Supporting Information for

Pd-Catalyzed *gem*-Difluoroallylation of Arylboronic Acids with γ,γ-Difluoroallylic Acetates

Bo Zhang and Xingang Zhang*

Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China <u>xqzhanq@mail.sioc.ac.cn</u>

List of Contents

1)	Solvent Effect on Pd-Catalyzed gem-Difluoroallylation of Phenylbronic Acid 2a	with
	3,3-Difluoro-1-Phenyl-2-(Tosyloxy) Allyl Acetate 1a (Table S1)	S4
2)	Base Effect on Pd-Catalyzed gem-Difluoroallylation of Phenylbronic Acid 2a	with
	3,3-Difluoro-1-Phenyl-2-(Tosyloxy) Allyl Acetate 1a (Table S2)	S4
3)	Screening Reaction Temperature for Pd-Catalyzed gem-Difluoroallylation of Phenylbronic	Acid
	2a with 3,3-Difluoro-1-Phenyl-2-(Tosyloxy) Allyl Acetate 1a (Table S3)	S5
4)	General Procedure for the Synthesis of Compounds 1	S5
5)	Data for Compounds II, III and 1	S6
6)	General Procedure for the Synthesis of Compounds 3	S8
7)	Data for Compounds 3	S8
8)	Procedure for the Synthesis of Compound 4	S18
9)	Data for Compound 4	S18
10)	Procedure for the Synthesis of Compounds 5 and 6	S18
11)	Data for Compounds 5 and 6	S18
12)	Procedure for the Synthesis of Compound 7	S20
13)	Data for Compound 7	S20
14)	Procedure for the Synthesis of Compound 8	S20
15)	Data for Compound 8	S20
16)	Procedure for the Synthesis of Compound 9	S21
17)	Data for Compound 9	S21
18)	Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR Spectra of All Compounds	S22

General information: ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AM400, AM500, Agilent MR300 spectrometer. ¹⁹F NMR was recorded on a Bruker AM400 and Agilent MR300 spectrometer (CFCl₃ as an outside standard and low field is positive). Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. NMR yield was determined by ¹⁹F NMR using fluorobenzene as an internal standard before working up the reaction.

Materials: All reagents were used as received from commercial sources, unless specified otherwise, or prepared as described in the literature. All reagents were weighed and handled in air, and backfilled with an inert atmosphere of N_2 at room temperature. All solvents were distilled before use.

Table S1. Solvent Effect on Pd-Catalyzed gem-Difluoroallylation of Phenylbronic Acid 2a with 3,3-Difluoro-1-Phenyl-2-(Tosyloxy) Allyl Acetate 1a.^a

	DAc s +	B(OH) ₂	Pd(PPh ₃) ₄ Xantphos K ₂ CO ₃ (2.0 80	(10 mol%) (10 mol%) equiv), Solvent °C, 5 h	F	F OTs 3a	\bigcirc
0.2 mr	noi	0.3 mmol			1		
_	Entry		Solvent	Yie	eld $(\%)^{p}$		
	1		Dioxane		57		
	2		THF		50		
	3		Toluene		38		
	4		CH ₃ CN		/		
	5		DCE		/		
	6		CCl ₄		/		

^aSolvent (1.5 mL). ^bDetermined by ¹⁹F NMR using fluorobenzene as an internal standard.

Table S2. Base Effect on Pd-Catalyzed gem-Difluoroallylation of Phenylbronic Acid 2a with 3,3-Difluoro-1-Phenyl-2-(Tosyloxy) Allyl Acetate 1a.^a

F C 0.2	OAc DTs +	B(OH)2 Pd(PPh ₃)4 (10 mol ⁴ Xantphos (10 mol ⁶ Base (x equiv), Dio 80 °C, 5h 0.3 mmol	%) %) xane OTs 2c
-	Entry	Base (x)	yield $(\%)^a$
	1	Na ₂ CO ₃ (2.0)	ND
	2	Cs ₂ CO ₃ (2.0)	30
	3	K ₃ PO ₄ (2.0)	40
	4	NaOAc (2.0)	10
	5	KF (2.0)	48
	6	K ₂ CO ₃ (2.0)	57
	7	K ₂ CO ₃ (0.5)	10
	8	K ₂ CO ₃ (1.0)	23
	9	K ₂ CO ₃ (1.5)	35
	10	K ₂ CO ₃ (3.0)	41

^aSolvent (1.5 mL). ^bDetermined by ¹⁹F NMR using fluorobenzene as an internal standard.

 Table S3. Screening Reaction Temperature for Pd-Catalyzed gem-Difluoroallylation of

 Phenylbronic Acid 2a with 3,3-Difluoro-1-Phenyl-2-(Tosyloxy) Allyl Acetate 1a.^a

F F OT	DAC B(OH) ₂ Pd(PPh ₃) ₄ (10 Xantphos (10 K_2CO_3 (2.0 equiv),	mol%) Dioxane, 5 h	
1a 0.2 m	a 2a Imol 0.3 mmol		За	
	Entry	Temp. (°C)	Yield $(\%)^a$	
-	1	r.t.	Trace	
	2	40	15	
	3	60	65	
	4	80	57 (60)	
	5	100	64 (62)	

^{*a*}Solvent (1.5 mL). ^{*b*}Determined by ¹⁹F NMR using fluorobenzene as an internal standard and number in parenthesis is isolated yield.

General Procedure for the Synthesis of Compounds 1:

General Procedure: 4-Methylbenzenesulfonate (**III**) was prepared according to the procedure reported by Troels Skrydstrup *et. al.*¹ 3,3-Difluoro-2-(tosyloxy) allyl acetates **1** were synthesized from compound **III** with different aldehydes and acetyl chloride in one pot via three steps.

Typical Procedure for the Synthesis of Compound 1a: To a stirred solution of 2,2-difluorovinyl-4-methylbenzenesulfonate (**III**) (1.87 g, 8.0 mmol) in THF (100 mL) was added *n*-BuLi (2.5 M, 3.2 mL, 8.0 mmol) dropwise under N₂ at -78 °C. After stirring for 1.5 h, the corresponding benzaldehyde (0.85 g, 8.0 mmol) was added and the resulting reaction mixture was stirred for another 1.5 h at same temperature. Acetyl acetate (0.79 g, 10.0 mmol) was then added, the resulting mixture was warmed to room temperature and stirred for another 1 h. The mixture was quenched with the slow addition of aqueous solution of HCl (10 mL, 1.0 M). The reaction mixture

was extracted with EtOAc (50 mL \times 3). The organic layers were combined and dried over Na₂SO₄, filtered, and concentrated. The residue was purified with silica gel chromatography (petroleum/ethyl acetate = 18 : 1) to give compound **1a** in 77% yield.

2,2,2-Trifluoroethyl 4-methylbenzenesulfonate (**II**).¹ White solid (m.p. 52 °C), 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 4.31 (q, J = 8.0 Hz, 2H), 2.41 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -74.1 (t, J = 8.0 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 146.0, 131.5, 130.1, 127.9, 121.8 (q, J = 278.9 Hz), 64.5 (q, J = 38.2 Hz), 21.4.

