Supporting Information

Ternary cooperative assembly—polymeric condensation of photoactive viologen, phosphonate-terminated dendrimers and crystalline anatase nanoparticles

Nadia Katir,^a Younes Brahmi,^b Jean Pierre Majoral,^c Mosto Bousmina,^a and Abdelkrim El Kadib.^{a,*}

S1. Experimental Section

Figure S2. DRIFT spectra of hybrid materials

Figure S3. Typical CP ¹³C and CP ³¹P MAS NMR.

Figure S4. HRTEM of hybrid materials (path A)

Figure S5. DRUV spectra of hybrid materials.

Figure S6. Typical SEM and HRTEM of M₁ to M₃ obtained by B, C and D paths.

Figure S7. Nitrogen sorption analysis.

Figure S8. X-ray diffraction of hybrid materials.

Figure S9. DRUV spectra of hybrid materials M₃-Au.

^a Euromed Research Center, Engineering Division. Euro-Mediterranean University of Fez (UEMF), Fès-Shore, Route de Sidi harazem, Fès, Morocco.

^b Université Mohamed V Agdal, Faculté des Sciences Av. Ibn Battouta, BP 1014 and MAScIR fondation, Rabat, Morocco

^c Laboratoire de Chimie de Coordination (LCC) CNRS, 205 route de Narbonne, 31077 Toulouse, France.

S1 : Experimental section

General: Chemicals were purchased from Sigma-Aldrich or Strem and used without further purification; solvents were dried and distilled by routine procedures. Vio₁₋₃ were synthesized using published procedures.^{1 13}C and ³¹P CP MAS NMR spectra were acquired on a Bruker Avance 400 WB spectrometer operating at 100 MHz and 162 MHz respectively under crosspolarization conditions. Fourier transformed infrared (FTIR) spectra were obtained with a Perkin-Elmer Spectrum 100FT-IR spectrometer on neat samples (ATR FT-IR). Nitrogen sorption isotherms at 77 K were obtained with a Micromeritics ASAP 2010 apparatus. Prior to measurement, the samples were degassed for 8 h at 120 °C. The surface area (S_{BET}) was determined from BET treatment in the range 0.04–0.3 p/p_0 assuming a surface coverage of the nitrogen molecule estimated to be 13.5 Å. X-ray powder diffraction (XRD) patterns were recorded on a D8 Advance Bruker AXS system using CuK α radiation with a step size of 0.02° in the 20 range from 0.3 to 10° for SAXS, and from 0.45 to 87° for WAXS (geometry: Bragg-Brentano, $\theta/2\theta$ mode). DRUV spectra were measured in the 200-800 nm range using spectralon as the reference on a Perkin-Elmer Lambda 1050 spectrometer equipped with an integrating sphere (Lapshere, North Sutton, USA). Scanning electronic microscopy (SEM) images were obtained using a JEOL JSM 6700F Transmission electronic microscopy (TEM) images were obtained using JEOL JEM 2010 at an activation voltage of 200 kV.

Material synthesis:

Path A. a phosphonate-terminated fourth generation dendrimer DG_4 was solubilised in an ethanol:water solution (5:2 volume ratio). Then, Ti(O*i*Pr)₄ in a 1:20 molar ratio ([terminal organophosphonate] : [Ti]) was added to the transparent dendritic solution at room temperature. Upon addition, the solution became cloudy through polymerisation of the titanium alkoxide precursor. After 15 min of stirring, the precursor viologen (**Vio**₁, **Vio**₂ or **Vio**₃) in a {2.53 : 97.47 [**DG**₄] : [**Vio**₁], 16.42 : 83.58 [**DG**₄] : [**Vio**₂], 28.67 : 71.33 [**DG**₄] : [**Vio**₃]} molar ratio was added and the resulting solution was heated at 60°C for 10 hours. After filtration and extensive washing of the precipitate with ethanol, the collected solids were dried at 60 °C for 2 hours given rise to **M**₁, **M**₂ and **M**₃ respectively.

Path B. a phosphonate-terminated fourth generation dendrimer DG_4 and viologen (Vio₁, Vio₂ or Vio₃) in a 2.53 : 97.47 [DG_4] : [Vio₁], 16.42 : 83.58 [DG_4] : [Vio₂], 28.67 : 71.33 [DG_4] : [Vio₃]} molar ratio were solubilised in an ethanol : water solution (5:2 volume ratio). Then, Ti(O*i*Pr)₄ in a 1:20 molar ratio ([terminal organophosphonate of DG_4] : [Ti]) was added to the yellow solution at room temperature. The resulting solution was heated at 60 °C for 10 hours. After filtration and extensive washing of the precipitate with ethanol, the collected solids were dried at 60 °C for 2 hours given rise to M_1 , M_2 and M_3 respectively.

Path C. a phosphonate-terminated fourth generation dendrimer DG_4 was solubilised in an ethanol:water solution (5:2 volume ratio). Then, $Ti(OiPr)_4$ in a 1:20 molar ratio

([terminal organophosphonate] : [Ti]) was added to the transparent dendritic solution at room temperature. After 15 min of stirring, the viologen (Vio₁, Vio₂ or Vio₃) in a {2.53 : 97.47 [**DG**₄] : [Vio₁], 16.42 : 83.58 [**DG**₄] : [Vio₂], 28.67 : 71.33 [**DG**₄] : [Vio₃]} molar ratio was added and the resulting solution was heated at 100°C for 10 hours. After filtration and extensive washing of the precipitate with ethanol, the collected solids were dried at 60°C for 2 hours given rise to **M**₁, **M**₂ and **M**₃ respectively.

