H), 2.86 (qd, J = 6.7, 6.8 Hz, 1H), 2.20 (s, 3H), 1.21 (d, J = 6.8 Hz, 3H), 1.17-1.00 (m, 21H), 0.87 (t, J = 8.1 Hz, 9H), 0.52 (q, J = 8.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 174.5, 152.6, 146.6, 119.9, 108.0, 69.6, 57.5, 51.4, 45.9, 17.9, 12.2, 11.9, 11.7, 6.6, 4.6; FTIR (neat) 2946, 2868, 1742, 1460, 1248, 1140, 1066 cm⁻¹; MS (EI) *m/z* 73, 135, 193, 265, 267, 325, 367, 411, 441, 498 (M⁺); HRMS (EI) calcd for C₂₆H₅₀O₅Si₂ (M⁺) 498.3197, found 498.3175.

(2S,3S)-2-Methyl-3-(5-methyl-4-(((triisopropylsilyl)oxy)methyl)furan-

OTIPS O TESO 11

2-yl)-3-((triethyl-silyl)oxy)propanal (11). To a solution of the TES ether (14.2 g, 28.5 mmol) in CH_2Cl_2 (285 mL) was added DIBAL-H (1.02 M in hexane, 50 mL, 51.3 mol) at -94 °C. After stirring at -94 °C for 1 h, the

reaction was quenched by the addition of isopropanol (2 M in CH₂Cl₂, 200 mL, 400 mol) and the mixture was allowed to warm to 0 °C. Saturated Rochelle salt (100 mL) was added and the mixture was vigorously stirred at room temperature for 6 h. The mixture was extracted with AcOEt, dried over Na₂SO₄, concentrated, and chromatographed (SiO₂ 450 g, hexane/AcOEt = 50:1) to afford **11** (13.0 g, 98%) as colorless oil: $[\alpha]_D^{28}$ –18.4 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 1H), 6.18 (s, 1H), 4.94 (d, *J* = 5.2 Hz, 1H), 4.53 (s, 2H), 2.76 (qd, *J* = 5.2, 6.8 Hz, 1H), 2.20 (s, 3H), 1.17-1.02 (m, 24H), 0.88 (t, *J* = 7.8 Hz, 9H), 0.53 (q, *J* = 7.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 204.0, 151.7, 147.1, 120.1, 109.0, 68.6, 57.4, 52.1, 17.9, 12.0, 11.8, 9.2, 6.6, 4.6; FTIR (neat) 2949, 2872, 1728, 1460, 1387, 1227, 1071, 1009 cm⁻¹; MS (EI) *m/z* 73, 103, 115, 181, 238, 253, 337, 411(100), 425, 468 (M⁺); HRMS (EI) calcd for C₂₅H₄₈O₄Si₂ (M⁺) 468.3091, found 468.3089.

(3S,4R,5S)-Methyl 3-Hydroxy-4-methyl-5-(5-methyl-4-

(((triisopropylsilyl)oxy)methyl)furan-2-yl)-2-methylene-5-

((triethylsilyl)oxy)pentanoate (12). α -ICPN (62 mg, 0.2 mmol) was dissolved in THF (2 mL) and the solution was evaporated at room

temperature. After repeating this operation three times, the amorphous residue was dried

under vacuum at room temperature for 10 min. A solution of the dried α -ICPN and 11 (468 mg, 1.0 mmol) in DMF (3.3 mL) was cooled to -55 °C, and HFIPA (680 µL, 4.0 mmol) was then added. After stirring at -55 °C for 3 days, the reaction was quenched by the addition of 0.1 M HCl (4 mL). The mixture was extracted with AcOEt, washed with saturated NaHCO₃ and brine, dried, and concentrated. Short column chromatography (SiO₂ 10 g, hexane/AcOEt = 75:1 to 20:1) gave the recovered 11 (114 mg, 20%) and the impure HFIPA ester (450 mg), the latter of which was dissolved into MeOH (2 mL). The solution was stirred at room temperature for 6 h, concentrated, and chromatographed (SiO₂ 6 g, hexane/AcOEt = 30:1 to 20:1) to give 12 (376 mg, 68%; 86% based on the recovered 11) as a colorless oil: $\left[\alpha\right]_{D}^{27}$ -24.7 (c 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.28 (s, 1H), 6.18 (s, 1H), 5.84(s, 1H), 5.04 (d, J = 2.4 Hz, 1H), 4.54 (s, 2H), 4.41 (t, J = 7.1 Hz, 1H), 3.91 (d, J = 6.6 Hz, 1H), 3.76 (s, 3H), 2.202 (s, 3H), 2.15 (ddt, J = 2.4, 6.6, 7.2 Hz, 1H), 1.17-1.06 (m, 21H), 0.91 (t, J = 8.1Hz, 9H), 0.85 (d, J = 7.2 Hz, 3H), 0.55 (q, J = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 152.8, 146.5, 141.6, 126.7, 119.9, 108.5, 74.9, 69.8, 57.5, 51.8, 42.9, 17.9, 12.0, 11.8, 11.7, 6.7, 4.6; FTIR (neat) 3509, 2948, 2870, 1723, 1461, 1221, 1083 cm⁻¹; MS (ESI) *m/z* 577 $[(M+Na)^{+}]$; HRMS (ESI) calcd for C₂₉H₅₄NaO₆Si₂ $[(M+Na)^{+}]$ 577.3356, found 577.3344.

(2*S*,3*S*,4*R*,5*S*)-Methyl 3-Hydroxy-2,4-dimethyl-5-(5-methyl-4-(((triisopropylsilyl)oxy)methyl)furan-2-yl)-5-((triethylsilyl)oxy)pentanoate (13). A mixture of 12 (19.6 g, 35.3 mmol) and bicyclo[2.2.1]hepta-2,5-diene 1,4-bis(diphenylphosphino)butane-

rhodium trifluoromethanesulfonate (816 mg, 1.06 mmol) in CH₂Cl₂ (137 mL) was stirred at 0 °C under hydrogen atmosphere. After being stirred at 0 °C for 1 h, the mixture was filtered through SiO₂ which was washed with AcOEt. The filtrate and washings were concentrated and chromatographed (SiO₂ 600 g, hexane/AcOEt = 50:1) to give **13** (17.2 g, 87%) as a colorless oil: $[\alpha]_D^{29}$ –17.2 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.17 (s, 1H), 5.01 (d, *J* = 2.7 Hz, 1H), 4.54 (s, 2H), 3.67 (s, 3H), 3.66-3.55 (m, 1H), 2.71-2.64 (m, 1H), 2.21 (s, 3H), 1.97-1.91 (m, 1H), 1.27 (d, *J* = 7.1 Hz, 3H), 1.18-1.02 (m, 21H), 0.93-0.88 (m, 12H), 0.54 (q, *J* = 8.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 153.0, 146.3, 119.9, 108.3, 75.8, 70.3, 57.5, 51.5, 42.3, 41.9, 17.9, 14.8, 12.0, 11.8, 11.5, 6.6, 4.6; FTIR (neat) 3516, 2949, 2873, 1723, 1459, 1375, 1070 cm⁻¹; MS (ESI) *m/z* 579 [(M+Na)⁺]; HRMS (ESI) calcd for C₂₉H₅₆NaO₆Si₂[(M+Na)⁺] 579.3513, found 579.3532.

OTIPS(2S,3S,4R,5S)-Methyl 2,4-Dimethyl-5-(5-methyl-4-(((triiso-
propylsilyl)oxy)methyl)furan-2-yl)-3,5-bis((triethylsilyl)oxy)-

TESO OTES **pentanoate.** To an ice-cooled solution of **13** (104 mg, 0.187 mmol) in CH₂Cl₂ (1 mL) were added TESOTf (136 μL, 0.56 mmol) and 2,6-lutidine (130 μL, 1.12 mmol), and the mixture was stirred at 0 °C for 30 min. The mixture was extracted with AcOEt, and the extract was washed with saturated NH₄Cl, dried, and concentrated. The residue was purified by column chromatography (SiO₂ 10 g, hexane/AcOEt = 40:1) to afford the bis-TES ether (114 mg, 91%) as a colorless oil: $[\alpha]_D^{29}$ –4.1 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.11 (s, 1H), 4.55 (d, *J* = 8.6 Hz, 1H), 4.54 (s, 2H), 3.76 (dd, *J* = 3.4, 7.2 Hz, 1H), 3.60 (s, 3H), 2.42-2.35 (m, 1H), 2.24-2.18 (m, 4H), 1.18-1.03 (m, 24H), 1.01 (d, *J* = 7.6 Hz, 3H), 0.94-0.82 (m, 18H), 0.60-0.45 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 153.3, 146.4, 120.0, 108.9, 75.6, 68.9, 57.5, 51.6, 43.9, 43.8, 17.9, 13.8, 12.2, 12.0, 11.7, 6.8, 6.7, 5.1, 4.8; FTIR (neat) 2950, 2875, 1740, 1460, 1376, 1241, 1065, 1008 cm⁻¹; MS (ESI) *m/z* 693 [(M+Na)⁺]; HRMS (ESI) calcd for C₃₅H₇₀NaO₆Si₃ [(M+Na)⁺] 693.4377, found 693.4359.

(2R,3R,4R,5S)-2,4-Dimethyl-5-(5-methyl-4-(((triisopropylsilyl)-

oxy)methyl)furan-2-yl)-3,5-bis((triethylsilyl)oxy)pentan-1-ol. To a solution of the bis-TES ether (90 mg, 0.134 mmol) in CH₂Cl₂ (1.4 mL) were added DIBAL-H (1.04 M in hexane, 0.27 mL, 0.28 mol) at

-78 °C, and the mixture was stirred at -78 °C for 1 h. The reaction was quenched with saturated Rochelle salt (2 mL), and the mixture was stirred vigorously at room temperature for 6 h. The mixture was extracted with CH₂Cl₂, dried, concentrated, and chromatographed (SiO₂ 5 g, hexane/AcOEt = 25:1) to give the alcohol (74 mg, 87%) as a colorless oil: $[\alpha]_D^{29}$ -29.4 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.09 (s, 1H), 4.54 (s, 2H), 4.33 (d, *J* = 9.2 Hz, 1H), 3.76-3.69 (m, 1H), 3.55-3.47 (m, 1H), 3.40 (t, *J* = 4.0 Hz, 1H), 2.91 (t, *J* = 6.4 Hz, 1H), 2.32-2.23 (m, 1H), 2.23 (s, 3H), 1.71 (brs, 1H), 1.13 (d, *J* = 7.2 Hz, 3H), 1.11-1.03 (m, 21H), 0.96-0.81 (m, 21H), 0.58 (q, *J* = 8.0 Hz, 6H), 0.49 (q, *J* = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 146.6, 120.0, 109.0, 78.4, 69.8, 66.6, 57.4, 46.2, 35.6, 17.9, 16.9, 11.9, 11.7, 11.3, 6.8, 6.7, 4.8, 4.7; FTIR (neat) 3455, 2951, 2875, 1461, 1415, 1238, 1059, 1008 cm⁻¹; MS (ESI) *m/z* 665 [(M+Na)⁺]; HRMS (ESI) calcd for C₃₄H₇₀NaO₅Si₃[(M+Na)⁺] 665.4428, found 665.4417.

