Supporting Information

Asymmetric Synthesis of 1*H*-Pyrrol-3(2*H*)-ones from 2,3-Diketoesters

By Combination of Aldol Condensation With Benziylic Acid

Rearrangement

Qiang Sha,^{1,2} Hadi Arman,² Michael P. Doyle*,²

¹School of Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094, P. R. of China

²Department of Chemistry, The University of Texas at San Antonio, San Antonio,

Texas 78249, United States

Email: michael.doyle@utsa.edu

Table of Contents

General	S2
General procedure for the synthesis of 2,3-diketoesters	S2
Optimization of the <i>L</i> -proline catalyzed aldol reaction	S 3
General procedure for the L-proline catalyzed aldol reaction	S6
General procedure for TFA catalyzed benz <mark>jy</mark> lic acid rearrangement reaction	S6
General procedures for gram-scale reactions	S7
General procedure for reduction of 6d	S8
General procedure for oxidation of 6d	S8
Characterization data of products 1, 4, 6, 4m', 8d, 9d	S10
References	S36
¹ H and ¹³ C spectra of 1, 4, 6, 4m′, 8d, 9d	S37
HPLC spectra of 4, 6, 4m', 8d, 9d	S62
Crystallographic datas for compound 3g and 6c	S116
NOE spectrum of 8d	S119

General. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ on an Agilent DD2-500 MHz spectrometer. Chemical shifts are reported in ppm with the solvent signals as reference, and coupling constants (*J*) are given in Hertz (Hz). The peak information is described as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, comp = composite. High-resolution mass spectra (HRMS) were performed on a microTOF-ESI mass spectrometer using CsOAc as the standard. Melting points were obtained uncorrected from an Electrothermo Mel-Temp DLX 104 device.

Preparation of α-Diazo-β-ketoesters:¹ A solution of β-ketoester (10 mmol, 1.0 eq.) and *p*-acetamidobenzenesulfonyl azide (*p*-ABSA) (2.8 g, 12 mmol, 1.2 eq.) in 75 mL of CH₃CN was added triethylamine (2.1 ml, 1.5 mmol, 1.5 eq.) at 0 °C, and the resulting solution was stirred at room temperature for 8 hours during which time the corresponding sulfonamide precipitated as a white solid. The white precipitate was filtered, and the resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂), eluting with hexane and ethyl acetate to provide α-diazo-β-ketoester.

General Procedure for the Synthesis of 2,3-Diketoesters 1a-m:^{1a} A solution of α -diazo- β -ketoesters (5.0 mmol, 1.0 eq.) in 20 mL of solvent [CH₃CN:H₂O (9:1)] at 0 °C was added tert-

butyl hypochlorite (0.61 ml, 5.5 mmol) dropwise over 30 min via syringe pump. The reaction was stirred for an additional 30 min at room temperature and then concentrated under reduced pressure. The residue was purified by flash column chromatography (SiO₂), eluting with hexane and ethyl acetate to provide compounds **1a-m** as their monohydrates. 2,3-Diketoesters **1a**,^{1a} **1b**,^{1a} **1d**,² **1f**,³ **1g**,³ **1i**⁴ are known compounds, **1c**, **1e**, **1h**, **1j**, **1k**, **1l** are new compounds and characeterized in detail.

Optimization of the *L***-proline catalyzed aldol reaction.**

Various solvents, additives and organocatalysts were screened from which *L*-proline in DCM at room temperature gave the highest diastereoselectivity. Additives were not effective.

Me HO HO HO HO HO HO	OBn + 2a	catalyst (20 mol%) Additive Solvent (1 mL) rt, 24 h	BnO ₂ C MeOC HO 3a	+	BnO ₂ C MeOC ^{wy} HO 4a	
	0.4 mmoi		0,0			39/49
Entry	Catalyst ^a	Additive ^b	Solvent	Temp.	Yield (%) ^c	d.r. ^d
1	L-proline		DMF	rt	90	65:35
2	L-proline		MeCN	rt	91	65:35
3	L-proline		THF	rt	67	65:35
4	L-proline		DCM	rt	92	74:26
5	L-proline		CHCl ₃	rt	88	73:27
6	L-proline		DCE	rt	95	73:27
7 ^e	L-proline		DCM	0 °C	72	74:26
8	L-proline	CF ₃ COOH	DCM	rt	34	65:35
9	L-proline	H ₂ O	DCM	rt	90	74:26
10	L-proline	OH OH	DCM	rt	82	60:40
11	L-proline	O ₂ N	DCM	rt	92	60:40
12	L-proline	H ₂ N NH ₂	DCM	rt	65	63:37

13	<i>L</i> -proline	F_3C	DCM	rt	71	59:41
14	L-proline		DCM	rt	19	37:63
15	<i>L</i> -proline	NNH	DCM	rt	90	64:36
16	<i>L</i> -proline	SO ₃ H	DCM	rt	87	67:33
17	<i>L</i> -proline		DCM	rt	48	66:34
18			DCM	rt	trace	
19	COOH N H		DCM	rt	trace	
20			DCM	rt	85	50:50
21	N H OH		DCM	rt	NR	
22			DCM	rt	85	54:46
23			DCM	rt	86	36:64

24	NH HN	 DCM	rt	87	40:60
25	ONH HN-SO2 NH	 DCM	rt	79	48:52
26		 DCM	rt	91	43:57
27		 DCM	rt	95	53:47
28	HN HN	 DCM	rt	97	44:56
29		 DCM	rt	94	50:50
30		 DCM	rt	96	46:54
31		 DCM	rt	93	49:51
32	N HN	 DCM	rt	89	37:63
33	O N H HO Ph	 DCM	rt	88	36:64
34	HNIM HN	 DCM	rt	98	42:58

S5

^{*a*} 20 mol% catalyst was added. ^{*b*} 20 mol% additive was added. ^{*c*} Determined by crude ¹H NMR using CH₂I₂ as internal standard. ^{*d*} Determined by ¹H NMR. ^{*e*} Reaction was run for 48 h.

General procedure for the *L*-proline catalyzed aldol reaction.

In a 25 mL one-neck flask containing a magnetic stirring bar, dichloromethane (5.0 mL), **1** (1.0 mmol), **2** (2.0 mmol) and *L*-proline (23.0 mg, 0.2 mmol) were added in sequence, then the reaction mixture was stirred at room temperature for 24-96 h. After reaction was complete, the product mixture was concentrated and its components were purified by flash column chromatography (SiO₂), eluding with hexane/ethyl acetate, to provide products **3** and **4**.

General procedure for TFA catalyzed benzylic benzilic acid rearrangement reaction.

In a 8 mL vial containing a magnetic stirring bar and a screw cap, a solution containing **3** (0.10 mmol, 1.0 eq.), **5** (0.11 mol, 1.1 eq.), trifluoroacetic aicd (2.28 mg, 0.02 mmol) in dichloromethane (0.5 mL) were stirred in an oil bath at 65 °C for 24 h. Then the reaction mixture was directly injected into the chromatography column (4g) and purified by flash column chromatography (SiO₂) eluding with hexanes/ethyl acetate to provide products **6**.

General procedures for gram-scale reactions.

In a 100 mL one-neck flask containing a magnetic stirring bar, dichloromethane (50 mL), **1a** (2.24 g, 10 mmol), **2a** (1.96 g, 20 mmol) and *L*-proline (230 mg, 2 mmol) were added in sequence, then the reaction mixture was stirred at room temperature for 24h. After reaction was complete, the product mixture was concentrated and its components were purified by flash column chromatography (SiO₂)_a eluding with hexane/ethyl acetate_a to provide products **3a** (1.86 g, 61% yield, 99% *ee*) and **4a** (0.63 g, 21% yield, 98% *ee*).

In a 100 mL one-neck flask containing a magnetic stirring bar and a condenser, dichloromethane (30 mL), **3a** (1.86 g), **5d** (1.15 g) and trifluoroacetic acid (0.14 g) were added in sequence, then the reaction mixture was stirred at 65 °C for 24 h. After reaction was complete, the mixture was concentrated andpurified by flash column chromatography (SiO₂), eluding with hexane/ethyl acetate, to provide **6d** (2.19 g, 82% yield, 99% *ee*).

In a 25 mL one-neck flask containing a magnetic stirring bar and a condenser, dichloromethane (10 mL), **4a** (0.63 g), **5d** (0.40 g) and trifluoroacetic acid (0.05 g) was added in sequence, then the reaction mixture was stirred at 65 °C for 24 h. After reaction was complete, the mixture was concentrated and purified by flash column chromatography (SiO₂), eluding with hexane/ethyl acetate, to provide **7d** (0.77 g, 84% yield, -98% *ee*).

In a 8 mL vial containing a magnetic stirring bar, a solution containing **6d** (87.8 mg, 0.2 mmol) and methanol (1 mL) was stirred at 0°C. Then NaBH₄ (31 mg, 0.8 mmol) was added in three portions over 30 min, then the reaction mixture was stirred at 0°C for another 1.5 h after which 5 mL saturated Na₂CO₃ solution was added and the mixture was stirred at room temperature for 30 min. The reaction mixture was extracted three times (ethyl acetate 10 ml ×3) and the combined organic layer was dried using anhydrous Na₂SO₄, concentrated and purified by flash column chromatography (SiO₂), eluding with hexanes/ethyl acetate, to provide **8d** (71.8 mg, 81% yield, >20:1 d.r., 99% *ee*).

General procedure for aromatation of 6d.

In a 8 mL vial containing a magnetic stirring bar and a screw cap, a solution containing **6d** (87.8 mg, 0.2 mmol), DDQ (135.6 mg, 0.6 mmol), 10% Pd/C (11.0 mg, 0.02 mmol) and toluene (2 mL) were stirred in oil bath at 110°C for 10 h. After this timethe reaction mixture was allowed to cool to room temperature, 5 mL saturated Na₂CO₃ solution was added, the mixture was stirred at room temperature for 5 min then was extracted three times (ethyl acetate 10 ml \times 3). After drying the combined organic layer over anhydrous Na₂SO₄, the solution wasconcentrated and purified by flash column chromatography (SiO₂), eluding with hexanes/ethyl acetate, to provide **9d** (56.5 mg, 65% yield, 98% *ee*).

Characterization data of products 1, 3a-m, 4a-m, 6a-t.

Cyclohexyl 2,2-Dihydroxy-3-oxobutanoate (1c). White solid (73% yield); mp = 49.3-50.7 °C; TLC $R_f = 0.29$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 5.08 (brs, 2H), 4.92-4.89 (m, 1H), 2.28 (s, 3H), 1.86-1.83 (comp, 2H), 1.71-1.67 (comp, 2H), 1.54-1.44 (comp, 3H), 1.44-1.33 (comp, 2H), 1.30-1.23 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 200.98, 168.41, 92.49, 76.24, 31.00, 25.03, 23.32, 23.04. HRMS (ESI) *m/z* calculated for [C₁₀H₁₆O₅+Na]⁺ [M+Na]⁺ 239.0890, found: 239.0890.

Benzyl 2,2-Dihydroxy-3-oxo-4-phenylbutanoate (1e). Yellow solid (78% yield); mp = 78.6-82.4 °C; TLC $R_f = 0.20$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.39-7.38 (comp, 3H), 7.32-7.28 (comp, 5H), 7.09-7.07 (comp, 2H), 5.15 (s, 2H), 5.03 (brs, 2H), 3.86 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 200.77, 168.74, 134.01, 132.11, 129.75, 128.99, 128.79, 128.59, 128.54, 127.42, 92.56, 68.77, 42.54. HRMS (ESI) *m/z* calculated for [C₁₇H₁₆O₅+Na]⁺ [M+Na]⁺ 323.0890, found: 323.0891.

