Supporting Information

Copper(II)-mediated regioselective N-arylation of pyrroles, indoles, pyrazoles and

carbazole via dehydrogenative coupling

Pradeep Sadhu and Tharmalingam Punniyamurthy*

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India

Table of Contents

1.	General Information	S2
2.	General Procedure for the Amination of Substituted N-(Quinolin-8-yl)benzamide	S2
3.	Procedure for Directing Group Removal	S2
4.	Crystal Structure and Data	S3-S4
5.	Characterization Data of N-Arylated Azoles 2a-m, 3a-j, 4a-b, 5 and 7	S4-S14
6.	NMR (¹ H and ¹³ C) Spectra	S15-S52

General Information: Cu(OAc)₂ (98%), Cs₂CO₃, 8-aminoquinoline (98%), pyrazole (98%), 3methylpyrazole (97%) and 2-phenyl imidazole (98%) were purchased from Aldrich and were used as received. Pyrrole (99%) was purchased from Otto and distilled under nitrogen according to the standard procedure.¹ Indole (99%) was purchased from Otto and used as received. Substituted indoles and pyrroles were purchased from Avra synthesis. The solvents were purchased and dried according to standard procedure prior to use.² Substituted 8-aminoquinoline amides were prepared according to reported procedure.³ 1-(2-Methyl-4-phenyl-1H-pyrrol-3-yl)ethan-1-one⁴ and 2-(2-(1H-indol-3-yl)ethyl)isoindoline-1,3-dione⁵ were prepared according to the literature. Purification of the reaction products was carried out by column chromatography using Merck aluminium oxide active, neutral Activity I-II. Analytical TLC was performed on Merck silica gel G/GF 254 plate. NMR spectra were recorded on Bruker Avance III 600 using CDCl₃ as solvent and Me₄Si as internal standard. Chemical shifts (δ) were reported in ppm and spin-spin coupling constants (J) were given in Hz. Melting points were determined using Büchi B-540 melting point apparatus and are uncorrected. FT-IR spectra were recorded using Thermo Fisher Scientific spectrometer. Mass spectra were recorded on a Q-Tof ESI-MS Instrument (model HAB 273). X-Ray data were collected on a Bruker SMART APEX equipped with a CCD area detector using Mo/Ka radiation. The structure was solved by direct method using SHELXL-97 (Göttingen, Germany).

General Procedure for Cu(OAc)₂.Mediated *N*-Arylation of Azoles. Azoles (0.6 mmol, 3 equiv) were added to a stirred solution of the substrates **1** (0.2 mmol, 1 equiv), Cu(OAc)₂ (0.3 mmol, 1.5 equiv, 54.5 mg), Cs₂CO₃ (0.4 mmol, 2 equiv, 130 mg) and solvent (1 mL) at 70 °C under air. The mixture was stirred and the progress of the reaction was monitored by TLC using ethyl acetate and hexane as eluent. After the appropriate time, the resulting solution was diluted with ethyl acetate (3 x 15 mL) and then washed with NH₃·H₂O (1 x 5 mL) and brine (2 x 5 mL). Drying over Na₂SO₄ and evaporation of the solvent gave a residue that was purified on neutral alumina column chromatography using n-hexane and ethyl acetate as eluent to afford analytically pure substituted *N*-arylated azoles.

Procedure for the Removal of Directing Group. To a stirred solution of NaOH (1.4 mmol, 7.0 equiv, 56 mg) in EtOH (1.5 mL) was added 2-(1*H*-pyrrol-1-yl)-*N*-(quinolin-8-yl)benzamide **2a** (0.2 mmol, 1

equiv, 62.6 mg). The resultant solution was stirred at room temperature for 2 minutes and heated to 110 $^{\circ}$ C for 48 h. After completion, the reaction was cooled to room temperature, the resulting solution was diluted with ethyl acetate (4 x 15 mL) and then washed with 0.5 N HCl (4 x 5 mL) and brine (2 x 5 mL). Drying over Na₂SO₄ and evaporation of the solvent gave a pure product as a pale brown solid.

Figure 1: ORTEP diagram of 2-(1*H*-Pyrrol-1-yl)-*N*-(quinolin-8-yl)benzamide 2a with 50% ellipsoid [CCDC 1427013].

