# (Supporting Information)

# **Direct Phosphonation of Quinoxalin-2(1H)-ones under Transition-Metal-Free Conditions**

#### Contents

| I.General information   II. General catalytic procedure   III. References | 2 |                                                                                         |
|---------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------|
|                                                                           | 2 |                                                                                         |
|                                                                           |   | IV. <sup>1</sup> H NMR, <sup>13</sup> C NMR and <sup>31</sup> P NMR spectra of products |

#### I. General information

Commercial materials and solvents were used directly without further purification. All reactions were carried out under air unless otherwise stated. Silica gel was purchased from Qing Dao Hai Yang Chemical Industry Co. All melting points were determined on a Beijing Science Instrument Dianguang Instrument Factory XT4B melting point apparatus and are uncorrected. <sup>1</sup>H, <sup>13</sup>C and <sup>31</sup>P NMR spectra were measured on a 400 MHz Bruker spectrometer (<sup>1</sup>H 400 MHz, <sup>13</sup>C 100 MHz, <sup>31</sup>P 162 MHz), using CDCl<sub>3</sub> and DMSO-d<sub>6</sub> as the solvents with tetramethylsilane (TMS) as the internal standard at room temperature. HRMSESI spectra were obtained on Agilent 6450 spectrometer, and HRMSEI spectra were obtained on Agilent Technologies 5973N. Quinoxalin-2(1H)-ones were prepared according to the literature.<sup>1</sup> Quinoxalin-2(1*H*)-ones **1a**, <sup>1</sup>**1h**, <sup>2</sup>**1i**, <sup>3</sup>**1j**, <sup>4</sup>**10**, <sup>5</sup> are known compounds. Compounds **11** and **1m** are new and their characterization data are as follows:



6, 7-Dimethyl-1-benzylquinoxalin-2(1H)-one (11)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.32 (s, 1H), 7.63 (s, 1H), 7.35–7.26 (m, 3H), 7.24 (d, J = 7.7 Hz, 2H), 7.04 (s, 1H), 5.46 (s, 2H), 2.30 (d, J = 3.8 Hz, 6H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  155.3, 149.1, 141.0, 135.2, 132.8, 132.1, 130.6, 130.6, 128.9, 127.7, 126.8, 115.1, 45.4, 20.7, 19.1 ppm; HRMS (ESI, m/z): calculated for C<sub>17</sub>H<sub>16</sub>N<sub>2</sub>O [M+H]<sup>+</sup>: 265.1341, found: 265.1337.



6, 7-Dichloro-1-benzylquinoxalin-2(1H)-one (1m)

<sup>1</sup>H NMR (400 MHz, DMSO):  $\delta$  8.40 (s, 1H), 8.13 (s, 1H), 7.75 (s, 1H), 7.35–7.31 (m, 2H), 7.30–7.26 (m, 3H), 5.49 (s, 2H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO):  $\delta$  155.0, 153.1, 136.1, 134.2, 133.4, 133.3, 131.5, 129.7, 128.4, 127.7, 126.6, 117.7, 45.5 ppm; HRMS (ESI, m/z): calculated for C<sub>15</sub>H<sub>11</sub>Cl<sub>2</sub>N<sub>2</sub>O [M+H]<sup>+</sup>: 305.0248, found: 305.0243.

#### **II**. General catalytic procedure

A reaction tube was charged with quinoxalin-2(1*H*)-one **1** (0.2 mmol), H-phosphonates **2** (0.6 mmol) or diphenylphosphine oxide **2** (0.3 mmol),  $K_2S_2O_8$  (0.6 mmol), and  $CH_3CN$  (2 mL). The reaction mixture was stirred at 100 °C for 8 h and monitored by TLC. After completion of reaction, the resulting mixture was cooled to room temperature, filtered and concentrated under reduced pressure, and purified by column chromatography over silica gel with dichloromethane/methanol.

dimethyl (3-oxo-3,4-dihydroquinoxalin-2-yl)phosphonate (3a)



CCDC: 1411223

Primrose yellow solid: m.p. 170-172 °C

<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO)  $\delta$  12.80 (s, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.71 – 7.64 (m, 1H), 7.42 – 7.33 (m, 2H), 3.88 (d, J = 11.1 Hz, 6H). <sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO)  $\delta$  154.5 (d,  $J_{C-P} = 31.4$  Hz), 153.8 (d,  $J_{C-P} = 223.8$  Hz), 133.5 (s), 133.2 (d,  $J_{C-P} = 2.9$  Hz), 132.0 (d,  $J_{C-P} = 25.3$  Hz), 130.3 (s), 124.3 (s), 116.3 (s), 54.5 (d,  $J_{C-P} = 6.3$  Hz). <sup>31</sup>P NMR (162 MHz, d<sub>6</sub>-DMSO)  $\delta$  9.4 (s). HRMS m/z (ESI) calculated for C<sub>10</sub>H<sub>11</sub>N<sub>2</sub>O<sub>4</sub>P (M+H)<sup>+</sup> 255.0535, found 255.0530.

