Electronic Supporting Information (ESI)

Metal-free oxidative cyclization of acetophenones with diamines: A facile access to phenylpyridines

Rohit Sharma,^{ab} Neha Patel,^c Ram A. Vishwakarma,^{ab} Prasad V. Bharatam,^c Sandip B. Bharate^{ab}*

^aMedicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India. Fax: +91-191-2586333; Tel: +91-191-2585006; *E-mail: sbharate@iiim.ac.in

^bAcademy of Scientific & Innovative Research (AcSIR), CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India

^cDepartments of Pharmacoinformatics and Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab-160062.

Section	Contents	Page no.
S1.	Experimental procedures and spectral data	S3-S11
S2.	Scanned copies of ¹ H, ¹³ C and DEPT135 NMR spectras of all	S12-S51
	compounds	
S3.	Computational details	S52-S64
	S3.1.General information	S52
	• Table S1. List of energy values for all the optimized	
	geometries calculated at B3LYP/6 $311+G(d,p)$ level	
	• Figure S1. Potential energy surface diagrams of pathway 1	
	(without I_2) and pathway 3 (with I_2). The y axis is showing	
	relative energy values in kcal mol ⁻¹ . All energy differences	
	are taken from the most stable tautomer VIII.	
	S3.2. Cartesian coordinates of optimized geometries	S53
S4.	Effect of HCl loading on product yield	S65
	• Figure S2. Effect of HCl loading on product yield	
S5.	The gram-scale reaction	S66
	• Figure S3. The gram-scale reaction for synthesis of 3a	
S6.	LC-ESI-MS based mechanistic studies for synthesis of 2-(4-	S67-S70
	methoxyphenyl) pyridine (3b).	
	• Table S2. Gradient details used in LC-ESI-MS/MS analysis	
	• Figure S4. Experimental evidence to support reaction	
	mechanism pathway 3: LCMS analysis of reaction mixture	
	after 2 hrs	
S7.	Synthesis of intermediate α -iodoacetophenone V and further	S71
	its reaction with diamine 2 to produce 2-phenylpyridine 3a	
	• Figure S5. Experimental evidence to support reaction	
	mechanism pathway 3: Synthesis of intermediate V and	
	further its reaction with diamine 2 to produce 2-	
	phenylpyridine 3a	
S8.	References associated with ESI	S72

TABLE OF CONTENTS

<u>SECTION S1</u>. **EXPERIMENTAL PROCEDURES AND SPECTRAL DATA**

S1.1. Chemistry protocols

General. All chemicals were obtained from Sigma-Aldrich Company and used as received. ¹H, ¹³C and DEPT NMR spectra were recorded on Brucker-Avance DPX FT-NMR 500 and 400 MHz instruments. Chemical data for protons are reported in parts per million (ppm) downfield from tetramethylsilane and are referenced to the residual proton in the NMR solvent (CDCl₃, 7.26 ppm; CD₃OD, 3.31 ppm). The carbon nuclear magnetic resonance spectra (¹³C NMR) were recorded at 125 MHz or 100 MHz: chemical data for carbons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to the carbon resonance of the solvent (CDCl₃, 77.16 ppm; CD₃OD, 49.0). ESI-MS and HRMS spectra were recorded on Agilent 1100 LC-Q-TOF and HRMS-6540-UHD machines. IR spectra were recorded on Perkin-Elmer IR spectrophotometer. Melting points were recorded on digital melting point apparatus. HPLC analysis was done on Shimadzu HPLC system (model: LC-6AD) equipped with a PDA detector (model: SPD-M20A) using Enable C₁₈ G (5µm, 4.6 × 250 mm) column. Mobile phase used was ACN: Water (90:10) isocratic elution at flow rate of 1ml/min.

Procedure for synthesis of 2-iodo-1-phenylethanone (V):¹ To the solution of acetophenone **1a** (1 equiv.) in ethanol was added CuO(II) (20 mol%) and iodine (20 mol%) and reaction mixture was heated at 80 °C for 2 hrs. After completion of the reaction, solvent was evaporated. Ethyl acetate and water was added to reacton mixture and organic layer was separated, dried over anhydrous sodium sulphate and concentarted in vacuo to get crude product. The crude residue was purified over silica gel column chromatography (EtOAc/hexane) to get product **V**.

2-Iodo-1-phenylethanone (V): Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.99-7.97 (m, 2H), 7.60-7.58 (m, 1H), 7.58-7.45 (m, 2H), 4.35 (s, 2H); GC-MS: *m/z* (EI) 246 (M⁺, 100), 127 (65), 106 (125).

