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Experimental:

Materials: Boric acid (H3BO3, AR grade), urea (CO(NH2)2, AR grade), Methanol (CH3OH, AR 

grade), Ethanol (C2H5OH, AR grade), Propanol (n-C3H7OH, AR grade), Butanol (n-C4H9OH, AR 

grade) and decalin (AR grade) were purchased from Shanghai Sinopharm Chemical Reagent Co., 

Ltd. and used without purification. Dibenzothiophene (DBT, 98%) and tetradecane (99%) were 

purchased from Sigma-Aldrich without purification. 

Characterization: Fourier Transform Infrared Spectroscopy (FT-IR) were obtained on a Nicolet 

Nexus 470 Fourier transform infrared spectrometer, using KBr pellets at room temperature. 

Ultraviolet-visible diffuse reflectance spectra (UV-DRS) were recorded on a Shimadzu UV-2450 

spectrophotometer equipped with spherical diffuse reflectance accessory in the range of 200-800 

nm, using BaSO4 as the reflectance standard material. The surface morphologies of samples were 

analyzed by a JSM-7001F field emission scanning electron microscope (SEM), which was 

performed at 2-15 keV accelerating voltage. Raman tests were carried out using Thermo Scientific 

DXR Smart Raman spectrometer equipped with a 532 nm excitation. High resolution transmission 

electron microscope (HRTEM) were performed by a Hitachi H-700 Transmission Electron 

Microscope. Scanning transmission electron microscopy (STEM) image was performed on Nion 

Ultra STEM 100 (operated at 100kV). X-ray diffraction (XRD) was carried out on XRD-6100Lab 

(Shimadzu, Japan) equipped with Cu-KR radiation (λ) 1.5406 (Å), employing a scanning rate of 

7°·min-1 in the 2θ range from 10 to 80°. N2 adsorption-desorption isotherm was employed on 

ASAP 2460 Surface Area and Porosity Analyzer (Micromeritics, USA) to calculate the specific 

surface area. Atomic force microscopy (AFM, Asylum Research Company, Asylum MFP-3D) 

was applied to investigate the layers of materials. Meanwhile, GC-MS (Agilent 7890A-5975C) 

was taken to research the mechanism of adsorption coupled with oxidation of sulfur compounds.

Synthesis of nanoporous h-BNNs: A certain molar ratio of boric acid and urea (0.01 mol of H3BO3 

mixed with 0.15 mol of urea for M-BN15 and 0.30 mol of urea for other h-BNNs) in an alcohol 

(methanol, ethanol, propanol, butanol) was mixed with water (a mixed solution contains 20mL of 

alcohols and 20 mL of water). Then, the homogeneous solution was heated under 45°C for 
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recrystallization. A white crystalline powder product subsequently formed with the evaporation of 

solvents. Then, the obtained white powder was moved in a quartz boat and transformed to a tube 

furnace. Then the precursors were heated with a ramping rate of 5°C·min-1 to 900 °C and kept for 

120 min under protection of N2. After that, the tube furnace was naturally cooled to room 

temperature.

Oxidation of DBT: In a typical sulfur oxidation process, after 100 mg of h-BNNs was added to a 

100 mL round-bottom flask, 40 mL of model oil (containing DBT with 500 ppm) were poured 

into the flask, and then the mixed solution was stirred vigorously in a thermostatic oil-bath of 

150°C with air bubbled into the flask (ordinary pressure). After the reaction, the upper liquid 

phase samples was periodically withdrawn and separated by centrifugation before sulfur content 

being analyzed. The oil sample was analyzed on an gas chromatography flame ionization 

detection (GC-FID) (Agilent 7890A, HP-5 column, 30 m long× 0.32 mm inner diameter (id) 0.25 

µm film thickness) using tetradecane as an internal standard.  
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Fig. S1 Raman and FT-IR spectra of MWR, WR and BWR raw materials. 

MWR, WR and BWR: three raw materials (boric acid and urea with molar ratio of 1:30, dissolve 

in menthol/water(MW), pure water(W) and butanol/water(BW), and sequently evaporate solvents 

for recrystal, producing white solid, denoted as MWR, WR and BWR, respectively).
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Fig. S2 Spectral characterizations of h-BNNs show no distinct changes. a) XRD patterns of h-

BNNs; b) Raman spectra of h-BNNs; c) FT-IR spectra of h-BNNs; d) UV-Uis DRS spectra of h-

BNNs.