Crystal Data	and Structure	e Refinement for	• 2a at 296(2) K

Identification code	2a
Empirical formula	C ₂₀ H ₁₅ N ₃ O
Formula weight	313.35
Temperature	296(2)
Wavelength	0.71073
Crystal system	monoclinic
Space group	'P2 ₁ /n'
Unit cell dimensions	a = 9.7059(3) Å
	b = 15.7541(4) Å
	c = 10.5250(3) Å

	$\alpha = \gamma = 90^{\circ}$
	$\beta = 95.513(2)^{\circ}$
Volume	1601.91(8) Å ³
Ζ	4
Density (calculated)	1.299 Mg/m3
Absorption coefficient	0.083
F(000)	656
Crystal size	0.44 x 0.36 x 0.28
Theta range for data collection	2.33° to 24.99°
Index ranges	-10<=h<=10, -18<=k<=18, -12<=l<=12
Reflections collected	21958
Independent reflections	2701
Completeness to theta = 24.99°	95.60 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2701 / 0 / 217
Goodness-of-fit on F ²	1.081
Final R indices [I>2sigma (I)]	R1 = 0.0405, wR2 = 0.0961
R indices (all data)	R1 = 0.0466, wR2 = 0.1011

2-(1*H***-Pyrrol-1-yl)-***N***-(quinolin-8-yl)benzamide 2a. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane R_f = 0.49; white solid; 49 mg, yield 79%; mp 141-142 °C; ¹H NMR (600 MHz, CDCl₃) \delta**

9.90 (br s, 1H), 8.84 (d, J = 7.8 Hz, 1H), 8.66-8.65 (m, 1H), 8.12 (d, J = 7.8 Hz, 1H), 7.90 (d, J = 7.8 Hz, 1H), 7.59-7.44 (m, 5H), 7.41-7.39 (m, 1H), 6.99 (s, 2H), 6.18 (s, 2H); ¹³C {H} NMR (150 MHz, CDCl₃) δ 165.8, 148.1, 138.9, 138.6, 136.3, 134.7, 132.6, 131.6, 130.1, 128.0, 127.5, 126.5, 122.13, 122.1, 121.8, 121.5, 116.8, 110.6; FT-IR (KBr) 1670, 1601, 1522, 1498, 1385, 1329, 1262, 1070, 1014, 924, 898 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₁₅N₃O 314.1293, found 314.1286.

2-Methyl-6-(1*H*-**pyrrol-1-yl**)-*N*-(**quinolin-8-yl**)**benzamide 2b.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.48$; white solid; 55 mg, yield 84%; mp 146-147 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.72 (br s, 1H), 8.82 (dd, J = 7.2 Hz, 1.2 Hz, 1H), 8.68 (dd, J = 4.8 Hz, 1.8 Hz, 1H), 8.13 (dd, J = 9.0 Hz, 1.8 Hz, 1H), 7.55-7.50 (m, 2H), 7.43-7.39 (m, 2H), 7.29-7.27 (m, 2H), 7.00-6.99 (m, 2H), 6.10-6.09 (m, 2H), 2.52 (s, 3H); ¹³C {H} NMR (150 MHz, CDCl₃) δ 166.4, 148.3, 138.63, 138.6, 137.4, 136.4, 134.4, 133.6, 130.1, 129.3, 128.1, 127.5, 123.4, 122.2, 121.8, 116.9, 110.0, 19.9; FT-IR (KBr) 3471, 1676, 1510, 1483, 1326, 1265, 1123, 1088, 951, 897 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₁₇N₃O 328.1450, found 328.1448.

5-Chloro-2-(1*H***-pyrrol-1-yl)-***N***-(quinolin-8-yl)benzamide 2c.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.47$; white solid; 48 mg, yield 69%; mp 173-174 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.90 (br s, 1H), 8.80 (d, J = 7.2 Hz, 1H), 8.65 (d, J = 3.6 Hz, 1H), 8.13 (d, J = 8.4 Hz, 1H), 7.87 (s, 1H), 7.55-7.51 (m, 3H), 7.42-7.40 (m, 1H), 7.38 (d, J = 8.4 Hz, 1H), 6.95 (s, 2H), 6.19 (s, 2H); ¹³C{H} NMR

(150 MHz, CDCl₃) δ 164.2, 148.2, 138.5, 137.3, 136.3, 134.3, 133.7, 133.3, 131.6, 130.1, 128.0, 127.8, 127.4, 122.4, 122.1, 121.9, 116.9, 111.0; FT-IR (KBr) 3330, 1670, 1523, 1494, 1327, 1260, 1108, 1073, 925, 825 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₁₄ClN₃O 348.0904, found 348.0901.

5-Methyl-2-(1*H***-pyrrol-1-yl)-***N***-(quinolin-8-yl)benzamide 2d.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.41$; white solid; 51 mg, yield 78%; mp 145-146 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.87 (br s, 1H), 8.83 (d, J = 7.2 Hz, 1H), 8.65 (d, J = 3.6 Hz, 1H), 8.12 (d, J = 7.8 Hz, 1H), 7.69 (s, 1H), 7.55-7.49 (m, 2H), 7.41-7.36 (m, 2H), 7.33 (d, J = 7.8 Hz, 1H), 6.96 (s, 2H), 6.16 (s, 2H), 2.46 (s, 3H); ¹³C {H} NMR (150 MHz, CDCl₃) δ 166.0, 148.1, 138.6, 137.6, 136.4, 136.3, 134.7, 132.4, 132.2, 130.5, 128.0, 127.5, 126.4, 122.2, 122.0, 121.8, 116.8, 110.4, 21.2; FT-IR (KBr) 1665, 1648, 1524, 1485, 1384, 1327, 1262, 1070, 1015, 824 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₁₇N₃O 328.1450, found 328.1458.

