Supporting Information

Spontaneous Tl(I)-to-Tl(III) Oxidation in Dynamic Heterobimetallic Hg(II)/Tl(I) Porphyrin Complexes

Victoria Ndoyom,^a Luca Fusaro,^b Thierry Roisnel,^a Stéphane Le Gac^{*a} and Bernard Boitrel^{*a}

(a) UMR CNRS 6226, Institut des Sciences Chimiques de Rennes, Université de Rennes 1, 263 avenue du Général Leclerc, 35042 Rennes cedex, France.

E-mail : stephane.legac@univ-rennes1.fr; bernard.boitrel@univ-rennes1.fr

(b) Unité de Chimie des Nanomatériaux (CNANO), Université de Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium.

Content:

Experimental Section

General

²⁰⁵Tl Heteronuclear NMR experiments General procedure for the formation of complexes 1^{Hg} , $1^{Hg}_{Tl(1)}$, 2^{Hg} and $2^{Hg}_{Tl(1)}$ Characterization of complexes 1^{Hg} , 2^{Hg} , $1^{Hg}_{Tl(1)}$, $1^{Tl(111)}$ and $2^{Hg}_{Tl(1)}$ Crystal data for complex $1^{Tl(111)}$

Figure S1. 2D COSY and HSQC NMR spectra of $\mathbf{1}^{^{Hg}}$

Figure S2. 2D COSY NMR spectrum of 1^{TI(III)}

Figure S3. 2D HSQC NMR spectrum of 1^{TI(III)}

Figure S4. 2D COSY NMR spectrum of 1^{Hg}_{TI(I)}

Figure S5. 2D HSQC NMR spectrum of 1^{Hg}_{TI(I)}

Figure S6. 2D COSY NMR spectrum of 2^{Hg}_{TI(I)}

Figure S7. 2D HSQC NMR spectrum of 2^{Hg}_{TI(I)}

Figure S8. Comparison of the variable temperature ¹H NMR profiles of $2_{TI(III)}$. TI(I) and $2^{Hg}_{TI(I)}$

Figure S9. Formation and spontaneous evolution of $2^{Hg}_{TI(I)}$ monitored by ¹H and ²⁰⁵TI NMR spectroscopy

Figure S10. Influence of the order of introduction of TIOAc and $Hg(OAc)_2$ on the formation of $\mathbf{1}^{Hg}_{TI(I)}$ monitored by ¹H NMR spectroscopy

Figure S11. Influence of the order of introduction of TIOAc and $Hg(OAc)_2$ on the formation of $2^{Hg}_{TI(I)}$ monitored by ¹H NMR spectroscopy

Figure S12. ¹H NMR monitoring of the spontaneous transformation $\mathbf{1}^{Hg}_{TI(I)} \rightarrow \mathbf{1}^{TI(III)}$ in the presence of DMAP

Figure S13. ¹H NMR monitoring of the spontaneous transformation $2^{Hg}_{T(I)} \rightarrow 2_{T(III)}$.Tl(I) without or with DMAP

Figure S14. ¹H NMR experiment related to the TI(I)-to-TI(III) oxidation process, attempted with an excess of $Hg(OAc)_2$

Figure S15. ¹H NMR monitoring of the transformations $\mathbf{1}^{Hg}_{TI(I)} \rightarrow \mathbf{1}^{TI(III)}$ and $\mathbf{2}^{Hg}_{TI(I)} \rightarrow \mathbf{2}_{TI(III)}$.**TI(I)** carried out at ambient atmosphere or in deoxygenated solvents

Figure S16. ¹H NMR experiments related to the TI(I)-to-TI(III) oxidation process attempted without porphyrin

Figure S17. Monitoring of the metallation of 1 with Hg(II) and Tl(I) by UV-vis absorption spectroscopy

Figure S18. Monitoring of the metallation of 2 with Hg(II) and Tl(I) by UV-vis absorption spectroscopy

Figure S19. UV-vis absorption spectra of $\mathbf{1}^{Hg}_{TI(I)}$ and $\mathbf{2}^{Hg}_{TI(I)}$ obtained from a 1/500 dilution of NMR tube solutions