Ethyl 3-(4-Bromophenyl)-2,2-dihydroxy-3-oxopropanoate (1h). White solid (75% yield); mp = 88.0-89.5 °C; TLC $R_f = 0.37$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 8.5 Hz, 2H), 7.63 (d, J = 8.5 Hz, 2H), 5.37 (brs, 2H), 4.23 (q, J = 7.0 Hz, 2H), 1.12 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 190.83, 169.60, 132.18, 131.57, 130.23, 130.15, 91.74, 63.34, 13.71. HRMS (ESI) *m/z* calculated for [C₁₁H₁₁BrO₅+Na]⁺ [M+Na]⁺ 324.9682, found: 324.9681.

Ethyl 3-(4-Cyanophenyl)-2,2-dihydroxy-3-oxopropanoate (1j). White solid (70% yield); mp = 102.9-106.9 °C; TLC $R_f = 0.20$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, J = 8.5 Hz, 2H), 7.80 (d, J = 8.5 Hz, 2H), 5.28 (brs, 2H), 4.23 (q, J = 7.0 Hz, 2H), 1.17 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 190.81, 169.12, 134.65, 132.48, 130.43, 117.68, 117.52, 91.96, 63.51, 13.70. HRMS (ESI) *m/z* calculated for [C₁₂H₁₁NO₅+Na]⁺ [M+Na]⁺ 272.0529, found: 272.0525.

Ethyl 2,2-Dihydroxy-3-(naphthalen-2-yl)-3-oxopropanoate (1k). Light yellow solid (71% yield); mp = 75.7-77.0 °C; TLC $R_f = 0.33$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 8.70 (s, 1H), 8.10 (d, J = 8.5 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 8.5 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.65 (t, J = 7.5 Hz, 1H), 7.57 (t, J = 7.5 Hz, 1H), 5.52 (brs, 2H), 4.22 (q, J = 7.0 Hz, 2H), 1.07 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 191.51, 170.05, 136.15, 132.94, 132.28, 130.12, 129.47, 128.66, 127.79, 127.07, 124.79, 91.85, 63.24, 13.68. HRMS (ESI) *m/z* calculated for [C₁₅H₁₄O₅+Na]⁺ [M+Na]⁺ 297.0733, found: 297.0725.

Ethyl 2,2-Dihydroxy-3-oxo-3-(thiophen-2-yl)propanoate (11). Yellow solid (77% yield); mp = 58.9-61.3 °C; TLC R_f = 0.26 (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.95 (dd, J = 4.0 Hz, 1.0 Hz, 1H), 7.79 (d, J = 4.0 Hz, 1H), 7.17 (t, J = 4.0 Hz, 1H), 5.30 (brs, 2H), 4.25 (q, J = 7.0 Hz, 2H), 1.16 (t, J = 7.0 Hz. 3H); ¹³C NMR (125 MHz, CDCl₃) δ 184.90, 169.70, 136.57, 136.29, 128.68, 109.99, 92.08, 63.41, 13.72. HRMS (ESI) *m/z* calculated for [C₉H₁₀O₅S+Na]⁺ [M+Na]⁺ 253.0141, found: 253.0136.

(*R*)-Benzyl 2-Hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]butanoate (3a). Light yellow solid (68% yield); mp = 48.8-50.6 °C; TLC $R_f = 0.30$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.39-7.36 (comp, 5H), 5.27 (d, *J* = 15.0 Hz, 1H), 5.20 (d, *J* = 15.0 Hz, 1H), 4.31 (s, 1H), 3.65 (dd, *J* = 15.0 Hz, 8.0 Hz, 1H), 2.44-2.30 (comp, 5H), 2.06-2.05 (m, 1H), 1.89-1.88 (m, 1H), 1.81-1.75 (comp, 2H), 1.69-1.61 (comp, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 209.52, 204.48, 169.57, 134.68, 128.71, 128.66, 128.25, 84.96, 68.40, 56.51, 41.87, 27.49, 26.71, 24.92, 24.48. Enantiomeric excess: 99% (Diacel Chirapak OD-H, hexanes/i-PrOH = 80:20, flow rate 1.0 mL/min, 230 nm, major enantiomer tr = 7.6 min, minor enantiomer tr = 8.6 min). HRMS (ESI) *m/z* calculated for [C₁₇H₂₀O₅+Na]⁺ [M+Na]⁺ 327.1203, found: 327.1195.

(S)-Benzyl 2-Hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]butanoate (4a). Light yellow solid (24% yield); mp = 71.0-72.5 °C; TLC $R_f = 0.40$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ

7.39-7.30 (comp, 5H), 5.22 (d, J = 15.0 Hz, 1H), 5.16 (d, J = 15.0 Hz, 1H), 4.09 (s, 1H), 3.62 (dd, J = 15.0 Hz, 7.5 Hz, 1H), 2.44-2.30 (comp, 2H), 2.25 (s, 3H), 2.10-2.07 (m, 1H), 1.92-1.83 (comp, 2H), 1.77-1.62 (comp, 3H); ¹³C NMR (125 MHz, CDCl₃) & 210.47, 205.72, 170.17, 134.92, 128.55, 128.43, 128.12, 84.75, 68.26, 55.84, 41.95, 27.58, 27.12, 25.85, 24.57. Enantiomeric excess: 97% (Diacel Chirapak OD-H, hexanes/i-PrOH = 80:20, flow rate 1.0 mL/min, 230 nm, major enantiomer tr = 6.4 min, minor enantiomer tr = 7.0 min). HRMS (ESI) *m/z* calculated for $[C_{17}H_{20}O_5+Na]^+$ [M+Na]⁺ 327.1203, found: 327.1200.

(*R*)-Methyl 2-Hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]butanoate (3b). White solid (60% yield); mp = 64.5-65.6 °C; TLC $R_f = 0.27$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 4.26 (s, 1H), 3.68 (s, 3H), 3.53 (dd, J = 12.0 Hz, 6.0 Hz, 1H), 2.34-2.16 (comp, 5H), 1.99-1.94 (m, 1H), 1.85-1.82 (m, 1H), 1.78-1.47 (comp, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 209.22, 204.56, 170.10, 84.86, 56.50, 53.61, 41.73, 27.50, 26.55, 24.79, 24.41. Enantiomeric excess: 99% (Diacel Chirapak OD-H, hexanes/i-PrOH = 90:10, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 9.2 min, minor enantiomer tr = 9.8 min). HRMS (ESI) *m/z* calculated for [C₁₁H₁₆O₅+Na]⁺ [M+Na]⁺ 251.0890, found: 251.0882.

(*S*)-Methyl 2-Hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]butanoate (4b). White solid (16%yield); mp = 71.6-72.8 °C; TLC $R_f = 0.37(3:1hexanes/EtOAc)$. ¹H NMR (500 MHz, CDCl₃) δ 4.07 (s, 1H), 3.71 (s, 3H), 3.57-3.53 (m, 1H), 2.36-2.30 (comp, 2H), 2.24 (s, 3H), 2.05-2.03 (m, 1H), 1.87-1.86 (m, 1H), 1.78-1.77 (m, 1H), 1.71-1.61 (comp, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 210.28, 205.98, 170.79, 84.58, 55.85, 53.50, 41.93, 27.46, 27.01, 25.82, 24.55. Enantiomeric excess: 97% (Diacel Chirapak OD-H, hexanes/i-PrOH = 93:7, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 9.6 min, minor enantiomer tr = 10.0 min). HRMS (ESI) *m/z* calculated for [C₁₁H₁₆O₅+Na]⁺ [M+Na]⁺ 251.0890, found: 251.0884.

(*R*)-Cyclohexyl 2-Hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]butanoate (3c). Colorless liquid (67% yield); TLC $R_f = 0.48$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 4.86-4.80 (m, 1H), 4.25 (s, 1H), 3.61 (dd, J = 12.5 Hz, 6.0 Hz, 1H), 2.40-2.26 (comp, 5H), 2.06-2.03 (m, 1H), 1.93-1.91 (m, 1H), 1.86-1.75 (comp, 4H), 1.70-1.61 (comp, 4H), 1.52-1.23 (comp, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 209.32, 204.76, 169.16, 84.80, 75.65, 56.46, 41.87, 31.20, 31.07, 27.46, 26.72, 25.10, 24.92, 24.59, 23.38, 23.31. Enantiomeric excess: 99% (Diacel Chirapak OD-H, hexanes/i-PrOH = 93:7, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 7.1 min, minor enantiomer tr = 8.4 min). HRMS (ESI) *m/z* calculated for [C₁₆H₂₄O₅+Na]⁺ [M+Na]⁺ 319.1516, found: 319.1516.

(*S*)-Cyclohexyl 2-Hydroxy-3-oxo-2-((*S*)-2-oxocyclohexyl)butanoate (4c). Colorless liquid (20% yield); TLC $R_f = 0.57$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 4.86-4.83 (m, 1H), 4.07 (s, 1H), 3.60 (dd, J = 11.5 Hz, 5.5 Hz, 1H), 2.43-2.30 (comp, 2H), 2.27 (s, 3H), 2.10-2.07 (m, 1H), 1.91-1.64 (comp, 9H), 1.52-1.26 (comp, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 210.26, 206.01, 169.70, 84.75, 75.25, 55.71, 42.03, 31.06, 31.02, 27.71, 27.20, 25.77, 25.22, 24.68, 23.41, 23.40. Enantiomeric excess: 98% (Diacel Chirapak OD-H, hexanes/i-PrOH = 98:2, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 8.3 min, minor enantiomer tr = 8.7 min). HRMS (ESI) *m/z* calculated for [C₁₆H₂₄O₅+Na]⁺ [M+Na]⁺ 319.1516, found: 319.1512.

yield); TLC $R_f = 0.31$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 4.23 (s, 1H), 3.73 (s, 3H), 3.63-3.59 (m, 1H), 2.96-2.88 (m, 1H), 2.47-2.39 (m, 1H), 2.36-2.23 (comp, 2H), 2.03-1.99 (m, 1H), 1.91-1.88 (m, 1H), 1.80-1.53 (comp, 4H), 1.00 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 209.44, 207.30, 170.46, 84.76, 56.67, 53.70, 41.86, 30.25, 27.52, 26.66, 24.49, 7.56. Enantiomeric excess: 99% (Diacel Chirapak OD-H, hexanes/i-PrOH = 95:5, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 9.9 min, minor enantiomer tr = 12.9 min). HRMS (ESI) m/z calculated for $[C_{12}H_{18}O_5+Na]^+$ [M+Na]⁺ 265.1046, found: 265.1036.

(*S*)-Methyl 2-Hydroxy-3-oxo-2-((*S*)-2-oxocyclohexyl)pentanoate (4d). White solid (19% yield); mp = 39.5-41.9 °C; TLC $R_f = 0.45$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 4.02 (s, 1H), 3.71 (s, 3H), 3.58-3.55 (m, 1H), 2.75-2.67 (m, 1H), 2.63-2.55 (m, 1H), 2.39-2.28 (comp, 2H), 2.06-2.03 (m, 1H), 1.87-1.85 (m, 1H), 1.77-1.57 (comp, 4H), 0.98 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 210.48, 208.60, 170.98, 84.54, 56.18, 53.53, 41.95, 31.31, 27.56, 27.04, 24.57, 7.26. Enantiomeric excess: 97% (Diacel Chirapak AD-H, hexanes/i-PrOH = 80:20, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 7.8 min, minor enantiomer tr = 8.9 min). HRMS (ESI) *m/z* calculated for [C₁₂H₁₈O₅+Na]⁺ [M+Na]⁺ 265.1046, found: 265.1043.