(4*R*,5*R*,6*S*,7*S*,*E*)-Ethyl 7-Hydroxy-2,4,6-trimethyl-7-(5methyl-4-(((triisopropylsilyl)oxy)methyl)furan-2-yl)-5-((triethylsilyl)oxy)hept-2-enoate (4). To a mixture of the alcohol (850 mg, 1.32 mmol) and molecular sieves 4 Å (8.5 g, preactivated at 200 °C for 2 h) in CH₂Cl₂ (40 mL) were added NMO (323 mg, 2.64 mmol) and TPAP (146 mg, 0.396 mmol) at 0 °C. After being stirred at room temperature for 1 h, the mixture was filtered through Celite which was washed with CH₂Cl₂. The combined filtrate and washings were concentrated to give the aldehyde. The crude aldehyde was dissolved in toluene (30 mL) and ethyl 2-(triphenylphosphoranylidene)propionate (1.4 g, 3.96 mmol) was added. After being heated at reflux for 16 h, the mixture was cooled to room temperature, concentrated, and chromatographed (SiO₂ 50 g, hexane/AcOEt, 30:1) to give the corresponding α , β -unsaturated ester (840 mg) as a little impure yellow oil which was used for the next reaction without further purification. The α , β -unsaturated ester (840 mg) was dissolved in THF (17 mL), and H₂O (1.7 mL) and AcOH (5 mL) were added at room temperature. After being stirred at room temperature for 36 h, the mixture was diluted with saturated NaHCO₃ (20 mL) at 0 °C, extracted with AcOEt, dried, and concentrated. The residue was purified by column chromatography (SiO₂ 30 g, hexane/AcOEt = 20:1 to 5:1) to give 4 (708 mg, 74%) as a colorless oil: $[\alpha]_D^{27}$ +20.8 (c 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.78 (dd, J = 1.4, 10.0 Hz, 1H), 6.18 (s, 1H), 5.04 (s, 1H), 4.54 (s, 2H), 4.25-4.15 (m, 2H), 3.70 (dd, J = 3.8, 6.3Hz, 1H), 3.07 (s, 1H), 2.89-2.80 (m, 1H), 2.24 (s, 3H), 2.10-2.02 (m, 1H), 1.87 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H), 1.18-0.94 (m, 36H), 0.65 (g, J = 8.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 153.2, 146.4, 144.8, 127.6, 119.9, 107.2, 80.9, 68.3, 60.4, 57.6, 39.7, 37.5, 18.0, 17.3, 14.2, 12.6, 12.0, 11.8, 11.6, 6.9, 5.3; FTIR (neat) 3498, 2950, 2870, 1709, 1461, 1379, 1237, 1090, 738 cm⁻¹; MS (ESI) m/z 633 [(M+Na)⁺]; HRMS (ESI) calcd for C₃₃H₆₂NaO₆Si₂ $[(M+Na)^+]$ 633.3982, found 633.3972.

(4R,5R,6S,E)-Ethyl 6-((2S)-6-Hydroxy-6-methyl-3-oxo-5-(((triisopropylsilyl)oxy)methyl)-3,6-dihydro-2H-pyran-2-yl)-2,4-dimethyl-5-((triethylsilyl)oxy)hept-2-enoate (5).

To an ice-cooled solution of **4** (7.5 g, 12.2 mmol) in CH₂Cl₂ (407 mL) was added *m*CPBA (75% purity, 4.8 g, 20.7 mmol). After stirring at 0 °C for 2 h, the reaction was quenched with saturated NaHSO₃ (200 mL) and the mixture was extracted with CH₂Cl₂. The extract was washed with saturated NaHCO₃ and brine, dried, concentrated, chromatographed (SiO₂ 30 g, hexane/AcOEt = 5:1) to give **5** (7.6 g, 92%), a colorless oil, as a 6:1 epimeric mixture. Major epimer: $[\alpha]_D^{27}$ +10.7 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.02 (dd, *J* = 1.4, 10.0 Hz, 1H), 6.24-6.22 (m, 1H), 4.63 (s, 1H), 4.48-4.47 (m, 2H), 4.25-4.15 (m, 2H), 3.75 (dd, *J* = 2.2, 8.0 Hz, 1H), 3.07 (s, 1H), 2.77-2.71 (m, 1H), 2.42-2.33 (m, 1H), 2.10-2.02 (m, 1H), 1.84 (d, *J* = 1.4 Hz, 3H), 1.57 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.18-0.98 (m, 30H), 0.73-0.67

(m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 197.7, 168.7, 160.8, 143.7, 126.9, 121.4, 107.2, 93.4, 74.9, 61.5, 60.4, 39.3, 36.8, 26.5, 17.9, 14.1, 12.5, 11.8, 10.8, 7.0, 5.5; FTIR (neat) 3410, 2944, 2873, 1710, 1683, 1458, 1379, 1219, 1137 cm⁻¹; MS (ESI) *m/z* 649 [(M+Na)⁺]; HRMS (ESI) calcd for C₃₃H₆₂NaO₇Si₂ [(M+Na)⁺] 649.3931, found 649.3938.

(4*R*,*E*)-Ethyl 4-((3*R*,4*R*)-1,4-Dimethyl-6-oxo-8-(((triisopropylsilyl)oxy)methyl)-2,9-dioxabicyclo[3.3.1]non-7-en-3-y l)-2-methylpent-2-enoate (1).

Method A: To a solution of 5 (50 mg, 80 µmol) in MeCN (19 mL) were added 48% HF (5.0 µL, 0.12 mmol) and 25% H₂SiF₆ (5.4 µL, 0.12 mmol) at room temperature. After stirring at room temperature for 20 min, saturated K₂CO₃ (1 mL) was added and the mixture was extracted with AcOEt. The extract was washed with H₂O and brine, dried, concentrated, and purified by preparative TLC (hexane/AcOEt = 10:1) to give 1 (29 mg, 74%) as a colorless oil. Method B: To a solution of 5 (7.1 g, 11.3 mmol) in Ac₂O (110 mL) was added I₂ (1.47 g, 5.3 mmol) at -10 °C. After stirring at -10 °C for 3 h, the reaction was quenched with saturated Na₂S₂O₃ (50 mL) and the mixture was extracted with AcOEt. The extract was washed with saturated NaHCO₃ and brine, dried, and concentrated. The residue was purified by flash column chromatography (SiO₂ 300 g, hexane/AcOEt = 10:1) to give 1 (3.0 g, 54%) as a colorless oil: $[\alpha]_D^{28}$ –110.5 (*c* 1.00, CHCl₃) [lit.¹ $[\alpha]_D^{28}$ +105.5 (*c* 1.45, CHCl₃) (enantiomer)]; ¹H NMR (400 MHz, CDCl₃) δ 6.90 (dd, J = 1.4, 10.3 Hz, 1H), 6.53 (s, 1H), 4.52 (dd, J = 2.2, 18.2 Hz, 1H), 4.25-4.15 (m, 2H), 4.04 (d, J = 6.1 Hz, 1H), 3.44 (dd, J = 2.2, 11.5 Hz, 1H), 2.85-2.73 (m, 1H), 2.06-1.96 (m, 1H), 1.85 (d, J = 1.4 Hz, 3H), 1.53 (s, 3H), 1.32 (t, J = 7.1Hz, 3H), 1.14-1.05 (m, 21H), 1.02 (d, J = 6.9 Hz, 3H), 0.73 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) & 195.4, 168.0, 158.2, 141.3, 128.5, 123.3, 94.7, 78.9, 76.7, 60.8, 60.6, 34.0, 33.4, 24.0, 17.9, 17.6, 16.4, 14.2, 12.4, 12.2, 11.8, 11.6; FTIR (neat) 2942, 2866, 1709, 1686, 1459, 1383, 1252, 1138 cm⁻¹; MS (ESI) m/z 517 [(M+Na)⁺]; HRMS (ESI) calcd for $C_{27}H_{46}NaO_6Si[(M+Na)^+]$ 517.2961, found 517.2958.

TIPSO

(4*R*,*E*)-Ethyl 4-((3*R*,4*R*,6*R*)-6-Hydroxy-1,4-dimethyl-8-(((triisopropylsilyl)oxy)methyl)-2,9-dioxabicyclo[3.3.1]non-

7-en-3-yl)-2-methylpent-2-enoate (14). To an ice-cooled solution of **1** (960 mg, 1.94 mmol) in MeOH (96 mL) were added CeCl₃ (513 mg, 1.94 mmol) and NaBH₄ (581 mg, 15.5 mmol), and the mixture was stirred at 0 °C for 5 min. The reaction was quenched with 10% HCl (10 mL) and added water (50 mL), then the mixture was

extracted with AcOEt. The extract was washed with saturated NaHCO₃, dried, concentrated,

and purified by flash column chromatography (SiO₂ 50 g, toluene/AcOEt = 20:1) to give **14** (950 mg, 95%) as a colorless oil: $[\alpha]_D^{28}$ +2.4 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.92 (dd, *J* = 1.4, 10.3 Hz, 1H), 6.13-6.12 (m, 1H), 4.89 (brs, 1H), 4.30 (dd, *J* = 2.2, 3.4 Hz, 1H), 4.22-4.28 (m, 2H), 4.00 (d, *J* = 4.4 Hz, 1H), 3.75 (dd, *J* = 2.3, 11.2 Hz, 1H), 2.83-2.72 (m, 1H), 2.08-1.99 (m, 1H), 1.85 (d, *J* = 1.4 Hz, 3H), 1.38 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H), 1.14-1.08 (m, 21H), 1.01 (d, *J* = 7.1 Hz, 3H), 0.95 (d, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 142.1, 136.3, 128.0, 126.0, 94.6, 76.1, 73.2, 68.8, 60.8, 60.4, 36.0, 34.1, 24.2, 18.0, 16.4, 14.2, 12.9, 12.3, 11.9; FTIR (neat) 3472, 2941, 2866, 1708, 1459, 1379, 1252, 1038 cm⁻¹; MS (ESI) *m/z* 519 [(M+Na)⁺]; HRMS (ESI) calcd for C₂₇H₄₈NaO₆Si [(M+Na)⁺] 519.3117, found 519.3127.

(4*R*,*E*)-Ethyl 4-((2*S*,4*R*,5*S*,7*R*,8*R*)-5-Hydroxy-1,7dimethyl-2-(((triisopropylsilyl)oxy)methyl)-3,9,10trioxatricyclo-[4.3.1.0^{2,4}]decan-8-yl)-2-methylpent-2-enoate.

To an ice-cooled solution of **14** (45 mg, 91 µmol) in CH₂Cl₂ (2 mL) and H₂O (61 µL) were added NaH₂PO₃ (13.6 mg, 0.113 mmol) and *m*CPBA (75% purity, 26.4 mg, 0.115 mmol). After stirring at room temperature for 24 h, the reaction was quenched with saturated NaHSO₃ (10 mL) and the mixture was extracted with AcOEt. The extract was washed with saturated NaHCO₃ and brine, dried, concentrated, and purified by preparative TLC (hexane/AcOEt = 5:1) to give the epoxy alcohol (36 mg, 77%) as a colorless oil: $[\alpha]_D^{28}$ +17.7 (*c* 0.51, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.90 (dd, *J* = 1.4, 10.3 Hz, 1H), 4.42 (dd, *J* = 5.2, 7.1 Hz, 1H), 4.22-4.18 (m, 2H), 4.08-3.98 (m, 3H), 3.94 (dd, *J* = 2.2, 11.6 Hz, 1H), 3.56 (d, *J* = 1.0 Hz, 1H), 2.83-2.76 (m, 1H), 2.08-2.01 (m, 1H), 1.86 (d, *J* = 1.4 Hz, 3H), 1.41 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H), 1.14-1.07 (m, 24H), 0.95 (d, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 140.9, 128.3, 95.3, 75.6, 71.3, 67.0, 60.5, 59.3, 59.1, 59.0, 36.1, 34.3, 22.9, 17.9, 16.4, 14.2, 12.9, 12.3, 11.8; FTIR (neat) 3498, 2941, 2866, 1705, 1459, 1379, 1248, 1038 cm⁻¹; MS (ESI) *m*/z 535 [(M+Na)⁺]; HRMS (ESI) calcd for C₂₇H₄₈NaO₇Si [(M+Na)⁺] 535.3067, found 535.3079.

