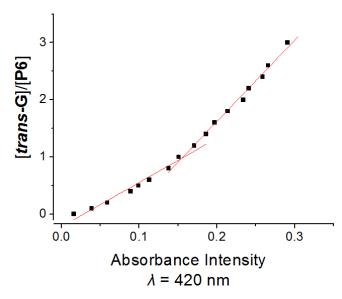
Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2015

## A pillar[6]arene-based [2]pseudorotaxane in solution and in the solid state and its photo-responsive self-assembly behavior in solution

Danyu Xia, Peifa Wei, Bingbing Shi and Feihe Huang\*

State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China; Fax and Tel: +86-571-8795-3189; Email address: fhuang@zju.edu.cn.

## **Electronic Supplementary Information (6 pages)**


| 1. | Materials and Methods                                                                  | <i>S2</i> |
|----|----------------------------------------------------------------------------------------|-----------|
| 2. | Stoichiometry and association constant determination for the complexation between $P6$ |           |
|    | and <b>trans-G</b>                                                                     | <i>S2</i> |
| 3. | ESIMS of <b>P6</b> and <b>trans-G</b> in acetonitrile                                  | <i>S4</i> |
| 4. | <sup>1</sup> H NMR experiments on the photo-responsive ability of $G$                  | <i>S4</i> |
| 5. | UV-vis absorption spectroscopy of photo-responsive $trans$ -G                          | <i>S5</i> |
| 6. | X-ray crystal data of the pillar[6]arene-based [2]pseudorotaxane                       | <i>S5</i> |
|    | References                                                                             | <i>S6</i> |

### 1. Materials and methods

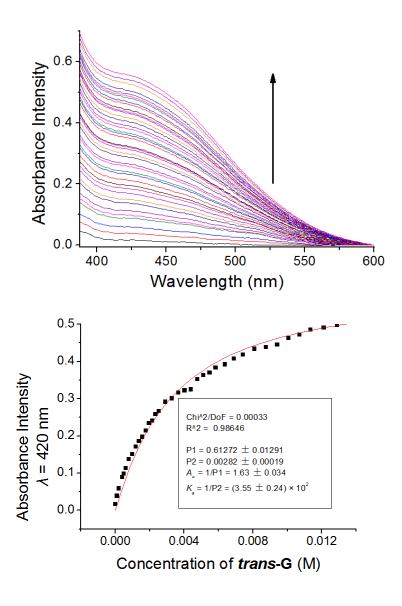
All reagents were commercially available and used as supplied without further purification. Compounds **P6**<sup>S1</sup> and *trans*-**G**<sup>S2</sup> were prepared according to published procedures. NMR spectra were recorded with a Bruker Avance DMX 400 spectrophotometer. Low-resolution electrospray ionization mass spectra were recorded with a Bruker Esquire 3000 Plus spectrometer. UV-vis spectra were taken on a Perkin-Elmer Lambda 35 UV-vis spectrophotometer. The fluorescence experiments were conducted on a RF-5301 spectrofluorophotometer (Shimadzu Corporation, Japan). The crystal data was collected on an Oxford Diffraction Xcalibur Atlas Gemini ultra. The crystal structure was solved by SHELXS-97<sup>S3</sup> and refined by SHELXL-97.<sup>S4</sup>

# 2. Stoichiometry and association constant determination for the complexation between **P6** and **trans-G**

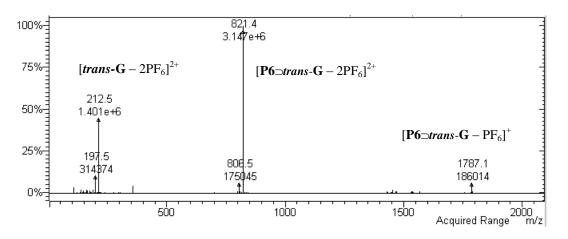
2.1. Stoichiometry determination for the complexation between P6 and trans-G



*Fig. S1* Mole ratio plot for the complexation between **P6** and *trans*-**G**, indicating a 1:1 binding stoichiometry.


### 2.2. Association constant determination for the complexation between P6 and trans-G

The association constant of complex  $P6\_trans-G$  was determined by probing the chargetransfer band of the complex by UV-vis spectroscopy and employing a titration method. Progressive addition of a solution with high guest *trans-G* concentration (1.00 × 10<sup>-1</sup> M) and low host P6 concentration (1.00 × 10<sup>-3</sup> M) to a solution with the same concentration of host P6 resulted in an increase of the intensity of the charge-transfer band of the complex. Treatment of the collected absorbance data with a non-linear curve-fitting program afforded the corresponding association constant ( $K_a$ ).