4-Chloro-2-(1*H***-pyrrol-1-yl)-***N***-(quinolin-8-yl)benzamide 2e. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane R_f = 0.49; thick liquid; 44 mg, yield 63%; ¹H NMR (600 MHz, CDCl₃) \delta 9.90 (br s, 1H), 8.81 (d, J = 7.2 Hz, 1H), 8.64 (d, J = 2.4 Hz, 1H), 8.12 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.55-7.50 (m, 2H), 7.45-7.44 (m, 2H), 7.41-7.39 (m, 1H), 6.97 (s, 2H), 6.19 (s, 2H); ¹³C {H} NMR (150 MHz, CDCl₃) \delta 164.8, 148.1, 139.8, 138.5, 137.3, 136.3, 134.4, 131.5, 130.7, 128.0, 127.6, 127.4, 126.5, 122.3,**

122.0, 121.9, 116.8, 111.2; FT-IR (neat) 1673, 1595, 1527, 1482, 1385, 1326, 1263, 1108, 1021, 920, 825 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₁₄ClN₃O 348.0904, found 348.0904.

4-Iodo-2-(1*H***-pyrrol-1-yl)-***N***-(quinolin-8-yl)benzamide 2f.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.49$; white solid; 54 mg, yield 61%; mp 125-126 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.90 (br s, 1H), 8.80 (d, J = 7.2 Hz, 1H), 8.64-8.63 (m, 1H), 8.12 (d, J = 8.4 Hz, 1H), 7.82-7.81 (m, 2H), 7.62 (d, J = 8.4 Hz, 1H), 7.55-7.50 (m, 2H), 7.41-7.39 (m, 1H), 6.96 (s, 2H), 6.18 (s, 2H); ¹³C {H} NMR (150 MHz, CDCl₃) δ 164.9, 148.2, 139.6, 138.5, 136.5, 136.3, 135.3, 134.4, 131.8, 131.5, 128.0, 127.4, 122.3, 122.0, 121.9, 116.8, 111.2, 97.1; FT-IR (KBr) 1669, 1583, 1523, 1488, 1384, 1263, 1067, 1017, 929, 896 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₁₄IN₃O 440.0260, found 440.0266.

4-Methoxy-2-(1*H***-pyrrol-1-yl)-***N***-(quinolin-8-yl)benzamide 2g. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane R_f = 0.32; white solid; 48 mg, yield 70%; mp 127-128 °C; ¹H NMR (600 MHz, CDCl₃) \delta 9.86 (br s, 1H), 8.83 (d, J = 7.2 Hz, 1H), 8.63 (dd, J = 4.2 Hz, 1.2 Hz, 1H), 8.11 (dd, J = 8.4 Hz, 1.2 Hz, 1H), 7.90 (d, J = 9.0 Hz, 1H), 7.54 (t, J = 8.4 Hz, 1H), 7.49 (dd, J = 8.4 Hz, 1.2 Hz, 1H), 7.39-7.37 (m, 1H), 7.01-6.98 (m, 3H), 6.92 (d, J = 2.4 Hz, 1H), 6.192-6.19 (m, 2H), 3.90 (s, 3H); ¹³C {H} NMR (150 MHz, CDCl₃) \delta 165.4, 162.1, 148.0, 140.5, 138.6, 136.2, 134.8, 132.0, 128.0, 127.5, 124.8, 122.1, 121.8, 121.7, 116.6, 113.2, 111.9, 110.7, 55.9; FT-IR (KBr) 3439, 1664, 1609, 1522, 1325, 1246, 1232, 1048, 898 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₁₇N₃O₂ 344.1399, found 344.1402.**

4-Methyl-2-(1*H***-pyrrol-1-yl)-***N***-(quinolin-8-yl)benzamide 2h.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.49$; white solid; 44 mg, yield 68%; mp 140-141 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.89 (br s, 1H), 8.84 (d, J = 7.2 Hz, 1H), 8.64-8.63 (m, 1H), 8.11 (d, J = 7.8 Hz, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.54 (t, J = 7.8 Hz, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.39-7.37 (m, 1H), 7.28 (d, J = 7.8 Hz, 1H), 7.24 (s, 1H), 6.98 (s, 2H), 6.18 (s, 2H), 2.46 (s, 3H); ¹³C{H} NMR (150 MHz, CDCl₃) δ 165.8, 148.0, 142.3, 138.8, 138.6, 136.2, 134.7, 130.2, 129.7, 128.2, 128.0, 127.5, 127.1, 122.1, 121.9, 121.7, 116.7, 110.5, 21.5; FT-IR (KBr) 1668, 1614, 1524, 1487, 1385, 1326, 1262, 1099, 1072, 897 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₁₇N₃O 328.1450, found 328.1451.

