# Porous cationic polymers: The impact of counteranions and charges on $CO_2$ capture and conversion

Onur Buyukcakir,<sup>a</sup> Sang-Hyun Je,<sup>a</sup> Dong Shin Choi<sup>a</sup>, Siddulu Naiudu Talapaneni,<sup>a</sup>

Yongbeom Seo,<sup>b</sup> Yousung Jung,<sup>a</sup> Kyriaki Polychronopoulou,<sup>c</sup> and Ali Coskun\*<sup>a,d</sup>

<sup>*a*</sup>Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.

<sup>b</sup>Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea.

<sup>c</sup>Mechanical Engineering, Khalifa University, Abu Dhabi, UAE.

<sup>d</sup>Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.

Email: coskun@kaist.ac.kr

# **Supporting Information**

# \* Correspondence Address

Professor Ali Coskun Graduate School of EEWS and Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) 373-1 Guseong Dong, Yuseong Gu, Daejeon 305-701 (Republic of Korea). Tel: (+82)-42-350-1724 Fax: (+82)-42-350-1710 E-Mail: coskun@kaist.ac.kr

## 1. General Methods

**Materials.** Starting materials and reagents were purchased from Aldrich, TCI or ACROS and used as received without further purification. Tetrakis(4-ethynylphenyl)methane<sup>1</sup> and 1,1'- bis(4-iodophenyl)-[4,4'-bipyridine]-1,1'-diium dichloride<sup>2</sup> were prepared following synthetic procedures reported in the literature. All reactions were performed under Ar atmosphere in dry solvents unless otherwise noted. Dry solvents were also purged with Ar gas before its usage. Analytical thin-layer chromatography (TLC) was performed on aluminum sheets, precoated with silica gel 60-F<sub>254</sub> (Merck 5554). Flash chromatography was carried out using silica gel 60 (Silicycle) as the stationary phase.

Characterization Methods. <sup>1</sup>H and <sup>13</sup>C spectra were recorded on Bruker Avance 300 MHz NMR and Agilent 400 MHz NMR spectrometers at ambient temperature. Solid-state crosspolarization magic angle spinning (CP/MAS) <sup>13</sup>C, <sup>11</sup>B, <sup>31</sup>P NMR spectra of polymers were recorded on a Brucker Avance III 400 WB (400 MHz) NMR spectrometer at ambient temperature with a magic angle spinning rate of 7.0 kHz. FT-IR spectra were recorded on ATR mode by using Shimadzu FTIR Spectrometer. Thermogravimetric analysis was performed by using a NETZSCH-TG 209 F3 instrument and the samples were heated to 800°C at a rate of 10°C min<sup>-1</sup> under air and N<sub>2</sub> atmosphere. The scanning electron microscopy (SEM) and energy dispersive X-ray absorption spectroscopy (EDS) analyses were carried out by using a Hitachi S-4800 FE-SEM at 2.0 - 10 kV. Samples were coated with platinum prior to the analysis. Elemental analysis (C, H, N) were recorded on a FlashEA 2000 [C, H, N, S] Elemental Analyzer. Powder X-ray Diffraction (PXRD) patterns of samples were collected over the 2 $\Theta$  range 5° to 90° on a Bruker AXS D8 Discover multi-purpose high power X-ray diffractometer. The surface area and pore size distribution of samples were performed with a Micrometrics 3Flex Surface Characterization Analyzer by argon adsorption and desorption at 87 K. The samples were degassed at 100°C for 6 h under vacuum before the analysis. The surface areas of samples were calculated using BET model in the pressure range determined from Rouquerol plot. The pore size distributions of samples were calculated from argon isotherms according to the Nonlocal Density Functional Theory (NLDFT) method using carbon a slit pore model. The low pressure  $CO_2$  and  $N_2$  adsorption isotherms of samples were taken under two different temperatures 273 and 298 K. The samples were also degassed before the adsorption analysis at 100°C under vacuum. The circulator was used to keep the temperature constant during adsorption/desorption analysis. The  $CO_2/N_2$  selectivities were evaluated by using Idea Adsorbed Solution Theory (IAST), which is calculated by means of OriginPro v8.5 and Mathematica v10. Isosteric Heats of absorption ( $Q_{st}$ ) values were calculated by using the standard calculation routine, that is Clausius-Clapeyron equation, in the data master offline data reduction software (Micrometrics).

