Electronic Supporting Information

Nickel as a co-catalyst for photocatalytic hydrogen evolution on graphitic-carbon nitride (*sg*-CN): what is the nature of the active species?

Arindam Indra, Prashanth W. Menezes, Kamalakannan Kailasam, Dirk Hollmann, Marc Schröder, Arne Thomas, Angelika Brückner and Matthias Driess*

Experimental Section

Chemicals

All the chemicals are purchased from either Sigma Aldrich or Alfa-Aesar and used without further purification. Carbon nitride, *sg*-CN has been synthesized according the literature reported procedure.^[S1]

Instruments

Powder XRD was measured in Bruker AXS D8 advanced diffractometer equipped with a position sensitive detector (PSD) and a curved germanium (111) primary monochromator and the radiation used was Cu-*Ka* ($\lambda = 1.5418$ Å). The solid-state ¹³C{¹H} cross-polarization magic angle spinning (CP/MAS) measurements were carried out by using a Bruker Advance 400 spectrometer. UV-vis spectroscopy was measured in Lambda 35 UV/Vis spectrometer from Perkin Elmer (USA). BET surface areas were measured with a micromeritics Nova 4200e surface-area analyzer using nitrogen adsorption at 77 K. TEM studies were performed on a FEI Tecnai G2 20 S-TWIN with an energy-dispersive X-ray spectrometer (EDAX, r-TEM SUTW) located at the ZELMI, TU Berlin. The IR spectra were collected with a BIORAD FTS 6000 FTIR spectrometer, equipped with an attenuated total reflection (ATR) setup. In situ EPR measurements in X-band (microwave frequency \approx 9.8 GHz) were performed at 300 K with a Bruker EMX CW-micro spectrometer equipped with an ER 4119HS-WI high-sensitivity optical resonator with a grid in the front side.

Syntheses of the catalysts

Synthesis of Cat-1:

500 mg of NiCl₂.6H₂O, 250 mg *sg*-CN and 50 mL TEOA/H₂O (1:9) were mixed together in a water jacket fitted reactor and degassed by purging Ar. In a closed system, the reactor was irradiated with 300 W Xe lamp with a cut off filter of 420 nm for 48 h maintaining the temperature at 20 ± 1 °C. The solid material formed was then centrifuged out, washed several times with H₂O/EtOH and dried at 50 °C in the oven for 24 h to obtain Cat-1.

Synthesis of Cat-2:

500 mg of NiCl₂.6H₂O, 250 mg *sg*-CN and 50 mL TEOA/H₂O (1:9) were mixed together in a water jacket fitted reactor and degassed by purging Ar. The mixture was constantly stirred for 48 h in dark by maintaining the temperature at 20 ± 1 °C. The solid material formed was centrifuged out, washed several times with H₂O/EtOH and dried at 50 °C in the oven for 24 h to obtain Cat-2.

Synthesis of Cat-3:

500 mg of NiCl₂.6H₂O, 250 mg *sg*-CN and 50 mL H₂O were mixed together in a water jacket fitted reactor and degassed by purging Ar. In a closed system, the reactor was irradiated with 300 W Xe lamp for 48 h with a cut off filter of 420 nm and maintained the temperature at 20 ± 1 °C. The obtained solid material was then centrifuged out, washed several times with H₂O/EtOH and dried at 50 °C in the oven for 24 h in order to acquire Cat-3.

Catalyst	Description	Amount of total [Ni]	Amount of [Ni] in
		by ICP (%)	surface by XPS (%)
Cat-1	<i>sg</i> -CN + Ni ²⁺ +	0.73	0.12
	TEOA + light		
	irradiation for 48 h		
Cat-1R	Cat-1 after recycling	0.62	0.06
Cat-2	<i>sg</i> -CN + Ni ²⁺ +	0.53	0.03
	TEOA + 48 h stirring		
	in dark		
Cat-3	sg-CN + Ni ²⁺ + light	0.10	0.03
	irradiation for 48 h		

Table	S1 .	Descri	ption	of the	catalysts
					2

EPR studies:

In situ EPR measurements in X-band (microwave frequency ≈ 9.8 GHz) were performed at 300 K with a Bruker EMX CW-micro spectrometer equipped with an ER 4119HS-WI highsensitivity optical resonator with a grid in the front side. The samples were irradiated with a 300 W Xe lamp (LOT Oriel). All CN and CN-Ni samples were measured with microwave power 7.15 mW, receiver gain 1*10⁴, modulation frequency 100 kHz, modulation amplitude 5 G, sweep width 6900 G, sweep time 122.8 s, 2048 points for Ni(0) and modulation amplitude 1 G, sweep width 100 G, sweep time 122.8 s, 2048 points for CB-e⁻. *g* values have been calculated from the resonance field B_0 and the resonance frequency ν using the resonance condition $h\nu = g\beta B_0$. The calibration of the *g* values was performed using DPPH (2,2-diphenyl-1-picrylhydrazyl; $g = 2.0036\pm0.00004$). For the analysis of the charge separation and recombination, the spectra under irradiation with light and after light switch-off were double integrated and the corresponding background signals before starting the experiment were subtracted.