4-Nitro-2-(1*H***-pyrrol-1-yl)-***N***-(quinolin-8-yl)benzamide 2i. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane R_f = 0.10; thick yellow liquid; 44 mg, yield 62%; ¹H NMR (600 MHz, CDCl₃) \delta 9.99 (br s, 1H), 8.80 (d, J = 3.6 Hz, 1H), 8.65 (d, J = 3.6 Hz, 1H), 8.32-8.29 (m, 2H), 8.15 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.56 (d, J = 3.6 Hz, 2H), 7.44-7.42 (m, 1H), 7.03 (s, 2H), 6.24 (s, 2H); ¹³C{H} NMR (150 MHz, CDCl₃) \delta 163.8, 149.4, 148.3, 139.7, 138.5, 137.4, 136.4, 134.0, 131.5, 128.0, 127.4, 122.8, 122.0, 121.9, 121.8, 121.3, 117.1, 111.9; FT-IR (neat) 1678, 1525, 1486, 1348, 1262, 1074, 1023, 946, 898 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₁₄N₄O₃ 359.1144, found 359.1147.**

3-(1*H***-Pyrrol-1-yl)-***N***-(quinolin-8-yl)isonicotinamide 2j. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane R_f = 0.20; white solid; 32 mg, yield 51%; mp 179-180 °C; ¹H NMR (600 MHz, CDCl₃) \delta 10.03 (br s, 1H), 8.81 (t, J = 4.2 Hz, 1H), 8.78 (s, 1H), 8.75 (d, J = 4.8 Hz, 1H), 8.66-8.65 (m, 1H), 8.15-8.14 (m, 1H), 7.79 (d, J = 4.8 Hz, 1H), 7.56 (d, J = 4.2 Hz, 2H), 7.44-7.42 (m, 1H), 7.015-7.01 (m, 2H), 6.273-6.27 (m, 2H); ¹³C {H} NMR (150 MHz, CDCl₃) \delta 163.3, 148.9, 148.3, 147.9, 138.7, 138.5, 136.4, 134.2, 134.0, 128.0, 127.4, 123.2, 122.8, 122.2, 122.0, 117.2, 111.6; FT-IR (KBr) 1677, 1527, 1486, 1425, 1326, 1265, 1114, 1076, 1013, 922, 826 cm⁻¹. HRMS (APCI) m/z: [M+H]⁺ calcd for C₁₉H₁₄N₄O 315.1246, found 315.1243.**

4,5-Dimethyl-2-(1*H***-pyrrol-1-yl)-***N***-(quinolin-8-yl)benzamide 2k.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.50$; white solid; 48 mg, yield 71%; mp 195-196 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.87 (br s, 1H), 8.83 (d, J = 7.8 Hz, 1H), 8.63 (d, J = 3.0 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.68 (s, 1H), 7.54 (t, J = 7.8 Hz, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.39-7.37 (m, 1H), 7.20 (s, 1H), 6.95 (s, 2H), 6.16 (s, 2H), 2.37 (s, 3H), 2.36 (s, 3H); ¹³C{H} NMR (150 MHz, CDCl₃) δ 165.9, 148.0, 140.8, 138.6, 136.6, 136.3, 136.2, 134.8, 131.1, 129.8, 128.0, 127.7, 127.5, 122.2, 121.9, 121.7, 116.7, 110.3, 19.9, 19.5; FT-IR (KBr) 1662, 1529, 1488, 1385, 1329, 1263, 1090, 1023, 862 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₁₉N₃O 342.1606, found 342.1608.

2-(1*H***-Indol-1-yl)-***N***-(quinolin-8-yl)benzamide 3a. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane R_f = 0.46; white solid; 54 mg, yield 74%; mp 133-134°C; ¹H NMR (600 MHz, CDCl₃) \delta 9.96 (br s, 1H), 8.72 (d, J = 7.2 Hz, 1H), 8.14-8.13 (m, 1H), 8.02 (dd, J = 4.2 Hz, 1.2 Hz, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.66 (td, J = 7.8 Hz, 1.2 Hz, 1H), 7.59-7.51 (m, 3H), 7.49 (d, J = 8.4 Hz, 1H), 7.46 (t, J = 7.8 Hz, 12 Hz, 1H), 7.29 (d, J = 3.0 Hz, 1H), 7.26-7.24 (m, 1H), 7.23-7.20 (m, 1H), 7.13 (t, J = 7.2 Hz, 1H), 6.52 (d, J = 3.0 Hz, 1H); ¹³C {H} NMR (150 MHz, CDCl₃) \delta 164.9, 147.8, 138.2, 137.5, 137.1, 135.9, 134.4, 133.6, 132.0, 131.3, 129.6, 129.1, 128.3, 128.2, 127.7, 127.3, 122.8, 121.9, 121.5, 121.2, 120.6, 116.5, 110.7, 104.8; FT-IR (KBr) 1672, 1596, 1482, 1385, 1326, 1264, 1212,1143, 1012, 897 cm⁻¹. HRMS (ESI) m/z; [M+H]⁺ calcd for C₂₄H₁₇N₃O 364.1450, found 364.1451.**