#### 2. Synthesis

Synthesis of V-Cl, V-BF<sub>4</sub> and V-PF<sub>6</sub>



<u>Synthesis of V-Cl</u>: 1,1'-bis(4-iodophenyl)-[4,4'-bipyridine]-1,1'-diium dichloride (V-Cl)<sup>2</sup> was prepared following procedures reported in the literature. <sup>1</sup>H NMR (300 MHz, D<sub>2</sub>O)  $\delta$  = 9.34 (d, *J* = 7.0 Hz, 4H), 8.73 (d, *J* = 7.0 Hz, 4H), 8.11 (d, *J* = 8.8 Hz, 4H), 7.54 (d, *J* = 8.8 Hz, 4H) ppm. Elemental Analysis for V-Cl (C<sub>22</sub>H<sub>16</sub>Cl<sub>2</sub>I<sub>2</sub>N<sub>2</sub>) [found %, (calcd)] (CHN): 39.61 C% (41.74), 2.32 H% (2.55), 4.13 N% (4.42).

<u>Synthesis of V-BF4</u>: ,1'-bis(4-iodophenyl)-[4,4'-bipyridine]-1,1'-diium dichloride (V-Cl) (1.00 g, 1.58 mmol) was dissolved in 100 mL deionized (DI) water. Then, saturated sodium tetrafluoroborate solution was added dropwise to this mixture. The final suspension was stirred at room temperature for 6 h. Afterwards, the resulting precipitate was filtered and washed with excess deionized water. The final solid was dried under vacuum to give the desired product V-BF4 in quantitative yield. <sup>1</sup>H NMR (300 MHz, *d*<sub>6</sub>-DMSO)  $\delta$  = 9.66 (d, *J* = 6.8 Hz, 4H), 9.04 (d, *J* = 6.8 Hz, 4H), 8.20 (d, *J* = 8.7 Hz, 4H), 7.75 (d, *J* = 8.7 Hz, 4H) ppm. Elemental Analysis for V-BF4 (C<sub>22</sub>H<sub>16</sub>B<sub>2</sub>F<sub>8</sub>I<sub>2</sub>N<sub>2</sub>) [found %, (calcd)] (CHN): 35.89 C% (35.91), 2.29 H% (2.19), 3.87 N% (3.81).

<u>Synthesis of V-PF<sub>6</sub></u>: 1,1'-bis(4-iodophenyl)-[4,4'-bipyridine]-1,1'-diium dichloride (V-Cl) (1.00 g, 1.58 mmol) was dissolved in 100 mL DI water. Then, saturated ammonium hexaphlolorophosphate solution was added to this mixture. The final suspension was stirred at room temperature for 6 h. Afterwards, the resulting precipitate was filtered and washed with excess deionized water. The final solid was dried under vacuum to give the desired product V-PF<sub>6</sub> in quantitative yield. <sup>1</sup>H NMR (300 MHz, *d*<sub>6</sub>-DMSO)  $\delta$  = 9.66 (d, *J* = 6.5 Hz, 4H), 9.04 (d, *J* = 6.5 Hz, 4H), 8.20 (d, *J* = 8.7 Hz, 4H), 7.75 (d, *J* = 8.7 Hz, 4H) ppm. Elemental Analysis for V-PF<sub>6</sub> (C<sub>22</sub>H<sub>16</sub>F<sub>12</sub>I<sub>2</sub>N<sub>2</sub>P<sub>2</sub>) [found %, (calcd)] (CHN): 30.41 C% (31.01), 2.01 H% (1.89), 3.48 N% (3.29).