2,2-Difluorovinyl 4-methylbenzenesulfonate (III).¹ Colorless oil, 88% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 6.03 (dd, *J* = 14.4, 3.6 Hz, 1H), 2.41 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -90.8 (dd, *J* = 50.8, 14.4 Hz), -109.4 (d, *J* = 50.8 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 156.9 (dd, *J* = 296.4, 285.6 Hz), 146.1, 130.9, 129.9, 128.2, 100.8 (dd, *J* = 60.2, 15.2 Hz), 21.5.

3,3-Difluoro-1-phenyl-2-(tosyloxy)allyl acetate (1a). The product (2.36 g, 77% yield) as a colorless oil was purified with silica gel chromatography (petroleum ether / ethyl acetate = 18 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.4 Hz, 2H), 7.39 – 7.28 (m, 7H), 6.56 (t, *J* = 0.8 Hz, 1H), 2.45 (s, 3H), 2.20 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -88.5 (d, *J* = 36.4 Hz, 1F), -99.8 (dd, *J* = 36.4, 2.4 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 169.6, 156.1 (dd, *J* = 299.4, 293.4 Hz), 145.6, 134.7 (t, *J* = 2.0 Hz), 133.2, 129.7, 128.7, 128.5, 128.1 (d, *J* = 0.8 Hz), 126.7, 111.5 (dd, *J* = 42.4, 15.4 Hz), 69.0

(t, J = 2.8 Hz), 21.7, 20.9. IR (thin film): v_{max} 3034, 1764, 1597, 1450 cm⁻¹. MS (MALDI): m/z (%) 428 (M⁺ + 2Na), 409 (100), 405 (M⁺ + Na), 381 (M⁺ - H), 346. HRMS: Calculated for C₁₈H₁₆F₂O₅S: 382.0687; Found: 405.0578 (M⁺ + Na).

3,3-Difluoro-2-(tosyloxy)-1-(4-(trifluoromethyl)phenyl)allyl acetate (1b). The product (3.06 g, 85% yield) as a colorless oil was purified with silica gel chromatography (petroleum ether / ethyl acetate = 15 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 10.4 Hz, 2H), 7.60 (d, *J* = 10.8 Hz, 2H), 7.46 (d, *J* = 10.4 Hz, 2H), 7.32 (d, *J* = 10.4 Hz, 2H), 6.59 (s, 1H), 2.45 (s, 3H), 2.23 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8 (s, 3F), -87.5 (d, *J* = 34.6 Hz, 1F), -99.0 (dd, *J* = 34.0, 2.4 Hz, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 169.5, 156.3 (dd, *J* = 298.9, 293.7 Hz), 145.8, 138.7, 133.0, 130.9 (q, *J* = 33.3 Hz), 129.8, 128.1, 127.1, 125.6 (q, *J* = 3.7 Hz), 123.8 (q, *J* = 272.8 Hz), 111.0 (dd, *J* = 42.5, 16.0 Hz), 68.5 (t, *J* = 3.0 Hz), 21.7, 20.8. IR (thin film): v_{max} 3040, 1767, 1598, 1417 cm⁻¹. MS (MALDI): *m*/*z* (%) 473 (M⁺ + Na), 449 (M⁺ - H), 444 (100). HRMS: Calculated for C₁₉H₁₅F₅O₅S: 450.0560; Found: 473.0458 (M⁺ + Na).

1,1-Difluoro-5-phenyl-2-(tosyloxy)pent-1-en-3-yl acetate (1c). The product (1.97 g, 60% yield) as a colorless oil was purified with silica gel chromatography (petroleum ether / ethyl acetate = 20 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.31 – 7.25 (m, 2H),, 7.19 (t, *J* = 7.2 Hz, 2H), 7.14 (d, *J* = 7.2 Hz, 2H), 5.46 – 5.39 (m, 1H), 2.63 (t, *J* = 7.8 Hz, 2H), 2.46 (s, 3H), 2.21 – 2.11 (m, 1H), 2.09 (s, 3H), 2.09 – 1.95 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -88.3 (d, *J* = 35.3 Hz, 1F), -99.0 (dd, *J* = 35.3, 2.6 Hz, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 170.0, 156.2 (dd, *J* = 298.2, 292.4 Hz), 145.7, 140.1, 133.2, 129.8, 128.4, 128.2, 128.0, 126.2, 110.9 (dd, *J* = 43.4, 14.8 Hz), 67.4 (t, *J* = 2.9 Hz), 31.8, 31.2, 21.6, 20.8. IR (thin film): v_{max} 3064, 1763, 1598, 1496 cm⁻¹. MS (MALDI): *m*/*z* (%) 433 (M⁺ + Na), 410 (M⁺), 409(100, M⁺ - H). HRMS: Calculated for C₂₀H₂₀F₂O₅S: 410.1000; Found: 433.0895 (M⁺ + Na).

General Procedure for the Synthesis of Compounds 3:

Method A (CuI was used as an additive): To a Schlenk tube was charged with $Pd(PPh_3)_4$ (46.4 mg, 0.04 mmol), Xantphos (27.8 mg, 0.048 mmol), CuI (9.2 mg, 0.048 mmol), arylboronic acid 2 (0.6 mmol), K₂CO₃ (110 mg, 0.8 mmol), 1 (0.4 mmol), and dioxane (2 mL) under N₂. The tube was then screwed capped and the reaction mixture was stirred at 80 °C for 5 h. The resulting mixture was cooled to room temperature, and filtrated through a silica gel pad. After concentrated under reduced pressure, the residue was subjected to purification on silica gel chromatography to give desired product.

Method B (H₂O was used as an additive): To a Schlenk tube was charged with Pd(PPh₃)₄ (46.4 mg, 0.04 mmol), Xantphos (27.8 mg, 0.048 mmol), arylboronic acid 2 (0.6 mmol), K₂CO₃ (110 mg, 0.8 mmol), 1 (0.4 mmol), H₂O (9 μ L, 0.5 mmol) and dioxane (2 mL). The tube was screwed capped and the reaction mixture was stirred at 80 °C for 5 h. The resulting mixture was cooled to room temperature, and filtrated through a silica gel pad. After concentrated under reduced pressure, the residue was subjected to purification on silica gel chromatography to give desired product.

(Z)-3,3-Difluoro-1,3-diphenylprop-1-en-2-yl-4-methylbenzenesulfonate (3a). Method A. The product (136 mg, 85% yield) as a faint yellow solid (m.p. 76 °C) was purified with silica gel chromatography (petroleum ether / ethyl acetate = 25 : 1). This compound is unknown. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.0 Hz, 2H), 7.49 (dd, *J* = 7.4, 1.8 Hz, 2H), 7.46 – 7.36 (m, 5H), 7.31 – 7.23 (m, 3H), 7.19 (d, *J* = 8.4 Hz, 1H), 6.67 (s, 1H), 2.42 (s, 1H).¹⁹F NMR (376 MHz, CDCl₃) δ -95.3 (s, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 144.9, 140.5 (t, *J* = 31.8 Hz), 134.3 (t, *J* = 26.8 Hz), 134.0, 131.2, 130.4, 129.6, 129.2, 129.1, 128.4, 128.3, 128.1, 125.9 (t, *J* = 5.6 Hz), 124.7 (t, *J* = 5.4

Hz), 117.2 (t, J = 244.7 Hz), 21.6. IR (thin film): $v_{max} 3062$, 2926, 1667, 1595, 1495 cm⁻¹. MS (EI): m/z (%) 400 (M⁺), 127 (100). HRMS: Calculated for C₂₂H₁₈F₂O₃S: 400.0945; Found: 400.0942.