The non-linear curve-fitting was based on the equation: <sup>S5</sup>

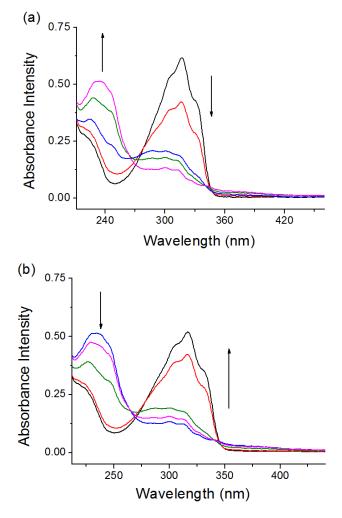
 $A = (A_{\infty}/[H]_0) (0.5[G]_0 + 0.5([H]_0 + 1/K_a) - (0.5 ([G]_0^2 + (2[G]_0(1/K_a - [H]_0)) + (1/K_a + [H]_0)^2)^{0.5}))$ (Eq. S1)

Where A is the absorption intensity of the charge-transfer band at  $[G]_0$ ,  $A_\infty$  is the absorption intensity of the charge-transfer band when the host is completely complexed,  $[H]_0$  is the fixed initial concentration of the host **P6**, and  $[G]_0$  is the varying concentration of the guest *trans-G*.



*Fig. S2* The absorption spectral changes of **P6** ( $1.00 \times 10^{-3}$  M) upon addition of *trans*-G (top) and the absorbance intensity changes at  $\lambda = 420$  nm upon addition of *trans*-G (from 0 to 1.65  $\times 10^{-2}$  M) (bottom). The red solid line was obtained from the non-linear curve-fitting using Eq. S1.




*Fig. S3.* The positive electrospray ionization mass spectrum of an equimolar mixture of **P6** and *trans-G* in acetonitrile. Mass fragments at m/z 821.4 for  $[\mathbf{P6} \supset trans-\mathbf{G} - 2\mathbf{PF}_6]^{2+}$  and m/z 1787.1 for  $[\mathbf{P6} \supset trans-\mathbf{G} - \mathbf{PF}_6]^+$  confirmed the 1:1 complexation stoichiometry between **P6** and *trans-***G**.

## 4. <sup>1</sup>H NMR experiments of photo-responsive ability of G



*Fig. S4* Partial <sup>1</sup>H NMR spectra: *trans-*G ( $5.00 \times 10^{-3}$  M) in CD<sub>3</sub>CN under UV irradiation at 365 nm with different times from 0 to 2.5 h (a–d) and under further UV irradiation at 265 nm with different times from 0 to 6 h (d–g).

5. UV-vis absorption spectroscopy experiments of photo-responsive ability of trans-G



*Fig. S5* UV-vis absorption spectra of *trans*-G ( $1.00 \times 10^{-5}$  M) in acetonitrile: (a) under UV irradiation at 365 nm with different times, 0 h, 0.5 h, 1.5 h, 2 h and 2.5h; (b) under further UV irradiation at 265 nm with different times, 0 h, 1 h, 3 h, 5.5 h and 6 h.

### 6. X-ray crystal data of the pillar[6]arene-based [2]pseudorotaxane

Crystal data of the [2]pseudorotaxane **P6**⊃*trans*-**G**: block, red, C<sub>92</sub>H<sub>126</sub>N<sub>2</sub>O<sub>24</sub>F<sub>12</sub>P<sub>6</sub>, *FW* 2003.72, monoclinic, space group *C1c1*, *a* = 31.6051(11), *b* = 13.3823(5), *c* = 24.6753(7) Å,  $\alpha = 90.00^{\circ}$ ,  $\beta = 90.155(3)^{\circ}$ ,  $\gamma = 90.00^{\circ}$ , V = 10436.4.7(6) Å<sup>3</sup>, Z = 4,  $D_c$  = 1.275 g cm<sup>-3</sup>, T = 172(2) K,  $\mu = 0.133$  mm<sup>-1</sup>, 15071 measured reflections, 12597 independent reflections, 1203 parameters, 2 restraints, *F*(000) = 4234.0, *R*<sub>1</sub> = 0.0683, *wR*<sub>2</sub> = 0.1495 (all data), *R*<sub>1</sub> = 0.0580, *wR*<sub>2</sub> = 0.1610 [*I* > 2 $\sigma$ (*I*)], max. residual density 0.464 e•Å<sup>-3</sup>, and goodness-of-fit (*F*<sup>2</sup>) = 1.027. CCDC-1409431.

- S1. X. Chi, M. Xue, Y. Ma, X. Zhou and F. Huang, Chem. Commun., 2013, 49, 8175– 8177.
- S2. P. R. Ashton, R. Ballardini, V. Balzani, A. Credi, M. T. Gandolfi, S. Menzer, L. Pérez-Garc a, L. Prodi, J. F. Stoddart, M. Venturi, A. J. P. White and D. J. Williams, J. Am. Chem. Soc., 1995, 117, 11171–11197.
- S3. G. M. Sheldrick, SHELXS-97, Program for solution of crystal structures, University of G\u00fcttingen, Germany, 1990.
- S4. G. M. Sheldrick, SHELXS-97, Program for refinement of crystal structures, University of Göttingen, Germany, 1997.
- S5. K. A. Connors, *Binding Constants*; Wiley: New York, 1987; P. S. Corbin, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, 1999; P. R. Ashton, R. Ballardini, V. Balzani, M. Belohradsky, M. T. Gandolfi, D. Philp, L. Prodi, F. M. Raymo, M. V. Reddington, N. Spencer, J. F. Stoddart, M. Venturi and D. J. Williams, *J. Am. Chem. Soc.*, 1996, **118**, 4931–4951.