A Boron Difluoride Dye with Aggregation-Induced Emission Feature and Highly Sensitive to Intra- and Extra-Cellular pH Changes

Dan Wu,^{a,b} Li Shao,^a Yang Li,^{a,b} Qinglian Hu,^c Feihe Huang,^a Guocan Yu^{*,a} and Guping Tang^{*,b}

^a Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China, and

Fax: +86-571-8795-1895; Tel: +86-571-8795-3189; Email address: guocanyu@zju.edu.cn.

^b Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China, and

Fax: +86 852-3442-0542; Tel: +86-852-34427724; Email address: tangguping@zju.edu.cn.

Electronic Supplementary Information (14 pages)

1.	Materials and methods	S2
2.	Synthesis of P_3T	S 3
3.	¹ HNMR spectrum of P_3T after acidification and alkalization	S8
4.	Lipper–Mataga plot of P_3T	S9
5.	Fabrication of a ternary FRET system	S9
6.	Molecular orbital parameters of P_3T	S10
7.	Molecular orbital parameters of P_3TH^+	S11
8.	Preparation of nanoparticles	S12
9.	Cytotoxcity Evaluations	S12
10.	Controlled Release Studies	S13
11.	X-ray crystal data of P_3T	S14

1. Materials and methods

Solvents were either used as purchased or dried according to procedures described in the literature. Compounds 1,^{S1} 2 and P₃T were prepared according to the literature procedures. NMR spectra were detected with a Bruker Avance DMX 400 spectrophotometer or a Bruker Avance DMX 500 spectrophotometer with use of the deuterated solvent as the lock and the residual solvent or TMS as the internal reference. Low-resolution electrospray ionization mass spectra were recorded with a Bruker Esquire 3000 Plus spectrometer. High-resolution mass spectrometry experiments were performed with a Bruker Daltonics Apex III spectrometer. Transmission electron microscopy investigations were carried out on a HT-7700 instrument. UV-vis spectra were taken on a Shimadzu UV-2550 UV-vis spectrophotometer. The fluorescence experiments were conducted on a RF-5301 spectrofluorophotometer (Shimadzu Corporation, Japan). The singlecrystal structures were analyzed on a Gemini A Ultra single crystal diffractometer. The cell images were taken with a confocal laser scanning microscopy (CLSM, Radiance2100, Bio-Rad) with a $100 \times \text{oil}$ immersion lens. Density functional theory (DFT) calculations were performed with the Gaussian 09 program. Geometry optimizations and frequency calculations were performed with B3LYP functional using 6-31+G(d) basis set for all the atoms in gas phase.

2. Synthesis of P_3T

Scheme S1. Synthesis of **P**₃**T**.

2.1 Synthesis of compound 2

Pd(OAc)₂ (2.24 mg, 10.0 µmol), xantphos (5.79 mg, 10.0 µmol) and Cs₂CO₃ (131 mg, 400 µmol) were dissolved in toluene (2 mL), then 2-Bromoquinoline (41.6 mg, 200 µmol) and 4- (dimethylamino)-*N*-phenylbenzamidine (52.6 mg, 0.220 mmol) were added into toluene solution and the mixture was stirred at 140 °C for 24 h. The combined organic phase was concentrated and purified by flash column chromatography (petroleum ether/CH₂Cl₂/EtOAc, 2/1/0.5, $\nu/\nu/\nu$) to afford compound **2** as a white solid (67.4 mg, 92%). The ¹H NMR spectrum of **2** is shown in Figure S1. ¹H NMR (400 MHz, chloroform-*d*, room temperature): δ (ppm): 14.03 (s, 1H), 8.04 (d, *J* = 8 Hz, 1H), 7.87 (d, *J* = 8 Hz, 1H), 7.72 (d, *J* = 8 Hz, 1H), 7.58 (m, 3H), 7.38 (t, *J* = 8 Hz, 1H). 7.21 (t, *J* = 8 Hz, 2H), 7.01 (t, *J* = 8 Hz, 3H), 6.60 (d, *J* = 8 Hz, 2H), 2.97 (s, 6H). The ¹³C NMR spectrum of **2** is shown in Figure S3. ¹¹L22, 40.16. LRESIMS is shown in Figure S3: *m/z* 367.2 [M + H]⁺ (100%). HRESIMS: *m/z* calcd for [M + H]⁺ C₂₄H₂₃N₄, 367.1845; found 367.1853, error 2.2 ppm.

Fig. S2 ¹³C NMR spectrum (100 MHz, chloroform-d, room temperature) of 2.