Synthesis of PCPs.

## Synthetic Procedures For PCPs:

PCP-Cl : Tetrakis(4-ethynylphenyl)methane (150 mg, 0.36 mmol) and 1,1'-bis(4iodophenyl)-[4,4'-bipyridine]-1,1'-diium dichloride (V-Cl) (304 mg, 0.48 mmol) were added into a 50 mL schlenk flask and dissolved in an anhydrous pre-degassed solvent mixture (20 mL, DMF/ NEt<sub>3</sub>; 1:1) under Ar atmosphere. Then, the mixture was heated to 100°C. When reached the reaction mixture to the target temperature, a suspension of tetrakis(triphenylphosphine)palladium(0) (22.2 mg, 0.019 mmol) and copper(I) iodide (7.2 mg, 0.038 mmol) in an anhydrous DMF (3 mL) was added. The final reaction mixture was stirred under argon atmosphere for 48 h. After cooling to room temperature, the resulting precipitate was filtered and extensively washed with DMF (3 x 50 mL), THF (3 x 50 mL), methanol (3 x 50 mL), acetone (1 x 50 mL) and diethyl ether (1 x 50 mL). Thereafter, the brown solid was soaked into saturated aqueous sodium chloride solution for 24 h at room temperature in order to eliminate possibility of counteranion exchange during the polymerization reaction. Then, the solid was filtered and washed with H<sub>2</sub>O (3 x 50 mL) and methanol (3 x 100 mL), subsequently. The final brown color solid was dried at room temperature under vacuum for 24 h to yield **PCP-Cl** (253 mg, 90 %). ( $C_{77}H_{48}Cl_4N_4$ ) [found %, (calcd)] (CHN): 75.10 %C (78.97), 4.23 %H (4.13), 4.27 %N (4.78).

**PCP-BF**<sub>4</sub> : Tetrakis(4-ethynylphenyl)methane (150 mg, 0.36 mmol) and (**V-BF**<sub>4</sub>) (353 mg, 0.48 mmol) were added into a 50 mL schlenk flask and dissolved in an anhydrous predegassed solvent mixture (20 mL, DMF/ NEt<sub>3</sub>; 1:1) under Ar atmosphere. Then, the mixture was heated to 100°C. When the reaction mixture reached to the target temperature, a suspension of tetrakis(triphenylphosphine)palladium(0) (22.2 mg, 0.019 mmol) and copper(I) iodide (7.2 mg, 0.038 mmol) in an anhydrous DMF (3 mL) was added. The final reaction mixture was stirred under Ar atmosphere for 48 h. After cooling it to room temperature, the resulting precipitate was filtered and extensively washed with DMF (3 x 50 mL), THF (3 x 50 mL), methanol (3 x 50 mL), acetone (1 x 50 mL) and diethyl ether (1 x 50 mL). Thereafter, the brown solid was soaked into saturated aqueous sodium tetrafluoroborate solution for 24 h at room temperature in order to eliminate possibility of counteranion exchange during the polymerization reaction. Then, the solid was filtered and washed with H<sub>2</sub>O (3 x 50 mL) and methanol (3 x 100 mL). The final brown color solid was dried at room temperature under vacuum for 24 h to yield **PCP-BF**<sub>4</sub> (287 mg, 87 %). (C<sub>77</sub>H<sub>48</sub>B<sub>4</sub>F<sub>16</sub>N<sub>4</sub>) [found %, (calcd)] (CHN): 63.62 %C (67.19), 3.57 %H (3.51), 3.69 %N (4.07).