(*R*)-Benzyl 2-Hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]-4-phenylbutanoate (3e). Yellow solid (59% yield); mp = 80.8-83.1 °C; TLC $R_f = 0.33$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.37 (comp, 3H), 7.32-7.24 (comp, 5H), 7.14 (d, J = 6.5 Hz, 2H), 5.17 (d, J = 12.5 Hz, 1H), 5.10 (d, J = 12.5 Hz, 1H), 4.27 (s, 1H), 4.17 (d, J = 11.5 Hz, 1H), 4.02 (d, J = 11.5 Hz, 1H), 3.72 (dd, J = 12.5 Hz, 6.0 Hz, 1H), 2.45-2.42 (m, 1H), 2.35-2.28 (m, 1H), 2.06-2.03 (m, 1H), 1.88-1.87 (m,1H), 1.79-1.76 (m, 1H), 1.71-1.60 (comp, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 209.33, 204.20, 169.76, 134.66, 133.66, 129.92, 128.74, 128.70, 128.43, 128.33, 126.90, 84.75, 128.74, 128.70, 128.43, 128.33, 126.90, 84.75, 128.74, 128.70, 128.43, 128.33, 126.90, 84.75, 128.74, 128.70, 128.43, 128.33, 126.90, 84.75, 128.74, 128.70, 128.43, 128.33, 126.90, 84.75, 128.74, 128.70, 128.43, 128.33, 126.90, 84.75, 128.74, 128.70, 128.43, 128.33, 126.90, 84.75, 128.74, 128.70, 128.43, 128.33, 126.90, 84.75, 128.74, 128.74, 128.70, 128.43, 128.33, 126.90, 84.75, 128.74, 128.74, 128.70, 128.43, 128.33, 126.90, 84.75, 128.74, 128.70, 128.43, 128.74, 128.70, 128.43, 128.74, 128.74, 128.70, 128.43, 128.33, 126.90, 84.75, 128.74, 128.74, 128.70, 128.43, 128.33, 126.90, 84.75, 128.74, 128.74, 128.70, 128.43, 128.74, 12

68.52, 57.21, 44.29, 41.92, 27.29, 26.77, 24.47. Enantiomeric excess: 99% (Diacel Chirapak OD-H, hexanes/i-PrOH = 80:20, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 10.2 min, minor enantiomer tr = 11.8 min). HRMS (ESI) *m/z* calculated for $[C_{23}H_{24}O_5+Na]^+$ [M+Na]⁺ 403.1516, found: 403.1517.

(*S*)-Benzyl 2-Hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]-4-phenylbutanoate (4e). Yellow liquid (21% yield); TLC $R_f = 0.43$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.40-7.35 (comp, 3H), 7.31-7.24 (comp, 5H), 7.07 (d, J = 7.5 Hz, 2H), 5.19 (d, J = 12.0 Hz, 1H), 5.11 (d, J = 12.0 Hz, 1H), 4.16 (s, 1H), 3.98 (d, J = 12.0 Hz, 1H), 3.90 (d, J = 12.0 Hz, 1H), 3.66 (dd, J = 12.0 Hz, 5.5 Hz, 1H), 2.42-2.40 (m, 1H), 2.35-2.30 (m, 1H), 2.10-2.08 (m, 1H), 1.87-1.78 (comp, 2H), 1.76-1.66 (comp, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 210.76, 204.85, 170.12, 134.91, 133.13, 129.75, 128.57, 128.44, 128.24, 127.00, 84.94, 68.32, 56.10, 44.30, 42.00, 27.84, 27.20, 24.61. Enantiomeric excess: 98% (Diacel Chirapak OD-H, hexanes/i-PrOH = 90:10, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 12.6 min, minor enantiomer tr = 14.5 min). HRMS (ESI) m/z calculated for $[C_{23}H_{24}O_5+Na]^+ [M+Na]^+ 403.1516$, found: 403.1516.

(*R*)-Ethyl 2-Hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]-3-phenylpropanoate (3f). Clolorless liquid (51% yield); TLC $R_f = 0.43$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, J = 9.0 Hz, 2H), 7.57-7.53 (m, 1H), 7.45-7.42 (comp, 2H), 4.59 (s, 1H), 4.34-4.20 (comp, 2H), 3.85 (dd, J = 16.5 Hz, 6.5 Hz, 1H), 2.55-2.40 (comp, 2H), 2.18-2.13 (m, 1H), 2.00-1.63 (comp, 3H), 1.23 (t, J = 8.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.68, 195.74, 169.27, 134.68, 133.00, 129.76, 128.25, 84.73, 62.63, 56.08, 42.53, 28.49, 28.02, 24.95, 13.99. Enantiomeric excess: 99% (Diacel Chirapak OD-H, hexanes/i-PrOH = 97:3, flow rate 1.0 mL/min, 230 nm, major enantiomer tr = 17.0 min, minor enantiomer tr = 20.1 min). HRMS (ESI) *m/z* calculated for $[C_{17}H_{20}O_5+Na]^+$

(*S*)-Ethyl 2-Hydroxy-3-oxo-2-((*S*)-2-oxocyclohexyl)-3-phenylpropanoate (4f). Clolorless liquid (12% yield); TLC $R_f = 0.50$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, J = 9.0 Hz, 2H), 7.58-7.54 (m, 1H), 7.46-7.42 (comp, 2H), 4.30-4.21 (comp, 3H), 3.88-3.83 (m, 1H), 2.47-2.37 (comp, 2H), 2.14-2.10 (m, 1H), 2.04-2.00 (m, 1H), 1.93-1.92 (m, 1H), 1.86-1.67 (comp, 3H), 1.24 (t, J = 8.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.12, 197.09, 171.31, 135.92, 133.52, 130.29, 128.55, 85.72, 63.29, 57.43, 42.65, 28.81, 27.77, 25.18, 14.30. Enantiomeric excess: 98% (Diacel Chirapak OD-H, hexanes/i-PrOH = 99:1, flow rate 0.6 mL/min, 254 nm, major enantiomer tr = 31.1 min, minor enantiomer tr = 32.9 min). HRMS (ESI) *m/z* calculated for $[C_{17}H_{20}O_5+Na]^+ [M+Na]^+$ 327.1203, found: 327.1197.

(*R*)-Ethyl 3-(4-Chlorophenyl)-2-hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]propanoate (3g). Colorless liquid (58% yield); TLC $R_f = 0.46$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, J = 9.0 Hz, 2H), 7.37 (d, J = 9.0 Hz, 2H), 4.55 (s, 1H), 4.27-4.19 (comp, 2H), 3.80 (dd, J = 12.5 Hz, 5.5 Hz, 1H), 2.50-2.44 (m, 1H), 2.39-2.36 (m, 1H), 2.14-2.10 (m, 1H), 1.97-1.89 (comp, 2H), 1.86-1.70 (comp, 2H), 1.68-1.59 (m, 1H), 1.20 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.67, 194.62, 169.07, 139.43, 133.00, 131.33, 128.54, 84.81, 62.76, 56.07, 42.48, 28.41, 27.99, 24.90, 14.01. Enantiomeric excess: 99% (Diacel Chirapak OJ-H, hexanes/i-PrOH = 80:20, flow rate 0.8 mL/min, 254 nm, major enantiomer tr = 9.1 min, minor enantiomer tr = 11.7 min). HRMS (ESI) m/z calculated for $[C_{17}H_{19}ClO_5+Na]^+$ [M+Na]⁺ 361.0813, found: 361.0810.

(*S*)-Ethyl 3-(4-Chlorophenyl)-2-hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]propanoate (4g). Colorless liquid (7% yield); TLC $R_f = 0.55$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, J = 9.0 Hz, 2H), 7.40 (d, J = 9.0 Hz, 2H), 4.30-4.19 (comp, 3H), 3.82 (dd, J = 12.0 Hz, 5.5 Hz, 1H), 2.46-2.38 (comp, 2H), 2.13-2.11 (m, 1H), 2.00-2.19 (m, 1H), 1.92-1.91 (m, 1H), 1.83-1.70 (comp, 3H), 1.23 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 211.95, 195.31, 170.71, 139.71, 133.70, 131.57, 128.46, 85.47, 62.97, 57.02, 42.23, 28.47, 27.41, 24.76, 13.89. Enantiomeric excess: 94% (Diacel Chirapak OJ-H, hexanes/i-PrOH = 80:20, flow rate 0.8 mL/min, 254 nm, major enantiomer tr = 8.0 min, minor enantiomer tr = 10.0 min). HRMS (ESI) *m/z* calculated for [C₁₇H₁₉ClO₅+Na]⁺ [M+Na]⁺ 361.0813, found: 361.0811.

(*R*)-Ethyl 3-(4-Bromophenyl)-2-hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]propanoate (3h). White solid (56% yield); mp = 61.7-63.1 °C; TLC $R_f = 0.42$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 8.5 Hz, 2H), 7.55 (d, *J* = 8.5 Hz, 2H), 4.54 (s, 1H), 4.30-4.20 (comp, 2H), 3.81 (dd, *J* = 12.5 Hz, 6.0 Hz, 1H), 2.52-2.45 (m, 1H), 2.41-2.38 (m, 1H), 2.16-2.11 (m, 1H), 1.98-1.90 (comp, 2H), 1.88-1.60 (comp, 3H), 1.22 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.68, 194.88, 169.06, 133.43, 131.56, 131.41, 128.26, 84.82, 62.79, 56.11, 42.50, 28.42, 28.00, 24.91, 14.03. Enantiomeric excess: 99% (Diacel Chirapak OJ-H, hexanes/i-PrOH = 80:20, flow rate 0.8 mL/min, 254 nm, major enantiomer tr = 9.5 min, minor enantiomer tr = 12.1 min). HRMS (ESI) *m/z* calculated for [C₁₇H₁₉BrO₅+Na]⁺ [M+Na]⁺ 405.0308, found: 405.0298.

(*S*)-Ethyl 3-(4-Bromophenyl)-2-hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]propanoate (4h). Colorless liquid (6% yield); TLC $R_f = 0.36$ (10:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, J = 8.5 Hz, 2H), 7.56 (d, J = 8.5 Hz, 2H), 4.29-4.19 (comp, 3H), 3.81 (dd, J = 12.0 Hz, 5.5 Hz, 1H), 2.46-2.37 (comp, 2H), 2.13-2.10 (m, 1H), 2.02-1.99 (m, 1H), 1.92-1.91 (m, 1H), 1.82-1.68 (comp, 3H), 1.22 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 211.93, 195.56, 170.68, 134.14, 131.62, 131.45, 128.51, 85.46, 62.98, 57.01, 42.22, 28.45, 27.39, 24.75, 13.89. Enantiomeric excess: 95% (Diacel Chirapak OJ-H, hexanes/i-PrOH = 80:20, flow rate 0.8 mL/min, 254 nm, major enantiomer tr = 8.5 min, minor enantiomer tr = 10.6 min). HRMS (ESI) *m/z* calculated for [C₁₇H₁₉BrO₅+Na]⁺ [M+Na]⁺ 405.0308, found: 405.0305.