Experimental Section

General

All of the NMR experiments were conducted in 5 mm standard NMR tubes. ¹H NMR spectra were recorded at 400 or 500 MHz. Chemical shifts are expressed in parts per million, and traces of residual solvents were used as internal standards. All of the ¹H NMR signals were assigned using 2D NMR experiments (COSY, HSQC). Compounds **1**^[1] and **2**^[2] were prepared as previously described. All of the chemicals were commercial products and used as received. *Caution! Thallium salts are highly toxic and should be handled with care.*

²⁰⁵TI Heteronuclear NMR experiments

Natural abundance ²⁰⁵Tl and ¹H NMR spectra were recorded at 25° C, on a Varian VNMR System spectrometer operating at 9.4 T (230.9 and 399.9 MHz, respectively) equipped with three channels (one high band and two low band) and temperature regulation, using a modified 5 mm switchable probe. The spectra of Tl(l) were recorded using the following acquisition parameters: spectral width of about 832 ppm (192 kHz), 0.06 s relaxation delay, 17 μ s (90°) excitation pulse, 5 ms acquisition time and a number of transients ranging between 6.8×10³ and 8.7×10⁵. The spectra of Tl(lII) were recorded using the following acquisition parameters: spectral width of about 832 ppm (192 kHz), 4.9 s relaxation delay, 90° excitation pulse, 0.1 s acquisition time and a number of transients ranging between 3.0×10^2 and 1.2×10^4 . The spectra were recorded lock-on without sample spinning. The processing comprised correction of the Free Induction Decay (FID) by backward linear prediction, exponential multiplication with a line broadening factor of 200 Hz, zero filling, Fourier transform, zero-order phase correction, and baseline correction. The chemical shift scale was calibrated at 25°C with respect to an aqueous TINO₃ solution at infinite dilution (0 ppm).^[3]

General procedure for the formation of complexes 1^{Hg} , $1^{Hg}_{Tl(1)}$, 2^{Hg} and $2^{Hg}_{Tl(1)}$

The complexes $\mathbf{1}^{Hg}$ and $\mathbf{2}^{Hg}$ were prepared by mixing the free base porphyrins $\mathbf{1}$ or $\mathbf{2}$ (2.38 µmol, 1 equiv.) in 500 µL of 9:1 mixture of CDCl₃/CD₃OD, 4 µL of DIPEA (23.8 µmol, 10 equiv.) and 40 µL (2.38 µmol, 1 equiv.) of a stock solution of Hg(OAc)₂ (9.5 mg in 500 µL of 9:1 CDCl₃/CD₃OD). In the case of $\mathbf{2}^{Hg}$,^[4] the formation of a bimetallic complex ($\mathbf{2Hg}_2$, structure in Figure S14) is also observed. Then the bimetallic complexes $\mathbf{1}^{Hg}_{TI(1)}$ or $\mathbf{2}^{Hg}_{TI(1)}$ were formed by adding 30 µL (2.38 µmol, 1 equiv.) of a stock solution of TIOAc (10.5 mg in 500 µL of 9:1 CDCl₃/CD₃OD). The ¹H NMR spectrum recorded at 298 K showed the quasi-quantitative formation of the desired complexes.

Characterization of complexes 1^{Hg} , 2^{Hg} , $1^{Hg}_{T1(1)}$, $1^{T1(11)}$ and $2^{Hg}_{T1(1)}$