diethyl (3-oxo-3,4-dihydroquinoxalin-2-yl)phosphonate (3b)



Primrose yellow solid: m.p. 194-196 ℃

<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO) δ 12.78 (s, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.70 – 7.63 (m, 1H), 7.42 – 7.31 (m, 2H), 4.26 (dq,  $J_1 = 14.2$  Hz,  $J_2 = 7.1$  Hz, 4H), 1.32 (t, J = 7.0 Hz, 6H). <sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO) δ 154.4 (d,  $J_{C-P} = 31.4$  Hz), 154.2 (d,  $J_{C-P} = 222.9$  Hz), 133.4 (s), 133.2 (d,  $J_{C-P} = 2.6$  Hz), 131.9 (d,  $J_{C-P} = 25.2$  Hz), 130.3 (s), 124.3 (s), 116.3 (s), 63.8 (d,  $J_{C-P} = 6.2$  Hz), 16.8 (d,  $J_{C-P} = 6.1$  Hz). <sup>31</sup>P NMR (162 MHz, d<sub>6</sub>-DMSO) δ 7.0 (s). HRMS m/z (ESI) calculated for C<sub>12</sub>H<sub>15</sub>N<sub>2</sub>O<sub>4</sub>P (M+H)<sup>+</sup> 283.0848, found 283.0843.

diisopropyl (3-oxo-3,4-dihydroquinoxalin-2-yl)phosphonate (3c)



Primrose yellow solid: m.p. 191-196 ℃

<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO) δ 12.74 (s, 1H), 7.85 (d, J = 7.9 Hz, 1H), 7.69 – 7.63 (m, 1H), 7.37 (dd,  $J_1 = 14.1$ ,  $J_2 = 7.4$  Hz, 2H), 4.82 (dq,  $J_1 = 12.4$ ,  $J_2 = 6.2$  Hz, 2H), 1.35 (dd,  $J_1 = 6.0$  Hz,  $J_2 = 4.7$  Hz, 12H). <sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO) δ 154.6 (d,  $J_{C-P} = 223.5$  Hz), 154.3 (d,  $J_{C-P} = 31.4$  Hz), 133.2 (s), 133.1 (d,  $J_{C-P} = 2.6$  Hz), 130.2 (s), 124.3 (s), 116.2 (s), 72.23 (d,  $J_{C-P} = 6.2$  Hz), 24.57 (d,  $J_{C-P} = 3.2$  Hz), 23.91 (d,  $J_{C-P} = 6.0$  Hz). <sup>31</sup>P NMR (162 MHz, d<sub>6</sub>-DMSO) δ 5.3 (s). HRMS m/z (ESI) calculated for C<sub>14</sub>H<sub>29</sub>N<sub>2</sub>O<sub>4</sub>P (M+H)<sup>+</sup> 311.1161, found 311.1157.

diisobutyl (3-oxo-3,4-dihydroquinoxalin-2-yl)phosphonate (3d)



White solid: m.p. 115-116 ℃

<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO) δ 12.75 (s, 1H), 7.85 (d, J = 7.7 Hz, 1H), 7.69 – 7.62 (m, 1H), 7.40 – 7.32 (m, 2H), 3.98 (t, J = 6.8 Hz, 4H), 1.94 (td,  $J_1 = 13.3$  Hz,  $J_2 = 6.6$  Hz, 2H), 0.93 (d, J = 6.7 Hz, 12H). <sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO) δ 154.4 (d,  $J_{C-P} = 31.4$  Hz), 154.3 (d,  $J_{C-P} = 223.7$  Hz), 133.4 (s), 133.2 (d,  $J_{C-P} = 3.0$  Hz), 131. 9 (d,  $J_{C-P} = 25.3$  Hz), 130.3 (s), 124.3 (s), 116.3 (s), 73.4 (d,  $J_{C-P} = 6.8$  Hz), 29.3 (d,  $J_{C-P} = 6.0$  Hz), 19.0 (d,  $J_{C-P} = 3.3$  Hz). <sup>31</sup>P NMR (162 MHz, d<sub>6</sub>-DMSO) δ 6.8 (s). HRMS m/z (ESI) calculated for C<sub>16</sub>H<sub>23</sub>N<sub>2</sub>O<sub>4</sub>P (M+H)<sup>+</sup> 339.1474, found 339.1469.

dibutyl (3-oxo-3,4-dihydroquinoxalin-2-yl)phosphonate (3e)