(*Z*)-3-(4-(Ethylthio)phenyl)-3,3-difluoro-1-phenylprop-1-en-2-yl-4-methylbenzenesulfonate (3b). Method B. The product (149 mg, 81% yield) as a red-brown sticky oil was purified with silica gel chromatography (petroleum ether / ethyl acetate = 18 : 1). This compound is unknown. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.0 Hz, 2H), 7.50 – 7.46 (m, 2H), 7.32 – 7.25 (m, 7H), 7.19 (d, *J* = 8.0 Hz, 2H), 6.66 (s, 1H), 2.99 (q, *J* = 7.4 Hz, 2H), 2.42 (s, 3H), 1.36 (t, *J* = 7.4 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -94.9 (s, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 144.9, 140.6, 140.4 (t, *J* = 32.2 Hz), 134.0, 131.2, 131.1 (t, *J* = 27.3 Hz), 129.6, 129.2, 129.1, 128.4, 128.1, 127.2, 126.4 (t, *J* = 5.5 Hz), 124.63 (t, *J* = 5.4 Hz), 117.1 (t, *J* = 244.7 Hz), 26.6, 21.6, 14.0. IR (thin film): v_{max} 3042, 2980, 2933, 2873, 1679, 1597, 1493 cm⁻¹. MS (EI): *m*/*z* (%) 460 (M⁺), 187 (100). HRMS: Calculated for C₂₄H₂₂F₂O₃S: 460.0978; Found: 460.0981.

(Z)-3,3-Difluoro-3-(4-methoxyphenyl)-1-phenylprop-1-en-2-yl-4-methylbenzenesulfonate (3c). Method B. The product (156 mg, 91% yield) as a red-brown oil was purified with silica gel chromatography (petroleum ether / ethyl acetate = 25 : 1). This compound is unknown. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.4 Hz, 2H), 7.51 – 7.45 (m, 2H), 7.34 (d, *J* = 8.8 Hz, 2H), 7.30-7.26 (m, 3H), 7.19 (d, *J* = 8.0 Hz, 2H), 6.88 (d, *J* = 8.8 Hz, 2H), 6.63 (s, 1H), 3.84 (s, 3H), 2.42 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -93.8 (s, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 161.1, 144.9, 140.7 (t, *J* = 32.4 Hz), 134.0, 131.3, 129.6, 129.2, 129.0, 128.4, 128.0, 127.5 (t, *J* = 5.5 Hz), 126.3 (t, *J* = 27.3 Hz), 124.6 (t, *J* = 5.4 Hz), 117.4 (t, *J* = 244.0 Hz), 113.6, 55.3, 21.5. IR (thin film): v_{max} 3059, 3029, 2936, 1668, 1597, 1496 cm⁻¹. MS (EI): *m*/*z* (%) 430 (M⁺), 157 (100). HRMS: Calculated for C₂₃H₂₀F₂O₄S: 430.1050; Found: 430.1046.

(*Z*)-3-(Benzo[*d*][1,3]dioxol-5-yl)-3,3-difluoro-1-phenylprop-1-en-2-yl-4-methylbenzenesulfonate (3d). Method B. The product (119 mg, 68% yield) as a faint yellow solid (m.p. 75 °C) was purified with silica gel chromatography (petroleum ether / ethyl acetate = 20 : 1). This compound is unknown. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.4 Hz, 2H), 7.53 – 7.46 (m, 2H), 7.31 – 7.28 (m, 2H), 7.28 – 7.26 (m, 1H), 7.20 (d, *J* = 8.0 Hz, 2H), 6.95 – 6.88 (m, 1H), 6.81 (d, *J* = 1.6 Hz, 1H), 6.79 (d, *J* = 8.0 Hz, 1H), 6.68 (s, 1H), 6.01 (s, 2H), 2.42 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -93.3 (s, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 149.2, 147.6, 145.0, 140.4 (t, *J* = 32.4 Hz), 134.0, 131.2, 129.6, 129.2, 129.1, 128.4, 128.1, 127.9 (t, *J* = 27.4 Hz), 124.5 (t, *J* = 5.4 Hz), 120.3 (t, *J* = 6.2 Hz), 117.1 (t, *J* = 244.9 Hz), 108.0, 106.5 (t, *J* = 5.7 Hz), 101.6, 21.5. IR (thin film): v_{max} 3048, 2909, 1664, 1593, 1493 cm⁻¹. MS (EI): *m/z* (%) 444 (M⁺), 171 (100). HRMS: Calculated for C₂₃H₁₈F₂O₅S: 444.0843; Found: 444.0848.

(Z)-3,3-Difluoro-1-phenyl-3-(4-vinylphenyl)prop-1-en-2-yl-4-methylbenzenesulfonate (3e). Method B. The product (136 mg, 80% yield) as a light yellow oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 20 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.2 Hz, 2H), 7.52 – 7.46 (m, 2H), 7.45 – 7.33 (m, 2H), 7.30 – 7.24 (m, 3H), δ 7.18 (d, *J* = 8.0 Hz, 2H), 6.77 – 6.70 (m, 1H), 6.68 (s, 1H), 5.82 (d, *J* = 17.6 Hz, 1H), 5.35 (d, *J* = 10.9 Hz, 1H), 2.41 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -95.1 (s, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 144.9, 140.4 (t, *J* = 32.1 Hz), 139.6, 135.8, 134.0, 133.5 (t, *J* = 26.8 Hz), 131.2, 129.6, 129.2, 129.1, 128.4, 128.1, 126.2 (t, *J* = 5.6 Hz), 126.1, 124.7 (t, *J* = 5.4 Hz), 117.2 (t, *J* = 244.7 Hz), 115.7, 21.6. IR (thin film): v_{max} 3060, 2929, 1669, 1598, 1450 cm⁻¹. MS (EI): *m*/*z* (%) 426 (M⁺), 153 (100). HRMS: Calculated for C₂₄H₂₀F₂O₃S: 426.1101; Found: 426.1104.

(*Z*)-3-([1,1'-Bphenyl]-4-yl)-3,3-difluoro-1-phenylprop-1-en-2-yl-4-methylbenzenesulfonate (3f). Method B. The product (128 mg, 67% yield) as a red-brown sticky oil was purified with silica gel chromatography (petroleum ether / ethyl acetate = 25 : 1). This compound is unknown. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.4 Hz, 2H), 7.63 – 7.58 (m, 4H), 7.55 – 7.44 (m, 6H), 7.43 – 7.35 (m, 1H), 7.32 – 7.26 (m, 3H), 7.20 (d, *J* = 8.4 Hz, 2H), 6.72 (s, 1H), 2.42 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -94.9 (s, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 144.9, 143.2, 140.4 (t, *J* = 32.1 Hz), 139.9, 134.0, 133.1 (t, *J* = 27.0 Hz), 131.2, 129.7, 129.2, 129.1, 128.8, 128.4, 128.1, 127.9, 127.1, 127.0, 126.4 (t, *J* = 5.5 Hz), 124.7 (t, *J* = 5.2 Hz), 117.3 (t, *J* = 244.8 Hz), 21.5. IR (thin film): v_{max} 3058, 3031, 2924, 1669, 1597, 1488 cm⁻¹. MS (EI): *m*/*z* (%) 476 (M⁺), 203 (100). HRMS: Calculated for C₂₈H₂₂F₂O₃S: 476.1258; Found: 476.1256.