1^{Hg}: ¹H NMR (400 MHz, CDCl₃/CD₃OD 9:1, DIPEA, 298 K) : δ 8.94 (d, J = 8.2 Hz, 2H, HAr_{meso}), 8.93 (d, J = 4.5 Hz, 2H, H_{βpyr}), 8.76 (d, J = 4.5 Hz, 2H, H_{βpyr}), 8.73 (d, J = 4.5 Hz, 2H, H_{βpyr}), 8.62 (d, J = 4.5 Hz, 2H, H_{βpyr}), 7.90 (d, J = 7.5 Hz, 2H, HAr_{meso}), 7.79 (t, J = 8.0 Hz, 2H, HAr_{meso}), 7.52 (s, 1H, HAr_{m-OMe}), 7.44 (t, J = 8.0 Hz, 2H, HAr_{meso}), 7.43 (d, J = 7.5 Hz, 2H, HAr_{meso}), 7.38 (s, 1H, HAr_{m-OMe}), 7.31 (s, 1H, HAr_{m-OMe}), 6.98 (s, 1H, HAr_{m-OMe}), 6.85 (t, J = 7.8 Hz, 2H, HAr_{strap}), 6.82 (t, J = 2.3 Hz, 1H, HAr_{m-OMe}), 6.76 (s, 1H, HAr_{m-OMe}), 6.63 (d, J = 7.5 Hz, 2H, HAr_{strap}), 5.19 (s, 2H, HAr_{strap}), 3.91 (s, 3H, CH₃), 3.90 (s, 3H, CH₃), 3.88 (s, 3H, CH₃), 3.78 (s, 3H, CH₃), 1.80 (m, 2H, CH_{2,benz}), 1.09 (m, 2H, CH_{2,benz}), 0.82 (m, 1H, CHCO). 2D HSQC NMR δ (¹³C): 134.3 (2C), 133.4 (2C), 132.0 (2C), 131.6 (2C), 131.3 (2C), 130.3 (2C), 129.3 (2C),

^[1] S. Le Gac, B. Najjari, L. Fusaro, T. Roisnel, V. Dorcet, M. Luhmer, E. Furet, J.-F. Halet and B. Boitrel, *Chem. Commun.*, 2012, **48**, 3724-3726.

^[2] Z. Halime, M. Lachkar, T. Roisnel, E. Furet, J.-F. Halet and B. Boitrel, Angew. Chem. Int. Ed., 2007, 46, 5120-5124.

^[3] R. W. Briggs, K. R. Metz and J. F. Hinton, Journal of Solution Chemistry, 1979, 8, 479-487.

^[4] N. Motreff, S. Le Gac, M. Luhmer, E. Furet, J.-F. Halet, T. Roisnel and B. Boitrel, *Angew. Chem. Int. Ed.*, 2011, 50, 1560-1564.

128.1 (2C), 126.0 (2C), 125.4 (2C), 122.6 (2C), 119.0 (2C), 115.0, 114.9, 114.4, 114.1, 99.7, 99.0, 55.5 (4C), 39.9 (2C) ppm. HRMS (ESI): m/z calculated 1255.33237 $[M]^-$ for $C_{66}H_{49}N_6O_8^{202}Hg$, found 1255.3326 (0 ppm).

2^{Hg}: ¹H NMR (400 MHz, CDCl₃/CD₃OD 9:1, DIPEA, 298 K) : δ 8.92 (d, J = 8.4 Hz, 2H, HAr_{meso}), 8.85 (d, J = 7.9 Hz, 2H, HAr_{meso}), 8.79 (d, J = 4.5 Hz, 2H, H_{βpyr}), 8.75 (s, 2H, H_{βpyr}), 8.70 (d, J = 4.5 Hz, 2H, H_{βpyr}), 8.68 (s, 2H, H_{βpyr}), 8.24 (d, J = 7.4 Hz, 2H, HAr_{meso}), 8.00 (d, J = 7.5 Hz, 2H, HAr_{meso}), 7.80 – 7.73 (m, 4H, HAr_{meso}), 7.48 – 7.42 (m, 4H, HAr_{meso}), 7.39 (d, J = 7.5 Hz, 2H, HAr_{strap}), 7.28 (d, J = 7.5 Hz, 2H, HAr_{strap}), 6.88 (t, J = 7.5 Hz, 2H, HAr_{strap}), 6.78 (t, J = 7.7 Hz, 2H, HAr_{strap}), 6.74 (d, J = 8 Hz, 2H, HAr_{strap}), 6.61 (d, J = 7.6 Hz, 2H, HAr_{strap}), 5.32 (s, 2H, HAr_{strap}), 5.02 (s, 2H, HAr_{strap}), 1.53 (m, 6H, CH₂benz + CHCO), 1.28 (m, 4H, CH₂benz). HRMS (ESI) : m/z calculated 1479.36686 for [M-H+Na]⁻ C₈₀H₅₄N₈O₈Na²⁰²Hg, found 1479.3681 (0 ppm).