Two temperature areas are determined: 1. > 320K

Due to strong anisotropy below 320 K, the Langvin equation^[S2,S3] can only be applied for the temperatures above 320 K. However, the intensity obtained from the measurement did not exactly match to a specific particle diameter. This deviation could be due to (i) Non-spherical particles, (ii) distribution for different particle sizes or (iii) interference with the CB-e⁻ signal.

$$M(t) = M_s(T) \cdot L(x)$$
(S1)

$$L(x) = \operatorname{coth}(x) \cdot x^{-1} \tag{S2}$$

$$\mathbf{x} = \mathbf{M}_{\mathbf{s}}(\mathbf{T}) \bullet \mathbf{V} \bullet \mathbf{H} \bullet \mathbf{k}^{-1} \bullet \mathbf{T}^{-1}$$
(S3)

with $M_s(298 \text{ K}) = 0.6149 \text{ T}$ (saturation magnetization per unit volume), T - temperature /K, V - the volume of the Ni particle (assuming spherical NP), H - the applied external field /T, k - the Boltzman constant.

Hydrogen evolution studies:

Hydrogen gas evolution was measured in a 60 mL home-made teflon reactor fitted with quartz glass window and temperature controller. 50 mg of catalyst, 6 mL sacrificial agent and 54 mL water were filled inside the reactor, degassed and then irradiated with a 300 W Xe lamp with a cut off filter of 420 nm. Irradiation area of the light was 19.63 m² and time vs pressure profile was recorded. At the end of the reaction, the gas obtained from the head space was injected into GC and the volume % was determined.

Figures

Figure S1. PXRD patterns of the synthesized catalysts showing the reflectance from *sg*-CN without any additional peak for the deposited nickel species.

Figure S2. EDX spectra of the (a) Cat-1, (b) Cat-2, (c) Cat-1R and (d) Cat-3 showing the presence of Ni. The signal for Cu is from the TEM grid.

Figure S3. Solid state ¹³C CP/MAS NMR spectra of Cat-1 and *sg*-CN.

Figure S4a. Diffuse reflectance UV-Vis spectra of the catalysts.

Figure S4b. Attenuated total reflection infra-red (ATR-IR) spectra of the catalysts.

Figure S5. (a) TEM image of Cat-1 showing the porous structure of *sg*-CN and inset showing selected area diffraction pattern indicating the amorphous nature of deposited Ni-species. (b) HRTEM image of Cat-1 after 8 days of continuous H_2 production under photochemical conditions, (c) lattices of a selected dark particle and (d) corresponding FFT.

Figure S6. XPS studies of the catalysts for (a) Ni $2p_{3/2}$, (b) N 1s, (c) C 1s and (d) O 1s edges.

Figure S7. Long term photochemical hydrogen evolution profile of Cat-1 under 300 W Xe lamp irradiation with a cut off filter of 420 nm using TEOA as the sacrificial agent.

Figure S8. Ex situ EPR spectra of the catalysts compared with sg-CN.

Figure S9a. Temperature dependency of the EPR signals for Cat-1 with the temperature interval of 20 K.

Figure S9b. Temperature dependent magnetization M(T) calculated for different particle size of spherical Ni particles in comparison with the double integration of the Ni⁰ signal of Cat-1.

Figure S10. Double integral of the CB-e⁻ EPR signal of the catalysts during visible light irradiation (black) and after light switch-off (red). Background signals in the dark were subtracted. The inset shows an example of the analyzed CB-e⁻ signal.

References

K. Kailasam, J. D. Epping, A. Thomas, S. Losse and H. Junge, *Energy Environ. Sci.* 2011, 4, 4668-4674.

S2. L. Bonneviot, M. Che, D. Olivier, G. A. Martin and E. Freund, *J. Phys. Chem.* 1986, **90**, 2112-2117.

S3. T. Isobe, R. A. Weeks and R. A. Zuhr, Solid State Comm. 1998, 105, 469-472.