(Z)-3-([1,1'-Biphenyl]-3-yl)-3,3-difluoro-1-phenylprop-1-en-2-yl-4-methylbenzenesulfonate (3g). Method B. The product (137 mg, 72% yield) as a red-brown sticky oil was purified with silica gel chromatography (petroleum ether / ethyl acetate = 25 : 1). This compound is unknown. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 7.2 Hz, 1H), 7.59 (d, *J* = 7.6 Hz, 2H), 7.55 – 7.50 (m, 5H), 7.45 – 7.39 (m, 5H), 7.38 – 7.30 (m, 3H), 7.08 (d, *J* = 7.8 Hz, 2H), 6.78 (s, 1H), 2.26 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -95.3 (s, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 144.9, 141.3, 140.2 (t, *J* = 31.6 Hz), 140.0, 134.8 (t, *J* = 26.8 Hz), 133.9, 131.2, 129.7, 129.21, 129.17, 129.0, 128.85, 128.80, 128.4, 128.0, 127.7, 127.0, 124.8 (t, *J* = 5.4 Hz), 124.5 (t, *J* = 5.4 Hz), 124.4 (t, *J* = 5.6 Hz), 117.15 (t, *J* = 245.5 Hz), 21.4. v_{max} 3059, 3034, 2963, 1668, 1598, 1496 cm⁻¹. MS (EI): *m/z* (%) 476 (M⁺), 203 (100). HRMS: Calculated for C₂₈H₂₂F₂O₃S: 476.1258; Found: 476.1260.

(*Z*)-3-(4-(*tert*-Butyl)phenyl)-3,3-difluoro-1-phenylprop-1-en-2-yl-4-methylbenzenesulfonate (3h). Method A. The product (151 mg, 83% yield) as a white solid (m.p. 94 °C) was purified with silica gel chromatography (petroleum ether / ethyl acetate = 25 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.4 Hz, 2H), 7.53 – 7.47 (m, 2H), 7.37 (dd, J = 25.2, 8.4 Hz, 4H), 7.30 – 7.26 (m, 3H), 7.19 (d, J = 8.0 Hz, 2H), 6.67 (s, 1H), 2.42 (s, 3H), 1.34 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -94.6 (s, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 153.6, 144.8, 140.7 (t, J = 32.3 Hz), 134.1, 131.4 (t, J = 27.1 Hz), 131.3, 129.7, 129.2, 129.1, 128.4, 128.2, 125.7 (t, J = 5.5 Hz), 125.3, 124.6 (t, J = 5.4 Hz), 117.4 (t, J = 245.4 Hz), 34.8, 31.2, 21.6. IR (thin film): v_{max} 3058, 3032, 2907, 1661, 1597, 1494 cm⁻¹. MS (EI): m/z (%) 456 (M⁺), 183 (100). HRMS: Calculated for C₂₆H₂₆F₂O₃S: 456.1571; Found: 456.1574.

(*Z*)-3,3-Difluoro-1-phenyl-3-(4-(trimethylsilyl)phenyl)prop-1-en-2-yl-4-methylbenzenesulfonate (3i). Method A. The product (142 mg, 75% yield) as a red-brown solid (m.p. 77 °C) was purified with silica gel chromatography (petroleum ether / ethyl acetate = 25 : 1). This compound is unknown. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.4 Hz, 2H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.50 – 7.45 (m, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.31 – 7.26 (m, 3H), 7.19 (d, *J* = 8.0 Hz, 2H), 6.66 (s, 1H), 2.42 (s, 3H), 0.29 (s, 9H). ¹⁹F NMR (400 MHz, CDCl₃) δ -95.5 (s, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 144.9, 143.5, 140.5 (t, *J* = 31.9 Hz), 134.6 (t, *J* = 27.0 Hz), 133.9, 133.2, 131.2, 129.6, 129.2, 129.0, 128.4, 128.1, 125.0 (t, *J* = 5.4 Hz), 124.6 (t, *J* = 5.2 Hz), 117.2 (t, *J* = 244.7 Hz), 21.5, -1.3. IR (thin film): v_{max} 3028, 2956, 1670, 1598, 1496 cm⁻¹. MS (EI): *m/z* (%) 472 (M⁺), 197 (100). HRMS: Calculated for C₂₅H₂₆F₂O₃SSi: 472.1340; Found: 472.1343.

(Z)-3-(3,5-Dimethylphenyl)-3,3-difluoro-1-phenylprop-1-en-2-yl-4-methylbenzenesulfonate (3j).

Method B. The product (127 mg, 68% yield) as a claybank solid (m.p. 108 °C) was purified with silica gel chromatography (petroleum ether / ethyl acetate = 30 : 1). This compound is unknown. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.4 Hz, 2H), 7.58 – 7.52 (m, 2H), 7.32 – 7.29 (m, 3H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.06 (s, 1H), 6.92 (s, 2H), 6.68 (s, 1H), 2.44 (s, 3H), 2.30 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -95.1 (s, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 144.8, 140.4 (t, *J* = 31.4 Hz), 137.9, 134.1, 134.0 (t, *J* = 26.5 Hz), 132.0, 131.3, 129.7, 129.2, 129.1, 128.4, 128.1, 124.4 (t, *J* = 5.4 Hz), 123.5 (t, *J* = 5.5 Hz), 117.3 (t, *J* = 244.5 Hz), 21.5, 21.2. IR (thin film): v_{max} 3062, 3025, 2922, 1668, 1599, 1495 cm⁻¹. MS (EI): *m*/*z* (%) 428 (M⁺), 155 (100). HRMS: Calculated for C₂₄H₂₂F₂O₃S: 428.1258; Found: 428.1261.

(*Z*)-3-(2,5-Dimethylphenyl)-3,3-difluoro-1-phenylprop-1-en-2-yl-4-methylbenzenesulfonate (3k). Method B. The product (103 mg, 60% yield) as a gray white solid (m.p. 81 °C) was purified with silica gel chromatography (petroleum ether / ethyl acetate = 20 : 1). This compound is unknown. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.4 Hz, 2H), 7.54 – 7.49 (m, 2H), 7.32 – 7.28 (m, 3H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.12 (dd, *J* = 19.2, 7.6 Hz, 2H), 7.06 (s, 1H), 6.53 (s, 1H), 2.44 (s, 3H), 2.36 (s, 3H), 2.27 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -93.5 (s, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 144.8, 140.2 (t, *J* = 30.8 Hz), 135.2, 134.2, 133.4 (t, *J* = 2.9 Hz), 131.8, 131.7 (t, *J* = 24.1 Hz), 131.4, 131.1, 129.6, 129.3, 129.2, 128.5, 128.2, 127.3 (t, *J* = 8.1 Hz), 125.5 (t, *J* = 5.5 Hz), 118.1 (t, *J* = 241.9 Hz), 21.6, 20.9, 19.6. IR (thin film): v_{max} 3061, 3023, 2923, 1668, 1595, 1450 cm⁻¹. MS (EI): *m*/*z* (%) 428 (M⁺), 155 (100). HRMS: Calculated for C₂₄H₂₂F₂O₃S: 428.1258; Found: 428.1254.