Pale green solid: m.p. 102-104 °C

<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO) δ 12.76 (s, 1H), 7.85 (d, J = 7.7 Hz, 1H), 7.69 – 7.62 (m, 1H), 7.40 – 7.31 (m, 2H), 4.19 (dd,  $J_1 = 13.9$ ,  $J_2 = 6.5$  Hz, 4H), 1.65 (dq,  $J_1 = 13.1$  Hz,  $J_2 = 6.5$  Hz, 4H), 1.45 – 1.34 (m, 4H), 0.90 (t, J = 7.4 Hz, 6H). <sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO) δ 154.4 (d,  $J_{C-P} = 31.3$  Hz), 154.2 (d,  $J_{C-P} = 223.0$  Hz), 133.4 (s), 133.2 (d,  $J_{C-P} = 2.9$  Hz), 131.9 (d,  $J_{C-P} = 25.2$  Hz), 130.2 (s), 124.3 (s), 116.3 (s), 67.3 (d,  $J_{C-P} = 6.5$  Hz), 32.5 (d,  $J_{C-P} = 6.0$  Hz), 18.7 (s), 13.9 (s). <sup>31</sup>P NMR (162 MHz, d<sub>6</sub>-DMSO) δ 7.0 (s). HRMS m/z (ESI) calculated for C<sub>16</sub>H<sub>23</sub>N<sub>2</sub>O<sub>4</sub>P (M+H)<sup>+</sup> 339.1474, found 339.1470.

dibenzyl (3-oxo-3,4-dihydroquinoxalin-2-yl)phosphonate (3f)



Pale green solid: m.p. 55-60 ℃

<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO) δ 12.85 (s, 1H), 7.86 (d, J = 7.9 Hz, 1H), 7.67 (t,  $J_1 = 7.4$  Hz,  $J_2 = 1$ H Hz), 7.45 (d, J = 6.8 Hz, 4H), 7.41 – 7.30 (m, 8H), 5.28 (d, J = 7.8 Hz, 4H). <sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO) δ 154.55 (d,  $J_{C-P} = 32.0$  Hz), 153.8 (d,  $J_{C-P} = 223.8$  Hz), 137.00 (d,  $J_{C-P} = 6.6$  Hz), 133.54 (s), 133.22 (d,  $J_{C-P} =$ 2.7 Hz), 132.04 (d,  $J_{C-P} = 25.9$  Hz), 130.33 (s), 128.84 (s), 128.63 (s), 128.33 (s), 124.36 (s), 116.32 (s), 68.91 (d,  $J_{C-P} = 5.9$  Hz). <sup>31</sup>P NMR (162 MHz, d<sub>6</sub>-DMSO) δ 7.7 (s). HRMS m/z (ESI) calculated for  $C_{22}H_{19}N_2O_4P$  (M+H)<sup>+</sup> 407.1161, found 407.1155.

ethyl (3-oxo-3,4-dihydroquinoxalin-2-yl)(phenyl)phosphinate (3g)



Yellow-green solid: m.p. 221-224 °C

<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO)  $\delta$  12.69 (s, 1H), 7.90 – 7.81 (m, 3H), 7.64 (dd,  $J_1 = 12.0$  Hz,  $J_2 = 6.7$  Hz, 2H), 7.53 (td,  $J_1 = 7.5$  Hz,  $J_2 = 3.6$  Hz, 2H), 7.35 (dd,  $J_1 = 11.8$  Hz,  $J_2 = 7.9$  Hz, 2H), 4.29 (dddd,  $J_1 = 17.5$  Hz,  $J_2 = 14.7$  Hz,  $J_3 = 10.2$  Hz,  $J_4 = 7.7$  Hz, 2H), 1.35 (t, J = 7.0 Hz, 3H). <sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO)  $\delta$  156.5 (d,  $J_{C-P} = 160.5$  Hz), 154.3 (d,  $J_{C-P} = 28.5$  Hz), 133.3 (s), 133.3 (d,  $J_{C-P} = 2.1$  Hz), 133.0 (d,  $J_{C-P} = 2.6$  Hz), 132.2 (s), 132.2 (d,  $J_{C-P} = 10.4$  Hz), 130.7 (d,  $J_{C-P} = 141.0$  Hz), 130.4 (s), 128.8 (d,  $J_{C-P} = 13.4$  Hz), 124.3 (s), 116.3 (s), 62.4 (d,  $J_{C-P} = 6.4$  Hz), 17.0 (d,  $J_{C-P} = 6.0$  Hz). <sup>31</sup>P NMR (162 MHz, d<sub>6</sub>-DMSO)  $\delta$  23.8 (s). HRMS m/z (ESI) calculated for C<sub>16</sub>H<sub>15</sub>N<sub>2</sub>O<sub>3</sub>P (M+H)<sup>+</sup> 315.0899, found 315.0895.