Procedure for synthesis of 2-phenylpyridines 3a-t and 3-phenylpyridines 5a-b: To a solution of acetophenones **1a-t** or phenylacetones **4a-b** (1 equiv.) in 2 mL of DMSO was added 8 mol% iodine, 10 μ l of HCl and 3 equiv of 1,3-diaminopropane (**2**) and resulting mixture was stirred at 80 °C under oxygen atmosphere for 4 hrs. After completion of the reaction, iodine was quenched with sodium thiosulphate solution. Ethyl acetate was added to the reaction mixture and organic layer was separated, dried over anhydrous sodium sulphate and concentrated over vacuo rotavapor to get crude product. The crude residue was chromatographed on a silica gel column (#100-200) using EtOAc/hexane as eluent to get titled products **3a-t** and **5a-b**.

2-Phenylpyridine (3a):

Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.68-8.67 (m, 1H), 7.99-7.97 (m, 2H), 7.69-7.68 (m, 2H), 7.47-7.37 (m, 3H), 7.20- 7.16 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 157.5, 149.7, 139.4, 136.8, 129, 128.8, 126.9, 122.1, 120.6; IR (CHCl₃): v_{max} 3086, 3062, 3036, 3007, 2921, 1954, 1766, 1586, 1580, 1565, 1468, 1449, 1425, 1293, 1269, 1152, 1060, 1039, 1020 cm⁻¹; GC-MS: *m/z* (EI) 157 (M+H, 100), 254 (31), 157 (15); HR-ESIMS: *m/z* 156.0806 calcd for C₁₁H₉N + H⁺ (156.0808).

2-(4-Methoxyphenyl) pyridine (3b):

Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.66 (d, *J* = 4.0 Hz, 1H), 7.96-7.94 (m, 2H), 7.71-7.67 (m, 2H), 7.18- 7.01 (m, 1H), 7.01-6.99 (m, 2H), 3.86 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 160.5, 157.1, 149.5, 136.7, 132, 128.4, 128.2, 121.4, 119.8, 114.1, 114.0, 55.4; IR (CHCl₃): v_{max} 3356, 3052, 3005, 2956, 2926, 2852, 2837, 1608, 1589, 1515, 1466, 1434, 1305, 1270, 1248, 1176, 1039, 1024 cm⁻¹; GC-MS: *m/z* (EI) 185 (M⁺, 100), 170 (15), 142 (39), 115 (8); HR-ESIMS: *m/z* 186.0917 calcd for C₁₂H₁₂NO+H⁺ (186.0913).

2-(p-Tolyl) pyridine (3c):

Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.68 (d, *J* = 4.8 Hz, 1H), 7.90 (d, *J* = 8 Hz, 2H), 7.72-7.71 (m, 2H), 7.30-7.26 (m, 2H), 7.21-7.18 (m, 1H), 2.41 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 157.5, 149.6, 139, 136.7, 136.6, 129.5, 126.8, 121.8, 120.3, 21.3; IR (CHCl₃): v_{max} 3747, 3584, 3348, 2922, 2852, 2359, 1729, 1588, 1464, 1018 cm⁻¹; GC-MS: *m/z* (EI) 169 (M⁺, 100), 154 (9), 115 (8); HR-ESIMS: *m/z* 170.0964 calcd for C₁₂H₂₅N+H⁺ (170.0965).

2-(m-Tolyl) pyridine (3d):

Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.68 (d, *J* = 4 Hz, 1H), 7.90 (d, *J* = 8 Hz, 2H), 7.71-7.70 (m, 2H), 7.29-7.26 (m, 2H), 7.20-7.19 (m, 1H), 2.41 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 157.5, 149.6, 138.9, 136.7, 136.6, 129.5, 126.8, 121.8, 120.3, 21.3; IR (CHCl₃): v_{max} 3371, 3051, 3007, 2923, 2854, 1614, 1588, 1563, 1467, 1433, 1298, 1266, 1185, 1094, 1016cm⁻¹; GC-MS: *m/z* (EI) 169 (M⁺, 100), 154 (8), 139 (5), 127 (3), 115 (8); HR-ESIMS: *m/z* 170.0962 calcd for C₁₂H₁₁N+H⁺ (170.0964).