**PCP-PF**<sub>6</sub> : Tetrakis(4-ethynylphenyl)methane (150 mg, 0.36 mmol) and (V- **PF**<sub>6</sub>) (409 mg, 0.48 mmol) were added into a 50 mL schlenk flask and dissolved in an anhydrous predegassed solvent mixture (20 mL, DMF/ NEt<sub>3</sub> ; 1:1) under argon atmosphere. Then, the mixture was heated to  $100^{\circ}$ C. When the reaction mixture reached to the target temperature, a suspension of tetrakis(triphenylphosphine)palladium(0) (22.2 mg, 0.019 mmol) and copper(I)

iodide (7.2 mg, 0.038 mmol) in an anhydrous DMF (3 mL) was added. The final reaction mixture was stirred under argon atmosphere for 48 h. After cooling to room temperature, the resulting precipitate was filtered and extensively washed with DMF (3 x 50 mL), THF (3 x 50 mL), methanol (3 x 50 mL), acetone (1 x 50 mL) and diethyl ether (1 x 50 mL). Thereafter, the brown solid was soaked into saturated aqueous ammonium hexafluorophosphate solution for 24 h at room temperature in order to eliminate possibility of counteranion exchange during the polymerization reaction. Then, the solid was filtered and washed with H<sub>2</sub>O (3 x 50 mL) and methanol (3 x 100 mL). The final brown color solid was dried at room temperature under vacuum for 24 h to yield PCP-PF<sub>6</sub> (312 mg, 81 %). (C<sub>77</sub>H<sub>48</sub>F<sub>24</sub>N<sub>4</sub>P<sub>4</sub>) [found %, (calcd)] (CHN): 55.82 %C (57.48), 3.23 %H (3.01), 3.21 %N (3.48).

# Catalytic conversion of CO<sub>2</sub> to cyclic carbonates:

**Catalytic reactions:** The catalytic  $CO_2$  conversion reactions have been carried by using a 50 mL glass lined stainless-steel reactor equipped with a magnetic stirrer bar and pressure control system. The reactor was charged with PCP-Cl catalyst (5 wt%) and the corresponding epoxide (5 mmol). Then, the pressure vessel was charged with carbon dioxide (3 MPa). After the reaction mixture was stirred for 12 h at 100°C, the reactor was cooled down to room temperature and the remaining  $CO_2$  was slowly evacuated. Then, the final reaction mixture was filtered and washed with  $CH_2Cl_2$  to ensure the complete removal of the trap unreacted starting material and the desired product. Thereafter, the collected filtrates were combined and concentrated under reduces pressure. The crude samples were directly analyzed by <sup>1</sup>H-NMR spectroscopy.

# 3. Characterization



**Figure S1.** CP/MAS <sup>13</sup>C NMR spectra of PCPs and the corresponding peak assignments. The spectra for polymers were measured with a contact time 2 ms, a relaxation of 5 s and at an MAS rate of 7.0 kHz. The carbonyl carbon of glycine was used as an external chemical shift for the <sup>13</sup>C-NMR. \* denotes spinning side bands.







**Figure S3.** Powder X-ray diffraction patterns of PCPs, indicating the formation of amorphous polymers.



**Figure S4.** Thermogravimetric analysis (TGA) of PCPs under air (a) and  $N_2$  (b) atmosphere in the range from 30°C to 800°C at a rate of 10°C min<sup>-1</sup>.



**Figure S5.** FT-IR spectra of PCPs and their corresponding monomers. The spectra were recorded by using ATR mode under ambient conditions. Abbreviations denoted the monomers, TEPM: tetrakis(4-ethynylphenyl)methane. 1650-1400 cm<sup>-1</sup> (C=C and C=N, stretching), 3281 cm<sup>-1</sup> (C=C-H, stretching), 2111 cm<sup>-1</sup> (C=C, stretching).