(*R*)-Ethyl 2-Hydroxy-3-(4-methoxyphenyl)-3-oxo-2-[(*S*)-2-oxocyclohexyl]propanoate (3i). Colorless liquid (25% yield); TLC $R_f = 0.26$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 8.13 (d, J = 9.0 Hz, 2H), 6.89 (d, J = 9.0 Hz, 2H), 4.68 (s, 1H), 4.28-4.17 (comp, 2H), 3.85 (s, 3H), 3.80 (dd, J = 12.5 Hz, 5.0 Hz, 1H), 2.54-2.48 (m, 1H), 2.40-2.37 (m, 1H), 2.16-2.12 (m, 1H), 1.97-1.91 (comp, 2H), 1.90-1.84 (m, 1H), 1.81-1.62 (comp, 2H), 1.19 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 213.28, 193.49, 169.37, 163.54, 132.45, 127.19, 113.52, 84.77, 62.39, 55.66, 55.43, 42.68, 28.75, 28.26, 25.05, 14.02. Enantiomeric excess: 99% (Diacel Chirapak AD-H, hexanes/i-PrOH = 70:30, flow rate 1.0 mL/min, 254 nm, major enantiomer tr = 15.2 min, minor enantiomer tr = 26.2 min). HRMS (ESI) *m/z* calculated for $[C_{18}H_{22}O_6+Na]^+$ [M+Na]⁺ 357.1308, found: 357.1306.

(*S*)-Ethyl 2-Hydroxy-3-(4-methoxyphenyl)-3-oxo-2-[(*S*)-2-oxocyclohexyl]propanoate (4i). Colorless liquid (4% yield); TLC $R_f = 0.32$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, J = 9.0 Hz, 2H), 6.91 (d, J = 9.0 Hz, 2H), 4.29 (s, 1H), 4.28-4.19 (comp, 2H), 3.89-3.83 (comp, 4H), 2.46-2.37 (comp, 2H), 2.12-2.09 (m, 1H), 2.00-1.99 (m, 1H), 1.91-1.89 (m, 1H), 1.82-1.71 (comp, 3H), 1.22 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 211.90, 194.10, 171.20, 163.66, 132.78, 127.96, 113.43, 85.23, 62.70, 57.03, 55.45, 42.30, 28.46, 27.47, 24.80, 13.90. Enantiomeric excess: 98% (Diacel Chirapak AD-H, hexanes/i-PrOH = 70:30, flow rate 1.0 mL/min, 254 nm, major enantiomer tr = 12.0 min, minor enantiomer tr = 23.1 min). HRMS (ESI) m/z calculated for $[C_{18}H_{22}O_6+Na]^+ [M+Na]^+ 357.1308$, found: 357.1300.

(*R*)-Ethyl 3-(4-Cyanophenyl)-2-hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]propanoate (3j). White solid (70% yield); mp = 84.2-85.3 °C; TLC $R_f = 0.29$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, *J* = 8.5 Hz, 2H), 7.71 (d, *J* = 8.5 Hz, 2H), 4.40 (s, 1H), 4.33-4.23 (comp, 2H), 3.84 (dd, *J* = 12.5 Hz, 6.0 Hz, 1H), 2.49-2.39 (comp, 2H), 2.15-2.12 (m, 1H), 1.99-1.96 (m, 1H), 1.92-1.72 (comp, 3H), 1.68-1.60 (m, 1H), 1.24 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 211.91, 195.65, 169.00, 138.66, 131.94, 130.06, 118.02, 115.82, 84.82, 63.23, 56.79, 42.28, 28.02, 27.67, 24.75, 14.03. Enantiomeric excess: 99% (Diacel Chirapak OD-H, hexanes/i-PrOH = 80:20, flow rate 1.0 mL/min, 254 nm, major enantiomer tr = 8.9 min, minor enantiomer tr = 9.9 min). HRMS (ESI) *m/z* calculated for [C₁₈H₁₉NO₅+Na]⁺ [M+Na]⁺ 352.1155, found: 352.1150.

(*S*)-Ethyl 3-(4-Cyanophenyl)-2-hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]propanoate (4j). White solid (13% yield); mp = 102.2-105.7 °C; TLC $R_f = 0.39$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 8.16 (d, *J* = 8.5 Hz, 2H), 7.72 (d, *J* = 8.5 Hz, 2H), 4.31-4.20 (comp, 3H), 3.80 (dd, *J* = 12.0 Hz, 5.5 Hz, 1H), 2.47-2.37 (comp, 2H), 2.14-2.11 (m, 1H), 2.01-1.93 (comp, 2H), 1.82-1.67 (comp, 3H), 1.23 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 211.82, 195.92, 170.30, 138.94, 131.85, 130.30, 117.95, 116.12, 85.58, 63.21, 57.03, 42.16, 28.44, 27.33, 24.70, 13.89. Enantiomeric excess: 96% (Diacel Chirapak OD-H, hexanes/i-PrOH = 90:10, flow rate 1.0 mL/min, 254 nm, major enantiomer tr = 12.4 min, minor enantiomer tr = 13.5 min). HRMS (ESI) *m/z* calculated for [C₁₈H₁₉NO₅+Na]⁺ [M+Na]⁺ 352.1155, found: 352.1154.

(*R*)-Ethyl 2-Hydroxy-3-(naphthalen-2-yl)-3-oxo-2-[(*S*)-2-oxocyclohexyl]propanoate (3k). Colorless liquid (45% yield); TLC $R_f = 0.41$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 8.78 (s, 1H), 8.07 (d, J = 9.0 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.87-7.84 (comp, 2H), 7.60-7.51 (comp, 2H), 4.73 (s, 1H), 4.33-4.21 (comp, 2H), 3.91 (dd, J = 12.5 Hz, 5.0 Hz, 1H), 2.56-2.49 (m, 1H), 2.43-2.41 (m, 1H), 2.16-2.14 (m, 1H), 2.00-1.90 (comp, 3H), 1.84-1.64 (comp, 2H), 1.21 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.89, 195.42, 169.37, 135.45, 132.30, 131.89, 129.93, 128.60, 128.04, 127.64, 126.60, 125.34, 85.01, 62.64, 56.12, 42.59, 28.60, 28.10, 24.99, 14.05. Enantiomeric excess: 99% (Diacel Chirapak AD-H, hexanes/i-PrOH = 70:30, flow rate 1.0 mL/min, 254 nm, major enantiomer tr = 30.2 min, minor enantiomer tr = 36.5 min). HRMS (ESI) m/z calculated for $[C_{21}H_{22}O_5+Na]^+ [M+Na]^+ 377.1359$, found: 377.1359.

(*S*)-Ethyl 2-Hydroxy-3-(naphthalen-2-yl)-3-oxo-2-[(*S*)-2-oxocyclohexyl]propanoate (4k). Colorless liquid (12% yield); TLC $R_f = 0.48$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 8.82 (s, 1H), 8.07 (d, J = 9.0 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.87-7.85 (comp, 2H), 7.72-7.59 (m, 1H), 7.56-7.53 (m, 1H), 4.39 (s, 1H), 4.32-4.22 (comp, 2H), 3.91 (dd, J = 12.0 Hz, 5.5 Hz, 1H), 2.48-2.40 (comp, 2H), 2.14-2.05 (comp, 2H), 1.94-1.91 (m, 1H), 1.88-1.67 (comp, 3H), 1.24 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 211.81, 196.28, 171.01, 135.44, 132.69, 132.25, 132.23, 130.01, 128.70, 127.84, 127.61, 126.61, 125.35, 85.57, 62.88, 57.14, 42.29, 28.49, 27.39, 24.80, 13.93. Enantiomeric excess: 97% (Diacel Chirapak AD-H, hexanes/i-PrOH = 70:30, flow rate 1.0 mL/min, 254 nm, major enantiomer tr = 12.5 min, minor enantiomer tr = 24.9 min). HRMS (ESI) m/z calculated for $[C_{21}H_{22}O_5+Na]^+$ [M+Na]⁺ 377.1359, found: 377.1354.

(*R*)-Ethyl 2-Hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]-3-(thiophen-2-yl)propanoate (3l). Yellow liquid (67% yield); TLC $R_f = 0.32$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 8.10 (dd, J = 4.0 Hz, 1.0 Hz, 1H), 7.62 (dd, J = 5.0 Hz, 1.0 Hz, 1H), 7.06 (dd, J = 5.0 Hz, 4.0 Hz, 1H), 4.65 (s, 1H), 4.25-4.13 (comp, 2H), 3.77 (dd, J = 12.0 Hz, 6.0 Hz, 1H), 2.47-2.40 (m, 1H), 2.37-2.33 (m, 1H), 2.11-2.06 (m, 1H), 1.93-1.79 (comp, 3H), 1.77-1.68 (m, 1H), 1.66-1.57 (m, 1H), 1.17 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 211.98, 187.99, 169.07, 139.26, 135.32, 134.91, 127.89, 84.74, 62.79, 55.72, 42.42, 28.33, 27.87, 24.88, 13.97. Enantiomeric excess: 99% (Diacel Chirapak OD-H, hexanes/i-PrOH = 90:10, flow rate 1.0 mL/min, 254 nm, major enantiomer tr = 12.6 min, minor enantiomer tr = 15.3 min). HRMS (ESI) *m/z* calculated for $[C_{15}H_{18}O_5S+Na]^+$ [M+Na]⁺ 333.0767, found: 333.0766.

(*S*)-Ethyl 2-Hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]-3-(thiophen-2-yl)propanoate (4l). Yellow solid (9% yield); mp = 69.7-70.4 °C; TLC $R_f = 0.42$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 8.22 (dd, *J* = 4.0 Hz, 1.0 Hz, 1H), 7.69 (dd, *J* = 5.0 Hz, 1.0 Hz, 1H), 7.12 (dd, *J* = 5.0 Hz, 4.0 Hz, 1H), 4.36 (s, 1H), 4.27-4.17 (comp, 2H), 3.81 (dd, *J* = 12.0 Hz, 5.5 Hz, 1H), 2.45-2.36 (comp, 2H), 2.12-2.09 (m, 1H), 2.04-2.01 (m, 1H), 1.91-1.89 (m, 1H), 1.85-1.66 (comp, 3H), 1.22 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 211.22, 188.44, 170.59, 139.06, 136.38, 135.94, 127.80, 84.81, 62.99, 56.84, 42.19, 28.23, 27.40, 24.72, 13.86. Enantiomeric excess: 92% (Diacel Chirapak AD-H, hexanes/i-PrOH = 92:8, flow rate 1.0 mL/min, 254 nm, major enantiomer tr = 25.7 min, minor enantiomer tr = 27.5 min). HRMS (ESI) *m/z* calculated for [C₁₅H₁₈O₅S+Na]⁺ [M+Na]⁺ 333.0767, found: 333.0760.

(*R*)-Benzyl 2-Hydroxy-3-oxo-2-[(*S*)-4-oxotetrahydro-2*H*-thiopyran-3-yl]butanoate (3m). White solid (56% yield); mp = 92.4-94.0 °C; TLC $R_f = 0.29$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.33 (comp, 5H), 5.28 (d, *J* = 12.0 Hz, 1H), 5.19 (d, *J* = 12.0 Hz, 1H), 3.94 (dd, *J* = 12.0 Hz, 4.5 Hz, 1H), 3.04-2.99 (m, 1H), 2.96-2.90 (m, 1H), 2.86-2.84 (m, 1H), 2.77-2.67 (comp, 2H), 2.53-2.50 (m, 1H), 2.27 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 206.56, 203.38, 169.21, 134.49, 128.90, 128.77, 128.36, 84.98, 68.71, 58.55, 44.37, 30.10, 29.59, 24.70. Enantiomeric excess: 99% (Diacel Chirapak OD-H, hexanes/i-PrOH = 80:20, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 10.2 min, minor enantiomer tr = 12.2 min). HRMS (ESI) *m/z* calculated for [C₁₆H₁₈O₅S+Na]⁺ [M+Na]⁺ 345.0767, found: 345.0757.