2-(1*H***-Indol-1-yl)-6-methyl-***N***-(quinolin-8-yl)benzamide 3b.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.45$; white solid; 61 mg, yield 81%; mp 175-176 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.58 (br s, 1H), 8.64 (d, J = 7.2 Hz, 1H), 8.29 (d, J = 3.6 Hz, 1H), 7.99 (d, J = 7.8 Hz, 1H), 7.50-7.39 (m, 5H), 7.37 (d, J = 7.2 Hz, 2H), 7.32 (s, 1H), 7.25-7.23 (m, 1H), 7.22 (t, J = 7.8 Hz, 1H), 7.03 (t, J = 7.8 Hz, 1H), 6.36 (s, 1H), 2.57 (s, 3H); ¹³C{H} NMR (150 MHz, CDCl₃) δ 165.9, 147.9, 138.2, 138.1, 137.5, 136.7, 136.1, 135.5, 134.1, 130.2, 130.1, 129.1, 128.9, 127.7, 127.2, 125.4, 122.3, 122.1, 121.5, 120.9, 120.3, 116.6, 110.8, 103.7, 20.0; FT-IR (KBr) 1675, 1596, 1524, 1482, 1385, 1326, 1264, 1212, 1116, 1012, 897 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₁₉N₃O 378.1606, found 378.1598.

2-(1*H***-Indol-1-yl)-5-methyl-***N***-(quinolin-8-yl)benzamide 3c .** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.40$; white solid; 58 mg, yield 77%; mp 147-148 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.94 (br s, 1H), 8.72 (d, J = 7.2 Hz, 1H), 8.00-7.97 (m, 2H), 7.94 (s, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.47-7.39 (m, 6H), 7.25-7.20 (m, 2H), 7.13 (t, J = 7.2 Hz, 1H), 6.50 (d, J = 3.0 Hz, 1H), 2.53 (s, 3H); ¹³C {H} NMR (150 MHz, CDCl₃) δ 165.1, 147.7, 138.4, 138.3, 137.7, 135.9, 134.5, 133.3, 132.7, 131.6, 129.5, 129.2, 128.3, 127.7, 127.3, 122.7, 121.8, 121.5, 121.1, 120.5, 116.5, 110.7, 104.6, 21.3; FT-IR (KBr) 1729, 1667, 1524, 1485, 1384, 1327,1260, 1133, 928, 825 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₁₉N₃O 378.1606, found 378.1604.

2-(1*H***-Indol-1-yl)-4-methyl-***N***-(quinolin-8-yl)benzamide 3d.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.46$; colourless thick liquid; 52 mg, yield 69%; ¹H NMR (600 MHz, CDCl₃) δ 9.98 (br s, 1H), 8.72 (d, J = 7.8 Hz, 1H), 8.07 (d, J = 7.8 Hz, 1H), 7.98-7.96 (m, 2H), 7.54 (d, J = 8.4 Hz, 1H), 7.48-7.43 (m, 2H), 7.39 (d, J = 7.8 Hz, 2H), 7.33 (s, 1H), 7.27-7.23 (m, 2H), 7.22-7.19 (m, 1H), 7.14 (t, J = 7.2 Hz, 1H), 6.53 (d, J = 2.4 Hz, 1H), 2.48 (s, 3H); ¹³C {H} NMR (150 MHz, CDCl₃) δ 164.9, 147.7, 142.8, 138.2, 137.6, 137.0, 135.9, 134.5, 131.3, 130.5, 129.6, 129.2, 129.1, 128.8, 127.7, 127.3, 122.7, 121.7, 121.5, 121.2, 120.6, 116.4, 110.7, 104.8, 21.5; FT-IR (neat) 1666, 1527, 1461, 1327, 1276, 1212, 1135, 1012, 900 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₁₉N₃O 378.1606, found 378.1597.