**Figure S6.** SEM images and energy dispersive X-ray absorption spectroscopy (EDS) of PCPs. The SEM images of PCP-Cl (a), PCP-BF<sub>4</sub> (d) and PCP-PF<sub>6</sub> (g). The elemental mapping of C/Cl/B/P for PCPs; for Carbon PCP-Cl (b), PCP-BF<sub>4</sub> (e), and PCP-PF<sub>6</sub> (h); for Chlorine PCP-Cl (c); for Boron PCP-BF<sub>4</sub> (f); for Phosphorous PCP-PF<sub>6</sub> (i).



**Figure S7.** CP/MAS <sup>11</sup>B (a) and <sup>31</sup>P NMR (b) spectra of PCP-BF<sub>4</sub> and PCP-PF<sub>6</sub>, respectively. The spectra for polymers were measured with a contact time 2 ms, a relaxation of 5 s and at a MAS rate of 7.0 kHz.



**Figure S8.** Calculated Rouquerol plots of PCPs (Inset: Enlarged plot turning part) along with pressure ranges used for BET surface area calculations. The pressure ranges have been used where the term  $V(1-P/P_o)$  continuously increases with  $P/P_o$  for the surface area calculations.



Figure S9. BET plot of PCPs from Ar isotherms at 87 K.



**Figure S10.** CO<sub>2</sub> uptake isotherms of PCPs measured up to 1 bar at 273 K (a) and 298 K (b). Filled and empty symbols represent adsorption and desorption, respectively.



Figure S11. N<sub>2</sub> uptake isotherms of PCPs measured up to 1 bar at 273 K (a) and 298 K (b).



**Figure S12.** The lowest energy  $CO_2$  binding geometries on PCPs (a) with Cl<sup>-</sup>, (b) with BF<sub>4</sub><sup>-</sup>, (c) with PF<sub>6</sub><sup>-</sup>. The numbers at the bottom indicate the distance for specific interactions between the carbon atom of  $CO_2$  and chlorine or the fluorine atom of anions (dotted line)

Table S1. Calculated binding energies, population analysis, and the distance between CO<sub>2</sub> and anions for CO<sub>2</sub> adsorption on to the model PCP monomeric unit with different anions.

| Anion                        | Calculated<br>Binding Energy<br>(kJ/mol) | Mulliken Atomic<br>Charge for Anion<br>(e <sup>-</sup> ) | Distance between<br>Carbon (on CO <sub>2</sub> )<br>and Anion (Å) |  |
|------------------------------|------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|--|
| Cl                           | 22.6                                     | - 0.63                                                   | 3.33                                                              |  |
| BF <sub>4</sub> <sup>-</sup> | 29.0                                     | - 0.80                                                   | 2.67                                                              |  |
| PF <sub>6</sub> <sup>-</sup> | 26.0                                     | - 0.85                                                   | 2.80                                                              |  |

# **Computational Details**

All the calculations were performed using the Q-CHEM quantum chemistry package.<sup>3</sup> The B3LYP functional with the 6-311G\* basis was used for all calculations. The atomic partial charges were calculated using the Mulliken population analysis.<sup>4</sup>

Before the  $CO_2$  adsorption, the optimal geometry of the PCPs with the counteranions was obtained. Analogous to the PCP structure, a pyridine and a benzene ring was used as a model monomeric system. In the calculation procedure, first, the pyridine and benzene was placed on the same plane and the counter anions were tested on top of every atom on this double ring model. For all the counter ions, the model system was found to be the most stable when they were placed on top of the carbon linked to the nitrogen in pyridine ring. Next, to find the  $CO_2$  binding sites in our model system, a8x5 grid was scanned for both sides of the double rings. For each grid point the  $CO_2$  molecule was placed either perpendicular or horizontal to the ring. For all counter ions, the most stable structure appeared when the  $CO_2$ molecule was directly interacting with the counter ions. The resulting structures are represented in Figure S12.

| Table | S2.            | <b>ICP</b> | -MS  | analysis | of PCPs.    |
|-------|----------------|------------|------|----------|-------------|
|       | $\sim - \cdot$ |            | 1110 |          | 01 1 0 1 00 |

| Elements Name       | <b>Cu</b> (wt %) | <b>Pd</b> (wt %) |
|---------------------|------------------|------------------|
| PCP-C1              | 0.0005           | 0.0008           |
| PCP-BF <sub>4</sub> | 0.0007           | 0.0007           |
| PCP-PF <sub>6</sub> | 0.0006           | 0.0007           |



**Figure S13**. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 298 K) spectra of ( $\pm$ )-propylene oxide and its corresponding cyclic carbonate (<sup>1</sup>H NMR spectrum was obtained from the crude sample).