(Z)-3-([1,1'-Biphenyl]-2-yl)-3,3-difluoro-1-phenylprop-1-en-2-yl-4-methylbenzenesulfonate (3l). Method B. he product (105 mg, 55% yield) as a red-brown solid (m.p. 94 °C) was purified with silica gel chromatography (petroleum ether / ethyl acetate = 25 : 1). This compound is unknown. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.4 Hz, 2H), 7.47 (t, *J* = 7.2 Hz, 2H), 7.34 (t, *J* = 7.2 Hz, 2H), 7.31 – 7.26 (m, 3H), 7.26 – 7.19 (m, 7H), 7.17 (d, *J* = 8.0 Hz, 2H), 6.19 (s, 1H), 2.44 (s, 3H). ¹⁹F NMR

 $(376 \text{ MHz}, \text{CDCl}_3) \delta$ -88.2 (s, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 144.8, 141.6 (t, *J* = 3.6 Hz), 140.0, 139.4 (t, *J* = 31.6 Hz), 133.6, 131.6, 131.44 (t, *J* = 25.1 Hz), 131.42, 129.9, 129.6, 129.4, 129.1, 128.8, 128.2, 128.1, 127.22, 127.21, 127.0, 126.5 (t, *J* = 8.1 Hz), 124.5 (t, *J* = 5.1 Hz), 116.9 (t, *J* = 245.8 Hz), 21.6. IR (thin film): v_{max} 3069, 3028, 2926, 1669, 1597, 1445 cm⁻¹. MS (EI): *m/z* (%) 476 (M⁺), 183 (100). HRMS: Calculated for C₂₈H₂₂F₂O₃S: 476.1258; Found: 476.1261.

(*Z*)-Ethyl 4-[1,1-difluoro-3-phenyl-2-(tosyloxy)allyl]benzoate (3m). Method B. The product (87 mg, 46% yield) as a claybank oil was purified with silica gel chromatography (petroleum ether / ethyl acetate = 18 : 1). This compound is unknown. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.4 Hz, 2H), 7.60 (d, *J* = 8.4 Hz, 2H), 7.52 – 7.43 (m, 4H), 7.32 – 7.24 (m, 3H), 7.19 (d, *J* = 8.4 Hz, 2H), 6.70 (s, 1H), 4.42 (q, *J* = 7.2 Hz, 2H), 2.43 (s, 3H), 1.41 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -95.9 (s, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 165.6, 145.1, 139.8 (t, *J* = 31.7 Hz), 138.4 (t, *J* = 27.0 Hz), 133.8, 132.4, 131.0, 129.6, 129.5, 129.3, 129.2, 128.4, 128.1, 126.0 (t, *J* = 5.5 Hz), 124.8 (t, *J* = 5.2 Hz), 116.7 (t, *J* = 245.7 Hz), 61.3, 21.6, 14.2. IR (thin film): v_{max} 3053, 2929, 1764, 1722, 1660, 1593, 1451 cm⁻¹. MS (EI): *m*/*z* (%) 472 (M⁺), 199 (100). HRMS: Calculated for C₂₅H₂₂F₂O₅S: 472.1156; Found: 472.1152.

(*Z*)-3-(4-Acetylphenyl)-3,3-difluoro-1-phenylprop-1-en-2-yl-4-methylbenzenesulfonate (3n). Method B. The product (76 mg, 43% yield) as a faint yellow oil was purified with silica gel chromatography (petroleum ether / ethyl acetate = 15 : 1). This compound is unknown. ¹H NMR (300 MHz, CDCl₃) δ 7.95 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 8.4 Hz, 2H), 7.43 (d, *J* = 6.8 Hz, 2H), 7.31 – 7.19 (m, 3H), 7.17 (d, *J* = 6.8 Hz, 2H), 6.69 (s, 1H), 2.61 (s, 3H), 2.40 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -96.1 (s, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 197.2, 145.2, 139.8 (t, *J* = 31.5 Hz), 138.7 (t, *J* = 27.2 Hz), 138.5, 133.8, 131.0, 129.6, 129.31, 129.26, 128.5, 128.3, 128.1, 126.4 (t, *J* = 5.5 Hz), 124.8 (t, *J* = 5.4 Hz), 116.7 (t, *J* = 245.9 Hz), 26.7, 21.6. IR (thin film): v_{max} 3044, 2922, 1686, 1605, 1592, 1453 cm⁻¹. MS (EI): *m*/*z* (%) 442 (M⁺), 169 (100). HRMS: Calculated for C₂₄H₂₀F₂O₄S: 442.1050; Found: 442.1053.

(*Z*)-3,3-Difluoro-3-(3-nitrophenyl)-1-phenylprop-1-en-2-yl-4-methylbenzenesulfonate (30). Method B. The product (71 mg, 40% yield) as a faint yellow solid (m.p. 75 °C) was purified with silica gel chromatography (petroleum ether / ethyl acetate = 15 : 1). This compound is unknown. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 8.0 Hz, 1H), 8.03 (s, 1H), 7.74 (d, *J* = 7.6 Hz, 1H), 7.63 – 7.52 (m, 3H), 7.49 (d, *J* = 6.0 Hz, 2H), 7.32 – 7.21 (m, 4H), 7.17 (d, *J* = 7.6 Hz, 2H), 6.84 (s, 1H), 2.40 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -95.6 (s, 2F). ¹³C NMR NMR (101 MHz, CDCl₃) δ 148.0, 145.6, 138.9 (t, *J* = 31.4 Hz), 136.3 (t, *J* = 28.4 Hz), 133.5, 132.1 (t, *J* = 5.2 Hz), 130.8, 129.7, 129.5, 129.4, 128.6, 128.0, 125.3, 124.8 (t, *J* = 5.4 Hz), 121.1 (t, *J* = 6.1 Hz), 115.9 (t, *J* = 246.5 Hz), 21.6 IR (thin film): v_{max} 3059, 2926, 1614, 1515, 1496 cm⁻¹. MS (EI): *m/z* (%) 445 (M⁺), 172, 155, 91 (100). HRMS: Calculated for C₂₂H₁₇F₂NO₅S: 445.0795; Found: 445.0798.