(4R,E)-4-((2S,4S,7R,8R)-1,7-Dimethyl-5-oxo-2-(((triiso-propylsilyl)oxy)methyl)-3,9,10-trioxatricyclo[4.3.1.0^{2,4}]-

decan-8-yl)-2-methylpent-2-enal (15). To a solution of the epoxy alcohol (31 mg, 61 μ mol) in CH₂Cl₂ (4.3 mL) was added DIBAL-H (1.04 M in hexane, 0.29 mL, 0.30 mmol) at -78 °C, and the mixture was stirred at -78 °C for 1 h. The reaction was quenched with saturated Rochelle salt (4 mL), and the mixture was stirred at room temperature for 6 h. The mixture was extracted with CH₂Cl₂, dried, and concentrated. The crude diol was dissolved in CH₂Cl₂ (4.3 mL) and molecular sieves 4 Å (300 mg, preactivated at 200 °C for 2 h) and PDC (183 mg, 0.49 mmol) were added at room temperature. After being stirred at room temperature for1 h, the mixture was filtered through Celite which was washed with CH₂Cl₂. The combined filtrate and washings were concentrated and purified by preparative TLC (hexane/AcOEt = 3:1) to give **15** (27 mg, 95%) as a colorless oil: $[\alpha]_D^{26}$ +3.9 (*c* 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.46 (s, 1H), 6.63 (dd, *J* = 1.1, 10.1 Hz, 1H), 4.15 (d, *J* = 12.0 Hz, 1H), 4.06 (d, *J* = 12.0 Hz, 1H), 4.05 (d, *J* = 12.0 Hz, 1H), 3.72 (s, 1H), 3.67 (dd, *J* = 1.9, 11.7 Hz, 1H), 3.00-2.94 (m, 1H), 2.02-1.91 (m, 1H), 1.77 (d, *J* = 1.3 Hz, 3H), 1.56 (s, 3H), 1.17 (d, *J* = 7.1 Hz, 3H), 1.08-1.14 (m, 21H), 0.75 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.1, 195.0, 151.9, 140.0, 96.0, 78.5, 76.7, 60.1, 58.2, 56.4, 34.6, 34.3, 23.3, 17.9, 16.4, 11.7, 11.4, 9.3; FTIR (neat) 2941, 2866, 1726, 1689, 1463, 1375, 1140, 1008 cm⁻¹; MS (EI) *m*/*z* 466 (M⁺); HRMS (EI) calcd for C₂₅H₄₂O₆Si (M⁺) 466.2750, found 466.2758.

e N-(2,4-Dimethoxybenzyl)tirandamycin B

TIPS Ether. To an ice-cooled solution of phosphonate **16** (60 mg, 0.14 mmol) in THF

(2 mL) was stirred was added KO'Bu (27 mg, 0.24 mmol), and the mixture was stirred at 0 °C for 2 h. A solution of **10** (32 mg, 70 µmol) in THF (0.5 mL) was added at 0 °C and stirring was continued at 0 °C for 24 h. The reaction was quenched with 1% HCl (2 mL) and the mixture was extracted with Et₂O. The extract was washed with brine, filtered using a glass funnel plugged with lab wiper, concentrated, and chromatographed (ODS 5 g, MeCN/H₂O = 10:1) to give the title compound (45 mg, 80%) as a yellow oil: $[\alpha]_D^{25}$ –14.1 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 15.6 Hz, 1H), 7.19-7.11 (m, 2H), 6.47-6.43 (m, 2H), 6.14 (d, *J* = 10.1 Hz, 1H), 4.50 (s, 2H), 4.13-3.99 (m, 3H), 3.80 (s, 3H), 3.79 (s, 3H), 3.67-3.54 (m, 4H), 2.84-2.76 (m, 1H), 2.01-1.88 (m, 4H), 1.53 (s, 3H), 1.09-1.00 (m, 24H), 0.71 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.4, 192.0, 173.6, 173.3, 160.9, 158.5, 148.5, 142.5, 134.8, 131.2, 116.9, 116.2, 104.3, 101.0, 98.5, 95.8, 78.6, 77.2, 60.1, 58.1, 56.4, 55.6, 55.3, 40.0, 34.5, 34.4, 23.3, 17.9, 17.7, 16.9, 12.2, 11.7, 11.3; FTIR (neat) 3420, 2940, 2866, 1726, 1702, 1644, 1617, 1572, 1508, 1468, 1376, 1294, 1272, 1136, 1003 cm⁻¹; MS (ESI) *m/z* 762 [(M+Na)⁺]; HRMS (ESI) calcd for C₄₀H₅₇NNaO₁₀Si [(M+Na)⁺] 762.3649, found 762.3675.

Tirandamycin B TIPS Ether. To a solution of N-(2,4-dimethoxybenzyl)tirandamycin B TIPS ether (90 mg, 123 μ mol) in CH₂Cl₂ (4.5 mL) were added

thioanisole (720 µL, 6 mmol) and TFA (4.5 mL) at room temperature. After being stirred at room temperature for 2 h, the mixture was diluted with ice water (15 mL), extracted with CH₂Cl₂, washed with saturated NaHCO₃, filtered using a glass funnel plugged with lab wiper, and concentrated. The residue was purified by reverse phase column chromatography (ODS 15 g, MeCN/H₂O = 10:1 to 2:1) to give the title compound (58.2 mg, 81%) as a yellow oil: $[\alpha]_D^{26}$ –21.8 (*c* 0.485, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 15.8 Hz, 1H), 7.16 (d, *J* = 15.8 Hz, 1H), 6.20 (d, *J* = 10.4 Hz, 1H), 5.80 (brs, 1H), 4.14 (d, *J* = 12.4 Hz, 1H), 4.05 (d, *J* = 12.0 Hz, 1H), 4.03 (d, *J* = 5.6 Hz, 1H), 3.82 (s, 2H), 3.63 (s, 2H), 3.62 (d, *J* = 12.0 Hz, 1H), 2.87-2.80 (m, 1H), 2.02-1.90 (m, 4H), 1.54 (s, 3H), 1.15-1.01 (m, 24H), 0.73 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.4, 192.6, 176.5, 174.9, 149.5, 143.4, 134.9, 116.7, 100.1, 95.9, 78.6, 77.2, 60.1, 58.1, 56.4, 51.6, 34.6, 34.4, 23.3, 17.8, 16.9, 12.2, 11.7, 11.4; FTIR (neat) 3442, 2860, 1725, 1658, 1617, 1566, 1455, 1215, 1139, 1062, 1001 cm⁻¹; MS (ESI) *m/z* 612 [(M+Na)⁺]; HRMS (ESI) calcd for C₃₁H₄₇NNaO₈Si [(M+Na)⁺] 612.2968, found 612.2984.

(-)-Tirandamycin B. To a solution of tirandamycin B TIPS ether (58 mg, 98 μ mol) in MeCN (18 mL) was added HF·pyridine (630 μ L) at room tempeature. After

being stirred at room temperature for 24 h, the mixture was diluted with ice water (20 mL), extracted with AcOEt, washed with saturated NaHCO₃, filtered using a glass funnel plugged with lab wiper, and concentrated. The residue was purified by reverse phase column chromatography (ODS 15 g, MeCN/H₂O = 1:1) to give tirandamycin B (35 mg, 82%) as a yellow oil: $[\alpha]_D^{24}$ –8.1 (*c* 0.36, EtOH) [lit.² $[\alpha]_D^{25}$ –8.0 (*c* 0.55, EtOH)]; ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, *J* = 15.5 Hz, 1H), 7.16 (d, *J* = 15.5 Hz, 1H), 6.18 (d, *J* = 10.0 Hz, 1H), 6.29 (brs, 1H), 4.04 (d, *J* = 6.0 Hz, 1H), 3.99 (brs, 1H), 3.98 (brs, 1H), 3.80 (s, 1H), 3.70 (s, 1H), 3.66 (d, *J* = 7.0 Hz, 1H), 2.90-2.80 (m, 1H), 2.03-1.97 (m, 1H), 1.91 (s, 3H), 1.57 (s, 3H), 1.12 (d, *J* = 7.0 Hz, 3H), 0.72 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 201.4, 192.6, 176.5, 175.1, 149.6, 143.3, 135.0, 116.8, 100.1, 95.9, 78.7, 77.3, 59.3, 58.0, 56.8, 51.6, 34.5, 34.5, 23.3, 16.9, 12.3, 11.4; FTIR (neat) 3450, 2968, 2928, 2864, 1718, 1658, 1617, 1566, 1455, 1144, 1112, 1013, cm⁻¹; MS (EI) *m/z* 75, 93, 185, 255, 257, 369, 433 (M⁺); HRMS (EI) calcd for C₂₂H₂₇NO₈ (M⁺) 433.1737, found 433.1757.

(4*R*,*E*)-Ethyl 4-((3*R*,4*R*)-8-(Hydroxymethyl)-1,4-dimethyl-6-oxo-2,9-dioxabicyclo[3.3.1]non-7-en-3-yl)-2-methylpent-2-

enoate. To a solution of **1** (750 mg, 1.53 mmol) in MeCN (300 mL) was added HF pyridine (9.0 mL) at room temperature. After being stirred for 1 day, the mixture was basified with saturated NaHCO₃, extracted with AcOEt, washed with brine, dried, and concentrated. The residue was purified by column chromatography (SiO₂ 30 g, hexane/AcOEt = 2:1 to 3:2) to give the title compound (503 mg, 97%) as a colorless oil: $[\alpha]_D^{23}$ -144.6 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.90 (dd, *J* = 1.6, 10.4 Hz, 1H), 6.45 (s, 1H), 4.45 (d, *J* = 17.2 Hz, 1H), 4.28-4.20 (m, 3H), 4.06 (d, *J* = 6.0 Hz, 1H), 3.49 (dd, *J* = 2.0, 11.6 Hz, 1H), 2.83-2.73 (m, 1H), 2.05-1.98 (m, 1H), 1.96-1.84 (m, 4H), 1.53 (s, 3H), 1.32 (t, *J* = 7.2 Hz, 3H), 1.04 (d, *J* = 6.8 Hz, 3H), 0.72 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.2, 168.1, 157.5, 141.2, 128.5, 123.6, 94.8, 78.8, 76.9, 60.6, 60.5, 34.0, 33.4, 24.0, 16.4, 14.2, 12.4, 11.6; FTIR (neat) 3474, 2971, 2937, 1709, 1682, 1451, 1387, 1292, 1255, 1125 cm⁻¹; MS (ESI) *m/z* 361 [(M+Na)⁺]; HRMS (ESI) calcd for C₁₈H₂₆NaO₆ [(M+Na)⁺] 361.1627, found 361.1619.

(4*R*,*E*)-Ethyl 4-((3*R*,4*R*)-8-(Chloromethyl)-1,4-dimethyl-6oxo-2,9-dioxabicyclo[3.3.1]non-7-en-3-yl)-2-methylpent-2-

enoate (17). To a solution of the alcohol (319 mg, 0.941 mmol) in DMF (9.4 mL) were added NEt₃ (524 μL, 3.76 mmol), LiCl (120 mg, 2.82 mmol) and MsCl (146 μL, 1.88 mmol) at -40 °C, and the mixture was stirred at -40 °C for 30 min and then at room temperature for 90 min, the reaction was quenched with saturated NH₄Cl (10 mL) and extracted with AcOEt. The extract was washed with brine, dried, concentrated, and chromatographed (SiO₂ 30 g, hexane/AcOEt = 7:1) to give **17** (287 mg, 85%) as a colorless oil: $[\alpha]_D^{23}$ -195.5 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.90 (d, *J* = 10.4 Hz, 1H), 6.47 (s, 1H), 4.28-4.19 (m, 3H), 4.23-4.06 (m, 2H), 3.46 (dd, *J* = 2.0, 11.6 Hz, 1H), 2.83-2.75 (m, 1H), 2.08-1.99 (m, 1H), 1.85 (d, *J* = 1.2 Hz, 3H), 1.61 (s, 3H), 1.32 (t, *J* = 7.2 Hz, 3H), 1.05 (d, *J* = 6.8 Hz, 3H), 0.72 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.9, 167.9, 151.9, 141.0, 128.6, 127.5, 95.3, 78.8, 76.9, 60.6, 41.7, 34.0, 33.5, 24.2, 16.4, 14.2, 12.4, 11.5; FTIR (neat) 2976, 2933, 1704, 1650, 1455, 1380, 1254, 1123, 1003 cm⁻¹; MS (EI) *m/z* 43, 67, 95, 109, 141, 181, 215, 311, 356 (M⁺); HRMS (EI) calcd for C₁₈H₂₅ClO₅ (M⁺) 356.1391, found: 356.1399.