(*S*)-Benzyl 2-Hydroxy-3-oxo-2-[(*S*)-4-oxotetrahydro-2*H*-thiopyran-3-yl]butanoate (4m). Yellow solid (17% yield); mp = 63.4-64.8 °C; TLC $R_f = 0.42$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.33 (comp, 3H), 7.29-7.27 (comp, 2H), 5.19 (d, *J* = 12.5 Hz, 1H), 5.16 (d, *J* = 12.5 Hz, 1H), 4.16 (s, 1H), 3.95 (dd, *J* = 12.0 Hz, 4.5 Hz, 1H), 3.01-2.93 (comp, 2H), 2.90-2.86 (m, 1H), 2.74-2.64 (comp, 3H), 2.23 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 207.70, 204.79, 169.63, 134.67, 128.61, 128.21, 84.71, 68.50, 57.71, 44.55, 30.38, 30.10, 25.55, 25.54. Enantiomeric excess: 89% (Diacel Chirapak OD-H, hexanes/i-PrOH = 80:20, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 9.5 min, minor enantiomer tr = 11.1 min). HRMS (ESI) *m/z* calculated for [C₁₆H₁₈O₅S+Na]⁺ [M+Na]⁺ 345.0767, found: 345.0757.

(*R*)-Benzyl 2-Methyl-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (6a). Yellow liquid (87% yield); TLC $R_f = 0.33$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.26-7.18 (comp, 8H), 6.91-6.90 (comp, 2H), 5.13 (d, *J* = 12.0H, 1H), 5.04 (d, *J* = 12.0 Hz, 1H), 2.30-2.20 (comp, 4H), 1.67-1.55 (comp, 4H), 1.46 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 195.52, 174.87, 167.59, 137.24, 135.43, 129.24, 128.46, 128.17, 128.04, 127.98, 127.46, 107.56, 74.97, 67.30, 25.46, 22.16, 22.08, 18.99, 18.93. Enantiomeric excess: 99% (Diacel Chirapak AD-H, hexanes/i-PrOH = 90:10, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 12.8 min, minor enantiomer tr = 14.5 min). HRMS (ESI) *m/z* calculated for [C₂₃H₂₃NO₃+Na]⁺ [M+Na]⁺ 384.1570, found: 384.1568.

(*R*)-Benzyl 1-(4-Fluorophenyl)-2-methyl-3-oxo-2,3,4,5,6,7-hexahydro-1*H*-indole-2carboxylate (6b). Yellow solid (84% yield); mp = 64.5-65.2 °C; TLC $R_f = 0.31$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.33-7.26 (comp, 5H), 6.96-6.93 (comp, 4H), 5.21 (d, *J* = 12.0 Hz, 1H), 5.08 (d, *J* = 12.0 Hz, 1H), 2.30-2.23 (comp, 4H), 1.74-1.70 (comp, 4H), 1.53 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 195.38, 174.96, 167.39, 161.70 (d, *J* = 247 Hz), 135.34, 133.06, 133.04, 130.25 (d, *J* = 8.6 Hz), 128.52, 128.31, 128.20, 116.17 (d, *J* = 22.5 Hz), 107.45, 74.96, 67.39, 25.21, 22.06, 22.02, 18.95, 18.93. Enantiomeric excess: 99% (Diacel Chirapak AD-H, hexanes/i-PrOH = 95:5, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 24.5 min, minor enantiomer tr = 26.3 min). HRMS (ESI) *m/z* calculated for [C₂₃H₂₂FNO₃+Na]⁺ [M+Na]⁺ 402.1476, found: 402.1474.

(*R*)-Benzyl 1-(4-Chlorophenyl)-2-methyl-3-oxo-2,3,4,5,6,7-hexahydro-1*H*-indole-2carboxylate (6c). Yellow solid (84% yield); mp = 68.2-68.8 °C; TLC $R_f = 0.36$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.34-7.33 (comp, 3H), 7.29-7.26 (comp, 2H), 7.21 (d, *J* = 8.5 Hz, 2H), 6.90 (d, *J* = 8.5 Hz, 2H), 5.21 (d, *J* = 12.5 Hz, 1H), 5.08 (d, *J* = 12.5 Hz, 1H), 2.32-2.28 (comp, 4H), 1.76-1.66 (comp, 4H), 1.54 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 195.38, 174.54, 167.34, 135.76, 135.29, 133.26, 129.44, 129.22, 128.53, 128.33, 128.21, 108.15, 74.91, 67.45, 25.40, 22.11, 21.97, 19.04, 18.95. Enantiomeric excess: 99% (Diacel Chirapak IC-3, hexanes/i-PrOH = 70:30, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 22.3 min, minor enantiomer tr = 25.3 min). HRMS (ESI) *m/z* calculated for $[C_{23}H_{22}CINO_3+Na]^+$ [M+Na]+

(*R*)-Benzyl 1-(4-Bromophenyl)-2-methyl-3-oxo-2,3,4,5,6,7-hexahydro-1*H*-indole-2carboxylate (6d). Yellow liquid (82% yield); TLC $R_f = 0.37$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.37-7.33 (comp, 5H), 7.29-7.26 (comp, 2H), 6.83 (d, J = 8.5 Hz, 2H), 5.21 (d, J = 12.0 Hz, 1H), 5.09 (d, J = 12.0 Hz, 1H), 2.33-2.29 (comp, 4H), 1.76-1.67 (comp, 4H), 1.54 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 195.37, 174.47, 167.34, 136.28, 135.28, 132.44, 129.45, 128.54, 128.35, 128.22, 121.18, 108.25, 74.86, 67.47, 25.44, 22.12, 21.96, 19.07, 18.95. Enantiomeric excess: 99% (Diacel Chirapak IC-3, hexanes/i-PrOH = 70:30, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 23.0 min, minor enantiomer tr = 26.3 min). HRMS (ESI) *m/z* calculated for [C₂₃H₂₂BrNO₃+Na]⁺ [M+Na]⁺ 462.0675, found: 462.0672.

(*R*)-Benzyl 1-(4-Iodophenyl)-2-methyl-3-oxo-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (6e). Yellow liquid (81% yield); TLC $R_f = 0.40$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, J = 9.0 Hz, 2H), 7.34-7.33 (comp, 3H), 7.27-7.26 (comp, 2H), 6.69 (d, J = 9.0 Hz, 2H), 5.21 (d, J = 12.0 Hz, 1H), 5.07 (d, J = 12.0 Hz, 1H), 2.30-2.29 (comp, 4H), 1.74-1.67 (comp, 4H), 1.53 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 195.37, 174.36, 167.33, 138.42, 137.01, 135.28, 129.55, 128.54, 128.34, 128.19, 108.40, 92.41, 74.84, 67.46, 25.49, 22.13, 21.95, 19.07, 18.9. Enantiomeric excess: 99% (Diacel Chirapak IC-3, hexanes/i-PrOH = 70:30, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 24.3 min, minor enantiomer tr = 27.8 min). HRMS (ESI) m/z

calculated for [C₂₃H₂₂IO₃+Na]⁺ [M+Na]⁺ 510.0536, found: 510.0535.

(*R*)-Benzyl 1-(4-Methoxyphenyl)-2-methyl-3-oxo-2,3,4,5,6,7-hexahydro-1*H*-indole-2carboxylate (6f). Yellow liquid (84% yield); TLC $R_f = 0.23$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.33-7.26 (comp, 5H), 6.91 (d, *J* = 8.5 Hz, 2H), 6.75 (d, *J* = 8.5 Hz, 2H), 5.19 (d, *J* = 12.5 Hz, 1H), 5.08 (d, *J* = 12.5 Hz, 1H), 3.77 (s, 3H), 2.35-2.16 (comp, 4H), 1.71-1.63 (comp, 4H), 1.53 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 195.45, 175.61, 167.58, 158.98, 135.45, 129.87, 129.53, 128.48, 128.19, 128.10, 114.38, 106.55, 75.05, 67.23, 55.43, 25.15, 22.12, 22.07, 18.98, 18.89. Enantiomeric excess: 99% (Diacel Chirapak AD-H, hexanes/i-PrOH = 90:10, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 17.6 min, minor enantiomer tr = 19.6 min). HRMS (ESI) *m/z* calculated for [C₂₄H₂₅NO₄+Na]⁺ [M+Na]⁺ 414.1676, found: 414.1677.

(*R*)-Benzyl 1-(3,4-Dimethylphenyl)-2-methyl-3-oxo-2,3,4,5,6,7-hexahydro-1*H*-indole-2carboxylate (6g). Yellow liquid (87% yield); TLC $R_f = 0.35$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.33-7.26 (comp, 5H), 7.01 (d, J = 8.0 Hz, 1H), 6.75 (s, 1H), 6.71 (d, J = 8.0 Hz, 1H), 5.20 (d, J = 12.0 Hz, 1H), 5.10 (d, J = 12.0 Hz, 1H), 2.30-2.26 (comp, 4H), 2.22 (s, 3H), 2.13 (s, 3H), 1.73-1.64 (comp, 4H), 1.53 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 195.53, 175.23, 167.69, 137.66, 136.26, 135.55, 134.73, 130.25, 129.08, 128.45, 128.13, 128.04, 125.48, 106.90, 75.00, 67.21, 25.39, 22.15, 19.73, 19.28, 19.01, 18.89. Enantiomeric excess: 99% (Diacel Chirapak AD-H, hexanes/i-PrOH = 90:10, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 9.4 min, minor enantiomer tr = 12.0 min). HRMS (ESI) *m/z* calculated for [C₂₅H₂₇NO₃+Na]⁺ [M+Na]⁺ 412.1883, found: 412.1884.

(*R*)-Benzyl 1-(4-Cyanophenyl)-2-methyl-3-oxo-2,3,4,5,6,7-hexahydro-1*H*-indole-2carboxylate (6h). Yellow liquid (78% yield); TLC $R_f = 0.25$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, *J* = 8.5 Hz, 2H), 7.34-7.32 (comp, 3H), 7.27-7.25 (comp, 2H), 6.97 (d, *J* = 8.5 Hz, 2H), 5.22 (d, *J* = 12.5 Hz, 1H), 5.08 (d, *J* = 12.5 Hz, 1H), 2.44-2.43 (comp, 2H), 2.33-2.31 (comp, 2H), 1.83-1.80 (comp, 2H), 1.71-1.67 (comp, 2H), 1.56 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 195.10, 172.92, 167.09, 141.62, 135.09, 133.16, 128.56, 128.50, 128.31, 126.02, 118.14, 111.02, 109.50, 74.76, 67.74, 26.25, 22.30, 21.70, 19.20, 18.97. Enantiomeric excess: 99% (Diacel Chirapak AD-H, hexanes/i-PrOH = 90:10, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 30.3 min, minor enantiomer tr = 36.4 min). HRMS (ESI) *m*/z calculated for [C₂₄H₂₂N₂O₃+Na]⁺ [M+Na]⁺ 409.1522, found: 409.1522.