(*Z*)-3-[4-(Ethylthio)phenyl]-3,3-difluoro-1-[4-(trifluoromethyl)phenyl]prop-1-en-2-yl-4-methylb enzenesulfonate (3p). Method B. The product (164 mg, 78% yield) as a red-brown solid (m.p. 93 °C) was purified with silica gel chromatography (petroleum ether / ethyl acetate = 20 : 1). This compound is unknown. ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.49 (m, 4H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.32 (dd, *J* = 23.2, 8.4 Hz, 4H), 7.17 (d, *J* = 8.0 Hz, 2H), 6.72 (s, 1H), 3.00 (q, *J* = 7.2 Hz, 2H), 2.41 (s, 3H), 1.36 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -63.2 (s, 3F), -96.3 (s, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 145.3, 142.4 (t, *J* = 32.4 Hz), 140.9, 134.9, 133.9, 130.6 (t, *J* = 27.2 Hz), 130.3, 129.7, 129.3, 127.8, 127.0, 126.3 (t, *J* = 5.5 Hz), 125.2 (q, *J* = 3.7 Hz), 123.7 (q, *J* = 272.9 Hz), 122.8 (t, *J* = 4.8 Hz), 116.8 (t, *J* = 245.4 Hz), 26.4, 21.4, 13.9. IR (thin film): v_{max} 3042, 2980, 2933, 1679, 1597, 1449 cm⁻¹. MS (EI): *m*/*z* (%) 528 (M⁺), 187 (100). HRMS: Calculated for C₂₅H₂₁F₅O₃S₂: 528.0852; Found: 528.0851.

(*Z*)-3,3-Difluoro-3-(p-tolyl)-1-[4-(trifluoromethyl)phenyl]prop-1-en-2-yl-4-methylbenzenesulfon ate (3q). Method A. The product (139 mg, 72% yield) as a gray white solid (m.p. 89 °C) was purified with silica gel chromatography (petroleum ether / ethyl acetate = 20 : 1). This compound is unknown. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.4 Hz, 2H), 7.49 (dd, *J* = 26.4, 8.0 Hz, 4H), 7.28 (dd, *J* = 48.8, 8.0 Hz, 4H), 7.17 (d, *J* = 8.0 Hz, 2H), 6.70 (s, 1H), 2.44 – 2.38 (m, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9 (s, 3F), -95.8 (s, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 145.3, 142.8 (t, *J* = 32.6 Hz), 140.8, 135.0, 134.1, 131.1 (t, *J* = 26.8 Hz), 130.6 (q, *J* = 32.6 Hz), 129.8, 129.3, 129.1, 127.9, 125.9 (t, *J* = 5.6 Hz), 125.2 (q, *J* = 3.8 Hz), 123.8 (q, *J* = 272.2 Hz), 122.9 (t, *J* = 5.4 Hz), 117.1 (t, *J* = 245.0 Hz), 21.5, 21.3. IR (thin film): v_{max} 3064, 2928, 1919, 1678, 1597, 1449 cm⁻¹. MS (EI): *m/z* (%) 428 (M⁺), 155, 141 (100), 91. HRMS: Calculated for C₂₄H₁₉F₅O₃S: 482.0975; Found: 482.0978.

(*Z*)-1,1-Difluoro-1-(4-methoxyphenyl)-5-phenylpent-2-en-2-yl-4-methylbenzenesulfonate (3r). Method B. The product (152 mg, 83% yield) as a colorless oil was purified with silica gel chromatography (petroleum ether / ethyl acetate = 25 : 1). This compound is unknown. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.4 Hz, 2H), 7.39 – 7.27 (m, 4H), 7.21 (d, *J* = 7.2 Hz, 1H), 7.39 – 7.27 (m, 4H), 6.80 (d, *J* = 8.8 Hz, 2H), 5.82 (t, *J* = 7.6 Hz, 1H), 3.82 (s, 3H), 2.77 (t, *J* = 7.6 Hz, 2H), 2.64 (q, *J* = 7.5 Hz, 1H), 2.45 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -94.4 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 161.0, 144.9, 141.8 (t, *J* = 32.6 Hz), 140.6, 134.1, 129.5, 128.4, 128.0, 127.4 (t, *J* = 5.4 Hz), 126.9 (t, *J* = 4.5 Hz), 126.3 (t, *J* = 27.1 Hz), 126.1, 117.0 (t, *J* = 241.6 Hz), 113.5, 55.3, 34.3, 28.0, 21.7. IR (thin film): v_{max} 3070, 2926, 1684, 1597, 1453 cm⁻¹. MS (MALDI): *m/z* (%) 481 (100, M⁺ + Na), 439 (M⁺ + F). HRMS: Calculated for C₂₅H₂₄F₂O₄S: 458.1363; Found: 481.1261 (M⁺ + Na).

(Z)-1,1-Difluoro-1,5-diphenylpent-2-en-2-yl-4-methylbenzenesulfonate (3s). Method A. The

product (120 mg, 70% yield) as a colorless oil was purified with silica gel chromatography (petroleum ether / ethyl acetate = 30 : 1). This compound is unknown. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 6.4 Hz, 2H), 7.45 – 7.37 (m, 1H), 7.37 – 7.26 (m, 6H), 7.26 – 7.21 (m, 3H), 7.18 (d, *J* = 7.2 Hz, 2H), 5.87 (t, *J* = 7.4 Hz, 1H), 2.84 – 2.73 (m, 2H), 2.73 – 2.62 (m, 2H), 2.45 (d, *J* = 1.8 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -95.8 (s, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 145.0, 141.6 (t, *J* = 31.8 Hz), 140.5, 134.1 (t, *J* = 26.3 Hz), 134.0, 130.2, 129.5, 128.4, 128.2, 127.9, 127.1 (t, *J* = 4.7 Hz), 126.1, 125.8 (t, *J* = 5.7 Hz), 116.8 (t, *J* = 244.1 H), 34.2, 28.0, 21.6. IR (thin film): v_{max} 3070, 2925, 1680, 1597, 1456 cm⁻¹. MS (MALDI): *m*/*z* (%) 474 (M⁺ + 2Na), 451 (M⁺ + Na), 446 (100, M⁺ + H₂O), 427 (M⁺ - H). HRMS: Calculated for C₂₄H₂₂F₂O₃S: 428.1258; Found: 451.1151 (M⁺ + Na).

(*Z*)-Ethyl-3-(1,1-difluoro-5-phenyl-2-(tosyloxy)pent-2-en-1-yl)benzoate (3t). Method B. The product (76 mg, 38% yield) as a colorless oil was purified with silica gel chromatography (petroleum ether / ethyl acetate = 30 : 1). This compound is unknown. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 7.6 Hz, 1H), 7.93 (s, 1H), 7.73 (d, *J* = 8.0 Hz, 2H), 7.44 – 7.31 (m, 2H), 7.31 – 7.22 (m, 4H), 7.20 (d, *J* = 7.2 Hz, 1H), 7.15 (d, *J* = 7.6 Hz, 2H), 5.88 (t, *J* = 7.4 Hz, 1H), 4.39 (q, *J* = 7.2 Hz, 2H), 2.78 (t, *J* = 7.6 Hz, 2H), 2.64 (q, *J* = 7.5 Hz, 2H), 2.44 (s, 3H), 1.40 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -96.1 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 145.1, 141.1 (t, *J* = 32.0 Hz), 140.4, 134.7 (t, *J* = 27.4 Hz), 133.9, 131.4, 130.8, 130.2 (t, *J* = 5.4 Hz), 129.6, 128.42, 128.40, 127.9, 127.3 (t, *J* = 4.7 Hz), 126.9 (t, *J* = 5.7 Hz), 126.1, 116.3 (t, *J* = 244.8 Hz), 61.3, 34.2, 28.1, 21.6, 14.3. IR (thin film): v_{max} 3064, 2931, 1720, 1671, 1597, 1450 cm⁻¹. MS (MALDI): *m/z* (%) 523 (M⁺ + Na), 518 (100, M⁺ + H₂O), 501 (M⁺ + H). HRMS: Calculated for C₂₄H₂₂F₂O₃S: 500.1469; Found: 523.1360 (M⁺ + Na).