**Figure S14**. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 298 K) spectrum of ( $\pm$ )-epichlorohydrin and its corresponding cyclic carbonate (<sup>1</sup>H NMR spectrum was obtained from the crude sample).



**Figure S15**. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 298 K) spectrum of 1,2-epoxyhexane and its corresponding cyclic carbonate (<sup>1</sup>H NMR spectrum was obtained from the crude sample).



**Figure S16**. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 298 K) spectrum of styrene oxide and its corresponding reaction mixture ( ${}^{1}H$  NMR spectrum was obtained from the crude sample).



**Figure S17**. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>, 298 K) spectrum of epoxypropylene benzene and its corresponding reaction mixture (<sup>1</sup>H NMR spectrum was obtained from the crude sample).



**Figure S18**. Proposed catalytic reaction pathway for the formation of cyclic carbonates through atom economy reaction between  $CO_2$  and epoxides *via* catalytically active PCP-Cl as a porous organocatalyst.



**Figure S19.** CP/MAS <sup>11</sup>B (a) and <sup>31</sup>P NMR (b) spectra of V-BF<sub>4</sub> and V-PF<sub>6</sub>, respectively. The spectra for polymers were measured with a contact time 2 ms, a relaxation of 5 s and at a MAS rate of 7.0 kHz.

|     | SQX Calculation Result for V-BF <sub>4</sub> |        |       |            |          |           |            |  |
|-----|----------------------------------------------|--------|-------|------------|----------|-----------|------------|--|
| No. | Component                                    | Result | Unit  | Det. limit | El. line | Intensity | w/o normal |  |
| 1   | F                                            | 33.6   | mass% | 0.23261    | F-KA     | 0.1585    | 3.7357     |  |
| 2   | Na                                           | 0.785  | mass% | 0.01415    | Na-KA    | 0.0830    | 0.0872     |  |
| 3   | Al                                           | 0.123  | mass% | 0.00258    | Al-KA    | 0.2040    | 0.0136     |  |
| 4   | Si                                           | 0.206  | mass% | 0.00065    | Si-KA    | 0.2675    | 0.0229     |  |
| 5   | S                                            | 0.0482 | mass% | 0.00150    | S -KA    | 0.1314    | 0.0054     |  |
| 6   | Cl                                           | 0.0119 | mass% | 0.00533    | Cl-KA    | 0.0099    | 0.0013     |  |
| 7   | Fe                                           | 0.144  | mass% | 0.00502    | Fe-KA    | 0.3753    | 0.0160     |  |
| 8   | Ni                                           | 0.176  | mass% | 0.00395    | Ni-KA    | 0.8756    | 0.0196     |  |
| 9   | Cu                                           | 0.0756 | mass% | 0.00383    | Cu-KA    | 0.4715    | 0.0084     |  |
| 10  | Br                                           | 0.136  | mass% | 0.00302    | Br-KA    | 2.5220    | 0.0152     |  |
| 11  | Sn                                           | 0.925  | mass% | 0.02140    | Sn-KA    | 0.4581    | 0.1027     |  |
| 12  | Ι                                            | 63.4   | mass% | 0.04152    | I -KA    | 161.9989  | 7.0492     |  |
| 13  | W                                            | 0.305  | mass% | 0.01533    | W-LB1    | 0.7161    | 0.0339     |  |

Table S3. SQX result for V-BF $_4$  calculated from the X-ray fluorescence measurement.