(*R*)-Benzyl 2-Methyl-1-(4-nitrophenyl)-3-oxo-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (6i). Yellow liquid (85% yield); TLC $R_f = 0.30$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, J = 8.5 Hz, 2H), 7.33-7.25 (comp, 5H), 6.98 (d, J = 8.5 Hz, 2H), 5.24 (d, J = 12.5 Hz, 1H), 5.08 (d, J = 12.5 Hz, 1H), 2.51-2.50 (comp, 2H), 2.35-2.34 (comp, 2H), 1.86-1.81 (comp, 2H), 1.74-1.67 (comp, 2H), 1.59 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 195.08, 172.76, 167.00, 144.72, 143.36, 134.99, 128.56, 128.38, 124.95, 124.85, 111.85, 74.82, 67.85, 26.56, 22.36, 21.61, 19.30, 19.01. Enantiomeric excess: 99% (Diacel Chirapak AD-H, hexanes/i-PrOH = 90:10, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 29.0 min, minor enantiomer tr = 33.3 min). HRMS (ESI) m/z calculated for $[C_{23}H_{22}N_2O_5+Na]^+$ [M+Na]⁺ 429.1421, found: 429.1423.

(*R*)-Benzyl 1-Hexadecyl-2-methyl-3-oxo-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (6j). Yellow liquid (46% yield); TLC $R_f = 0.34$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.28 (comp, 5H), 5.18 (d, J = 12.5 Hz, 1H), 5.14 (d, J = 12.5 Hz, 1H), 7.30-7.23 (m, 1H), 3.09-3.02 (m, 1H), 2.49-2.48 (m, 1H), 2.43-2.41 (m, 1H), 2.25-2.23 (comp, 2H), 1.80-1.79 (comp, 2H), 1.69-1.10 (comp, 2H), 1.59 (s, 3H), 1.47-1.45 (comp, 2H), 1.31-1.22 (comp, 26H), 0.89 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 194.27, 175.90, 168.05, 135.60, 128.47, 128.14, 127.82, 105.05, 73.89, 67.22, 44.14, 31.92, 30.37, 29.70, 29.66, 29.62, 29.55, 29.52, 29.36, 29.20, 27.02, 24.47, 22.69, 22.13, 22.05, 19.04, 18.80, 14.12. Enantiomeric excess: 99% (Diacel Chirapak AD-H, hexanes/i-PrOH = 95:5, flow rate 1.0 mL/min, 230 nm, major enantiomer tr = 7.2 min, minor enantiomer tr = 9.2 min). HRMS (ESI) *m/z* calculated for [C₃₃H₅₁NO₃+Na]⁺ [M+Na]⁺ 532.3761, found: 532.3753.

(*R*)-Benzyl 2-Methyl-3-oxo-1-phenyl-1,2,3,4,6,7-hexahydrothiopyrano[4,3-*b*]pyrrole-2carboxylate (6k). Yellow liquid (91% yield); TLC $R_f = 0.35$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.33-7.26 (comp, 8H), 7.00-6.98 (comp, 2H), 5.22 (d, J = 12.0 Hz, 1H), 5.11 (d, J = 12.0 Hz, 1H), 3.50 (d, J = 15.5 Hz, 1H), 3.40 (d, J = 15.5 Hz, 1H), 2.80-2.78 (comp, 2H), 2.57-2.55 (comp, 2H), 1.54 (s ,3H); ¹³C NMR (125 MHz, CDCl₃) δ 194.23, 173.45, 167.05, 136.51, 135.22, 129.48, 128.58, 128.53, 128.33, 128.20, 128.19, 104.54, 74.28, 67.54, 27.57, 24.79, 21.13, 18.80. Enantiomeric excess: 99% (Diacel Chirapak AD-H, hexanes/i-PrOH = 90:10, flow rate 1.0 mL/min, 230 nm, major enantiomer tr = 19.7 min, minor enantiomer tr = 25.5 min). HRMS (ESI) m/z calculated for $[C_{22}H_{21}NO_3S+Na]^+$ [M+Na]⁺ 402.1134, found: 402.1127.

(*R*)-Methyl 2-Methyl-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (61). Yellow solid (89% yield); mp = 96.5-97.9 °C; TLC $R_f = 0.21$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.38 (comp, 2H), 7.32-7.29 (m, 1H), 7.11 (d, *J* = 8.0 Hz, 2H), 3.71 (s, 3H), 2.33-2.28 (comp, 4H), 1.76-1.65 (comp, 4H), 1.52 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 195.53, 175.08, 168.23, 137.31, 129.35, 128.15, 127.69, 107.33, 74.98, 52.84, 25.44, 22.10, 22.03, 19.08, 18.95. Enantiomeric excess: 99% (Diacel Chirapak AD-H, hexanes/i-PrOH = 96:4, flow rate 1.0 mL/min, 254 nm, major enantiomer tr = 18.2 min, minor enantiomer tr = 19.8 min). HRMS (ESI) *m/z* calculated for [C₁₇H₁₉NO₃+Na]⁺ [M+Na]⁺ 308.1257, found: 308.1257.

(*R*)-Cyclohexyl 2-Methyl-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (6m). Yellow liquid (88% yield); TLC $R_f = 0.42$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.33 (comp, 2H), 7.28-7.26 (m, 1H), 7.12-7.10 (comp, 2H), 4.79-4.76 (m, 1H), 2.36-2.28 (comp, 4H), 1.78-1.56 (comp, 9H), 1.50 (s, 3H), 1.49-1.23 (comp, 7H); ¹³C NMR (125 MHz, CDCl₃) δ 195.78, 174.61, 167.03, 137.49, 129.23, 127.72, 127.29, 107.57, 75.22, 73.91, 31.12, 30.98, 25.57, 25.31, 23.18, 23.09, 22.25, 22.12, 19.02, 18.71. Enantiomeric excess: 99% (Diacel Chirapak AD-H, hexanes/i-PrOH = 95:5, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 12.2 min, minor enantiomer tr = 15.8 min). HRMS (ESI) *m/z* calculated for [C₂₂H₂₇NO₃+Na]⁺ [M+Na]⁺ 376.1883, found: 376.1874.

(*R*)-Methyl 2-Ethyl-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (6n). White solid (28% yield); mp = 121.0-123.0 °C; TLC $R_f = 0.25$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.31-7.28 (comp, 2H), 7.23-7.19 (m, 1H), 7.04-7.02 (comp, 2H), 3.62 (s, 3H), 2.37-2.31 (comp, 3H), 2.25-2.24 (comp, 2H), 1.90-1.87 (m, 1H), 1.70-1.58 (comp, 5H), 0.69 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 194.62, 175.95, 167.99, 137.42, 129.30, 127.06, 126.97, 109.58, 79.19, 52.74, 25.78, 24.72, 22.30, 22.05, 18.85, 7.01. Enantiomeric excess: 99% (Diacel Chirapak IC-3, hexanes/i-PrOH = 70:30, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 21.8 min, minor enantiomer tr = 29.5 min). HRMS (ESI) *m/z* calculated for [C₁₈H₂₁NO₃+Na]⁺ [M+Na]⁺ 322.1413, found: 322.1414.

(*R*)-Ethyl 3-Oxo-1,2-diphenyl-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (60). Yellow solid (73% yield); mp = 126.6-128.8 °C; TLC $R_f = 0.36$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.28-7.26 (comp, 3H), 7.21-7.19 (comp, 5H), 6.91-6.89 (comp, 2H), 4.19 (q, J = 7.0 Hz, 2H), 2.54-2.48 (m, 1H), 2.41-2.24 (comp, 3H), 1.86-1.68 (comp, 4H), 1.15 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 193.78, 175.70, 166.71, 137.73, 135.36, 128.78, 128.72, 128.30, 128.27, 128.20, 127.14, 108.05, 82.15, 62.24, 25.94, 22.26, 22.07, 19.12, 13.99. Enantiomeric excess: 99% (Diacel Chirapak AD-H, hexanes/i-PrOH = 90:10, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 9.4 min, minor enantiomer tr = 11.1 min). HRMS (ESI) m/z calculated for $[C_{23}H_{23}NO_3+Na]^+$ [M+Na]⁺ 384.1570, found: 384.1563.

(*R*)-Ethyl 2-(4-Chlorophenyl)-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (6p). Yellow liquid (58% yield); TLC $R_f = 0.42$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.28-7.19 (comp, 7H), 6.94 (d, J = 8.5 Hz, 2H), 4.19 (q, J = 7.0 Hz, 2H), 2.59-2.54 (m, 1H), 2.42-2.39 (m, 1H), 2.33-2.30 (comp, 2H), 1.86-1.85 (m, 1H), 1.75-1.70 (comp, 3H), 1.15 (t, J =7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 193.54, 175.92, 166.37, 137.63, 134.37, 133.76, 130.16, 128.95, 128.47, 127.77, 127.24, 108.35, 81.37, 62.40, 26.06, 22.26, 22.00, 19.10, 13.97. Enantiomeric excess: 99% (Diacel Chirapak OD-H, hexanes/i-PrOH/MeOH = 94:4:2, flow rate 1.0 mL/min, 210 nm, major enantiomer tr = 8.0 min, minor enantiomer tr = 8.8 min). HRMS (ESI) m/z calculated for [C₂₃H₂₂ClNO₃+Na]⁺ [M+Na]⁺ 418.1180, found: 418.1174.

(*R*)-Ethyl 2-(4-Bromophenyl)-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (6q). Yellow solid (46% yield); mp = 126.9-129.8 °C; TLC $R_f = 0.43$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, *J* = 8.5 Hz, 2H), 7.25-7.23 (comp, 3H), 7.15 (d, *J* = 8.5 Hz, 2H), 6.95-6.93 (comp, 2H), 4.18 (q, *J* = 7.0 Hz, 2H), 2.59-2.54 (m, 1H), 2.42-2.38 (m, 1H), 2.34-2.30 (comp, 2H), 1.87-1.84 (m, 1H), 1.78-1.70 (comp, 3H), 1.14 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 193.49, 175.92, 166.30, 137.63, 134.26, 131.42, 130.44, 128.96, 127.68, 127.22, 122.63, 108.42, 81.41, 62.40, 26.07, 22.26, 21.99, 19.10, 13.96. Enantiomeric excess: 99% (Diacel Chirapak OD-H, hexanes/i-PrOH/MeOH = 94:4:2, flow rate 1.0 mL/min, 254 nm, major enantiomer tr = 8.2 min, minor enantiomer tr = 8.8 min). HRMS (ESI) *m/z* calculated for [C₂₃H₂₂BrNO₃+Na]⁺ [M+Na]⁺ 462.0675, found: 462.0672.

(*R*)-Ethyl 2-(4-Methoxyphenyl)-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1*H*-indole-2carboxylate (6r). Yellow liquid (67% yield); TLC $R_f = 0.22$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.23-7.22 (comp, 3H), 7.12 (d, J = 8.5 Hz, 2H), 6.93-6.91 (comp, 2H), 6.81 (d, J = 8.5 Hz, 2H), 4.21 (q, J = 7.0 Hz, 2H), 3.80 (s, 3H), 2.53-2.49 (m, 1H), 2.44-2.33 (comp, 2H), 2.28-2.24 (m, 1H), 1.85-1.75 (comp, 4H), 1.18 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 193.85, 175.66, 166.89, 159.50, 137.72, 130.15, 128.73, 128.39, 127.49, 127.17, 113.74, 107.77, 81.83, 62.25, 55.28, 25.93, 22.26, 22.10, 19.15, 14.02. Enantiomeric excess: 99% (Diacel Chirapak OD-H, hexanes/i-PrOH/MeOH = 90:8:2, flow rate 1.0 mL/min, 254 nm, major enantiomer tr = 10.7 min, minor enantiomer tr = 11.8 min). HRMS (ESI) *m*/z calculated for [C₂₄H₂₅NO₄+Na]⁺ [M+Na]⁺ 414.1676, found: 414.1675.