ethyl 2-(3-(dimethoxyphosphoryl)-2-oxoquinoxalin-1(2H)-yl)acetate (3h)



Cream solid solid: m.p. 95-99 ℃

<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO) δ 8.00 (d, J = 7.9 Hz, 1H), 7.77 (t, J = 7.8 Hz, 1H), 7.63 (d, J = 8.5 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 5.13 (s, 2H), 4.19 (q, J = 7.1 Hz, 2H), 3.88 (d, J = 11.1 Hz, 6H), 1.23 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO) δ 167.6 (s), 153.6 (d,  $J_{C-P} = 32.5$  Hz), 152.0 (d,  $J_{C-P} = 228.0$  Hz), 134.0 (s), 133.6 (d,  $J_{C-P} = 2.8$  Hz), 132.5 (d,  $J_{C-P} = 25.8$  Hz), 131.5 (s), 124.9 (s), 115.5 (s), 62.0 (s), 54.7 (d,  $J_{C-P} = 6.3$  Hz), 44.1 (s), 14.5 (s). <sup>31</sup>P NMR (162 MHz, d<sub>6</sub>-DMSO) δ 8.7 (s). HRMS m/z (ESI) calculated for C<sub>14</sub>H<sub>17</sub>N<sub>2</sub>O<sub>6</sub>P (M+H)<sup>+</sup> 341.0902, found 341.0898.

dimethyl (4-ethyl-3-oxo-3,4-dihydroquinoxalin-2-yl)phosphonate (3i)



Pale green solid: m.p. 104-106 ℃

<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO) δ 7.96 (dd,  $J_1$  = 8.0 Hz,  $J_2$  =1.0 Hz, 1H), 7.82 – 7.76 (m, 1H), 7.72 (d, J = 7.8 Hz, 1H), 7.50 – 7.43 (m, 1H), 4.28 (q, J = 7.1 Hz, 2H), 3.88 (d, J = 11.0 Hz, 6H), 1.26 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO) δ 153.3 (d,  $J_{C-P}$  = 2.3 Hz), 152.4 (d,  $J_{C-P}$  = 259.9 Hz), 133.9 (s), 133.2 (d,  $J_{C-P}$  = 2.9 Hz), 132.8 (d,  $J_{C-P}$  = 26.0 Hz), 131.6 (s), 124.4 (s), 115.4 (s), 54.7 (d,  $J_{C-P}$  = 6.3 Hz), 37.4 (s), 12.7 (s). <sup>31</sup>P NMR (162 MHz, d<sub>6</sub>-DMSO) δ 9.3 (s). HRMS m/z (ESI) calculated for C<sub>12</sub>H<sub>15</sub>N<sub>2</sub>O<sub>4</sub>P (M+H)<sup>+</sup> 283.0848, found 283.0845.

dimethyl (6,7-dimethyl-3-oxo-3,4-dihydroquinoxalin-2-yl)phosphonate (3j)



Green solid: m.p. 205-208 ℃

<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO)  $\delta$  12.69 (s, 1H), 7.66 (s, 1H), 7.10 (s, 1H), 3.85 (d, J = 11.0 Hz, 6H), 2.32 (d, J = 15.4 Hz, 6H). <sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO)  $\delta$  154.7 (d,  $J_{C-P} = 31.9$  Hz), 152.0 (d,  $J_{C-P} = 226.5$  Hz), 143.8 (s), 133.4 (s), 131.3 (d,  $J_{C-P} = 1.4$  Hz), 130.7 (d,  $J_{C-P} = 25.3$  Hz), 129.9 (s), 116.1 (s), 54.5 (d,  $J_{C-P} = 6.3$  Hz), 20.5 (s), 19.3 (s). <sup>31</sup>P NMR (162 MHz, d<sub>6</sub>-DMSO)  $\delta$  10.0 (s). HRMS m/z (ESI) calculated for C<sub>12</sub>H<sub>15</sub>N<sub>2</sub>O<sub>4</sub>P (M+H)<sup>+</sup> 283.0848, found 283.0843.

diethyl (6,7-dimethyl-3-oxo-3,4-dihydroquinoxalin-2-yl)phosphonate (3k)