Sample order: A) BN-M30; B) BN-M15; C) BN-E30; D) BN-P30; E) BN-W30 ;F) BN-B30

In XRD patterns, the results demonstrated that all the peaks of all samples aree readily 

indexed to the standard hexagonal phase of h-BNNs (JCPDS Card 247 No. 34-0421). With 

melting point of solvents decrease, the peak of (002) show a slight shift to low angle, indicating 

indicating the layer-layer distance is extended. The peaks at 1374 cm-1 in Raman spectra are 

assigned to B-N vibrational mode (E2g) within h-BNNs. Compared with bulk h-BN, the shift of 

E2g peak indicates the reduction of layers. In FT-IR spectra, the peaks show no obvious difference. 

The peaks around 1382 cm-1 and 800 cm-1 are attributed to in-plane B-N transverse optional 

modes of hexagonal boron nitride and N-B stretching vibration modes, respectively. Moreover, 

UV-Vis DRS of all samples show no evident change.
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Fig. S3 SEM (left) and HRTEM (right) images of h-BNNs a) BN-M15; b) BN-E30; c) BN-P30; 

d) BN-W30; e) BN-B30. 

SEM and TEM images show that all prepared h-BNNs are thin film structure.
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cyanuric acid

boron acid boron oxide

boron oxide

(1)

(2)

(3)

(4)

(5)

(6)+ NH32B2O3+

Fig. S4 The pyrolysis reaction procedure in formation of h-BNNs
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Fig. S5 XPS spectra of h-BNNs

Sample order: a) BN-M30; b) BN-M15; c) BN-E30; d) BN-P30; e) BN-W30; f) BN-B30.
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Fig. S6 B1s core-level spectra 

Sample order: a) BN-M30; b) BN-M15; c) BN-E30; d) BN-P30; e) BN-W30; f) BN-B30.



9

403 402 401 400 399 398 397 396 395

 

 

In
te

ns
ity

/a
.u

.

B.E./eV

(a)

403 402 401 400 399 398 397 396 395

 

 

In
te

ns
ity

/a
.u

.

B.E./eV

(b)

403 402 401 400 399 398 397 396 395

 

 

In
te

ns
ity

/a
.u

.

B.E.(eV)

(c)

403 402 401 400 399 398 397 396 395

 

 

In
te

ns
ity

/a
.u

.

B.E.(eV)

(d)

403 402 401 400 399 398 397 396 395

 

 

In
te

ns
ity

 / 
a.

u.

B.E. / eV

403 402 401 400 399 398 397 396 395

 

 

In
te

ns
ity

 (a
.u

.)

B.E.(eV)

N 1s

(e) (f)

Fig. S7 N1s core-level spectra 

Sample order: a) BN-M30; b) BN-M15; c) BN-E30; d) BN-P30; e) BN-W30; f) BN-B30.

Table S1 Binding Energies of B and N in all h-BNNs samples

Elements BN-M15 BN-M30 BN-E30 BN-P30 BN-W30 BN-B30

B-N 190.4 190.5 190.4 190.5 190.8 190.4
B (eV)

B-O 192.5 192.5 192.5 192.4 192.4 192.5

N (eV) N-B 398.1 398.2 398.1 398.1 398.0 398.0

Binding energies (B.E.) of B and N for all samples are around 190.4-190.5 eV and 398.0-

398.2 eV, respectively, close to previous reports for hexagonal layers with BN3 and NB3 trigonal 

units.S[1] The peaks around 192.5 eV are attributed to B-O bonds from precursors, which may be 

presence of –OH on h-BNNs.S[2] Molar ratios of B and N are about 1.06:1, consistent with 

theoretical values.
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Fig. S8 Gas Chromatography-Mass Spectrometer(GC-MS) of reextracted BN-M30 phase using 

diethyl ether.

Reaction conditions: m(catal.) = 100 mg; V (model oil) = 40 mL; T = 150°C; V(air) = 100 

mL·min-1.

To prove the proposed reaction mechanism, gas chromatography-mass spectrometer (GC-MS) 

was used to analyze oxidized product in h-BNNs and the results are presented in Fig. S8. When 

the aerobic catalysis oxidation of DBT reaction was carried out to 60 min and 180 min (after 

reaction), the BN-M30 was carefully separated and centrifuged respectively. Then the h-BNNs 

phase was reextracted by diethyl ether and injected into GC-MS to analyze the composition. As 

we can see from Fig. S8 that when reaction carried out to 60 min, large amount of DBT can be 

detected while few amount of oxidized product, DBTO and DBTO2, can be seen. When the 

reaction was finished, almost no DBT and DBTO exist in h-BNNs while increasing amount of 

DBTO2 appeared, indicating that nearly all DBT was aerobic oxidized to DBTO2. DBTO is a 

active intermediate, whose formation is not the reaction determine step (RSD). 
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Fig. S9 Recycling performance of M-BN30 in aerobic catalytic oxidation of DBT

Reaction conditions: m(catal.) = 100 mg; V (model oil) = 40 mL; T = 150°C; V(air) = 100 

mL·min-1.
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