(4R,E)-ethyl 2-methyl-4-((3R,4R)-1,4,8-trimethyl-6-oxo-2,9-

dioxabicyclo[3.3.1]non-7-en-3-yl)pent-2-enoate (2). To a solution of 17 (128 mg, 0.36 mmol) in benzene (6 mL) were added AIBN

(8.8 mg, 54 μmol) and ^{*n*}Bu₃SnH (194 μL, 0.72 mol) at room temperature, and the mixture was heated at reflux for 40 min. The mixture was cooled to room temperature and additional AIBN (6.8 mg, 42 μmol) was added, and the mixture was heated at reflux for 50 min. After being cooled to room temperature, the mixture was evaporated and chromatographed (toluene/AcOEt = 20:1) to give **2** (102 mg, 88%) as a colorless oil: $[\alpha]_D^{27}$ –172.2 (*c* 0.40, CHCl₃) [lit.³ [α]_D –185.2 (*c* 1.50, CHCl₃)]; ¹H NMR (400 MHz, CDCl₃) δ 6.91 (d, *J* = 1.2, 10.6 Hz, 1H), 6.11 (s, 1H), 4.22 (q, *J* = 7.2 Hz, 2H), 4.03 (d, *J* = 6.4 Hz, 1H), 3.41 (dd, *J* = 2.0, 11.2 Hz, 1H), 2.81-2.72 (m, 1H), 2.05-1.93 (m, 4H), 1.85 (d, *J* = 1.2 Hz, 3H), 1.56 (s, 3H), 1.32 (t, *J* = 6.8 Hz, 3H), 1.04 (d, *J* = 6.8 Hz, 3H), 0.76 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.2, 168.1, 155.8, 141.3, 128.5, 127.1, 96.0, 79.0, 60.6, 34.0, 33.5, 24.4, 19.2, 16.5, 14.3, 12.4, 11.6; FTIR (neat) 2976, 1708, 1684, 1455, 1378, 1243, 1217, 1008 cm⁻¹; MS (EI) *m/z* 43, 99, 169, 181, 277, 322 (M⁺); HRMS (EI) calcd for C₁₈H₂₆O₅ (M⁺) 322.178, found: 322.1773.

(4*R*,*E*)-ethyl 4-((3*R*,4*R*,6*R*)-6-hydroxy-1,4,8-trimethyl-2,9dioxabicyclo[3.3.1]non-7-en-3-yl)-2-methylpent-2-enoate.

To an ice-cooled solution of **2** (80 mg, 249 µmol) in MeOH (12.4 mL) were added CeCl₃ (66 mg, 249 µmol) and NaBH₄ (74.9 mg, 1.98 mmol), and the mixture was stirred at 0 °C for 5 min. The reaction was quenched with 10% HCl (0.5 mL) and the mixture was extracted with AcOEt. The extract was washed with saturated NaHCO₃, dried, concentrated, and chromatographed (SiO₂ 5 g, hexane/AcOEt = 2:1) to give the title compound (79.6 mg, 99%) as a colorless oil: $[\alpha]_D^{24}$ +1.9 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.93 (d, *J* = 10.4 Hz, 1H), 5.71 (s, 1H), 4.78 (brs, 1H), 4.25-4.15 (m, 2H), 3.96 (t, *J* = 5.6 Hz, 1H), 3.71 (dd, *J* = 1.6, 11.0 Hz, 1H), 2.82-2.72 (m, 1H), 2.08-1.98 (m, 1H), 1.85 (s, 3H), 1.63 (s, 3H), 1.42 (s, 3H), 1.31 (t, *J* = 7.2 Hz, 3H), 1.03 (d, *J* = 6.8 Hz, 3H), 0.94 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 142.4, 133.6, 128.2, 128.0, 95.8, 76.3, 73.4, 68.8, 60.5, 36.1, 34.1, 24.2, 17.7, 16.5, 14.3, 12.9, 12.4; FTIR (neat) 3470, 2978, 1707, 1446, 1375, 1304, 1243, 1107 cm⁻¹; MS (EI) *m/z* 58, 91, 114, 137, 165, 183, 211, 261, 279, 324 (M⁺); HRMS (EI) calcd for C₁₈H₂₈O₅ (M⁺) 324.1937, found: 324.1941.

(4*R*,*E*)-Ethyl 4-((2*S*,4*R*,5*S*,7*R*,8*R*)-5-Hydroxy-1,2,7-trimethyl-.^{CO}₂Et 3,9,10-trioxatricyclo[4.3.1.0^{2,4}]decan-8-yl)-2-methylpent-2-

enoate. To an ice-cooled solution of the allylic alcohol (12 mg, 36 µmol) in CH₂Cl₂ (2.8 mL) and H₂O (24 µL) were added NaH₂PO₃ (6.8 mg, 57 µmol) and *m*CPBA (75% purity, 12.3 mg, 54 µmol). After stirring at room temperature for 24 h, the reaction was quenched with saturated NaHSO₃ (5 mL), and the mixture was extracted with AcOEt. The extract was washed with saturated NaHCO₃ and brine, dried, concentrated, and purified by preparative TLC (hexane/AcOEt = 2:1) to give the title epoxide (10 mg, 82%) as a colorless oil: $[\alpha]_D^{25}$ +13.9 (*c* 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.91 (dd, *J* = 1.2, 10.4 Hz, 1H), 4.41 (dd, *J* = 5.2, 7.6 Hz, 1H), 4.25-4.18 (m, 2H), 3.98 (t, *J* = 5.2 Hz, 1H), 3.90 (dd, *J* = 2.0, 11.6 Hz, 1H), 3.18 (s, 1H), 2.84-2.76 (m, 1H), 2.10-2.01 (m, 1H), 1.86 (d, *J* = 1.2 Hz, 1H), 1.76 (brs, 1H), 1.42 (s, 3H), 1.39 (s, 3H), 1.31 (t, *J* = 7.2 Hz, 3H), 1.12 (d, *J* = 6.8 Hz, 3H), 0.95 (d, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 141.2, 128.2, 96.2, 75.6, 71.6, 66.9, 64.0, 60.6, 56.2, 36.1, 34.3, 21.9, 16.5, 16.3, 14.2, 12.9, 12.4; FTIR (neat) 3479, 2978, 1708, 1451, 1375, 1304, 1240, 1129 cm⁻¹; MS (EI) *m/z* 43, 98, 125, 142, 165, 199, 295, 340 (M⁺); HRMS (EI) calcd for C₁₈H₂₆O₆ (M⁺) 340.1886, found: 340.1878.

(4*R*,*E*)-2-Methyl-4-((2*S*,4*S*,7*R*,8*R*)-1,2,7-trimethyl-5-oxo-3,9,10trioxatricyclo[4.3.1.0^{2,4}]decan-8-yl)pent-2-enal (18). To a solution

of the epoxy ester (35 mg, 102 µmol) in CH₂Cl₂ (7 mL) were added DIBAL-H (1.02 M in hexane, 0.5 mL, 0.51 mmol) at -78 °C, and the mixture was stirred at -78 °C for 1 h. The reaction was guenched with saturated Rochelle salt (5 mL) and the mixture was stirred at room temperature for 6 h. The mixture was extracted with CH₂Cl₂, dried, and concentrated. The residue was dissolved in CH₂Cl₂ (7 mL), and molecular sieves 4 Å (350 mg, preactivated at 200 °C for 2 h) and PDC (305 mg, 0.8 mmol) were added at room temperature. After being stirred at room temperature for 1 h, the mixture was filtered through Celite which was washed with CH₂Cl₂. The combined filtrate and washings were concentrated, and purified by preparative TLC (hexane/AcOEt = 2:1) to give 18 (17.4 mg, 58%) as a colorless oil: $[\alpha]_D^{22}$ +23.8 (c 0.245, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.46 (s, 1H), 6.65 (dd, J = 1.2, 10.4 Hz, 1H), 4.04 (d, J = 6.0 Hz, 1H), 3.63 (dd, J = 2.0, 11.6 Hz, 1H), 3.30 (s, 1H), 3.01-2.93 (m, 1H), 2.00-1.91 (m, 1H), 1.77 (d, J = 1.2 Hz, 1H), 1.59 (s, 3H), 1.49 (s, 3H), 1.19 (d, J = 6.8 Hz, 3H), 0.74 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.8, 195.1, 152.0, 140.0, 96.9, 78.6, 77.2, 61.2, 57.0, 34.8, 34.3, 22.6, 16.5, 15.6, 11.4, 9.3; FTIR (neat) 2974, 2937, 1725, 1685, 1451, 1379, 1142, 1008 cm⁻¹; MS (EI) *m/z* 69, 109, 137, 155, 181, 197, 237, 252, 294 (M⁺); HRMS (EI) calcd for C₁₆H₂₂O₅ (M⁺) 294.1467,

N-(2,4-Dimethoxybenzyl)tirandamycin A. To an ice-cooled solution of phosphonate 16 (14 mg, 32 μ mol) in THF (1 mL) was added KO'Bu (7.3 mg,

65 μmol), and the mixture was stirred at 0 °C for 2 h. A solution of **18** (4.8 mg, 16 μmol) in THF (0.5 mL) was added at 0 °C and stirring was continued at 0 °C for 24 h. The reaction was quenched with 1% HCl (0.5 mL) and the mixture was extracted with Et₂O. The extract was washed with brine, filtered using a glass funnel plugged with lab wiper, concentrated, and purified by reverse phase preparative TLC (MeCN/H₂O = 5:1) to give the title compound (5.7 mg, 62%) as a yellow oil: $[\alpha]_D^{28}$ –8.5 (*c* 0.500, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 15.6 Hz, 1H), 7.18 (d, *J* = 5.2 Hz, 1H), 7.12 (d, *J* = 15.6 Hz, 1H), 6.45 (m, 2H), 6.17 (d, *J* = 9.6 Hz, 1H), 4.57 (s, 2H), 4.01 (d, *J* = 6.0 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.65 (s, 2H), 3.56 (dd, *J* = 1.6, 11.6 Hz, 1H), 3.27 (s, 1H), 2.87-2.80 (m, 1H), 2.02-1.86 (m, 4H), 1.56 (s, 3H), 1.46 (s, 3H), 1.12 (d, *J* = 7.2 Hz, 3H), 0.71 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.5, 192.1, 173.6, 173.4, 160.9, 158.6, 148.6, 142.7, 134.8, 131.3, 116.9, 116.1, 104.4, 101.1, 98.5, 96.8, 78.7, 77.2, 61.2, 57.0, 55.6, 55.4, 40.0, 34.7, 34.4, 22.6, 16.9, 15.6, 12.2, 11.4; FTIR (neat) 2965, 2853, 1705, 1618, 1578, 1463, 1292, 1212, 1148, 1013 cm⁻¹; MS (FAB) *m/z* 79, 154, 232, 307, 430, 567 (M⁺); HRMS (FAB) calcd for C₃₁H₃₇NO₉ (M⁺) 567.2468, found: 567.2463.

(+)-Tirandamycin A. To a solution of *N*-(dimethoxybenzyl)tirandamycin A (7.6 mg, 13 μ mol) was added TFA (1 mL) at room temperature, and the mixture was stirred for 30 min.