Pale yellow solid: m.p. 127-132 ℃

<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO) δ 12.65 (s, 1H), 7.64 (s, 1H), 7.10 (s, 1H), 4.29 – 4.19 (m, 4H), 2.32 (d, J = 14.5 Hz, 6H), 1.32 (t, J = 7.0 Hz, 6H). <sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO) δ 154.6 (d,  $J_{C-P} = 31.7$  Hz), 152.4 (d,  $J_{C-P} = 226.3$  Hz), 143.7 (s), 133.3 (s), 131.3 (d,  $J_{C-P} = 2.9$  Hz), 130.6 (d,  $J_{C-P} = 25.6$  Hz), 129.8 (d,  $J_{C-P} = 0.6$  Hz), 116.1 (s), 63.6 (d,  $J_{C-P} = 6.2$  Hz), 20.5 (s), 19.3 (s), 16.8 (d,  $J_{C-P} = 6.1$  Hz). <sup>31</sup>P NMR (162 MHz, d<sub>6</sub>-DMSO) δ 7.6 (s).HRMS m/z (ESI) calculated for C<sub>14</sub>H<sub>19</sub>N<sub>2</sub>O<sub>4</sub>P (M+H)<sup>+</sup> 311.1161, found 311.1157.

dimethyl (4-benzyl-6,7-dimethyl-3-oxo-3,4-dihydroquinoxalin-2-yl)phosphonate (31)



Pale yellow solid: m.p. 125-127 ℃

<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO) δ 7.75 (s, 1H), 7.41 (s, 1H), 7.34 (dd,  $J_1 = 10.3$  Hz,  $J_1 = 4.4$  Hz, 2H), 7.30 – 7.22 (m, 3H), 5.49 (s, 2H), 3.89 (d, J = 11.0 Hz, 6H), 2.31 (d, J = 11.6 Hz, 6H). <sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO) δ 154.1 (d,  $J_{C-P} = 32.6$  Hz), 150.7 (d,  $J_{C-P} = 229.0$  Hz), 144.3 (s), 136.1 (s), 133.8 (s), 131.7 (d,  $J_{C-P} = 2.9$  Hz), 131.4 (d,  $J_{C-P} = 26.0$  Hz), 131.1 (s), 129.2 (s), 127.9 (s), 127.4 (s), 116.0 (s), 54.6 (d,  $J_{C-P} = 6.4$  Hz), 45.2 (s), 20.8 (s), 19.0 (s). <sup>31</sup>P NMR (162 MHz, d<sub>6</sub>-DMSO) δ 9.7 (s). HRMS m/z (ESI) calculated for C<sub>19</sub>H<sub>21</sub>N<sub>2</sub>O<sub>4</sub>P (M+H)<sup>+</sup> 373.1317, found 373.1317.

dimethyl (4-benzyl-6,7-dichloro-3-oxo-3,4-dihydroquinoxalin-2-yl)phosphonate (3m)



Pale yellow solid: m.p. 223-228 ℃

<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO)  $\delta$  8.31 (s, 1H), 7.86 (s, 1H), 7.36 (dd,  $J_1 = 10.1$  Hz,  $J_2 = 4.4$  Hz, 2H), 7.29 (dd,  $J_1 = 6.9$  Hz,  $J_2 = 3.5$  Hz, 3H), 5.51 (s, 2H), 3.91 (d, J = 11.1 Hz, 6H). <sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO)  $\delta$  154.6 (d,  $J_{C-P} = 153.3$  Hz), 153.3 (d,  $J_{C-P} = 40.9$  Hz), 136.0 (s), 135.4 (s), 133.6 (d,  $J_{C-P} = 2.8$  Hz), 132.3 (d, J = 26.0 Hz), 132.2 (d, J = 0.7 Hz), 129.3 (s), 128.1 (s), 127.3 (s), 126.8 (s), 117.5 (s), 54.9 (d,  $J_{C-P} = 6.3$  Hz), 45.60 (s). <sup>31</sup>P NMR (162 MHz, d<sub>6</sub>-DMSO)  $\delta$  8.4 (s). HRMS m/z (ESI) calculated for C<sub>17</sub>H<sub>15</sub>Cl<sub>2</sub>N<sub>2</sub>O<sub>4</sub>P (M+H)<sup>+</sup> 413.0225, found 413.0219.

dimethyl (6,7-dichloro-3-oxo-3,4-dihydroquinoxalin-2-yl)phosphonate (3n)



Pale yellow solid: m.p. 234-237  $^{\rm C}$ 

<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO)  $\delta$  12.99 (s, 1H), 8.23 (s, 1H), 7.53 (s, 1H), 3.88 (d, J = 11.1 Hz, 1H). <sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO)  $\delta$  155.6 (d,  $J_{C-P} = 223.4$  Hz), 154.1 (d,  $J_{C-P} = 30.9$  Hz), 135.4 (s), 133.1 (d,  $J_{C-P} = 2.9$  Hz), 131.3 (d,  $J_{C-P} = 26.2$  Hz), 131.3 (d,  $J_{C-P} = 1.0$  Hz), 126.1 (d,  $J_{C-P} = 0.9$  Hz), 117.5 (s), 54.7 (d,  $J_{C-P} = 6.3$  Hz). <sup>31</sup>P NMR (162 MHz, d<sub>6</sub>-DMSO)  $\delta$  8.9 (s). HRMS m/z (ESI) calculated for C<sub>10</sub>H<sub>9</sub>Cl<sub>2</sub>N<sub>2</sub>O<sub>4</sub>P (M+H)<sup>+</sup> 322.9755, found 322.9750.