Fig. S3 Electrospray ionization mass spectrum of 2.

2.2 Synthesis of compound P_3T

2 (0.500 mmol) was dissolved in toluene (5 mL), then BF₃·Et₂O (2.00 mmol) and Et₃N (1.50 mmol) were added into toluene solution and the mixture was stirred at 120 °C for 6 h. The combined organic phase was concentrated and purified by flash column chromatography on neutral Al₂O₃ to afford compound **P**₃**T** as a green powder in the yield of 85%. The ¹H NMR spectrum of **P**₃**T** is shown in Figure S4. ¹H NMR (400 MHz, chloroform-*d*, room temperature): δ (ppm): 8.58 (d, *J* = 8 Hz, 1H), 8.08 (d, *J* = 8 Hz, 1H), 7.71–7.64 (m, 1H), 7.46–7.43 (m, 3H), 7.36–7.33 (m,1H), 7.29–7.25 (m, 2H), 7.22–7.18 (m, 1H), 6.48–6.45 (m, 2H), 2.93 (s,6H). The ¹³C NMR spectrum of **P**₃**T** is shown in Figure S5. ¹³C NMR (100 MHz, chloroform-*d*, room temperature) δ (ppm): 163.86, 155.64, 151.54, 142.33, 140.90, 138.55, 132.28, 131.16, 128.77, 128.16, 127.69, 126.69, 125.43, 125.08, 123.28, 122.31, 121.71, 110.64, 39.99. LRESIMS is shown in Figure S6: *m/z* 415.3 [M + H]⁺ (100%). HRESIMS: *m/z* calcd for[M + H]⁺ C₂₄H₂₂BF₂N₄, 415.1828; found 415.1832, error –1.0 ppm.

Fig. S5 ¹³C NMR spectrum (100 MHz, chloroform-*d*, room temperature) of P₃T.

Fig. S7 COSY (500 MHz, chloroform-*d*, room temperature) spectrum of P₃T.

3. ¹HNMR spectra of P_3T after acidification and alkalization

Fig. S8 ¹H NMR spectrum (400 MHz, chloroform-d, room temperature) of P₃T upon addition

Fig. S9 ¹H NMR spectrum (400 MHz, chloroform-*d*, room temperature) of P_3TH^+ upon addition of TEA.

4. Lippert–Mataga plot of P_3T

Fig. S10 Lippert–Mataga plot P_3T in solvents with different polarities. Abbreviation: EA = ethyl acetate, THF = tetrahydrofuran, DMSO = dimethylsulfoxide, DMF = dimethylformamide, AN = acetonitrile. v_A = absorption wavelength, v_F = emission wavelength, and Δf = orientation polarizability = $(\varepsilon - 1)/(2\varepsilon + 1) - (n^2 - 1)/(2n^2 + 1)$, where ε = dielectric constant and n = refractive index.

5. Fabrication of a ternary FRET system

Fig. S11 Fluorescence changes of P_3T in the presence of DOX.

6.	Molecular	orbital	parameters	of P ₃ T
----	-----------	---------	------------	---------------------

Species	Frontier Orbital	Energy Level/eV	Figure
	LUMO+1	-1.23	
	LUMO+1	-2.17-4.24	
P ₃ T	НОМО	-5.53	
	HOMO-1	-6.06	
	НОМО–2	-6.71	

Table. S1 Molecular orbital parameters of P_3T .

Species	Frontier Orbital	Energy Level/eV	Figure
	LUMO+2	-4.20	
	LUMO+1	-4.24	
P ₃ TH ⁺	LUMO	-4.93	
	НОМО	-8.39	
	HOMO-1	-8.73	
	НОМО-2	-9.04	

7. Molecular orbital parameters of P_3TH^+

Table. S2 Molecular orbital parameters of P_3TH^+ .

8. Preparation of nanoparticles

8.1. Preparation of $P_3T/PF127$ NPs

 P_3T (2.00 mg) was dissolved in THF (0.5 mL), PF127 (200 mg) was dissolved in water (5 mL). Then the THF solution containing P_3T was added into PF127 aqueous solution dropwisely. After stirring in the dark for 24 h, the resulting mixture was sealed in dialysis bags with a molecular weight cut-off of 8 kDa to 14 kDa and dialyzed against DI water for 24 h to remove free P_3T . The loading effect of P_3T was determined to be 0.86% by using UV spectroscopy. The morphology of the prepared $P_3T/PF127$ NPs was examined by TEM and DLS. TEM experiments were achieved on a HT-7700 instrument. Afterwards, the solution of $P_3T/PF127$ NPs rested overnight before being used for DLS tests. The diameters of the $P_3T/PF127$ NPs were measured on a Nano-ZS ZEN3600 instrument.