The mixture was diluted with ice water (2 mL), extracted with CH₂Cl₂, washed with saturated NaHCO₃, filtered using a glass funnel plugged with lab wiper, and concentrated. The residue was purified by reverse phase column chromatography (ODS 2 g, CH₃CN:H₂O, 2:1) to give tirandamycin A (4.6 mg, 82%) as a yellow oil: $[\alpha]_D^{28}$ +3.7 (*c* 0.251, EtOH) [lit.² $[\alpha]_D^{25}$ +4 (*c* 0.5, EtOH)]; ¹H NMR (500 MHz, CD₂Cl₂) δ 7.58 (d, *J* = 15.5 Hz, 1H), 7.15 (d, *J* = 16 Hz, 1H), 6.24 (d, *J* = 10.0 Hz, 1H), 5.77 (brs, 1H), 3.98 (d, *J* = 6.0 Hz, 1H), 3.78 (s, 2H), 3.60 (d, *J* = 10.0 Hz, 1H), 3.25 (s, 1H), 2.89-2.83 (m, 1H), 2.00-1.91 (m, 4H), 1.53 (s, 3H), 1.45 (s, 3H), 1.13 (d, *J* = 7.0 Hz, 3H), 0.70 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CD₂Cl₂) δ 202.9, 192.8, 176.7, 175.0, 149.7, 144.2, 135.2, 116.8, 97.1, 79.2, 77.2, 61.4, 57.3, 51.9, 35.0, 34.8, 22.7, 17.0, 15.7, 12.3, 11.5; FTIR (neat) 3400, 2924, 1722, 1654, 1614, 1574, 1472, 1143, 1005 cm⁻¹; MS (ESI) *m/z* 440 [(M+Na)⁺]; HRMS (ESI) calcd for C₂₂H₂₇NNaO₇[(M+Na)⁺]

(R,2E)-Ethyl 4-((1S,3R,5R,6R)-6-Chloro-1,4,8-trimethyl-2,9-

dioxabicyclo[3.3.1]non-7-en-3-yl)-2-methylpent-2-enoate (19). To an ice-cooled solution of the above-mentioned allylic alcohol (80 mg, 0.25 mmol), prepared by Luche reduction of **2**, in THF (6 mL)

were added NEt₃ (116 µL, 1.5 mmol), MsCl (311 µL, 2.2 mmol) and LiCl (79 mg, 1.8 mmol). After being heated at reflux for 3 h, the mixture was diluted with AcOEt, washed with saturated NH₄Cl and brine, dried, and concentrated. The residue was purified by column chromatography (SiO₂ 5 g, toluene/AcOEt = 30:1) to give **19** (54 mg, 66%) as a colorless oil: $[\alpha]_D^{23}$ –152.9 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.89 (dd, *J* = 1.2, 10.0 Hz, 1H), 5.90 (d, *J* = 4.8 Hz, 1H), 4.38 (d, *J* = 4.8 Hz, 1H), 4.21 (qd, *J* = 1.2, 6.8 Hz, 2H), 4.14 (d, *J* = 15.6 Hz, 1H), 3.32 (dd, *J* = 2.4, 11.6 Hz, 1H), 2.75-2.68 (m, 1H), 2.00-1.93 (m, 1H), 1.84 (d, *J* = 1.2 Hz, 3H), 1.71 (s, 3H), 1.50 (s, 3H), 1.32 (t, *J* = 6.8 Hz, 3H), 1.02 (d, *J* = 7.6 Hz, 3H), 0.77 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 141.6, 136.6, 128.2, 123.8, 95.2, 77.9, 75.8, 60.5, 51.3, 34.3, 34.1, 23.8, 18.1, 16.3, 14.2, 12.8, 12.4; FTIR (neat) 2971, 1710, 1452, 1382, 1303, 1247, 1132, 1056 cm⁻¹; MS (EI) *m/z* 43, 109, 137, 143, 201, 297, 307, 342 (M⁺); HRMS (EI) calcd for C₁₈H₂₇³⁵ClO₄ (M⁺) 342.1598, found: 342.1593. The stereostructure was determined by the significant nOe between C3-H and C6-H in the NOESY spectrum.

(*R*,*E*)-2-Methyl-4-((1*R*,3*R*,4*S*,5*R*)-1,4,8-trimethyl-2,9-dioxa-

bicyclo[3.3.1]non-7-en-3-yl)pent-2-en-1-ol. To a solution of **19** (30 mg, 32 µmol) in benzene (1.5 mL) were added AIBN (3.5 mg, 8 µmol) and "Bu₃SnH (47 µL, 32 µmol) at room temperature, and the mixture was heated at reflux for 1 h. After being cooled to room temperature, the mixture was evaporated and chromatographed (SiO₂ 5 g, toluene/AcOEt = 20:1) to give the dechlorinated compound (28 mg) contaminated by some impurities, which was used for the next reaction without purification. To a solution of crude product (28 mg) in CH₂Cl₂ (1 mL) were added DIBAL-H (1.02 M in hexane, 70 µL, 67 µmol) at -78 °C, and the mixture was stirred at -78 °C for 1 h. The reaction was quenched with saturated Rochelle salt (1 mL) at -78 °C, and the mixture was allowed to warm to room temperature and stirred for 6 h. The mixture was extracted with CH₂Cl₂, dried, concentrated, and chromatographed (SiO₂ 5 g, toluene/AcOEt = 5:1) to give the alcohol (23 mg, 69%) as a colorless oil: $[\alpha]_D^{27}$ -47.2 (*c* 0.55, CHCl₃) [lit.⁴ $[\alpha]_D^{29}$ -44.3 (*c* 1.00, CHCl₃)]; ¹H NMR (400 MHz, CDCl₃) δ 5.69 (d, *J* = 1.6 Hz, 1H), 5.60 (dd, *J* = 1.2, 10.0 Hz, 1H), 4.03 (d, *J* = 5.2 Hz,

2H), 3.95 (t, J = 6.4 Hz, 1H), 3.43 (dd, J = 2.0, 11.0 Hz, 1H), 2.65-2.55 (m, 1H), 2.45-2.32 (m, 1H), 1.99-1.92 (m, 1H), 1.69 (d, J = 1.6 Hz, 3H), 1.61 (s, 3H), 1.41 (s, 3H), 0.98 (d, J = 7.2 Hz, 3H), 0.68 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.1, 132.7, 127.2, 123.1, 95.3, 77.3, 71.1, 69.3, 34.6, 33.0, 24.4, 24.2, 18.4, 17.6, 13.7, 13.4; FTIR (neat) 3466, 2960, 2933, 1447, 1375, 1228, 1192, 1120, 1049 cm⁻¹; MS (EI) *m/z* 43, 109, 167, 235, 266 (M⁺); HRMS (EI) calcd for C₁₆H₂₆O₃ (M⁺) 266.1882, found: 266.1877.

(R,E)-2-Methyl-4-((1R,3R,4S,5R)-1,4,8-trimethyl-2,9-dioxa-

bicyclo[3.3.1]non-7-en-3-yl)pent-2-ena (20). To a stirred solution of

the alcohol (20.5 mg, 77 μmol) and iodobenzene diacetate (37.2 mg, 115 μmol) in CH₂Cl₂ (1 mL) was added TEMPO (1.2 mg, 8 μmol) at room temperature, and the mixture was stirred for 1 h. The reaction was quenched by the addition of saturated NaHCO₃ (5 mL) followed by saturated Na₂S₂O₃ (5 mL). The mixture was extracted with CH₂Cl₂, dried over Na₂SO₄, concentrated, and chromatographed (SiO₂ 3 g, hexane/AcOEt = 5:1) to give **20** (19 mg, 94%) as a pale yellow oil: $[\alpha]_D^{28}$ –44.2 (*c* 1.05, CHCl₃) [lit.⁴ $[\alpha]_D^{29}$ –40.2 (*c* = 0.7, CHCl₃)]; ¹H NMR (400 MHz, CDCl₃): δ 9.46 (s, 1H), 6.75 (dd, *J* = 1.2, 10.4 Hz, 1H), 5.71 (br s, 1H), 3.96 (t, *J* = 6.4 Hz, 1H), 3.54 (dd, *J* = 2.0, 11.2 Hz, 1H), 2.95-2.86 (m, 1H), 2.45-2.36 (m, 1H), 2.00-1.92 (m, 1H), 1.90-1.81 (m, 1H), 1.76 (d, *J* = 2.0 Hz, 3H), 1.63 (s, 3H), 1.43 (s, 3H), 1.09 (d, *J* = 6.8 Hz, 3H), 0.70 (d, *J* = 7.2, Hz, 3H) pm; ¹³C NMR (100 MHz, CDCl₃): δ 195.6, 155.2, 139.2, 132.3, 123.3, 95.5, 76.2, 70.9, 35.2, 34.4, 24.2, 24.1, 18.3, 16.5, 13.2, 9.2; FTIR (neat): 2967, 2937, 1679, 1455, 1379, 1336, 1267, 1195, 1159, 1124 cm⁻¹; MS (EI) *m/z* 43, 95, 109, 167, 204, 264 (M⁺); HRMS (EI) *m/z* calcd for C₁₆H₂₄O₃ (M⁺): 264.1725, found: 264.1723.

N-(2,4-Dimethoxybenzyl)tirandamycin C. To an ice-cooled solution of phosphonate 16 (74 mg, 174 μ mol) in THF (2 mL) was added KO^tBu (39 mg,

357 μmol), and the mixture was stirred at 0 °C for 2 h. A solution of **20** (19 mg, 72 μmol) in THF (1 mL) was added at 0 °C and stirring was continued at 0 °C for 18 h. The reaction was quenched with saturated NH₄Cl (3 mL) and the mixture was extracted with AcOEt. The extract was filtered using a glass funnel plugged with lab wiper, concentrated, and chromatographed (SiO₂ 5 g, hexane/AcOEt = 1:1) to give the title compound (34 mg, 90%) as a pale yellow oil: $[\alpha]_D^{26}$ –59.3 (*c* 0.500, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 15.6 Hz, 1H), 7.18 (d, *J* = 8.8 Hz, 1H), 7.09 (d, *J* = 15.6 Hz, 1H), 6.48–6.44 (m, 2H), 6.29 (d, *J* = 10.0 Hz, 1H), 5.70 (brs, 1H), 4.57 (s, 2H), 3.94 (t, *J* = 6.4 Hz, 1H), 3.81 (s, 3H), 3.80 (s,

3H), 3.64 (s, 2H), 3.48 (d, J = 11.2 Hz, 1H), 2.85-2.75 (m, 1H), 2.43-2.35 (m, 1H), 1.98-1.84 (m, 5H), 1.62-1.59 (m, 3H), 1.42 (s, 3H), 1.04 (d, J = 6.8 Hz, 3H), 0.67 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.1, 174.0, 173.5, 160.9, 158.6, 149.6, 146.2, 134.0, 132.5, 131.2, 123.2, 116.1, 116.0, 104.3, 100.7, 98.5, 95.4, 76.6, 71.0, 55.6, 55.4, 40.0, 35.0, 34.5, 24.3, 24.1, 18.3, 17.0, 13.2, 12.2; FTIR (neat) 3426, 2933, 2877, 1701, 1615, 1468, 1372, 1295, 1208, 1159, 1116, 1041, 869 cm⁻¹; MS (FAB) *m/z* 79, 154, 289, 307, 460, 538 (100) $[(M+H)^+]$; HRMS (FAB) calcd for C₃₁H₄₀NO₇ $[(M+H)^+]$ 538.2782, found: 538.2798.

(-)-Tirandamycin C. To a solution of N-(dimethoxybenzyl)-added TFA (1 mL) and the mixture was stirred for 30 min.

The mixture was diluted with ice water (2 mL), extracted with CH₂Cl₂, filtered using a glass funnel plugged with lab wiper, and concentrated. The residue was purified by reverse phase column chromatography (ODS 3 g, $CH_3CN/H_2O = 2:1$) to give tirandamycin C (13.6 mg, 56%) as a yellow oil: $[\alpha]_D^{26}$ -59.7 (c 0.10, EtOH) [lit.² $[\alpha]_D^{25}$ -59 (c 0.11, EtOH)]; ¹H NMR $(500 \text{ MHz}, \text{CD}_2\text{Cl}_2) \delta 7.62 \text{ (d, } J = 15.5 \text{ Hz}, 1\text{H}), 7.12 \text{ (d, } J = 15.5 \text{ Hz}, 1\text{H}), 6.32 \text{ (d, } J = 10.0 \text{ Hz})$ Hz, 1H), 6.11 (brs, 1H), 5.70 (brs, 1H), 3.90 (brt, J = 6.0 Hz, 1H), 3.78 (s, 2H), 3.49 (d, J =11.0 Hz, 1H), 2.87-2.79 (m, 1H), 2.38-2.28 (m, 1H), 2.00-1.81 (m, 5H), 1.61 (m, 3H), 1.38 (s, 3H), 1.04 (d, J = 7.0 Hz, 3H), 0.68 (d, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CD₂Cl₂) δ 192.8, 176.9, 175.3, 150.4, 147.4, 134.5, 132.9, 123.7, 116.1, 100.3, 95.8, 77.0, 71.3, 52.0, 35.5, 34.9, 24.5, 24.5, 18.4, 17.2, 13.3, 12.3; FTIR (neat) 3253, 2952, 2928, 2853, 1617, 1568, 1455, 1378, 1289, 1237, 1120 cm⁻¹; MS (FAB) *m/z* 109, 154, 232, 288, 307, 387 (100) (M⁺); HRMS (FAB) calcd for C₂₂H₂₉NO₅ (M⁺) 387.2046, found: 387.2057.