1^{Hg}_{T(I)}: ¹H NMR (500 MHz, CDCl₃/CD₃OD 9:1, DIPEA, 298 K): δ 9.16 (d, *J* = 4.5 Hz, 2H, H_{βpyr}), 9.00 (d, *J* = 4.5 Hz, 2H, H_{βpyr}), 8.99 (d, *J* = 4.5 Hz, 2H, H_{βpyr}), 8.94 (d, *J* = 7.4 Hz, 2H, HAr_{meso}), 8.86 (d, *J* = 4.6 Hz, 2H, H_{βpyr}), 7.99 (d, *J* = 7.4 Hz, 2H, HAr_{meso}), 7.90 (s, 1H, HAr_{m-OMe}), 7.84 (td, *J* = 7.9, 1.6 Hz, 2H, HAr_{meso}), 7.50 (td, *J* = 8.8, 1.6 Hz, 2H, HAr_{meso}), 7.49 (s, 1H, HAr_{m-OMe}), 7.41 (d, *J* = 8.0 Hz, 2H, HAr_{strap}), 7.36 (s, 1H, HAr_{m-OMe}), 7.29 (s, 1H, HAr_{m-OMe}), 7.25 (s, 1H, HAr_{m-OMe}), 6.89 (t, *J* = 7.6 Hz, 2H, HAr_{strap}), 6.87 (t, *J* = 2.2 Hz, 1H, HAr_{m-OMe}), 6.78 (t, *J* = 2.2 Hz, 1H, HAr_{m-OMe}), 6.61 (d, *J* = 7.6 Hz, 2H, HAr_{strap}), 5.10 (s, 2H, HAr_{strap}), 3.95 (s, 3H, CH₃), 3.87(3) (s, 3H, CH₃), 3.87(1) (s, 3H, CH₃), 3.77 (s, 3H, CH₃), 1.95 (d, *J* = 12.2 Hz, 2H, CH_{2,benz}), 1.22 (m, 2H, CH_{2,benz}), 0.92 (m, 1H, CHCO). ²⁰⁵TI NMR (231 MHz, CDCl₃/CD₃OD 9:1, DIPEA, 298 K): δ 1114 ppm. 2D HSQC NMR δ(¹³C): 134.8 (2C), 134.4 (2C), 133.6 (2C), 132.6 (2C), 131.9 (2C), 131.5 (2C), 129.5 (2C), 128.3 (2C), 126.2 (2C), 124.3 (2C), 122.8 (2C), 120.3 (2C), 114.3, 114.2, 114.0, 113.7, 100.1, 99.8, 55.4 (4C), 40.3 (2C) ppm. UV-vis (CHCl₃/CH₃OH 9:1, DIPEA): λ 461, 586, 632 nm. HRMS (ESI): m/z calculated 1459.29896 for [M-H]⁻ C₆₆H₄₈N₆O₈²⁰²Hg²⁰⁵TI, found 1459.2999 (1 ppm) (**1^{Hg}_{TI(I)}** is observed with a weak intensity, ca. 5-10% vs. the mononuclear Hg(II) complex **1^{Hg}**, likely as a result of a demetallation process occurring during the mass analysis).