Procedure for the Synthesis of Compound 4:

To a 25 mL of round-bottle flask was charged with 10% Pd/C (10.6 mg, 0.01 mmol), (*Z*)-3,3-difluoro-1,3-diphenylprop-1-en-2-yl-4-methylbenzenesulfonate **3a** (40 mg, 0.1 mmol), and MeOH (10 mL). The reaction was evacuated and backfilled with H₂ (three times). The reaction mixture was stirred at 60 °C for 5 h. The resulting mixture was cooled to room temperature, and filtrated through a silica gel pad. After concentrated under reduced pressure, the residue was subjected to purification on silica gel chromatography using petroleum (100%) to give product **4** as a colorless oil (23 mg, 98% yield). Compound **4** is known². ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.47 (m, 2H), 7.48 – 7.40 (m, 3H), 7.31 – 7.24 (m, 2H), 7.22 – 7.13 (m, 3H), 2.81 – 2.75 (m, 2H), 2.51 – 2.37 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -96.3 (t, *J* = 16.0 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 137.2 (t, *J* = 26.7 Hz), 129.7, 128.5, 128.4, 128.2, 126.2, 124.9 (t, *J* = 6.2 Hz), 121.3 (t, *J* = 243.8 Hz), 40.9 (t, *J* = 27.7 Hz), 28.8 (t, *J* = 4.2 Hz).

Procedure for the Synthesis of Compounds 5 and 6:

Synthesis of compound 5: To a Schlenk tube was charged with $Pd_2(dba)_3$ (2.3 mg, 0.0025 mmol), CM-Phos (4.0 mg, 0.01 mmol), K₃PO₄ (64mg, 0.2mmol), phenylboronic acid **2a** (24.5 mg, 0.2 mmol), **3a** (40 mg, 0.1 mmol), and *t*-BuOH (1 mL) under N₂. The tube was screwed capped and the reaction mixture was stirred at 110 °C for 16 h. The resulting mixture was cooled to room

temperature, and filtrated through a silica gel pad. After concentrated under reduced pressure, the residue was subjected to purification on silica gel chromatography using pure petroleum to give desired product **5** as a faint yellow solid (28 mg, 93% yield, m.p. 78 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 6.4 Hz, 2H), 7.46 – 7.36 (m, 3H), 7.35 – 7.24 (m, 3H), 7.19 – 7.05 (m, 6H), 6.96 (d, *J* = 6.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -93.3 (s, 2F). ¹³C NMR (126 MHz, CDCl₃) δ 137.8 (t, *J* = 25.7 Hz), 136.3 (t, *J* = 28.4 Hz), 134.9 (t, *J* = 1.3 Hz), 134.7, 130.8 (t, *J* = 8.5 Hz), 130.2, 129.8, 129.7 (t, *J* = 1.6 Hz), 128.4, 128.1, 128.03, 128.01, 127.9, 126.0 (t, *J* = 5.7 Hz), 120.7 (t, *J* = 244.6 Hz). IR (thin film): v_{max} 3055, 3026, 2924, 2851, 1647, 1598, 1449 cm⁻¹. MS (EI): *m/z* (%) 306 (M⁺), 179 (100). HRMS: Calculated for C₂₁H₁₆F₂: 306.1220; Found: 306.1217.

Synthesis of compound 6: To a 25 mL of round-bottle flask was charged with 10% Pd/C (10.6 mg, 0.01 mmol), compound **5** (30.6 mg, 0.1 mmol), and MeOH (10 mL). The reaction was evacuated and backfilled with H₂ (three times). The reaction mixture was stirred at 60 °C for 5 h. The resulting mixture was cooled to room temperature, and filtrated through a silica gel pad. After concentrated under reduced pressure, the residue was subjected to purification on silica gel chromatography using pure petroleum to give desired product **6** as a colorless oil (30 mg, 97% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.27 (m, 6H), 7.20 – 7.15 (m, 3H), 7.14-7.10 (m, 2H), 7.08 – 7.05 (m, 2H), 6.95 (d, *J* = 6.8 Hz, 2H), 3.64 – 3.49 (m, 1H), 3.48 – 3.43 (m, 1H), 3.20 – 3.11 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -97.4 (dd, *J* = 242.2, 11.8 Hz, 1F), -102.34 (dd, *J* = 242.4, 18.3 Hz, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 139.1, 129.9, 129.8, 129.4, 128.9, 128.1, 127.93, 127.91, 127.0, 126.6, 126.0, 125.6 (t, *J* = 6.4 Hz), 123.1 (t, *J* = 249.0 Hz), 56.8 (t, *J* = 25.9 Hz), 35.3 (t, *J* = 3.7 Hz). IR (thin film): v_{max} 3062, 3028, 2927, 2854, 1717, 1601, 1541, 1453 cm⁻¹. MS (EI): *m/z* (%) 308(M⁺), 181 (100). HRMS: Calculated for C₂₁H₁₆F₂: 308.1377; Found: 308.1380.

Procedure for the Synthesis of Compound 7:

To a 25 mL of Schlenk tube were charged with **3a** (80 mg, 0.2 mmol), K₂CO₃ (138 mg, 1 mmol), NaOH (40 mg, 1 mmol) and *t*-AmOH (3 mL). The reaction was monitored by ¹⁹F NMR. After stirring for 2.5 h, the reaction mixture was filtered through a celite pad. The filtrate was concentrated, the residue was purified with silica gel chromatography (petroleum ether / ethyl acetate = 50 : 1) to give product **7** as a light yellow oil (38 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.7 Hz, 2H), 7.51 – 7.38 (m, 3H), 7.33 – 7.22 (m, 3H), 7.10 (d, *J* = 7.1 Hz, 2H), 3.98 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -106.0 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 197.2 (t, *J* = 32.2 Hz), 131.84, 131.81 (t, *J* = 25.2 Hz), 131.0 (t, *J* = 1.8 Hz), 129.6, 128.7, 128.6, 127.3, 125.6 (t, *J* = 6.3 Hz), 116.1 (t, *J* = 254.8 Hz), 43.1. IR (thin film): v_{max} 3066, 3034, 1747, 1604, 1496, 1452 cm⁻¹. MS (EI): m/z (%) 246 (M⁺), 127, 91 (100). HRMS: Calculated for C₁₆H₁₄F₂O: 246.0856; Found: 246.0859.