(4*R*,*E*)-2-Methyl-4-((3*R*,4*R*)-1,4,8-trimethyl-6-oxo-2,9-dioxa-bicyclo[3.3.1]non-7-en-3-yl)pent-2-enal (21). To a solution of 2 (48.6 mg, 0.15 mmol) in CH₂Cl₂ (2 mL) were added DIBAL-H (1.02

M in hexane, 0.74 ml, 0.75 mmol) at -78 °C, and the mixture was stirred at -78 °C for 1 h. The reaction was quenched with saturated Rochelle salt (1.5 mL), and the mixture was stirred at room temperature for 6 h. The mixture was extracted with CH₂Cl₂, dried, and concentrated. The residue was dissolved in CH₂Cl₂ (10 mL), and NaHCO₃ (378 mg, 4.5 mmol) and Dess-Martin periodinane (381 mg, 0.9 mmol) were added at room temperature. After stirring at room temperature for 2 h, the reaction was quenched with 50% Na₂S₂O₄(10 mL) and the mixture was extracted with AcOEt. The extract was washed with saturated NaHCO₃, dried over Na₂SO₄, concentrated, and chromatographed (SiO₂ 3 g, hexane/AcOEt = 8:1) to give 21

(39 mg, 94%) as a colorless oil: $[\alpha]_D^{26}$ –225.6 (*c* 0.47, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.47 (s, 1H), 6.70 (dd, *J* = 1.2, 10.2 Hz, 1H), 6.13 (s, 1H), 4.04 (d, *J* = 6.0 Hz, 1H), 3.48 (dd, *J* = 2.0, 11.6 Hz, 1H), 3.02-2.95 (m, 1H), 2.00-1.91 (m, 4H), 1.77 (d, *J* = 1.2 Hz, 3H), 1.58 (s, 3H), 1.11 (d, *J* = 7.2 Hz, 3H), 0.73 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.2, 194.8, 155.6, 153.5, 139.6, 127.1, 96.1, 78.8, 76.9, 34.1, 33.7, 24.3, 19.2, 16.5, 11.6, 9.3; FTIR (neat) 2976, 2873, 1673, 1638, 1455, 1435, 1383, 1232, 1120 cm⁻¹; MS (EI) *m/z* 43, 69, 95, 111, 181, 256, 278 (M⁺); HRMS (EI) calcd for C₁₆H₂₂O₄ (M⁺) 278.1518, found: 278.1510.

N-(2,4-Dimethoxybenzyl)tirandamycin D. To an ice-cooled solution of phosphonate 16 (80 mg, 188 µmol) in THF (2 mL) was added KO^tBu (42 mg,

376 µmol), and the mixture was stirred at 0 °C for 2 h. A solution of **18** (22 mg, 79 µmol) in THF (1 mL) was added at 0 °C and stirring was continued at 0 °C for 24 h. The reaction was quenched with 1% HCl (1.3 mL) and the mixture was extracted with Et₂O. The extract was washed with brine, filtered using a glass funnel plugged with lab wiper, concentrated, and purified by reverse phase column chromatography (ODS 3 g, MeCN/H₂O = 2:1) to give the title compound (24 mg, 54%) as a yellow oil: $[\alpha]_D^{28}$ –118.9 (*c* 0.500, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, *J* = 16.0 Hz, 1H), 7.18 (d, *J* = 9.0 Hz, 1H), 7.12 (d, *J* = 15.5 Hz, 1H), 6.46 (m, 2H), 6.23 (d, *J* = 10.0 Hz, 1H), 6.11 (s, 1H), 4.58 (s, 2H), 4.01 (d, *J* = 5.5 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.66 (s, 2H), 3.42 (dd, *J* = 2.0, 11.5 Hz, 1H), 2.89-2.81 (m, 1H), 2.00-1.93 (m, 1H), 1.93 (s, 3H), 1.89 (s, 3H), 1.55 (s, 3H), 1.06 (d, *J* = 7.0 Hz, 3H), 0.71 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 195.2, 192.1, 173.7, 173.5, 160.9, 158.6, 155.8, 148.9, 144.3, 134.5, 131.3, 127.0, 116.7, 116.1, 104.4, 100.9, 98.5, 96.0, 79.1, 55.6, 55.4, 40.0, 34.3, 33.6, 24.4, 19.2, 17.0, 12.2, 11.6; FTIR (neat) 3410, 2944, 1690, 1618, 1570, 1465, 1238, 1120, 997 cm⁻¹; MS (FAB) m/z 79, 154, 307, 414, 551 (100) (M⁺); HRMS (FAB) calcd for C₃₁H₃₇NO₈ (M⁺) 551.2519, found: 551.2494.

(–)-**Tirandamycin D.** To a solution of *N*-(2,4-dimethoxybenzyl)tirandamycin D (22 mg, 40 μmol) was added TFA (2 mL) at room temperature, and the mixture was stirred for 30

min. The mixture was diluted with ice water (4 mL) and extracted with CH₂Cl₂. The extract was washed with saturated NaHCO₃, filtered using a glass funnel plugged with lab wiper, and concentrated. The residue was purified by reverse phase column chromatography (ODS 2 g, CH₃CN/H₂O = 2:1) to give titled compound (13 mg, 78%) as a yellow oil: $[\alpha]_D^{28}$ –95.8 (*c* 0.250, EtOH) [lit.² $[\alpha]_D^{25}$ –60 (*c* 0.55, EtOH)]; ¹H NMR (500 MHz, CD₂Cl₂) δ 7.61 (d, *J* =

15.6 Hz, 1H), 7.14 (d, J = 16.0 Hz, 1H), 6.29 (d, J = 10.5 Hz, 1H), 6.08 (s, 1H), 6.08 (brs, 1H), 3.97 (d, J = 6.0 Hz, 1H), 3.78 (s, 2H), 3.44 (dd, J = 2.0, 11.5 Hz, 1H), 2.89 (m, 1H), 1.97 (m, 1H), 1.92 (s, 3H), 1.91 (d, J = 1.1 Hz, 3H), 1.53 (s, 3H), 1.06 (d, J = 7.0 Hz, 3H), 0.69 (d, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CD₂Cl₂) δ 195.4, 192.8, 176.8, 175.2, 156.3, 149.9, 145.7, 134.9, 127.3, 116.6, 96.4, 79.4, 77.6, 52.0, 34.7, 33.9, 24.6, 19.4, 17.1, 12.4, 11.8; FTIR (neat) 3285, 2932, 1682, 1614, 1568, 1455, 1378, 1242, 1119 cm⁻¹; MS (FAB) *m/z* 93, 185, 277, 369, 415 (M⁺); HRMS (FAB) calcd for C₂₃H₂₉NO₆ (M⁺) 415.1995, found: 415.1979.

(*R*,*E*)-Ethyl 4-((1*S*,3*R*,4*R*,5*S*,6*S*)-6-Bromo-1,4-dimethyl-8-(((triisopropylsilyl)oxy)methyl)-2,9-dioxabicyclo[3.3.1]non-7-en-3-yl)-2-methylpent-2-enoate (22). To an ice-cooled

solution of 14 (302 mg, 0.6 mmol) in THF (9 mL) were added NEt₃ (635 µL, 4.6 mmol) and MsCl (273 µL, 3.5 mmol). After being stirred at room temperature for 3 h, the mixture was diluted with AcOEt, washed with saturated NH₄Cl and brine, dried, and concentrated. The residue was purified by column chromatography (SiO₂ 9 g, hexane/AcOEt = 5:1) to give the mesylate as a colorless oil (380 mg) which was very labile. The mesylate (380 mg) thus obtained was immediately dissolved in THF (12 mL), and NEt₃ (1 mL, 7.3 mmol) and LiBr (317 mg, 3.7 mmol) were added. After being heated at reflux for 5 h, the mixture was cooled to room temperature, diluted with saturated NH₄Cl, and extracted with AcOEt. The extract was washed with brine, dried, concentrated, and chromatographed (SiO₂ 15 g, hexane/AcOEt = 30:1) to give 22 (240 mg, 70%) as a colorless oil: $[\alpha]_D^{28}$ -95.0 (c 2.00, CHCl₃); ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 6.87 \text{ (d}, J = 10.0 \text{ Hz}, 1\text{H}), 6.37 \text{ (d}, J = 4.4 \text{ Hz}, 1\text{H}), 4.72 \text{ (d}, J = 4.4 \text{ Hz}, 1\text{H})$ 1H), 4.34 (d, J = 16.0 Hz, 1H), 4.27 (d, J = 6.4 Hz, 1H), 4.21 (qd, J = 1.6, 7.0 Hz, 2H), 4.08 (d, J = 15.6 Hz, 1H), 2.75-2.68 (m, 1H), 1.98-1.91 (m, 1H), 1.84 (d, J = 1.2 Hz, 3H), 1.44 (s, J = 1.2 Hz, 33H), 1.31 (t, J = 6.8 Hz, 3H), 1.18-1.08 (m, 21H), 0.99 (d, J = 7.2 Hz, 3H), 0.78 (d, J = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 141.6, 138.5, 128.2, 122.4, 93.9, 77.9, 75.8, 60.6, 60.5, 42.9, 34.9, 34.0, 23.8, 18.0, 16.3, 14.2, 12.9, 12.4, 11.9; FTIR (neat) 2945, 2864, 1710, 1458, 1379, 1303, 1247, 1132, 1065 cm⁻¹; MS (EI) *m/z* 43, 69, 87, 187, 278, 417, 558 (M⁺); HRMS (EI) calcd for C₂₇H₄₇⁷⁹BrO₅Si (M⁺) 558.2376, found: 558.2379. The stereostructure was determined by the significant nOe between C3-Hand C6-H in the NOESY spectrum.

(R,E)-Ethyl 4-((1R,2'R,3R,4S,5R)-1,4-Dimethyl-2,9-dioxaspiro-

[bicyclo[3.3.1]non[6]ene-8,2'-oxiran]-3-yl)-2-methylpent-2-

3 enoate (3). To an ice-cooled solution of 22 (230 mg, 0.41 mmol) in THF (21 mL) was added TBAF (1.0 M in THF, 0.5 mL, 0.5 mmol), and the mixture was stirred at 0 °C for 20 min. The mixture was then heated at reflux for 2 h and cooled to room temperature. The mixture was diluted with AcOEt and washed with saturated NH₄Cl and brine, dried, and concentrated. The residue was purified by column chromatography (SiO₂ 8 g, hexane/AcOEt = 6:1) to give **3** (112 mg, 85%) as a colorless oil: $[\alpha]_D^{26}$ +173.8 (*c* 0.500, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.88 (dd, *J* = 1.2, 10.2 Hz, 1H), 6.36 (dd, *J* = 4.8, 10.0 Hz, 1H), 5.63 (d, *J* = 10.0 Hz, 1H), 4.36 (t, *J* = 4.8 Hz, 1H), 4.24-4.17 (m, 2H), 3.64 (dd, *J* = 1.6, 10.6 Hz, 1H), 2.99 (d, *J* = 6.4 Hz, 1H), 2.82 (d, *J* = 4.8 Hz, 1H), 2.75-2.68 (m, 1H), 2.00-1.94 (m, 1H), 1.84 (d, *J* = 1.6 Hz, 3H), 1.31 (t, *J* = 7.4 Hz, 3H), 1.24 (s, 3H), 1.04 (d, *J* = 6.8 Hz, 3H), 0.70 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 141.7, 133.8, 130.6, 127.8, 98.8, 75.9, 71.5, 60.5, 55.0, 50.5, 34.9, 33.8, 22.1, 16.5, 14.2, 12.5, 12.4; FTIR (neat) 2970, 1709, 1650, 1298, 1243, 1135, 1043, 1004 cm⁻¹; MS (EI) *m/z* 95, 109, 121, 140, 181, 263, 277, 322 (M⁺); HRMS (EI) calcd for C₁₈H₂₆O₅ (M⁺) 322.178, found: 322.1792.