1^{T(III)}: ¹H NMR (500 MHz, CDCl₃/CD₃OD 9:1, DIPEA, 298 K): δ 9.15 (dd, *J* = 63, 4.7 Hz, 2H, H_{βpyr}), 8.99 (dd, *J* = 68, 4.7 Hz, 2H, H_{βpyr}), 8.96 (dd, *J* = 63, 4.7 Hz, 2H, H_{βpyr}), 8.85 (d, *J* = 8.5 Hz, 2H, HAr_{meso}), 8.83 (dd, *J* = 68, 4.7 Hz, 2H, H_{βpyr}), 7.94 (d, *J* = 7.4 Hz, 2H, HAr_{meso}), 7.86 (td, *J* = 8.2, 1.6 Hz, 2H, HAr_{meso}), 7.51 (t, *J* = 7.2 Hz, 2H, HAr_{meso}), 7.49 (d, *J* = 7.2 Hz, 2H, HAr_{strap}), 7.43 (s, 1H, HAr_{m-OMe}), 7.37 (s, 1H, HAr_{m-OMe}), 7.10 (s, 1H, HAr_{m-OMe}), 6.91 (t, *J* = 7.7 Hz, 2H, HAr_{strap}), 6.86 (t, *J* = 2.3 Hz, 1H, HAr_{m-OMe}), 6.78 (t, *J* = 2.3 Hz, 1H, HAr_{m-OMe}), 6.52 (d, *J* = 7.5 Hz, 2H HAr_{strap}), 5.12 (s, 2H HAr_{strap}), 3.93 (s, 3H, CH₃), 3.89 (s, 3H, CH₃), 3.82 (s, 3H, CH₃), 1.64 (dd, *J* = 26.5, 12.9 Hz, 2H, CH_{2,benz}), 1.19 – 1.07 (m, 2H, CH_{2,benz}), 0.72 (m, 1H, CHCO). ²⁰⁵TI NMR (231 MHz, CDCl₃/CD₃OD 9:1, DIPEA, 298 K): δ 2558 ppm. 2D HSQC NMR δ (¹³C): 133.9 (2C), 133.6 (2C), 133.0 (2C), 132.0 (2C), 131.8 (2C), 130.9 (2C), 129.8 (2C), 128.4 (2C), 126.1 (2C), 123.8 (2C), 123.1 (2C), 120.6 (2C), 114.9, 114.0, 113.8, 113.6, 100.3, 99.9, 55.5 (4C) 39.7 (2C) ppm. UV-vis (CHCl₃/CH₃OH 9:1, DIPEA): λ (ε, M⁻¹.cm⁻¹) 436 (3.3 x 10⁶), 564 (1.7 x 10⁴), 605 (4.9 x 10³) nm. HRMS (ESI): m/z calculated 1257.32832 for [M-H]⁻C₆₆H₄₈N₆O₈²⁰⁵TI, found 1257.3288 (0 ppm).

 $2^{Hg}_{TI(I)}: {}^{1}H NMR (500 MHz, CDCl_{3}/CD_{3}OD 9:1, DIPEA, 298 K): \delta 9.01 (s, 2H, H_{\beta pyr}), 8.90 (d, J = 4.5 Hz, 2H, H_{\beta pyr}), 8.86 (d, J = 4.5 Hz, 2H, H_{\beta pyr}), 8.75 (s, 2H, H_{\beta pyr}), 8.64 (d, J = 8.4 Hz, 2H, HAr_{meso}), 8.54 (d, J = 8.4 Hz, 2H, HAr_{meso}), 8.18 (d, J = 7.4 Hz, 2H, HAr_{meso}), 8.05 (d, J = 7.4 Hz, 2H, HAr_{meso}), 7.83 (td, J = 8.3 1.6 Hz, 2H, HAr_{meso}), 7.77 (td, J = 8.0, 1.6 Hz, 2H, HAr_{meso}), 7.58 (td, J = 7.6, 1.0 Hz, 2H, HAr_{meso}), 7.25 (d, J = 7.7 Hz, 2H, HAr_{strap}), 7.22 (d, J = 7.7 Hz, 2H, HAr_{strap}), 6.84 (t, J = 7.5 Hz, 2H, HAr_{strap}), 6.63 (d, J = 7.7 Hz, 2H, HAr_{strap}), 6.62 (d, J = 7.7 Hz, 2H, HAr_{strap}), 5.44 (s, 2H, HAr_{strap}), 5.33 (s, 2H, HAr_{strap}), 1.89 (m, 4H, CH_{2,benz}), 1.44 (m, 4H, C$

1.16 (m, 2H, CHCO). ²⁰⁵TI NMR (231 MHz, CDCl₃/CD₃OD 9:1, DIPEA, 298 K): δ 895 ppm. 2D HSQC NMR δ (¹³C): 135.3 (2C), 134.9 (2C), 133.5 (2C), 133.3 (2C), 132.7 (2C), 132.6 (2C), 131.5 (4C), 129.3 (2C), 129.2 (2C), 128.0 (4C), 125.6 (4C), 124.9 (2C), 124.7 (2C), 123.5 (4C), 122.0 (2C), 121.9 (2C), 52.9 (2C), 39.4 (4C) ppm. UV-vis (CHCl₃/CH₃OH 9:1, DIPEA): λ 464, 588, 635 nm. HRMS (ESI) : m/z calculated 1661.35205 for [M]⁻ C₈₀H₅₄N₈O₈²⁰²Hg²⁰⁵TI, found 1661.3527 (0 ppm).