dimethyl (3-oxo-3,4-dihydrobenzo[g]quinoxalin-2-yl)phosphonate (30)



Orange solid: m.p. 265-268 ℃

<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO) δ 12.68 (s, 1H), 8.60 (s, 1H), 8.12 (d, J = 8.3 Hz, 1H), 7.99 (d, J = 8.4 Hz, 1H), 7.70 (s, 1H), 7.63 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 3.91 (d, J = 11.0 Hz, 6H). <sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO) δ 155.4 (d,  $J_{C-P} = 193.0$  Hz), 154.1 (s), 135.1 (s), 131.6 (d,  $J_{C-P} = 26.2$  Hz), 130.5 (d,  $J_{C-P} = 1.9$  Hz), 130.5 (s), 129.9 (s), 129.6 (s), 129.4 (s), 127.3 (s), 125.6 (s), 111.5 (s), 54.7 (d,  $J_{C-P} = 6.3$  Hz). <sup>31</sup>P NMR (162 MHz, d<sub>6</sub>-DMSO) δ 9.1 (s). HRMS m/z (ESI) calculated for C<sub>14</sub>H<sub>13</sub>N<sub>2</sub>O<sub>4</sub>P (M+H)<sup>+</sup> 305.0691, found 305.0687.

dimethyl (4-benzyl-3-oxo-3,4-dihydrobenzo[g]quinoxalin-2-yl)phosphonate (3p)



Orange solid: m.p. 95-97 ℃

<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO)  $\delta$  8.69 (s, 1H), 8.15 (d, J = 8.3 Hz, 1H), 7.97 (d, J = 10.0 Hz, 2H), 7.67 – 7.61 (m, 1H), 7.58 – 7.51 (m, 1H), 7.36 (qd,  $J_1 = 8.2$  Hz,  $J_2 = 4.0$  Hz, 4H), 7.29 – 7.24 (m, 1H), 5.57 (s, 2H), 3.95 (d, J = 11.1 Hz, 6H). <sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO)  $\delta$  153.8 (d,  $J_{C-P} = 32.2$  Hz), 153.6 (d,  $J_{C-P} = 225.6$  Hz), 136.0 (s), 135.1 (s), 132.2 (d,  $J_{C-P} = 26.7$  Hz), 131.7 (s), 130.9 (d,  $J_{C-P} = 2.7$  Hz), 129.7 (s), 129.6 (s), 129.3 (s), 129.2 (s), 127.8 (s), 127.5 (s), 126.2 (s), 112.0 (s), 54.8 (d,  $J_{C-P} = 6.3$  Hz), 45.4 (s). <sup>31</sup>P NMR (162 MHz, d<sub>6</sub>-DMSO)  $\delta$  8.9 (s). HRMS m/z (ESI) calculated for C<sub>21</sub>H<sub>19</sub>N<sub>2</sub>O<sub>4</sub>P (M+H)<sup>+</sup> 395.1161, found 395.1157.

#### 3-(diphenylphosphoryl)quinoxalin-2(1H)-one (3q)



Pale yellow solid: m.p. 279-284 ℃

<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO) δ 12.72 (s, 1H), 7.85 – 7.76 (m, 4H), 7.71 (d, J = 8.1 Hz, 1H), 7.68 – 7.62 (m, 1H), 7.59 (td,  $J_1 = 7.3$  Hz,  $J_2 = 1.4$  Hz, 2H), 7.52 (ddd,  $J_1 = 7.1$  Hz,  $J_2 = 5.3$  Hz,  $J_3 = 2.3$  Hz, 4H), 7.38 – 7.29 (m, 2H). <sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO) δ 157.6 (d,  $J_{C-P} = 126.4$  Hz), 154.6 (d,  $J_{C-P} = 24.9$  Hz), 133.4 (s), 132.9 (s), 132.5 (d,  $J_{C-P} = 20.0$  Hz), 132.2 (d,  $J_{C-P} = 2.6$  Hz), 131.8 (s), 131.8 (d,  $J_{C-P} = 9.7$  Hz), 130.4 (s), 128.8 (d,  $J_{C-P} = 12.2$  Hz), 124.2 (s), 116.3 (s). <sup>31</sup>P NMR (162 MHz, d<sub>6</sub>-DMSO) δ 21.9 (s). HRMS m/z (ESI) calculated for C<sub>20</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub>P (M+H)<sup>+</sup> 347.0949, found 347.0945.