Path D. a phosphonate-terminated fourth generation dendrimer DG_4 was solubilised in an ethanol:water solution (5:2 volume ratio). Then, Ti(O*i*Pr)₄ in a 1:20 molar ratio ([terminal organophosphonate] : [Ti]) was added to the transparent dendritic solution at room temperature. After 4 hours of stirring, the third sol-gel precursor (either Vio₁, Vio₂ or Vio₃) in a {2.53 : 97.47 [DG₄] : [Vio₁], 16.42 : 83.58 [DG₄] : [Vio₂], 28.67 : 71.33 [DG₄] : [Vio₃]} molar ratio was added and the resulting solution was heated at 60°C for 10 hours. After filtration and extensive washing of the precipitate with ethanol, the collected solids were dried at 60°C for 2 hours given rise to M_1 , M_2 and M_3 respectively.

Typical example of preparation of supported gold nanoparticules M_n-Au)

To a suspension of M_n in ethanol was added a solution of HAuCl₄.3H₂O in ethanol. The mixture was sonicated for an hour at ambient temperature. To this suspension was added an aqueous solution of NaBH₄. The solution immediately turned purplish red. The reaction mixture was stirred for 2 hour at room temperature. After filtration, the solid was washed with deionized water and dried.

Table	S1
-------	-----------

	Material		S _{BET} ^a (m ² .g ⁻¹)	P.D ^b (nm)	Anatase particle size ^c (nm)
	M ₁	{DG4 + Ti(OiPr) ₄ } 15 min + Vio-1 (60°C)	342	3.3	5.6
Path A	M2	{DG4 + Ti(OiPr)₄} 15 min + Vio-2 (60℃)	360	3.5	5.5
	M ₃	{DG4 + Ti(OiPr) ₄ } 15 min + Vio-3 (60°C)	122	3.7	5.9
	M1	{DG4 + Ti(OiPr) ₄ + Vio-1 } (60°C)	155	3.6	6.8
(Path B)	M ₂	{DG4 + Ti(OiPr)₄ + Vio-2 } (60℃)	52	3.9	7.9
. ,	M ₃	{DG4 + Ti(OiPr)₄ + Vio-3 } (60℃)			7.8
	M1	{DG4 + Ti(OiPr) ₄ + Vio-1 } (100℃)	179	3.6	8.1
(Path C)	M ₂	{DG4 + Ti(OiPr) ₄ + Vio-2 } (100℃)	114	3.6	8.1
	M ₃	{DG4 + Ti(OiPr)₄ + Vio-3 } (100℃)	121	3.6	7.1
	M ₁	{DG4 + Ti(OiPr) ₄ } 4h + Vio-1 (60℃)	63	3.4	7.7
(Path D)	M ₂	{DG4 + Ti(OiPr)₄} 4h + Vio-2 (60℃)	119	6.4	
	M ₃	{DG4 + Ti(OiPr)₄} 4h + Vio-3 (60℃)	90	3.6	7.0

^a Specific surface area. ^b Average pore diameter (BJH). ^c Average crystallite size estimated from the broadening of the {101} reflexion using the Debye–Scherrer equation.

¹ N. Katir, J. P. Majoral, A. El Kadib, A.-M. Caminade and M. Bousmina, *Eur. J. Org. Chem.*, 2012, 269-273.

Figure S2. DRIFT spectra of hybrid materials

Figure S2a. DRIFT spectra of hybrid materials ((Path A)

Figure S2b. DRIFT spectra of hybrid materials (Path B, C and D)

^{280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40} fl (ppm)

NMR 13C M2

280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

Table S2

	:	³¹ P NMR	R (ppm)	¹³ C NMR (ppm)			
	$(N_3P_3)^{a,b}$	$(P=S)^{a,b}$	$[-P(O)(Ti-O)_2]^{a,b}$	N-CH ₃ ^a	CH ₂ -N ^b	Aromatic ^{a,b}	CH=N ^{a,b}
M ₁	_c	61.18	18.28	29.89	_c	121.53	_c
						126.52	
						130.03	
						131.70	
						145.35	
						150.44	
M ₂	_c	60.68	16.70	29.80	63.98	120.82	136.50
						128.29	
						129.40	
						131.80	
						150.76	
M ₃	_c	- ^c 66.18	16.94	30.08	62.84	122.00	
						128.00	137.45
						131.49	
						146.77	
						150.35	

^a signal belonging to dendrimer **G**₄ ^b signal belonging to viologen units ^c overlaps with the side band

Figure S4. HRTEM of hybrid materials (path A) TEM of **M**₁ (path A):

Figure S5. DRUV spectra of hybrid materials.

Figure S6. Typical SEM and HRTEM of M_1 to M_3 obtained by B, C and D paths. SEM of M_2 (path B):

SEM of M₃ (path B):

SEM of **M**₁ (path C):

SEM of M₂ (path C):

SEM of M₃ (path C):

TEM of M_1 (path B):

TEM of M_3 (path B):

TEM of M_1 (path C):

TEM of M_1 (path D):

Figure S7a.Nitrogen sorption analysis (Path B)

Figure S7b. Nitrogen sorption analysis (Path C)

Figure S7c. Nitrogen sorption analysis (Path D)

Figure S8. X-ray diffraction of hybrid materials.

The difference seen between M_3 -Au (Top) and it's molecular version, namely the typical shoulder, arises from the electronic communication between Au, crystalline TiO₂ and viologen units in the hybrid material framework.