Crystal data for complex 1^{TI(III)}

C₆₆H₄₉N₆O₈TI; *M* = 1258.48. APEXII, Bruker-AXS diffractometer, Mo-Kα radiation (λ = 0.71073 Å), *T* = 150(2) K; Monoclinic *P* 1 2₁/*n* 1, a = 14.4652(8), b = 17.5010(10), c = 23.3205(14) Å, β = 91.874(2) °, *V* = 5900.6(6) Å³. *Z* = 4, *d* = 1.417 g.cm⁻³, μ = 2.798 mm⁻¹. The structure was solved by direct methods using the *SIR97* program,^[5] and then refined with full-matrix least-square methods based on *F*² (*SHELXL-97*).^[6] The contribution of the disordered solvents to the calculated structure factors was estimated following the *BYPASS* algorithm,^[7] implemented as the *SQUEEZE* option in *PLATON*.^[8] A new data set, free of solvent contribution, was then used in the final refinement. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in their calculated positions. A final refinement on *F*² with 13504 unique intensities and 734 parameters converged at $\omega R(F^2) = 0.1188$ (*R*(*F*) = 0.0515) for 8250 observed reflections with *I* > 2 σ (*I*). CCDC 1422859.

^[5] A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Spagna, *J. Appl. Crystallogr.*, 1999, **32**, 115-119.

^[6] G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112-122.

^[7] P. van der Sluis and A. L. Spek, Acta Crystallogr., 1990, A46, 194-201.

^[8] A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7-13.

Figure S1. 2D COSY (top) and HSQC (bottom) NMR spectra of $\mathbf{1}^{Hg}$ in CDCl₃/CD₃OD (9:1) with 10 equiv. of DIPEA at 298 K, (400 MHz). S = solvents, # = DIPEA.

Figure S2. 2D COSY NMR spectrum of $\mathbf{1}^{\mathsf{TI(III)}}$ in CDCl₃/CD₃OD (9:1) with 10 equiv. of DIPEA at 298 K (400 MHz). S = solvents, * = impurities, # = DIPEA.

Figure S3. 2D HSQC NMR spectrum of $\mathbf{1}^{TI(III)}$ in CDCl₃/CD₃OD (9:1) with 10 equiv. of DIPEA at 298 K (500 MHz). S = solvents, * = impurity, # = DIPEA.

Figure S4. 2D COSY NMR spectrum of $\mathbf{1}^{Hg}_{TI(I)}$ in CDCl₃/CD₃OD (9:1) with 10 equiv. of DIPEA at 298 K (400 MHz). S = solvents, # = DIPEA.

Figure S5. 2D HSQC NMR spectrum of $\mathbf{1}^{Hg}_{TI(I)}$ in CDCl₃/CD₃OD (9:1) with 10 equiv. of DIPEA at 298 K (400 MHz). S = solvents, # = DIPEA.

Figure S6. 2D COSY NMR spectrum of $\mathbf{2}^{Hg}_{T(I)}$ in CDCl₃/CD₃OD (9:1) with 10 equiv. of DIPEA at 298 K (500 MHz). S = solvents, # = DIPEA, * = trace of the bimetallic complex $\mathbf{2Hg}_{2}$.^[4]

Figure S7. 2D HSQC NMR spectrum of $2^{Hg}_{TI(I)}$ in CDCl₃/CD₃OD (9:1) with 10 equiv. of DIPEA at 298 K (500 MHz). S = solvents, # = DIPEA, * = trace of the bimetallic complex $2Hg_2$.^[4]

Figure S8. Comparison of the variable temperature ¹H NMR profiles of (a) $2_{TI(III)}$.TI(I) (disymmetric at 263 K) and (b) $2^{Hg}_{TI(I)}$ (C_2 -symmetric at 263 K); conditions: CDCl₃/CD₃OD (9:1), 10 equiv. of DIPEA, 500 MHz. S = solvents, * = trace of the bimetallic complex $2Hg_2$.^[4]

Figure S9. Formation and spontaneous evolution of $\mathbf{2}^{Hg}_{TI(I)}$ monitored by ¹H and ²⁰⁵TI NMR spectroscopy (CDCl₃/CD₃OD 9:1, 10 equiv. of DIPEA). $\mathbf{2}^{Hg}_{TI(I)}$ was formed by the successive additions of Hg(OAc)₂ (a-b) and TIOAc (b-e), and was then allowed to stand in dark up to three days (d-g). S = solvent.