(*R*)-Ethyl 2-(Naphthalen-2-yl)-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1*H*-indole-2carboxylate (6s). Yellow solid (61% yield); mp = 162.6-165.5 °C; TLC $R_f = 0.33(3:1$ hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.85 (s, 1H), 7.80 (d, J = 9.0 Hz, 2H), 7.73 (d, J = 9.0 Hz, 1H), 7.50-7.46 (comp, 2H), 7.22-7.19 (comp, 4H), 6.96-6.94 (comp, 2H), 4.25 (q, J = 7.0 Hz, 2H), 2.61-2.56 (m, 1H), 2.48-2.31 (comp, 3H), 1.89-1.87 (m, 1H), 1.81-1.78 (comp, 3H), 1.19 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 193.73, 175.85, 166.73, 137.79, 133.12, 133.00, 132.69, 128.80, 128.49, 128.19, 127.77, 127.44, 127.19, 126.45, 126.34, 126.01, 108.22, 82.17, 77.30, 77.05, 76.80, 62.34, 26.02, 22.31, 22.09, 19.20, 14.03. Enantiomeric excess: 99% (Diacel Chirapak OD-H, hexanes/i-PrOH = 90:10, flow rate 1.0 mL/min, 254 nm, major enantiomer tr = 9.6 min, minor enantiomer tr = 12.0 min). HRMS (ESI) *m/z* calculated for [C₂₇H₂₅NO₃+Na]⁺ [M+Na]⁺ 434.1726, found: 434.1721.

(*R*)-Ethyl 3-Oxo-1-phenyl-2-(thiophen-2-yl)-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (6t). Yellow liquid (72% yield); TLC $R_f = 0.34$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.28-7.25 (comp, 4H), 7.04 (dd, J = 4.0 Hz, 1.0 Hz, 1H), 7.00-6.98 (comp, 2H), 6.94 (dd, J = 4.0Hz, 1.0 Hz, 1H), 4.24 (q, J = 7.0 Hz, 2H), 2.53-2.50 (m, 1H), 2.39-2.34 (comp, 3H), 1.83-1.76 (comp, 4H), 1.21 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 192.93, 175.62, 165.90, 137.61, 136.53, 128.93, 128.09, 127.51, 127.20, 126.31, 126.28, 107.16, 78.49, 62.60, 26.12, 22.27, 22.02, 19.16, 14.00. Enantiomeric excess: 99% (Diacel Chirapak OD-H, hexanes/i-PrOH/MeOH = 90:8:2, flow rate 1.0 mL/min, 254 nm, major enantiomer tr = 9.1 min, minor enantiomer tr = 9.8 min). HRMS (ESI) *m/z* calculated for [C₂₁H₂₁NO₃S+Na]⁺ [M+Na]⁺ 390.1134, found: 390.1129.

(2*R*,3*S*,3*aS*,7*aR*)-Benzyl 1-(4-Bromophenyl)-3-hydroxy-2-methyloctahydro-1*H*-indole-2carboxylate (8d). White solid (81% yield); mp = 43.0-45.3 °C; TLC $R_f = 0.20$ (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.34-7.28 (comp, 5H), 7.19 (d, *J* = 9.0 Hz, 2H), 6.37 (d, *J* = 9.0 Hz, 2H), 5.26 (d, *J* = 12.0 Hz, 1H), 5.21 (d, *J* = 12.0 Hz, 1H), 4.20-4.18 (t, *J* = 6.0 Hz, 1H), 3.91-3.87 (m, 1H), 2.46-2.40 (m, 1H), 2.31 (d, *J* = 7.0 Hz, 1H), 2.18-2.15 (m, 1H), 1.95-1.92 (m, 1H), 1.74-1.51 (comp, 8H), 1.23-1.20 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 173.29, 143.07, 135.46, 131.46, 128.50, 128.31, 128.27, 116.36, 108.36, 85.46, 72.64, 67.23, 58.77, 38.10, 27.21, 23.43, 22.31, 20.86. Enantiomeric excess: 99% (Diacel Chirapak OD-H, hexanes/i-PrOH = 95:5, flow rate 1.0 mL/min, 254 nm, major enantiomer tr = 8.4 min, minor enantiomer tr = 9.5 min). HRMS (ESI) *m/z* calculated for [C₂₃H₂₆BrNO₃S+Na]⁺ [M+Na]⁺ 466.0988, found: 466.0990.

(*R*)-Benzyl 1-(4-Bromophenyl)-2-methyl-3-oxoindoline-2-carboxylate (9d). Yellow solid (65% yield); mp = 63.7-64.8 °C; TLC R_f =0.22 (3:1 hexanes/EtOAc). ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, *J* = 7.5 Hz, 1H), 7.50-7.46 (m, 1H), 7.40 (d, *J* = 9.0 Hz, 2H), 7.34-7.32 (comp, 3H), 7.23-7.21 (comp, 2H), 6.98 (d, *J* = 9.0 Hz, 2H), 6.94-6.91 (comp, 2H), 5.24 (d, *J* = 12.5 Hz, 1H), 5.06 (d, *J* = 12.5 Hz, 1H), 1.60 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 196.36, 167.80, 159.30, 137.85, 137.61, 135.00, 132.83, 128.54, 128.44, 128.31, 127.28, 125.62, 119.93, 119.78, 111.35, 74.85, 67.72, 19.05. Enantiomeric excess: 98% (Diacel Chirapak AD-H, hexanes/i-PrOH = 90:10, flow rate 1.0 mL/min, 254 nm, major enantiomer tr = 10.2 min, minor enantiomer tr = 10.9 min). HRMS (ESI) *m/z* calculated for [C₂₃H₁₈BrNO₃+Na]⁺ [M+Na]⁺ 458.0368, found: 458.0366.

References

- (a) P.Truong, P. Y. Zavalij and M. P. Doyle, Angew. Chem., Int. Ed., 2014, 2535, 65866468; (b)
 D. L. Smith and J. A. McCloskey, J. Org. Chem., 1978, 43, 2087; (c) Y. Yamamoto, Y.
 Watanabe and S. Ohnishi, Chem. Pharm. Bull., 1987, 35, 1870; (d) M. P. Doyle, M. A.
 McKervey and Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides; John Wiley & Sons: New York, 1998.
- I. Ryu, H. Kuriyama, H. Miyazato, S. Minakata, M. Komatsu, J. Yoon and S. Kim, B. Chem. Soc. Jpn., 2004, 77, 1407.
- 3. H. Wang, S. B. Ren, J. Zhang, W. Zhang and Y. K. Liu, J. Org. Chem., 2005, 80, 6856.

4. H. Asahara and N. Nishiwaki, J. Org. Chem., 2014, 79, 11735.

HPLC spectra of products 3a-m, 4a-m, 6a-t, 7d. (*R*)-Benzyl 2-Hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]butanoate (3a).

(S)-Benzyl 2-Hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]butanoate (4a).

(*R*)-Methyl 2-Hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]butanoate (3b).

(S)-Methyl 2-Hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]butanoate (4b).

(*R*)-Cyclohexyl 2-Hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]butanoate (3c).

(S)-Cyclohexyl 2-Hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]butanoate (4c).

(R)-Methyl 2-Hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]pentanoate (3d).

(S)-Methyl 2-Hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]pentanoate (4d).

(*R*)-Benzyl 2-Hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]-4-phenylbutanoate (3e).

(S)-Benzyl 2-Hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]-4-phenylbutanoate (4e).

(R)-Ethyl 2-Hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]-3-phenylpropanoate (3f).

(S)-Ethyl 2-Hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]-3-phenylpropanoate (4f).

(R)-Ethyl 3-(4-Chlorophenyl)-2-hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]propanoate (3g).

(S)-Ethyl 3-(4-Chlorophenyl)-2-hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]propanoate (4g).

(R)-Ethyl 3-(4-Bromophenyl)-2-hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]propanoate (3h).

(S)-Ethyl 3-(4-Bromophenyl)-2-hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]propanoate (4h).

(R)-Ethyl 2-Hydroxy-3-(4-methoxyphenyl)-3-oxo-2-[(S)-2-oxocyclohexyl]propanoate (3i).

(S)-Ethyl 2-Hydroxy-3-(4-methoxyphenyl)-3-oxo-2-[(S)-2-oxocyclohexyl]propanoate (4i).

(R)-Ethyl 3-(4-Cyanophenyl)-2-hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]propanoate (3j).

(S)-Ethyl 3-(4-Cyanophenyl)-2-hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]propanoate (4j).

(*R*)-Ethyl 2-Hydroxy-3-(naphthalen-2-yl)-3-oxo-2-[(*S*)-2-oxocyclohexyl]propanoate (3k).

(S)-Ethyl 2-Hydroxy-3-(naphthalen-2-yl)-3-oxo-2-[(S)-2-oxocyclohexyl]propanoate (4k).

(R)-Ethyl 2-Hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]-3-(thiophen-2-yl)propanoate (3l).

(S)-Ethyl 2-Hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]-3-(thiophen-2-yl)propanoate (4l).

(R)-Benzyl 2-Hydroxy-3-oxo-2-[(S)-4-oxotetrahydro-2H-thiopyran-3-yl]butanoate (3m).

(S)-Benzyl 2-Hydroxy-3-oxo-2-[(S)-4-oxotetrahydro-2H-thiopyran-3-yl]butanoate (4m).

(R)-Benzyl 2-Methyl-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (6a).

carboxylate (6b).

(R)-Benzyl

1-(4-Chlorophenyl)-2-methyl-3-oxo-2,3,4,5,6,7-hexahydro-1*H*-indole-2-

carboxylate (6c).

(*R*)-Benzyl 1-(4-Bromophenyl)-2-methyl-3-oxo-2,3,4,5,6,7-hexahydro-1*H*-indole-2-

carboxylate (6d).

(R)-Benzyl 1-(4-Iodophenyl)-2-methyl-3-oxo-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate

(6e).

(R)-Benzyl

carboxylate (6f).

(*R*)-Benzyl 1-(3,4-Dimethylphenyl)-2-methyl-3-oxo-2,3,4,5,6,7-hexahydro-1*H*-indole-2-

carboxylate (6g).

(R)-Benzyl

carboxylate (6h).

(R)-Benzyl 2-Methyl-1-(4-nitrophenyl)-3-oxo-2,3,4,5,6,7-hexahydro-1H-indole-2-carboxylate

(6i).

(R)-Benzyl 1-Hexadecyl-2-methyl-3-oxo-2,3,4,5,6,7-hexahydro-1H-indole-2-carboxylate (6j).

carboxylate (6k).

(R)-Methyl 2-Methyl-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1H-indole-2-carboxylate (6l).

(*R*)-Cyclohexyl 2-Methyl-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate

(6m).

(R)-Methyl 2-Ethyl-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (6n).

(R)-Ethyl 3-Oxo-1,2-diphenyl-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (60).