ethyl 2-(3-(diphenylphosphoryl)-2-oxoquinoxalin-1(2H)-yl)acetate (3r)



Pale green solid: m.p. 119-122 °C

<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO)  $\delta$  7.80 (ddd,  $J_1 = 21.1$  Hz,  $J_2 = 10.1$  Hz,  $J_3 = 4.3$  Hz, 6H), 7.66 – 7.58 (m, 3H), 7.53 (ddd,  $J_1 = 7.2$  Hz,  $J_2 = 5.3$  Hz,  $J_3 = 2.3$  Hz, 4H), 7.45 (t, J = 7.6 Hz, 1H), 5.08 (s, 2H), 4.14 (q, J = 7.1 Hz, 2H), 1.17 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO)  $\delta$  167.6 (s), 155.9 (d,  $J_{C-P} = 126.3$  Hz), 153.7 (d,  $J_{C-P} = 25.1$  Hz), 134.0 (s), 133.8 (d,  $J_{C-P} = 2.1$  Hz), 132.9 (d,  $J_{C-P} = 20.3$  Hz), 132.4 (d,  $J_{C-P} = 2.1$  Hz), 132.0 (d,  $J_{C-P} = 106.5$  Hz), 131.8 (d,  $J_{C-P} = 9.7$  Hz), 131.6 (s), 128.9 (d,  $J_{C-P} = 12.2$  Hz), 124.8 (s), 115.5 (s), 61.9 (s), 44.0 (s), 14.4 (s). <sup>31</sup>P NMR (162 MHz, d<sub>6</sub>-DMSO)  $\delta$  22.0 (s).HRMS m/z (ESI) calculated for C<sub>24</sub>H<sub>21</sub>N<sub>2</sub>O<sub>4</sub>P (M+H)<sup>+</sup> 433.1317, found 433.1311.

3-(diphenylphosphoryl)-1-ethylquinoxalin-2(1H)-one (3s)



Cream solid: m.p. 192-193 °C

<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO) δ 7.80 (dt,  $J_1$  = 18.7 Hz,  $J_2$  = 7.5 Hz, 6H), 7.72 (d, J = 8.2 Hz, 1H), 7.63 – 7.57 (m, 2H), 7.52 (dd,  $J_1$  = 7.1 Hz,  $J_2$  = 5.3 Hz,  $J_3$  = 2.3 Hz, 4H), 7.42 (t, J = 7.4 Hz, 1H), 4.21 (q, J = 7.0 Hz, 2H), 1.20 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO) δ 156.0 (d,  $J_{C-P}$  = 127.2 Hz), 153.6 (d,  $J_{C-P}$  = 24.9 Hz), 133.4 (d,  $J_{C-P}$  = 2.0 Hz), 133.3 (d,  $J_{C-P}$  = 101.8 Hz), 133.2 (d,  $J_{C-P}$  = 20.5 Hz), 132.2 (d,  $J_{C-P}$  = 2.6 Hz), 131.8 (s), 131.8 (d,  $J_{C-P}$  = 9.7 Hz), 131.6 (s), 128.8 (d,  $J_{C-P}$  = 12.2 Hz), 124.3 (s), 115.4 (s), 37.3 (s), 12.8 (s). <sup>31</sup>P NMR (162 MHz, d<sub>6</sub>-DMSO) δ 22.3 (s). HRMS m/z (ESI) calculated for C<sub>22</sub>H<sub>19</sub>N<sub>2</sub>O<sub>2</sub>P (M+H)<sup>+</sup> 375.1262, found 375.1258.

1-benzyl-6,7-dichloro-3-(diphenylphosphoryl)quinoxalin-2(1H)-one (3t)