Figure S10. Influence of the order of introduction of TIOAc and Hg(OAc)₂ on the formation of $\mathbf{1}^{Hg}_{TI(1)}$ monitored by ¹H NMR spectroscopy: (a-b) spectrum of $\mathbf{1}^{Hg}_{TI(1)}$ obtained with a high selectivity by the successive addition of 1 equiv. of Hg(OAc)₂ and 1 equiv. of TIOAc to 1; (c-d) spectra recorded after the successive addition of 5 equiv. of TIOAc and 1 equiv. of Hg(OAc)₂ to 1, showing the presence of $\mathbf{1}^{Hg}_{TI(1)}$ and $\mathbf{1}^{TI(1H)}$ in a *ca.* 5:1 initial ratio; e) spectrum of $\mathbf{1}^{TI(1H)}$ obtained by the addition of 1 equiv. of TI(OAc)₃ to 1. Conditions: 400 MHz, CDCl₃/CD₃OD (9:1), 10 equiv. DIPEA, 298 K, obscurity. S = solvents.

Figure S11. Influence of the order of introduction of TIOAc and Hg(OAc)₂ on the formation of $2^{Hg}_{TI(I)}$ monitored by ¹H NMR spectroscopy: (a-b) spectrum of $2^{Hg}_{TI(I)}$ obtained with a high selectivity by the successive addition of 1 equiv. of Hg(OAc)₂ and 1 equiv. of TIOAc to 2; (c-d) spectra recorded after the successive addition of 7 equiv. of TIOAc and 1 equiv. of Hg(OAc)₂ to 2 showing, together with $2^{Hg}_{TI(I)}$, the presence of $2_{TI(III)}$.TI(I) in a significant amount; (e) ¹H NMR spectrum of $2_{TI(III)}$.TI(I) obtained by the addition of 1 equiv. of TIOAc)₃ and 7 equiv. of TIOAc to 2.^[9] Conditions: 500 MHz, CDCl₃/CD₃OD (9:1), 10 equiv. DIPEA, 298 K, obscurity. S = solvents, * = impurity.

^[9] V. Ndoyom, L. Fusaro, V. Dorcet, B. Boitrel and S. Le Gac, Angew. Chem. Int. Ed., 2015, 54, 3806-3811.

Figure S12. ¹H NMR monitoring of the spontaneous transformation $\mathbf{1}^{Hg}_{TI(1)} \rightarrow \mathbf{1}^{TI(11)}$ in the presence of 11 equiv. of DMAP (d-g); (h) ¹H NMR spectrum of $\mathbf{1}^{TI(11)}$ obtained by the addition of 1.5 equiv. of TI(OAc)₃ to **1**. Conditions: 500 MHz, CDCl₃/CD₃OD (9:1), 10 equiv. DIPEA, obscurity, 298 K. S = solvents, # = DMAP.

Figure S13. ¹H NMR monitoring of the spontaneous transformation $2^{Hg}_{TI(I)} \rightarrow 2_{TI(III)}$.TI(I) without (b-c) or with 80 equiv. of DMAP (d-h); (i) ¹H NMR spectrum of $2_{TI(III)}$.TI(I) obtained by the addition of 1 equiv. of TI(OAc)₃ and 7 equiv. of TIOAc to 2.^[9] Conditions: 500 MHz, CDCl₃/CD₃OD (9:1), 10 equiv. DIPEA, 298 K, obscurity. S = solvents, # = DMAP.