(*R*,*E*)-4-((1*R*,2'*R*,3*R*,4*S*,5*R*)-1,4-Dimethyl-2,9-dioxaspiro-[bicyclo[3.3.1]non[6]ene-8,2'-oxiran]-3-yl)-2-methylpent-2-

enal (23). To a solution of 3 (84.7 mg, 267 µmol) in CH₂Cl₂ (18 mL) were added DIBAL-H (1.02 M in hexane, 0.68 mL, 0.69 mmol) at -78 °C. After stirring at -78 °C for 1 h, the reaction was quenched with saturated Rochelle salt (7 mL), and the mixture was stirred at room temperature for 6 h. The mixture was extracted with CH₂Cl₂, dried, and concentrated. The residue was dissolved in CH₂Cl₂ (18 mL), and NaHCO₃ (441 mg, 5.2 mmol) and Dess-Martin periodinane (223 mg, 0.52 mmol) were added at room temperature. After stirring at room temperature for 2 h, the reaction was quenched with 50% Na₂S₂O₄ (1.2 mL) and the mixture was extracted with AcOEt. The extract was washed with saturated NaHCO3, dried over Na2SO4, concentrated, and chromatographed (SiO2 5 g, hexane/AcOEt = 5:1) to give 23 (73 mg, 100%) as a colorless oil: $[\alpha]_D^{26}$ +192.0 (c 0.35, CHCl₃) [lit.⁵ $[\alpha]_D^{24.3}$ +196.1 (c 0.8, CHCl₃)]; ¹H NMR (400 MHz, CDCl₃) δ 9.44 (s, 1H), 6.67 (dd, J = 1.6, 10.2 Hz, 1H), 6.35 (dd, J = 4.6, 10.4 Hz, 1H), 5.64 (d, J = 10.4 Hz, 1H), 4.36 (t, J =*J* = 4.6 Hz, 1H), 3.70 (dd, *J* = 2.0, 10.6 Hz, 1H), 2.99 (d, *J* = 4.8 Hz, 1H), 2.88 (m, 2H), 1.90 (m, 1H), 1.75 (s, 3H), 1.24 (s, 3H), 1.10 (d, J = 6.8 Hz, 3H), 0.71 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.4, 154.1, 139.1, 133.6, 130.6, 98.9, 75.8, 71.3, 54.9, 50.5, 35.2, 33.9, 22.2, 16.6, 12.5, 9.2; FTIR (neat) 2930, 1685, 1642, 1456, 1385, 1219, 1200, 1132,

1042 cm⁻¹; MS (EI) *m/z* 67, 81, 95, 109, 121, 145, 160, 175, 203, 218, 236, 278 (M⁺); HRMS (EI) calcd for C₁₆H₂₂O₄ (M⁺) 278.1518, found: 278.1527.

(*R*,2*E*)-4-((1*S*,3*R*,5*R*,6*R*)-6-Bromo-8-(((triisopropylsilyl)oxymethyl)-1,4-dimethyl-2,9-dioxa-bicyclo[3.3.1]non-7-en-3-yl)-2-methylpent-2-enal(24). To a solution of 22 (136 mg,

243 µmol) in CH₂Cl₂ (8 mL) was added DIBAL-H (1.02 M in hexane, 0.6 mL, 0.60 mmol) at -78 °C. After stirring at -78 °C for 1 h, the reaction was quenched with saturated Rochelle salt (6 mL), and the mixture was stirred at room temperature for 6 h. The mixture was extracted with CH₂Cl₂, dried, and concentrated. The residue (137 mg) was dissolved in CH₂Cl₂ (4 mL), and NaHCO₃ (408 mg, 4.9 mmol) and Dess-Martin periodinane (206 mg, 0.48 mmol) were added at room temperature. After stirring at room temperature for 30 min, the reaction was quenched with 50% Na₂S₂O₄ (4 mL) and the mixture was extracted with AcOEt. The extract was washed with saturated NaHCO₃, dried over Na₂SO₄, concentrated, and chromatographed (SiO₂ 5 g, hexane/AcOEt = 15:1) to give 24 (128 mg, 100%) as a colorless oil: [α]_D²⁷ –129.0 (*c* 0.98, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.46 (s, 1H), 6.67 (d, J = 10.0 Hz, 1H), 6.39 (d, J = 5.2 Hz, 1H), 4.72 (d, J = 4.8 Hz, 1H), 4.35 (d, J = 15.6 Hz, 1H)1H), 4.28 (d, J = 6.0 Hz, 1H), 4.09 (d, J = 15.6 Hz, 1H), 3.43 (d, J = 11.6 Hz, 1H), 2.95-2.87 (m, 1H), 1.96-1.88 (m, 1H), 1.76 (s, 3H), 1.46 (s, 3H), 1.19-1.05 (m, 24H), 0.81 (d, J = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.3, 153.9, 139.5, 138.3, 122.6, 93.9, 77.8, 75.7, 60.8, 42.5, 35.1, 34.2, 23.8, 18.0, 16.4, 12.9, 12.4, 11.9, 9.2; FTIR (neat) 2942, 2866, 1688, 1460, 1383, 1316, 1231, 1196, 1132, 1063 cm⁻¹; MS (EI) m/z 107, 314, 471, 514 (M⁺); HRMS (EI) calcd for $C_{25}H_{43}^{79}BrO_4Si$ (M⁺) 514.2114, found: 514.2108.

(3Z)-1-(2,4-Dimethoxybenzyl)-3-((R,2E,4E)-6-((1S,3R,5R,6R)-6-bromo-8-(((triisopropylsilyl)oxy)methyl)-1,4dimethyl-2,9-dioxa-bicyclo[3.3.1]non-

7-en-3-yl)-1-hydroxy-4-methylhepta-2,4-dienylidene)pyrrolidine-2,4-dione (25). To an ice-cooled solution of phosphonate 16 (256 mg, 0.60 mmol) in THF (4 mL) was stirred was added KO'Bu (135 mg, 1.20 mmol), and the mixture was stirred at 0 °C for 2 h. A solution of 24 (110 mg, 213 μ mol) in THF (1 mL) was added at 0 °C and stirring was continued at 0 °C for 24 h. The reaction was quenched with satutated NH₄Cl (5 mL) and the mixture was extracted with Et₂O. The extract was washed with brine, filtered using a glass funnel plugged with lab wiper, concentrated, and purified by reverse phase column chromatography (ODS 9

g, CH₃CN/H₂O = 3:1 to 1:0) to give **25** (165 mg, 98%) as a yellow oil: $[\alpha]_D^{26}$ –97.6 (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 15.6 Hz, 1H), 7.18 (d, *J* = 8.8 Hz, 1H), 7.10 (d, *J* = 15.6 Hz, 1H), 6.47-6.44 (m, 2H), 6.37 (d, *J* = 3.6 Hz, 1H), 6.20 (d, *J* = 9.6 Hz, 1H), 4.71 (d, *J* = 3.6 Hz, 1H), 4.57 (s, 2H), 4.33 (d, *J* = 16.0 Hz, 1H), 4.26 (d, *J* = 6.0 Hz, 1H), 4.07 (d, *J* = 16.0 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.65 (s, 2H), 3.36 (dd, *J* = 1.2, 11.2 Hz, 1H), 2.95-2.87 (m, 4H), 1.99-1.87 (m, 4H), 1.44 (s, 3H), 1.18-1.07 (m, 21H), 0.99 (d, *J* = 7.2 Hz, 3H), 0.78 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.0, 173.8, 173.4, 160.9, 158.6, 149.1, 144.7, 138.5, 134.3, 131.2, 122.4, 116.5, 116.1, 104.3, 100.9, 98.5, 93.9, 77.9, 76.1, 60.8, 55.6, 55.3, 42.9, 39.9, 35.0, 34.3, 23.8, 18.0, 16.9, 12.9, 12.2, 11.9; FTIR (neat) 3490, 2941, 2865, 1702, 1622, 1466, 1380, 1239, 1131, 1038 cm⁻¹; MS (FAB) *m/z* 136, 151, 282, 307, 460, 788 (100) [(M+H)⁺]; HRMS (FAB) calcd for C₄₀H₅₉⁷⁹BrO₈Si [(M+H)⁺] 788.3193, found: 788.3187.

(3Z)-3-((R,2E,4E)-6-((1S,3R,5R,6R)-6-bromo-8-((((triisopropylsilyl)oxy)methyl)-1,4-dimethyl-2,9-dioxa-bicyclo[3.3.1]non-7-en-3-yl)-1-hydroxy-4-methyl hepta-2,4-dienylidene)pyrrolidine-2,4-dione (27). To

a solution of **25** (43 mg, 55 µmol) in CH₂Cl₂ (6 mL) were added phosphate buffer (pH = 6.4) (0.2 M, 4 mL, 0.8 mmol) and DDQ (112 mg, 0.5 mmol) at room temperature. After being stirred at 50 °C for 5 days, the mixture was diluted with saturated NaHCO₃ (6 mL) and 10% Na₂S₂O₄ (12 mL), and then extracted with AcOEt. The extract was filtered using a glass funnel plugged with lab wiper, concentrated, and purified by reverse phase preparative TLC (MeCN) to give **27** (13 mg, 37%, 77% brsm) as a yellow oil and **25** (22 mg, 52%): $[\alpha]_D^{26}$ –118.2 (*c* 0.490, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 15.6 Hz, 1H), 7.15 (d, *J* = 15.6 Hz, 1H), 6.38 (d, *J* = 4.0 Hz, 1H), 6.25 (d, *J* = 10.4 Hz, 1H), 5.81 (brs, 1H), 4.71 (d, *J* = 4.4 Hz, 1H), 4.34 (d, *J* = 15.6 Hz, 1H), 4.26 (d, *J* = 6.0 Hz, 1H), 4.08 (d, *J* = 15.6 Hz, 1H), 3.82 (brs, 2H), 3.37 (dd, *J* = 1.6, 11.2 Hz, 1H), 2.93-2.86 (m, 1H), 1.95-1.88 (m, 4H), 1.44 (s, 3H), 1.15-1.01 (m, 24H), 0.79 (d, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.5, 176.5, 175.3, 150.2, 145.6, 138.5, 134.4, 122.5, 116.3, 99.9, 93.9, 77.9, 76.1, 60.9, 51.5, 42.9, 35.1, 34.4, 23.8, 18.1, 16.9, 12.9, 12.2, 11.9; FTIR (neat) 3323, 2940, 2865, 1623, 1572, 1460, 1377, 1241, 1126, 1100, 1063 cm⁻¹; MS (FAB) *m/z* 107, 151, 281, 337, 638 [(M+H)⁺]; HRMS (FAB) calcd for C₃₁H₄₉⁷⁹BrO₆Si [(M+H)⁺] 638.2513, found: 638.2513.

(+)-Tirandalydigin. To an ice-cooled solution of 27 (17 mg, 27 μ mol) in THF (3.5 mL) was added TBAF (1.0 M in THF, 93 μ L, 93 μ mol), and the mixture was stirred at

0 °C for 20 min. The mixture was then heated at reflux for 3 h and cooled to room temperature. The mixture was diluted with AcOEt and washed with saturated NH₄Cl and brine, filtered using a glass funnel plugged with lab wiper, and concentrated. The residue was purified by reverse phase preparative TLC (MeCN) to give tirandalydigin (5.3 mg, 50%) as a yellow oil. A solution of tirandalydigin in MeOH (1 mL) was treated with saturated NaHCO₃ (0.1 mL) and concentrated to dryness. The residue was dissolved in MeOH and filtered using a glass funnel plugged with lab wiper, and concentrated to afford a sodium salt of tirandalydigin: $\left[\alpha\right]_{D}^{29}$ +52 (c 0.73, MeOH) for Na salt, $\left[\alpha\right]_{D}^{30}$ +22 (c 0.63, MeOH) for H form [lit.⁶ $[\alpha]_{D}^{26}$ -4.0 (c 0.50, MeOH)]; ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J = 15.5 Hz, 1H), 7.27 (d, J = 15.5 Hz, 1H), 6.40 (dd, J = 5.0, 10.2 Hz, 1H), 5.95 (d, J = 10.0 Hz, 1H), 5.62 (d, J = 10.2 Hz, 1H), 4.33 (t, J = 5.0 Hz, 1H), 3.71 (d, J = 10.5 Hz, 1H), 3.59 (s, 2H), 2.99 (d, J= 5.0 Hz, 1H), 2.85 (d, J = 5.0 Hz, 1H), 2.85-2.79 (m, 1H), 1.94-1.88 (m, 1H), 1.89 (s, 3H), 1.16 (s, 3H), 1.05 (d, J = 7.0 Hz, 3H), 0.74 (d, J = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 186.1, 179.9, 144.9, 140.3, 135.5, 135.1, 131.5, 126.7, 104.2, 100.1, 77.8, 72.9, 56.2, 51.3, 50.9, 36.5, 34.8, 22.7, 17.7, 12.9, 12.7; FTIR (neat) 3600-3000, 2963, 2927, 1613, 1463, 1234, 1125, 1041, 1001 cm⁻¹; MS (FAB) *m/z* 77, 107, 136, 154, 242, 307, 424 (100) $[(M+Na)^{+}]$; HRMS (FAB) calcd for C₂₂H₂₇NO₆Na $[(M+Na)^{+}]$ 424.1736, found: 424.1722.