Cream solid: m.p. 243-244 ℃

<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO)  $\delta$  8.04 (s, 1H), 7.89 (s, 1H), 7.87 (s, 1H), 7.85 (d, J = 1.4 Hz, 1H), 7.84 (s, 1H), 7.82 (d, J = 1.3 Hz, 1H), 7.61 (td,  $J_1 = 7.3$  Hz,  $J_2 = 1.3$  Hz, 2H), 7.54 (ddd,  $J_1 = 7.1$  Hz,  $J_2 = 5.3$  Hz,  $J_3 = 2.3$  Hz, 4H), 7.35 – 7.25 (m, 3H), 7.22 (d, J = 7.0 Hz, 2H), 5.45 (s, 2H). <sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO)  $\delta$  158.3 (d,  $J_{C-P} = 124.4$  Hz), 153.7 (d,  $J_{C-P} = 24.3$  Hz), 136.0 (s), 135.4 (s), 133.7 (d,  $J_{C-P} = 2.0$  Hz), 132.7 (d,  $J_{C-P} = 20.9$  Hz), 132.4 (d,  $J_{C-P} = 2.5$  Hz), 132.4 (s), 131.8 (d,  $J_{C-P} = 9.7$  Hz), 131.7 (d,  $J_{C-P} = 75.5$  Hz), 129.2 (s), 128.9 (d,  $J_{C-P} = 12.3$  Hz), 128.0 (s), 127.3 (s), 126.7 (s), 117.4 (s), 45.3 (s). <sup>31</sup>P NMR (162 MHz, d<sub>6</sub>-DMSO)  $\delta$  22.3 (s). HRMS m/z (ESI) calculated for C<sub>24</sub>H<sub>21</sub>N<sub>2</sub>O<sub>3</sub>P (M+H)<sup>+</sup> 505.0639, found 505.0634.

(S)-dimethyl (3-oxo-1,2,3,4-tetrahydroquinoxalin-2-yl)phosphonate (4a)



White solid: m.p. 184-187 ℃

<sup>1</sup>H NMR (400 MHz, d<sub>6</sub>-DMSO) δ 10.47 (s, 1H), 6.80 – 6.74 (m, 2H), 6.71 (d, J = 7.3 Hz, 1H), 6.62 – 6.56 (m, 1H), 6.30 (d, J = 1.7 Hz, 1H), 4.49 (dd,  $J_1 = 14.6$  Hz,  $J_2 = 2.1$  Hz, 1H), 3.66 (d, J = 10.7 Hz, 3H), 3.53 (d, J = 10.7 Hz, 3H). <sup>13</sup>C NMR (100 MHz, d<sub>6</sub>-DMSO) δ 162.3 (s), 133.1 (s), 125.9 (s), 123.5 (s), 118.4 (s), 115.2 (s), 113.9 (s), 55.2 (d,  $J_{C-P} = 132.6$  Hz), 53.50 (dd,  $J_{1C-P} = 18.2$  Hz,  $J_{2C-P} = 6.8$  Hz). <sup>31</sup>P NMR (162 MHz, d<sub>6</sub>-DMSO) δ 21.7 (s). HRMS m/z (EI) calculated for C<sub>10</sub>H<sub>13</sub>N<sub>2</sub>O<sub>4</sub>P (M)<sup>+</sup> 256.0613, found 256.0619.

#### **III. References**

1 Y.-Y. Han, Z.-J. Wu, X.-M. Zhang, W.-C. Yuan, Tetrahedrron Lett., 2010, 51, 2023.

2 H. M. Mbuvi, E. R. Klobukowski, G. M. Roberts, L. K. Woo, *J. Porphyrins Phthalocyanines*, 2010, 14, 284.

3 D. Chen, Z. -J. Wang, W. Bao, J. Org. Chem., 2010, 75, 5768.

4 P. D. Leeson, R. Baker, R. W. Carling, N. R. Curtis, K. W. Moore, B. J. Williams, A. C. Foster, A. E. Donald, J. A. Kemp, G. R. Marshall, *J. Med. Chem.*, 1991, **34**, 1243.

5 G. A. Rodrigo, S. G. Renou, D. G. Bekerman, M. I. Abasolo, B. M. Fernández, J. Heterocyclic. Chem. 1997, 34, 505.

# IV. <sup>1</sup>H NMR, <sup>13</sup>C NMR and <sup>31</sup>P NMR spectra of products

<sup>1</sup>H NMR, <sup>13</sup>C NMR and <sup>31</sup>P NMR spectra of 3a







## <sup>1</sup>H NMR, <sup>13</sup>C NMR and <sup>31</sup>P NMR spectra of 3c







130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 fl (ppm)

# <sup>1</sup>H NMR, <sup>13</sup>C NMR and <sup>31</sup>P NMR spectra of 3e







130 110 90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 f1 (ppm)

## <sup>1</sup>H NMR, <sup>13</sup>C NMR and <sup>31</sup>P NMR spectra of 3g







# <sup>1</sup>H NMR, <sup>13</sup>C NMR and <sup>31</sup>P NMR spectra of 3h





110 90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 f1 (ppm)









130 110 90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 f1 (ppm)

## <sup>1</sup>H NMR, <sup>13</sup>C NMR and <sup>31</sup>P NMR spectra of 3k







130 110 90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 fl (ppm)







#### <sup>1</sup>H NMR, <sup>13</sup>C NMR and <sup>31</sup>P NMR spectra of 30







## <sup>1</sup>H NMR, <sup>13</sup>C NMR and <sup>31</sup>P NMR spectra of 3q







140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 fl (ppm)













120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 fl (ppm)