2-(3-(2-(1,3-Dioxoisoindolin-2-yl)ethyl)-1*H***-indol-1-yl)-***N***-(quinolin-8-yl)benzamide 3e. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane R_f = 0.24; white solid; 61 mg, yield 57%; mp 179-180 °C; ¹H NMR (600 MHz, CDCl₃) \delta 9.90 (br s, 1H), 8.71 (d, J = 7.2 Hz, 1H), 8.18 (dd, J = 7.8 Hz, 1.2 Hz, 1H), 7.99 (dd, J = 4.2 Hz, 1.2 Hz, 1H), 7.95 (dd, J = 9.2 Hz, 1.2 Hz, 1H), 7.80-7.94 (m, 2H), 7.69-7.63 (m, 2H), 7.59-7.57 (m, 2H), 7.56-7.52 (m, 2H), 7.47-7.42 (m, 2H), 7.37 (d, J = 7.8 Hz, 1H), 7.27-7.25 (m, 1H), 7.23-7.21 (m, 2H), 7.17 (t, J = 7.2 Hz, 1H), 3.42-3.39 (m, 2H), 2.90-2.87 (m, 2H); ¹³C {H} NMR (150 MHz, CDCl₃) \delta 168.3, 165.0, 147.8, 138.1, 137.9, 137.0, 135.9, 134.4, 134.1, 133.4, 132.3, 132.0, 131.4,129.1, 128.1, 127.6, 127.3, 126.8, 123.3, 123.1, 121.8, 121.5, 120.5, 120.5, 119.3, 116.4, 114.7, 110.7, 37.9, 24.5; FT-IR (KBr) 2921, 1770, 1711, 1668, 1527, 1486, 1397, 1328, 1258, 1224,1128, 1052, 825 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₄H₂₄N₄O₃ 537.1927, found 537.1294.**

2-(4-Bromo-1*H***-indol-1-yl)-***N***-(quinolin-8-yl) 3f.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.43$; white solid; 69 mg, yield 78%; mp 148-149 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.83 (br s, 1H), 8.63 (d, J = 7.2 Hz, 1H), 8.08 (d, J = 7.6 Hz, 1H), 8.00 (d, J = 4.4 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.60-7.51 (m, 2H), 7.43-7.30 (m, 4H), 7.26 (d, J = 3.2 Hz, 1H), 7.22-7.17 (m, 2H), 7.02 (t, J = 8.0 Hz, 1H), 6.50 (d, J = 3.2 Hz, 1H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 164.6, 147.9, 138.2, 137.8, 136.6, 136.1,

134.2, 133.5, 132.1, 131.4, 130.3, 129.7, 128.7, 128.4, 127.7, 127.2, 123.7, 123.6, 122.1, 121.7, 116.6, 115.1, 109.9, 105.1; FT-IR (KBr) 1668, 1596, 1486, 1385, 1359, 1297, 1203, 1179, 1086, 888 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₁₆BrN₃O 444.0535, found 444.0532.

2-(5-Bromo-1*H***-indol-1-yl)-***N***-(quinolin-8-yl)benzamide 3g.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.45$; white solid; 66 mg, yield 75%; mp 141-142 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.84 (br s, 1H), 8.71 (dd, J = 7.6 Hz, 2.0 Hz, 1H), 8.11-8.09 (m, 2H), 8.02 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 7.67-7.65 (m, 1H), 7.62-7.58 (m, 2H), 7.53 (d, J = 7.6 Hz, 1H), 7.48-7.41 (m, 2H), 7.34 (d, J = 2.4 Hz, 2H), 7.30-7.25 (m, 2H), 6.43 (d, J = 3.2 Hz, 1H); ¹³C {H} NMR (150 MHz, CDCl₃) δ 164.8, 147.8, 138.1, 136.5, 136.2, 136.1, 134.2, 133.9, 132.1, 131.2, 131.1, 130.3,128.7, 128.2, 127.7, 127.3, 125.6, 123.7, 122.1, 121.7, 116.4, 113.9, 112.2, 104.1; FT-IR (KBr) 1669, 1596, 1486, 1386, 1327, 1289, 1227,1198, 1053, 896 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₁₆BrN₃O 442.0555, found 442.0554.

2-(5-Methoxy-1*H***-indol-1-yl)-***N***-(quinolin-8-yl)benzamide 3h.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane R_f = 0.32; white solid; 64 mg, yield 81%; mp 150-151 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.96 (br s,1H), 8.73 (dd, J = 7.6 Hz, 1.6 Hz, 1H), 8.13-8.09 (m, 2H), 7.99 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 7.66 (td, J = 7.6 Hz, 1.6 Hz, 1H), 7.58-7.52 (m, 2H), 7.47 (t, *J* = 8.0 Hz, 1H), 7.41-7.36 (m, 2H), 7.27-7.22 (m, 2H), 6.97 (d, J = 2.4 Hz, 1H), 6.91-6.88 (m, 1H), 6.44 (d, J = 3.2 Hz, 1H), 3.81 (s, 3H); ¹³C {H}

NMR (100 MHz, CDCl₃) δ 165.0, 154.8, 147.7, 138.2, 137.1, 136.0, 134.4, 133.5, 132.8, 131.9, 131.1, 130.1, 129.7, 128.1, 127.7, 127.2, 121.9, 121.5, 116.4, 112.8, 111.4, 104.5, 102.9, 56.0; FT-IR (KBr) 1668, 1598, 1487, 1386, 1327, 1256, 1218, 1193, 1032, 899 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₁₉N₃O₂ 394.1556, found 394.1556.

