Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2015

Supporting Information for

Synthesis and Electrochemical Properties of Li_{1.3}Nb_{0.3}V_{0.4}O₂ as a Positive Electrode Material for

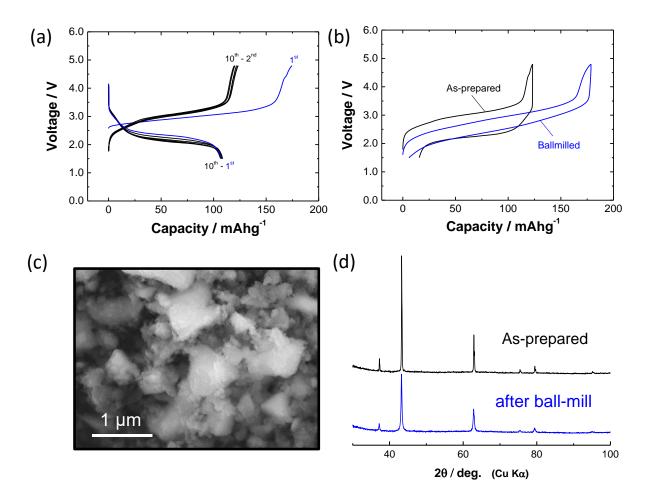
Rechargeable Lithium Batteries

Naoaki Yabuuchi,^{1*} Mitsue Takeuchi,² Shinichi Komaba,² Shinnosuke Ichikawa,³

Tetsuya Ozaki³ and Tokuo Inamasu³

¹Department of Green and Sustainable Chemistry, Tokyo Denki University

5 Senju Asahi-Cho, Adachi, Tokyo 120-8551, Japan


²Department of Applied Chemistry, Tokyo University of Science,

1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan

³R&D Center, GS Yuasa International Ltd.,

1 Inobanba-cho, Nishinosho, Kisshoin, Minami-ku, Kyoto 601-8520, Japan

*corresponding author, e-mail; yabuuchi@mail.dendai.ac.jp

Figure S1. (a) Electrode performance of as-prepared $Li_{1.3-x}Nb_{0.3}V_{0.4}O_2$ without the ballmilling process. The Li cell was cycled in the voltage range of 1.5 - 4.8 V at a rate of 10 mA g⁻¹ at room temperature. Electrode performance of as-prepared and ballmilled $Li_{1.3-x}Nb_{0.3}V_{0.4}O_2$ is compared in (b). Charge/discharge curves for 2^{nd} cycles are shown in (b). (c) Particle morphology of ball-milled sample observed by SEM. Particle size was reduced from approximately $3 - 5 \mu m$ to sub-micrometer size. Uniform distribution of nanosized carbon is also noted. Polarization as electrode materials is effectively enhanced by mechanical ball-milling as shown in (b). (d) Comparison of XRD patterns of $Li_{1.3-x}Nb_{0.3}V_{0.4}O_2$ before and after ball-milling with carbon. Particle size and crystallinity of the sample are lowered by ball-milling process.