(R)-Ethyl 2-(4-Chlorophenyl)-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1H-indole-2-carboxylate

(6p).

(R)-Ethyl 2-(4-Bromophenyl)-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1H-indole-2-carboxylate

(6q).

(R)-Ethyl

carboxylate (6r).

(*R*)-Ethyl 2-(Naphthalen-2-yl)-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1*H*-indole-2-

carboxylate (6s).

(*R*)-Ethyl 3-Oxo-1-phenyl-2-(thiophen-2-yl)-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (6t).

(2R,3S,3aS,7aR)-Benzyl 1-(4-Bromophenyl)-3-hydroxy-2-methyloctahydro-1*H*-indole-2-

carboxylate (8d).

(R)-Benzyl 1-(4-Bromophenyl)-2-methyl-3-oxoindoline-2-carboxylate (9d).

¹H NMR and ¹³C NMR spectra of products 3a-m, 4a-m, 6a-t.

Cyclohexyl 2,2-Dihydroxy-3-oxobutanoate (1c).

Benzyl 2,2-Dihydroxy-3-oxo-4-phenylbutanoate (1e).

Ethyl 3-(4-Bromophenyl)-2,2-dihydroxy-3-oxopropanoate (1h).

Ethyl 3-(4-Cyanophenyl)-2,2-dihydroxy-3-oxopropanoate (1j).

(*R*)-Benzyl 2-Hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]butanoate (3a).

(S)-Benzyl 2-Hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]butanoate (4a).

(R)-Methyl 2-Hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]butanoate (3b).

¹HNMR (500 MHz, CDCl₃)

210

190

170

150

130

90 80 70 60 50 40 30 20 10 0 -10

110 fl (ppm)

-6 -5 -4 -3 -2 -1 -0

(S)-Methyl 2-Hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]butanoate (4b).

(R)-Cyclohexyl 2-Hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]butanoate (3c).

(*R*)-Methyl 2-Hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]pentanoate (3d).

(S)-Methyl 2-Hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]pentanoate (4d).

(*R*)-Benzyl 2-Hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]-4-phenylbutanoate (3e). ¹HNMR (500 MHz, CDCl₃)

S76

(*S*)-Benzyl 2-Hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]-4-phenylbutanoate (4e). ¹HNMR (500 MHz, CDCl₃)

(*R*)-Ethyl 2-Hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]-3-phenylpropanoate (3f). ¹HNMR (500 MHz, CDCl₃)

(*S*)-Ethyl 2-Hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]-3-phenylpropanoate (4f). ¹HNMR (500 MHz, CDCl₃)

(*R*)-Ethyl 3-(4-Chlorophenyl)-2-hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]propanoate (3g). ¹HNMR (500 MHz, CDCl₃)

(*S*)-Ethyl 3-(4-Chlorophenyl)-2-hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]propanoate (4g). ¹HNMR (500 MHz, CDCl₃)

(*R*)-Ethyl 3-(4-Bromophenyl)-2-hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]propanoate (3h). ¹HNMR (500 MHz, CDCl₃)

(S)-Ethyl 3-(4-Bromophenyl)-2-hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]propanoate (4h). ¹HNMR (500 MHz, CDCl₃)

(*R*)-Ethyl 2-Hydroxy-3-(4-methoxyphenyl)-3-oxo-2-[(*S*)-2-oxocyclohexyl]propanoate (3i). ¹HNMR (500 MHz, CDCl₃)

(*S*)-Ethyl 2-Hydroxy-3-(4-methoxyphenyl)-3-oxo-2-[(*S*)-2-oxocyclohexyl]propanoate (4i). ¹HNMR (500 MHz, CDCl₃)

(*R*)-Ethyl 3-(4-Cyanophenyl)-2-hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]propanoate (3j). ¹HNMR (500 MHz, CDCl₃)

(S)-Ethyl 3-(4-Cyanophenyl)-2-hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]propanoate (4j). ¹HNMR (500 MHz, CDCl₃)

(S)-Ethyl 2-Hydroxy-3-(naphthalen-2-yl)-3-oxo-2-[(S)-2-oxocyclohexyl]propanoate (4k). ¹HNMR (500 MHz, CDCl₃)

(*R*)-Ethyl 2-Hydroxy-3-oxo-2-[(*S*)-2-oxocyclohexyl]-3-(thiophen-2-yl)propanoate (3l). ¹HNMR (500 MHz, CDCl₃)

(S)-Ethyl 2-Hydroxy-3-oxo-2-[(S)-2-oxocyclohexyl]-3-(thiophen-2-yl)propanoate (4l). ¹HNMR (500 MHz, CDCl₃)

(*R*)-Benzyl 2-Hydroxy-3-oxo-2-[(*S*)-4-oxotetrahydro-2*H*-thiopyran-3-yl]butanoate (3m). ¹HNMR (500 MHz, CDCl₃)

(S)-Benzyl 2-Hydroxy-3-oxo-2-[(S)-4-oxotetrahydro-2*H*-thiopyran-3-yl]butanoate (4m). ¹HNMR (500 MHz, CDCl₃)

(*R*)-Benzyl 2-Methyl-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (6a). ¹HNMR (500 MHz, CDCl₃)

1-(4-Fluorophenyl)-2-methyl-3-oxo-2,3,4,5,6,7-hexahydro-1*H*-indole-2-

carboxylate (6b).

(R)-Benzyl

(R)-Benzyl

1-(4-chlorophenyl)-2-methyl-3-oxo-2,3,4,5,6,7-hexahydro-1*H*-indole-2-

carboxylate (6c).

1-(4-Bromophenyl)-2-methyl-3-oxo-2,3,4,5,6,7-hexahydro-1*H*-indole-2-

carboxylate (6d).

(R)-Benzyl

(*R*)-Benzyl 1-(4-Iodophenyl)-2-methyl-3-oxo-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (6e).

(R)-Benzyl1-(4-Methoxyphenyl)-2-methyl-3-oxo-2,3,4,5,6,7-hexahydro-1H-indole-2-
carboxylate (6f).

(R)-Benzyl1-(3,4-Dimethylphenyl)-2-methyl-3-oxo-2,3,4,5,6,7-hexahydro-1H-indole-2-
carboxylate (6g).

(*R*)-Benzyl 1-(4-Cyanophenyl)-2-methyl-3-oxo-2,3,4,5,6,7-hexahydro-1*H*-indole-2-

carboxylate (6h).

(*R*)-Benzyl 2-Methyl-1-(4-nitrophenyl)-3-oxo-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (6i).

(*R*)-Benzyl 1-Hexadecyl-2-methyl-3-oxo-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (6j). ¹HNMR (500 MHz, CDCl₃)

(*R*)-Benzyl 2-Methyl-3-oxo-1-phenyl-1,2,3,4,6,7-hexahydrothiopyrano[4,3-*b*]pyrrole-2carboxylate (6k).

(*R*)-Methyl 2-Methyl-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (6l). ¹HNMR (500 MHz, CDCl₃)

(*R*)-Cyclohexyl 2-Methyl-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (6m).

(*R*)-Methyl 2-Ethyl-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (6n). ¹HNMR (500 MHz, CDCl₃)

(*R*)-Ethyl 2-(4-Chlorophenyl)-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (6p).

(*R*)-Ethyl 2-(4-Bromophenyl)-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (6q).

(*R*)-Ethyl 2-(4-Methoxyphenyl)-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1*H*-indole-2-

carboxylate (6r).

(*R*)-Ethyl 2-(Naphthalen-2-yl)-3-oxo-1-phenyl-2,3,4,5,6,7-hexahydro-1*H*-indole-2-

carboxylate (6s).

(*R*)-Ethyl 3-Oxo-1-phenyl-2-(thiophen-2-yl)-2,3,4,5,6,7-hexahydro-1*H*-indole-2-carboxylate (6t).

(2*R*,3*S*,3a*S*,7a*R*)-Benzyl

1-(4-Bromophenyl)-3-hydroxy-2-methyloctahydro-1*H*-indole-2-

carboxylate (8d).

(R)-Benzyl 1-(4-Bromophenyl)-2-methyl-3-oxoindoline-2-carboxylate (9d).

Crystallographic datas for compound 3g and 6c

Single crystals of **3g** (C₁₇H₁₉ClO₅)and **6c** (C₂₃H₂₂ClNO₃)wereprepared by slow evaporation of ethyl ether and hexane.Suitable colorless prism-like crystals of both compounds, with dimensions of 0.50 x 0.47 x 0.30 mm and 0.50 x 0.40 x 0.23 mm, resepectively, were mounted in epoxy onto glass fibers. The data were collected at 293(2) K using a Rigaku AFC12/Saturn 724 CCD fitted with Mo K α radiation (λ = 0.71073 Å). Data collection and unit cell refinement were performed using *Crystal Clear* software.¹ The total number of data were measured in the range 4.6< 20 < 50.1° using ω scans. Data processing and absorption correction, giving minimum and maximum transmission factors (0.512, 1.000 and 0.872, 1.000, respectively), were accomplished with *Crystal Clear* and *ABSCOR*,² respectively. The structure, using Olex2,³ was solved with the ShelXT⁴ structure solution program using direct methods and refined (on *F*²) with the ShelXL⁵ refinement package using full-matrix, least-squares techniques. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atom positions were determined by geometry and refined by a riding model.

Compound	6с	3g
Empirical	C ₂₃ H ₂₂ ClNO ₃	C17H19ClO5
formula		
Formula weight	395.86	338.77
Crystal system	orthorhombic	monoclinic
Space Group	$P2_{1}2_{1}2_{1}$	C2
a(Å)	9.258(2)	21.410(6)
$b(\text{\AA})$	9.554(2)	9.115(3)
$c(\text{\AA})$	22.789(5)	8.678(3)
<i>α</i> (°)	90	90
$\beta(^{\circ})$	90	90.827(4)
γ(°)	90	90
Volume(Å ³)	2015.8(9)	1693.5(9)
Z, Z'	4,1	4,1
p(calc.)	1.304	1.329
λ	0.71075	0.71075
Temp.(K)	293	293
F(000)	832	712
μ(mm ⁻¹)	0.213	0.248
T _{min} , T _{max}	0.512, 1.000	0.872, 1.000
$2\theta_{range}(^{\circ})$	4.624- 50.484	4.694- 50.096
Reflections	7560	5190
Collected		
Independent	3718	2420
reflections		
Completeness	99.0%	98.0%
Data / restraints /	3718/ 0/ 255	2420/ 1/ 210
parameters		
Observed data	3490	2350
$[I > 2\sigma(I)]$		
$wR(F^2 \text{ all data})$	0.1149	0.0924
R(F obsd data)	0.0421	0.0340
Goodness-of-fit	1.062	1.050
on F ²		
largest diff.	0.20/-0.27	0.20/-0.25
peak and hole, e		
Å-3		

Crystallographic data and Structure Refinement Table

$$wR_{2} = \{ \Sigma [w(F_{0}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{0}^{2})^{2}] \}^{1/2}$$
$$R_{1} = \Sigma ||F_{0}| - |F_{c}|| / \Sigma |F_{0}|$$

- 1. CrystalClear, User Manual. Rigaku/MSC Inc., Rigaku Corporation, The Woodlands, TX, 2011.
- 2. Higashi, ABSCOR, Rigaku Corporation, Tokyo, Japan, 1995.
- 3. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
- 4. G.M.Sheldrick, Acta Cryst., 2015, A71, 3.
- 5. G.M.Sheldrick, Acta Cryst., 2008, A64, 112.