2-(6-Bromo-1*H***-indol-1-yl)-***N***-(quinolin-8-yl)benzamide 3a.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.46$; white solid; 68 mg, yield 77%; mp 110-111 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.78 (br s, 1H), 8.63 (dd, J = 7.6 Hz, 1.6 Hz, 1H), 8.03-7.99 (m, 2H), 7.91 (dd, J = 8.0 Hz, 1.6 Hz, 1H), 7.60-7.57 (m, 2H), 7.54-7.50 (m, 1H), 7.46-7.37 (m, 1H), 7.35-7.31 (m, 2H), 7.28 (d, *J* = 8.4 Hz, 1H), 7.17-7.14 (m, 3H), 6.36 (d, J = 3.2 Hz, 1H); ¹³C{H} NMR (100 MHz, CDCl₃) δ 164.8, 147.9, 138.2, 138.1, 136.3, 136.0, 134.2, 134.1, 132.0, 131.1, 129.8, 128.7, 128.24, 128.2, 127.7, 127.2, 123.9, 122.4, 122.0, 121.6, 116.4, 116.3, 113.7, 104.7; FT-IR (KBr) 1671, 1597, 1485, 1385, 1327, 1267, 1230, 1137, 1052, 891 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₁₆BrN₃O 442.0555, found 442.0553.

2-(1*H***-Pyrrolo[2,3-b]pyridin-1-yl)-***N***-(quinolin-8-yl)benzamide 3a.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane R_f = 0.28; colourless thick liquid; 46 mg, yield 63%; ¹H NMR (600 MHz, CDCl₃) δ 9.91 (br s, 1H), 8.60 (d, *J* = 7.2 Hz, 1H), 8.24 (d, *J* = 4.8 Hz, 1H), 8.12-8.11 (m, 1H), 7.97 (d, *J* = 7.8 Hz, 1H), 7.93 (d, *J* = 8.4 Hz, 1H), 7.73 (dd, *J* = 7.8 Hz, 1.2 Hz, 1H), 7.60-7.56 (m, 2H), 7.51 (t, *J* = 7.2 Hz, 1H), 7.38-7.32 (m, 3H), 7.19-7.17 (m, 1H), 6.97-6.95 (m, 1H), 6.40 (d, *J* = 3.6 Hz, 1H); ¹³C{H} NMR

(150 MHz, CDCl₃) δ 165.5, 148.7, 147.9, 143.9, 138.3, 136.0, 135.6, 134.5, 134.2, 131.8, 130.4, 129.5, 129.2, 128.7, 128.4, 127.8, 127.3, 121.8, 121.51, 121.5, 116.8, 116.5, 102.4; FT-IR (KBr) 1670, 1586, 1485, 1384, 1326, 1281, 1202, 1130, 1052, 896 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₁₆N₄O 365.1402, found 365.1408.

2-(1*H***-Pyrazol-1-yl)-***N***-(quinolin-8-yl)benzamide 4a.** Analytical TLC on silica gel, 1:5 ethyl acetate/hexane $R_f = 0.48$; white solid; 34 mg, yield 54%; mp 122-123 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.99 (br s, 1H), 8.83 (dd, J = 7.2 Hz, 1.2 Hz, 1H), 8.70 (dd, J = 4.8 Hz, 1.8 Hz, 1H), 8.13 (dd, J = 7.8 Hz, 1.2 Hz, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.81 (d, J = 2.4 Hz, 1H), 7.63-7.60 (m, 3H), 7.55-7.50 (m, 3H), 7.42-7.40 (m, 1H), 6.30-6.29 (m, 1H); ¹³C{H} NMR (150 MHz, CDCl₃) δ 165.8, 148.3, 141.6, 138.6, 138.2, 136.3, 134.7, 132.5, 131.4, 130.7, 129.7, 128.4, 128.0, 127.5, 125.8, 122.1, 121.8, 116.9, 107.7; FT-IR (KBr) 1671, 1603, 1520, 1485, 1385, 1326, 1265, 1099, 1043, 937, 826 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₁₄N₄O 315.1246, found 315.1247.