Table S4. SQX result for V-PF $_6$  calculated from the X-ray fluorescence measurement.

|     |             | S      | QX Calc | ulation Resul | t for V-PF | 6         |            |
|-----|-------------|--------|---------|---------------|------------|-----------|------------|
| No. | . Component | Result | Unit    | Det. limit    | El. line   | Intensity | w/o normal |
| 1   | F           | 44.7   | mass%   | 0.12640       | F-KA       | 0.1266    | 2.1887     |
| 2   | Al          | 0.0480 | mass%   | 0.00077       | Al-KA      | 0.0271    | 0.0023     |
| 3   | Si          | 0.299  | mass%   | 0.00072       | Si-KA      | 0.2018    | 0.0147     |
| 4   | Р           | 10.8   | mass%   | 0.00138       | P-KA       | 14.5761   | 0.5293     |
| 5   | S           | 0.103  | mass%   | 0.00153       | S -KA      | 0.1244    | 0.0050     |
| 6   | Cl          | 0.136  | mass%   | 0.00507       | Cl-KA      | 0.0505    | 0.0067     |
| 7   | Fe          | 0.447  | mass%   | 0.00360       | Fe-KA      | 0.7040    | 0.0219     |
| 8   | Ni          | 0.253  | mass%   | 0.00298       | Ni-KA      | 0.7577    | 0.0124     |
| 9   | Cu          | 0.152  | mass%   | 0.00278       | Cu-KA      | 0.5727    | 0.0074     |
| 10  | 0 Sn        | 2.08   | mass%   | 0.01402       | Sn-KA      | 0.6287    | 0.1018     |
| 1   | 1 I         | 40.7   | mass%   | 0.03116       | I -KA      | 96.2699   | 1.9917     |
| 12  | 2 Hf        | 0.274  | mass%   | 0.00892       | Hf-LA      | 0.3269    | 0.0134     |
| 13  | 3 W         | Trace  | mass%   | 0.23768       | W -LB1     | 0.8287    | 0.0000     |
| 14  | 4 Au        | Trace  | mass%   | 0.13391       | Au-LA      | 0.5707    | 0.0000     |

#### 4. Gas Selectivity Calculations

## Ideal Adsorbed Solution Theory (IAST)

The IAST selectivity calculations can be derived from fitting adsorption isotherms with proper Langmuir model, such as a single–site Langmuir model or a dual–site Langmuir model. The calculations of following equations were done using of OriginPro v8.5 and Mathematica.

The equation for the single-site Langmuir model,

$$q = \frac{q_{sat}bp}{1+bp} \tag{1}$$

The equation for dual-site Langmuir model,

$$q = q_{A} + q_{B} = \frac{q_{sat,A}b_{A}p}{1 + b_{A}p} + \frac{q_{sat,B}b_{B}p}{1 + b_{B}p}$$
(2)

where q is molar loading of adsorbate;  $q_{sat}$  is saturation loading; b is parameter in the pure component Langmuir adsorption isotherm, A and B is referring to two different sites. For the CO<sub>2</sub>:N<sub>2</sub> (15:85) gas mixtures, the IAST selectivities were calculated by using the

following equation in Mathematica v10,

$$S = \frac{q_1/q_2}{p_1/p_2}$$
(3)

Where, *S* denotes the selectivity factor,  $q_i$  shows the mole fraction of component *i* in the adsorbed phase and  $p_i$  denotes the mole fraction of component *i* in the bulk phase (gas phase).

#### **5. References**

- [S1] P. Pandey, O. K. Farha, A. M. Spokoyny, C. A. Mirkin, M. G. Kanatzidis, J. T. Hupp and S. T. Nguyen, J. Mater. Chem., 2011, 21, 1700.
- [S2] F. Biedermann, O. A. Scherman, J. Phys. Chem. B, 2012, 116, 2842.