NMR Comparison of Synthetic Compounds with the Natural Products

*Both synthetic and natural specimens exist as a ca. 4:1 mixture of the $\Delta^{1,3}$ -enol geometrical isomers. The table shows the peaks corresponding to the major isomer.

	13 C (CD ₂ Cl ₂)		1 H (CD ₂ Cl ₂)	
Position	Natural	Synthetic	Natural	Synthetic
		(125 MHz)		(500 MHz)
1'				5.83 (brs)
2'	176.9	176.7		
3'	not reported	100.5		
4'	193.1	192.8		
5'	52.1	51.9	3.78 (s)	3.78 (s)
1	175.5	175.0		
2	117.1	116.8	7.15 (dd, <i>J</i> = 0.4, 15.8)	7.14 (d, <i>J</i> = 16.0)
3	150	149.7	7.58 (dd, <i>J</i> = 0.7, 15.8)	7.58 (d, <i>J</i> = 16.0)
4	135.3	135.2		
5	144.5	144.2	6.24 (d, <i>J</i> = 9.9)	6.24 (d, <i>J</i> = 10.0)
6	34.9	34.8	2.87 (m)	2.87 (m)
7	77.4	77.2	3.58 (not reported)	3.60 (d, <i>J</i> = 11.5)
8	35	35	1.97 (m)	1.97 (m)
9	79.4	79.2	3.98 (d, J = 6.1)	3.98 (d, J = 6.0)
10	203.2	202.9		
11	61.6	61.4	3.25 (s)	3.25 (s)
12	57.5	57.3		
13	97.4	97.1		
14	22.8	22.7	1.53 (s)	1.53 (s)
15	12.5	12.3	1.91 (d, <i>J</i> = 1.3)	1.91 (s)
16	17.2	17.0	1.14 (d, J = 6.8)	1.13 (d, $J = 7.0$)
17	11.6	11.5	0.71 (d, <i>J</i> = 7.0)	0.70 (d, J = 7.0)
18	15.8	15.7	1.46 (s)	1.45 (s)

*Both synthetic and natural specimens exist as a ca. 4:1 mixture of the $\Delta^{1,3'}$ -enol geometrical isomers. The table shows the peaks corresponding to the major isomer.

	¹³ C (CDCl ₃)		¹ H (CDCl ₃)	
Position	Natural	Synthetic	Natural	Synthetic
	(125 MHz)	(100 MHz)	(500 MHz)	(500 MHz)
1'				6.29 (brs)
2'	176.7	176.5		
3'	100.4	100.1		
4'	192.8	192.6		
5'	51.9	51.6	3.83 (s)	3.83 (s)
1	175.4	175.1		
2	117.1	116.8	7.17 (d, <i>J</i> = 15.5)	7.16 (d, <i>J</i> = 15.5)
3	149.9	149.6	7.57 (d, <i>J</i> = 15.5)	7.56 (d, <i>J</i> = 15.5)
4	135.3	135		
5	143.6	143.3	6.19 (d, <i>J</i> = 10.0)	6.18 (d, <i>J</i> = 10.0)
6	34.8	34.5	2.86 (m)	2.85 (m)
7	77.5	77.3	3.67 (d, <i>J</i> = 11.5)	3.66 (d, <i>J</i> = 11.5)
8	34.8	34.5	1.99 (m)	1.99 (m)
9	79	78.7	4.05 (d, J = 6.5)	4.04 (d, J = 6.0)
10	201.7	201.4		
11	58.4	58	3.70 (s)	3.70 (s)
12	57.2	56.8		
13	96.2	95.9		
14	23.6	23.3	1.58 (s)	1.57 (s)
15	12.6	12.3	1.91 (s)	1.91 (s)
16	17.2	16.9	1.13 (d, <i>J</i> = 7.0)	1.12 (d, $J = 7.0$)
17	11.7	11.4	0.73 (d, <i>J</i> = 7.0)	0.72 (d, J = 7.0)
18	59.6	59.3	4.00 (brs), 3.99 (brs)	3.99 (brs), 3.98(brs)

*Both synthetic and natural specimens exist as a ca. 4:1 mixture of the $\Delta^{1,3'}$ -enol geometrical isomers. The table shows the peaks corresponding to the major isomer.

	$^{13}C (CD_2Cl_2)$		1 H (CD ₂ Cl ₂)	
Position	Natural	Synthetic	Natural	Synthetic
		(100 MHz)		(500 MHz)
1'				6.11 (brs)
2'	177.1	176.9		
3'	not reported	100.3		
4'	193.1	192.8		
5'	51.9	52	3.78 (s)	3.78 (s)
1	175.5	175.3		
2	116.1	116.1	7.12 (dd, $J = 0.4, 15.7$)	7.12 (d, <i>J</i> = 15.5)
3	150.4	150.4	7.62 (dd, $J = 0.8, 15.7$)	7.62 (d, $J = 15.5$)
4	134.9	134.5		
5	147.5	147.4	6.32 (d, <i>J</i> = 10.2)	6.32 (d, J = 10.0)
6	34.9	34.9	2.83 (m)	2.83 (m)
7	77	77	$3.49 (\mathrm{dd}, J = 2.1, 11.0)$	3.49 (d, J = 11.0)
8	35.5	35.5	1.84 (m)	1.84 (m)
9	71.4	71.3	3.90 (br d, J = 6.5)	3.90 (br t, J = 6.0)
10	24.5	24.5	2.33 (m), 1.96 (m)	2.33 (m), 1.96 (m)
11	123.6	123.7	5.70 (br s)	5.71 (br s)
12	133.2	132.9		
13	96.1	95.8		
14	24.5	24.5	1.38 (s)	1.38 (s)
15	12.4	12.3	1.91 (d, <i>J</i> = 1.3)	1.91 (br s)
16	17.2	17.2	1.05 (d, <i>J</i> = 7.0)	1.04 (d, J = 7.0)
17	13.2	13.3	0.68 (d, <i>J</i> = 7.0)	0.68 (d, J = 7.0)
18	18.3	18.4	1.61 (s)	1.61 (s)

*Both synthetic and natural specimens exist as a ca. 4:1 mixture of the $\Delta^{1,3'}$ -geometrical isomers. The table shows the peaks corresponding to the major isomer.

	13 C (CD ₂ Cl ₂)		1 H (CD ₂ Cl ₂)		
Position	Natural	Synthetic	Natural	Synthetic	
		(100 MHz)		(500 MHz)	
1'			5.70 (s)	6.08 (brs)	
2'	177	176.8			
3'	not reported	100.3			
4'	193	192.8			
5'	51.9	52.0	3.78 (s)	3.78 (s)	
1	175.5	175.2			
2	116.7	116.6	7.15 (dd, <i>J</i> = 0.4, 15.8)	7.14 (d, <i>J</i> = 16.0)	
3	150.2	149.9	7.61 (dd, <i>J</i> = 0.7, 15.7)	7.61 (d, <i>J</i> = 15.5)	
4	135.5	134.9			
5	145.8	145.7	6.30 (d, $J = 10.1$)	6.29 (d, <i>J</i> = 10.5)	
6	34.8	34.7	2.89 (m)	2.89 (m)	
7	77.7	77.6	$3.44 (\mathrm{dd}, J = 2.1, 11.3)$	3.44 (dd, <i>J</i> = 2.0, 11.5)	
8	33.9	33.9	1.97 (m)	1.97 (m)	
9	79.5	79.4	3.97 (d, J = 5.8)	3.97 (d, J = 6.0)	
10	195.7	195.4			
11	127.4	127.3	6.08 (s)	6.08 (s)	
12	156.7	156.3			
13	96.7	96.4			
14	24.6	24.6	1.54 (s)	1.53 (s)	
15	12.4	12.4	1.91 (d, $J = 1.1$)	1.91 (s)	
16	17	17.1	1.07 (d, $J = 7.0$)	1.06 (d, $J = 7.0$)	
17	11.6	11.8	0.69 (d, J = 7.2)	0.69 (d, $J = 7.0$)	
18	19.4	19.3	1.92 (s)	1.92 (s)	

	¹³ C (CD ₃ OD)		¹ H (CD ₃ OD)	
Position	Natural	Synthetic	Natural	Synthetic
	(75.5 MHz)	(100 MHz)	(300.1 MHz)	(500 MHz)
1'				
2'	179.9	179.9		
3'	104.2	104.2		
4'	197.2	197.1		
5'	50.9	50.9	3.58 (s)	3.59 (s)
1	186.1	186.1		
2	126.6	126.7	7.61 (d, <i>J</i> = 15.3)	7.62 (d, <i>J</i> = 15.5)
3	144.9	144.9	7.26 (d, <i>J</i> = 15.3)	7.27 (d, <i>J</i> = 15.5)
4	135.5	135.5		
5	140.3	140.3	5.94 (d, <i>J</i> = 10.2)	5.95 (d, <i>J</i> = 10.0)
6	34.8	34.8	2.80 (m)	2.80 (m)
7	77.8	77.8	3.70 (dd, <i>J</i> = 2.1, 10.6)	3.71 (d, <i>J</i> = 10.5)
8	36.5	36.5	1.91 (m)	1.94-1.88 (m)
9	72.9	72.9	4.33 (t, $J = 5.0$)	4.33 (t, $J = 5.0$)
10	135.1	135.1	6.40 (dd, <i>J</i> = 5.0, 10.2)	6.40 (dd, <i>J</i> = 5.0, 10.2)
11	131.5	131.5	5.62 (d, <i>J</i> = 10.2)	5.62 (d, <i>J</i> = 10.2)
12	56.1	56.2		
13	100.1	100.1		
14	22.7	22.7	1.15 (s)	1.16 (s)
15	12.9	12.9	1.88 (s)	1.89 (s)
16	17.8	17.7	1.04 (d, $J = 6.8$)	1.05 (d, <i>J</i> = 7.0)
17	12.7	12.7	0.73 (d, $J = 7.1$)	0.74 (d, J = 6.5)
18	51.4	51.3	2.98 (d, <i>J</i> = 5.2)	2.99 (d, <i>J</i> = 5.0)
			2.84 (d, $J = 5.2$)	2.85 (d, <i>J</i> = 5.0)

References

- 1. T. Shiratani, K. Kimura, K. Yoshihara, S. Hatakeyama, H. Irie, M. Miyashita, *Chem. Commun.*, 1996, 21.
- 2. J. C. Carlson, S. Li, D. A. Burr, D. H. Sherman, J. Nat. Prod., 2009, 72, 2076.
- 3. S. F. Martin, C. Gluchowski, C. L. Campbell, R. C. Chapman, *Tetrahedron*, 1988, 44, 3171.
- 4. J. S. Yadav, S. Dhara, S. S. Hossain, D. K. Mohapatra, J. Org. Chem., 2012, 77, 9828.
- (a) S. V. Pronin, S. A. Kozmin, J. Am. Chem. Soc., 2010, 132, 14394; (b) S. V. Pronin, A. Martinez, K. Kuznedelov, K. Severinov, H. A. Shuman, S. A. Kozmin, J. Am. Chem. Soc., 2011, 133, 12172.
- 6. G. M. Brill, J. B. McAlpine, D. J. Whittern, J. Antibiot., 1988, 41, 36.
- Z. Yu, S. Vodanovic-Jankovic, N. Ledeboer, S.-X. Huang, S. R. Rajski, M. Kron, B. Shen, Org. Lett., 2011, 13, 2034.

44

OTIPS

.OMe

100

162864

6303266

TOTAL

I

L,

82

_

⁻S87

.

1

. ____

.

S109

S115

S123