8.2. Preparation of **P**₃**T**/DOX/PF127 NPs

 P_3T (2.00 mg) was dissolved in THF (0.5 mL), DOX·HCl (3.00 mg) was dissolved in water (0.5 mL) in the presence of triethylamine (TEA). Then the THF solution containing P_3T and DOX aqueous solution was added into PF127 (200 mg, 5 mL) aqueous solution dropwisely. After stirring in the dark for 24 h, the resulting mixture was sealed in dialysis bags with a molecular weight cut-off of 8 kDa to 14 kDa and dialyzed against DI water for 24 h to remove free P_3T and DOX in the solution.

9. Cytotoxcity Evaluations

The cytotoxicity of free DOX, $P_3T/PF127$ NPs, and $P_3T/DOX/PF127$ NPs was evaluated by using MTT assay. HeLa cells (human cervical carcinoma, ATCC) were seeded in 96-well plates at 1×10⁴ cells/well, allowed to adhere overnight and incubated with serum-free culture media containing free DOX, $P_3T/PF127$ NPs, or $P_3T/DOX/PF127$ NPs at a serious of concentration. After 4 h or 24 h incubation, the media was removed and washed with PBS for three times. The cells were incubated in 100 µL DMEM medium containing 0.5 mg/mL MTT reagent for an additional 4 h, 100 µL DMSO was added to each well to dissolve formazan crytal formed. Eventually, each well was measured using a scanning spectrophotometer (Model 550, Bio-Rad) at a wavelength 570 nm.

Fig. S12 Cytotoxicity experiment of $P_3T/PF127$ NPs at various concentrations on HeLa cells for 4 h and 24 h.

As shown in Figure S12, we found the relative cell viability was higher than 75% by culturing HeLa cells with of P_3T /PF127 NPs for 4 h and 24 h. The concentration in the MTT assay was extremely high (1010 µg/mL), and the viability reached higher than 75%, confirming low cytotoxicity of P_3T /PF127 NPs.

Fig. S13 Cytotoxicity experiment of P_3T /DOX/PF127 NPs and free DOX at various concentrations on HeLa cells for 4 h (left) and 24 h (right).

10. Controlled Release Studies

In vitro released profile of the DOX from $P_3T/DOX/PF127$ NPs was monitored using the dialysis method. The $P_3T/DOX/PF127$ ternary complex (3 mg) was dissolved in 2 mL phosphate buffer solutions at pH values of 5.0, 6.0 or 7.4, sealed in dialysis bags with a molecular weight cut-off of 8 kDa to 14 kDa. The dialysis apparatus was agitated on an orbital shaker at 100 rpm at 37 °C. At designated time intervals, 1 mL medium was taken out

from the 25 mL solution out of dialysis bag for UV detection and was then put back to original system. The UV absorption was measured on a UV spectrophotometer (UV-2550, Shimazu, Japan) at the wavelength of 480 nm. The DOX concentration was calculated with a standard curve calibrated with DOX samples of known concentration. The DOX concentration in the solution was calculated based on the standard curve calibrated with DOX solution of known concentration.

11. X-ray crystal data of P_3T

Crystallographic data: yellow, $C_{24}H_{21}BF_2N_4$, *FW* 414.26, triclinic, space group *P* \bar{i} , *a* = 8.4892(7), *b* = 8.7454(7), *c* = 14.2585(11) Å, *a* = 83.179(7)°, *β* = 79.851(7)°, *γ* = 84.564(7)°, *V* = 1031.68(14) Å³, *Z* = 2, *D*_c = 1.334 g cm⁻³, *T* = 293.15 K, *μ* = 0.092 mm⁻¹, 6450 measured reflections, 3780 independent reflections, 282 parameters, 0 restraints, *F*(000) = 432, *R*₁ = 0.0773, *wR*₂ = 0.1357 (all data), *R*₁ = 0.0491, *wR*₂ = 0.1119 [*I* > 2*σ*(*I*)], max. residual density 0.153 e•Å⁻³, and goodness-of-fit (*F*²) = 1.041. CCDC: 1428967.

References:

S1. D. B. Zhao, G. C. Li, D. Wu, X. R. Qin, P. Neuhaus, Y. Y. Cheng, S. J. Yang, Z. Y. Lu, X.
M. Pu, C. Long and J. S. You, *Angew. Chem. Int. Ed.*, 2013, **52**, 13676.