Figure S14. ¹H NMR experiment related to the Tl(I)-to-Tl(III) oxidation process, attempted with an excess of Hg(OAc)₂: (a-c) ¹H NMR spectra of the bimetallic complexes **2Hg**₂ and **2Hg**₂-**DMAP** formed by the successive addition of 2 equiv. of Hg(OAc)₂ and 17 equiv. of DMAP to **2**;^[4] absence of evolution of the solution upon the further addition of 5 equiv. of TlOAc (d-e). Conditions: 500 MHz, CDCl₃/CD₃OD (9:1), 10 equiv. DIPEA, 298 K, obscurity. S = solvents, # = DMAP.

Figure S15. ¹H NMR monitoring of the transformations $\mathbf{1}^{H_{g_{T(I)}}} \rightarrow \mathbf{1}^{TI(III)}$ and $\mathbf{2}^{H_{g_{T(I)}}} \rightarrow \mathbf{2}_{TI(III)}$.**TI(I)** carried out at ambient atmosphere or in deoxygenated solvents. Conditions: 500 MHz, CDCl₃/CD₃OD (9:1), 10 equiv. DIPEA, *ca.* 35 equiv. DMAP, 298 K, obscurity. The percentages of Tl(III) species were determined from integration of appropriate signals *vs.* an internal reference (error ± 5 %).

Figure S16. ¹H NMR experiments related to the Tl(I)-to-Tl(III) oxidation process attempted without porphyrin (c-d) (a-b is a reference experiment). Conditions: 500 MHz, $CDCl_3/CD_3OD$ (9:1), 10 equiv. DIPEA, 298 K, obscurity. S = solvents, # = DMAP.

- (a-b) The successive addition of Hg(OAc)₂, TIOAc, DMAP and **1**, led to spectrum (a) recorded immediately. A *ca.* 5:1 initial ratio of **1**^{Hg}_{TI(I)} and **1**^{TI(III)} is observed (see text and Figure S10). Upon standing 3h30 in dark, **1**^{TI(III)} is obtained quantitatively (b).
- (c-d) The successive addition of Hg(OAc)₂, TlOAc and DMAP led, upon standing 18h in dark and subsequent addition of 1, to spectrum (c), showing that 1.Tl(l) is the major species while 1^{Tl(III)} is the minor one. 1^{Tl(III)} is likely formed when 1 is added and not during the 18 hours in the absence of 1 (deduced from comparison with spectrum (a)); spectrum (d) was recorded upon standing 5h in dark, showing 1^{Tl(III)} as a major species.

Figure S17. Monitoring of the metallation of **1** with Hg(II) and Tl(I) by UV-vis absorption spectroscopy: (a) titration of **1** with Hg(OAc)₂ (the Soret band at 450 nm corresponds to dinuclear species, see ref [4] and [10]); (b) successive addition of Hg(OAc)₂ and TlOAc to **1**. Conditions: $CHCl_3/CH_3OH$ (9:1), 10 equiv. DIPEA, obscurity.

^{[10] (}a) M. F. Hudson and K. M. Smith, *Tetrahedron Lett.*, 1974, **26**, 2223-2226; (b) M. F. Hudson and K. M. Smith, *Tetrahedron Lett.*, 1974, **26**, 2227-2230.

Figure S18. Monitoring of the metallation of **2** with Hg(II) and Tl(I) by UV-vis absorption spectroscopy: (a) titration of **2** with Hg(OAc)₂ (the Soret band at 447 nm corresponds to dinuclear species, see ref [4] and [10]); (b) successive addition of Hg(OAc)₂ and TlOAc to **2**. Conditions: $CHCl_3/CH_3OH$ (9:1), 10 equiv. DIPEA, obscurity.

Figure S19. UV-vis absorption spectra of $\mathbf{1}^{Hg}_{TI(I)}$ and $\mathbf{2}^{Hg}_{TI(I)}$ obtained from a 1/500 dilution of NMR tube solutions containing exclusively these complexes. In both cases, an intense Soret band at 436 nm is observed, evidencing the formation of the corresponding TI(III) species $[\mathbf{1}^{TI(III)} \text{ and } \mathbf{2}_{TI(III)} \cdot TI(I)]$ upon dilution. Conditions : CHCl₃/CH₃OH (9:1), 10 equiv. DIPEA, obscurity.