2-(3-Methyl-1*H***-pyrazol-1-yl)-***N***-(quinolin-8-yl)benzamide 4b.** Analytical TLC on silica gel, 1:5 ethyl acetate/hexane $R_f = 0.51$; colourless thick liquid; 38 mg, yield 58%; ¹H NMR (600 MHz, CDCl₃) δ 10.01 (br s, 1H), 8.83 (d, J = 7.8 Hz, 1H), 8.70 (dd, J = 4.2 Hz, 1.8 Hz, 1H), 8.13 (dd, J = 7.8 Hz, 1.2 Hz, 1H), 7.85-7.84 (m, 1H), 7.66 (d, J = 1.8 Hz, 1H), 7.62-7.57 (m, 2H), 7.55-7.47 (m, 3H), 7.41-7.39 (m, 1H), 6.042-6.04 (m, 1H), 2.18 (s, 3H), ¹³C {H} NMR (150 MHz, CDCl₃) δ 166.0, 150.9, 148.3, 138.7, 138.2, 136.3, 134.8, 132.2, 131.6, 131.5, 129.8, 128.1, 128.0, 127.4, 125.9, 122.1, 121.8, 116.9, 107.7, 13.8; FT-

IR (neat) 1676, 1524, 1485, 1326, 1265, 1129, 948, 826 cm⁻¹. HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{20}H_{16}N_4O$ 329.1402, found 329.1403.

2-(9*H***-Carbazol-9-yl)-***N***-(quinolin-8-yl)benzamide 5.** Analytical TLC on silica gel, 1:9 ethyl acetate/hexane $R_f = 0.40$; white solid; 34 mg, yield 41%; mp 184-185 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.46 (br s, 1H), 8.62-8.61 (m, 1H), 8.41 (dd, J = 7.8 Hz, 1.8 Hz, 1H), 8.02 (d, J = 7.2 Hz, 2H), 7.87 (dd, J = 8.4 Hz, 1.2 Hz, 1H), 7.71-7.68 (m, 3H), 7.49 (dd, J = 7.8 Hz, 1.2 Hz, 1H), 7.40-7.33 (m, 5H), 7.29 (d, J = 8.4 Hz, 1H), 7.24 (td, J = 7.8 Hz, 1.2 Hz, 2H), 7.11-7.09 (m, 1H); ¹³C {H} NMR (150 MHz, CDCl₃) δ 164.2, 147.5, 142.1, 138.2, 135.7, 135.6, 134.4, 132.9, 132.1, 129.7, 129.0, 127.5, 127.1, 126.5, 124.7, 121.6, 121.3, 120.6, 120.3, 116.4, 110.5; FT-IR (KBr) 3320, 1669, 1527, 1451, 1259, 920, 822 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₈H₁₉N₃O 414.1606, found 414.1614.

2-(1*H***-Pyrrol-1-yl)benzoic acid 7.** Analytical TLC on silica gel, 9:1 ethyl acetate/hexane $R_f = 0.25$; pale brown solid; 31 mg, yield 84%; mp 96-97 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.95-7.94 (m, 1H), 7.16 (td, J = 7.2 Hz, 1.2 Hz, 1H), 7.44 (t, J = 7.2 Hz, 1H), 7.40 (d, J = 7.8 Hz, 1H), 6.85-6.84 (m, 2H), 6.33-6.32 (m, 2H); ¹³C{H} NMR (150 MHz, CDCl₃) δ 170.1, 141.1, 133.3, 131.6, 127.4, 127.3, 126.5, 122.3, 110.1; FT-IR (KBr) 1670, 1600, 1499, 1407, 1303, 1263, 1078, 942 cm⁻¹. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₁H₁₀NO₂ 188.0712, found 188.0712.

References

- W. L. F. Armarego and C. L. L. Chai, In *Purification of Laboratory Chemicals*, Sixth Edition, Elsevier's Science and Technology, UK, 2009, 428-429.
- B. S. Furniss, A. J. Hannaford, P. W. G. Smith and A. R. Tatchell, In *Vogel's Textbook of Practical Organic Chemistry*, Fifth Edition, Pearson Education Pte. Ltd., Indian Branch, Delhi, 2004, 928-929.
- (a) Y. Aihara and N. Chatani, J. Am. Chem. Soc., 2013, 135, 5308; (b) Y. Ano, M. Tobisu and N. Chatani, Org. Lett., 2012, 14, 354.
- 4. S. Chiba, Y. Wang, G. Lapointe and K. Narasaka, Org. Lett., 2008, 10, 313.
- 5. T. D. Montgomery, A. E. Nibbs, Y. Zhu and V. H. Rawal, Org. Lett. 2014, 16, 3480.

NMR Spectra (¹H and ¹³C)

SP-679-3, 4-13C

----- Jee . 39

140

160

180

200

SP-673-ME-1-1H

SP-4C1-1H

SP-797-4I-1H

SP-763-I-13C

SP-PY-4ME-13C

SP-4NO2-1H

SP-4N02-13C

SP-706-13C

SP-681-IN-1H

190

SP-682-1-1H

SP-682-1-13C

SP-832-aza

SP-CARB-1_1H