Procedure for the Synthesis of Compound 8:

To a 25 mL of Schlenk tube were charged with **3a** (80 mg, 0.2 mmol), K₂CO₃ (138 mg, 1 mmol) and MeOH (4 mL). The reaction was monitored by ¹⁹F NMR. After the reaction mixture was stirred for 3.5 h, the resulting mixture was filtered through a celite pad. The filtrate was concentrated, the residue was purified with silica gel chromatography (petroleum ether / ethyl acetate = 50 : 1) to give product **8** as a light green oil (36 mg, 69% yield). **Note:** This compound is unstable. It can slowly decompose on the silica gel column. ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.53 (m, 4H), 7.51 – 7.40 (m, 3H), 7.35 (t, *J* = 7.5 Hz, 2H), 7.28 (d, *J* = 7.3 Hz, 1H), 6.33 (s, 1H), 3.65 (s, 3H). ¹⁹F NMR (376

MHz, CDCl₃) δ -96.6 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 150.4 (t, J = 27.5 Hz), 135.6 (t, J = 27.3 Hz), 133.3, 130.1 (t, J = 1.8 Hz), 129.2, 128.5, 128.4, 128.0, 125.9 (t, J = 5.7 Hz), 118.6 (t, J = 244.3 Hz), 115.6 (t, J = 5.7 Hz), 60.2. IR (thin film): v_{max} 3064, 2941, 1664, 1494, 1451 cm⁻¹. MS (EI): m/z (%) 260 (M⁺), 198, 127 (100). HRMS: Calculated for C₁₆H₁₄F₂O: 260.1613; Found: 260.1017.

Procedure for the Synthesis of Compound 9:

To a 25 mL of Schlenk tube were charged with **3a** (80 mg, 0.2 mmol), K₂CO₃ (138 mg, 1 mmol), pyrrolindione (2 mL) and *t*-AmOH (1 mL). The reaction was monitored by ¹⁹F NMR. After the reaction was stirred for 5 h, the resulting mixture was washed by water (20 mL × 3), dried over Na₂SO₄, filtered, and concentrated. The residue was purified with silica gel chromatography (petroleum ether 100%) to give product **9** as a colorless oil (30 mg, 67% yield). This compound is known³. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.6 Hz, 2H), 7.56 (d, *J* = 7.4 Hz, 2H), 7.53 – 7.45 (m, 3H), 7.42 (d, *J* = 7.1 Hz, 1H), 7.41 – 7.34 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -74.9 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 136.2 (t, *J* = 28.2 Hz), 132.1 (t, *J* = 2.2 Hz), 130.7 (t, *J* = 1.7 Hz), 130.0, 128.5, 128.5, 125.4 (t, *J* = 4.6 Hz), 120.1, 112.7 (t, *J* = 231.2 Hz), 88.7 (t, *J* = 6.1 Hz), 81.8 (t, *J* = 41.8 Hz).

References:

- (2) Y. Masato, S. Daiki and I. Masahiko, Chem. Lett., 1994, 12, 2357.
- (3) Y.-B. Yu, G.-Z. He and X. Zhang, Angew. Chem., Int. Ed. 2014, 53, 10457.

T. M. Gøgsig, L. S. Søbjerg, A. T. Lindhardt, K. L. Jensen and T. Skrydstrup, J. Org. Chem., 2008, 73, 3404.

2,2,2-Trifluoroethyl 4-methylbenzenesulfonate (II)

2,2-Difluorovinyl 4-methylbenzenesulfonate (III)

3,3-Difluoro-1-phenyl-2-(tosyloxy)allyl acetate (1a)

3,3-Difluoro-2-(tosyloxy)-1-(4-(trifluoromethyl)phenyl)allyl acetate (1b)

1,1-Difluoro-5-phenyl-2-(tosyloxy)pent-1-en-3-yl acetate (1c)

(Z)-3,3-Difluoro-1,3-diphenylprop-1-en-2-yl-4-methylbenzenesulfonate (3a)

(Z)-3-(4-(Ethylthio)phenyl)-3,3-difluoro-1-phenylprop-1-en-2-yl-4-methylbenzenesulfonate (3b)

(Z)-3,3-Difluoro-3-(4-methoxyphenyl)-1-phenylprop-1-en-2-yl-4-methylbenzenesulfonate (3c)

(Z) - 3 - (Benzo[d][1,3] dioxol - 5 - yl) - 3, 3 - difluoro - 1 - phenylprop - 1 - en - 2 - yl - 4 - methylbenzenesulfonate (3d)

(Z)-3,3-Difluoro-1-phenyl-3-(4-vinylphenyl)prop-1-en-2-yl-4-methylbenzenesulfonate (3e)

(Z)-3-([1,1'-Biphenyl]-4-yl)-3,3-difluoro-1-phenylprop-1-en-2-yl-4-methylbenzenesulfonate (3f)

(Z)-3-([1,1'-Biphenyl]-3-yl)-3,3-difluoro-1-phenylprop-1-en-2-yl-4-methylbenzenesulfonate (3g)

(Z)-3-(4-(*tert*-Butyl)phenyl)-3,3-difluoro-1-phenylprop-1-en-2-yl-4-methylbenzenesulfonate (3h)

(Z)-3,3-Difluoro-1-phenyl-3-(4-(trimethylsilyl)phenyl)prop-1-en-2-yl-4-methylbenzenesulfonate (3i)

(Z)-3-(3,5-Dimethylphenyl)-3,3-difluoro-1-phenylprop-1-en-2-yl-4-methylbenzenesulfonate (3j)

(Z)-3-(2,5-Dimethylphenyl)-3,3-difluoro-1-phenylprop-1-en-2-yl-4-methylbenzenesulfonate (3k)

(Z)-3-([1,1'-Biphenyl]-2-yl)-3,3-difluoro-1-phenylprop-1-en-2-yl-4-methylbenzenesulfonate (3l)

(Z)-Ethyl 4-[1,1-difluoro-3-phenyl-2-(tosyloxy)allyl]benzoate (3m)

S49

(Z)-3,3-Difluoro-3-(3-nitrophenyl)-1-phenylprop-1-en-2-yl-4-methylbenzenesulfonate (30)

(Z)-3-[4-(Ethylthio)phenyl]-3,3-difluoro-1-[4-(trifluoromethyl)phenyl]prop-1-en-2-yl-4-methylb enzenesulfonate (3p)

(Z)-3,3-Difluoro-3-(p-tolyl)-1-[4-(trifluoromethyl)phenyl]prop-1-en-2-yl-4-methylbenzenesulfon ate (3q)

(Z)-1,1-Difluoro-1-(4-methoxyphenyl)-5-phenylpent-2-en-2-yl-4-methylbenzenesulfonate (3r)

(Z)-Ethyl-3-(1,1-difluoro-5-phenyl-2-(tosyloxy)pent-2-en-1-yl)benzoate (3t)

(1,1-Difluoropropane-1,3-diyl)dibenzene (4)

(E)-(3,3-Difluoroprop-1-ene-1,2,3-triyl)tribenzene (5)

(1,1-Difluoropropane-1,2,3-triyl)tribenzene (6)

1,1-Difluoro-1,3-diphenylpropan-2-one (7)

(Z)-(3,3-Difluoro-2-methoxyprop-1-ene-1,3-diyl)dibenzene (8)

(3,3-Difluoroprop-1-yne-1,3-diyl)dibenzene (9)