2-(3, 4-Dimethoxyphenyl) pyridine (3e):

White solid; m.p. 75-80 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.66 (d, *J* = 4 Hz, 1H), 7.71-7.68 (m, 3H), 7.56- 7.49 (m, 1H), 7.19-7.16 (m, 1H), 6.96 (d, *J* = 8 Hz, 1H), 3.99 (s, 3H), 3.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 157.1, 150.0, 149.5, 149.3, 136.6, 132.4, 121.5, 119.9, 119.3, 111.2, 110.0, 55.98, 55.96; IR (CHCl₃): v_{max} 3584, 3384, 3082, 3003, 2956, 2932, 2837, 1726, 1584, 1564, 1519, 1466, 1433, 1405, 1254, 1066, 1026 cm⁻¹; GC-MS: *m/z* (EI) 215 (M⁺, 100), 200 (27), 172 (37), 144 (22), 129 (31), 117 (6), 102 (11); HR-ESIMS: *m/z* 216.1023 calcd for [C₁₃H₁₃NO₂+H]⁺ (216.1019).

2-(3, 4, 5-Trimethoxyphenyl) pyridine (3f):

Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.68-8.67 (m, 1H), 7.77-7.69 (m, 3H), 7.26-7.20 (m, 2H), 3.96 (s, 6H), 3.91 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 156, 152.5, 148.5, 138, 135.7, 134, 121, 119.3, 103.1, 59.9, 55.2; IR (CHCl₃): v_{max} 3355, 2923, 2851, 1585, 1565, 1469, 1407, 1127, 1017 cm⁻¹; GC-MS: *m/z* (EI) 245 (M⁺, 100), 230 (64), 202 (38), 187 (40), 172 (51), 130 (20), 116 (32); HR-ESIMS: *m/z* 246.1136 calcd for [C₁₄H₁₅NO₃+H]⁺ (246.1125).

4-Methoxy-2-(pyridin-2-yl) phenol (3g):

Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.51 (d, *J* = 4 Hz, 1H), 7.87-7.82 (m, 2H), 7.31-7.23 (m, 2H), 6.98-6.91 (m, 2H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 157.6, 154.1, 152.1, 146.0, 137.8, 121.6, 119.1, 118.8, 117.9, 111.0, 56.0; IR (CHCl₃): v_{max} 3585, 2925, 2850, 1725, 1595, 1564, 1493, 1463, 1420, 1287, 1225, 1178, 1159, 1057, 1041 cm⁻¹; ESI-MS: *m/z* 202.04 [M+H]⁺; HR-ESIMS: *m/z* 202.0868 calcd for [C₁₂H₁₂NO₂+H]⁺ (202.0863).

2-(Naphthalen-2-yl) pyridine (3h):

Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.80-8.78 (m, 1H), 8.09-8.07 (m, 1H), 7.92-7.90 (m, 2H), 7.83-7.79 (m, 1H), 7.59-7.48 (m, 5H), 7.34-7.25 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 157.4, 147.7, 136.7, 134.6, 132.1, 129.3, 127.1, 126.5, 125.6, 124.6, 124, 123.8, 123.5, 123.2, 120.2; IR (CHCl₃): v_{max} 3049, 3008, 2924, 2853, 1587, 1563, 1472, 1438, 1425, 1251, 1189, 1092, 1046 cm⁻¹; GC-MS: *m/z* (EI) 205 (M⁺, 100), 178 (6); HR-ESIMS: *m/z* 206.0952 calcd for [C₁₅H₁₂N+H]⁺ (206.0964).

Page S6

3-(Pyridin-2-yl) phenol (3i):

Yellow solid; m.p. 150-155 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.67-8.66 (m, 1H), 7.79-7.66 (m, 2H), 7.56-7.55 (m, 1H), 7.45-7.41 (m, 1H), 7.32-7.23 (m, 2H), 6.90-6.87 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 157.5, 156.9, 149.2, 140.5, 137.3, 130, 122.4, 121.4, 119, 116.6, 114.4; IR (CHCl₃): v_{max} 3850, 3745, 3306, 2924, 2852, 1728, 1586, 1565, 1456, 1428, 1312, 1281, 1210, 1154, 1020 cm⁻¹; GC-MS: *m/z* (EI) 171 (M⁺, 100), 143 (52), 117 (68); HR-ESIMS: *m/z* 172.0755 calcd for C₁₁H₉NO+H⁺ (172.0757).

4-(Pyridin-2-yl) phenol (3j):

White solid; HPLC: 95% ($t_R = 3.22 \text{ min}$); ¹H NMR (400 MHz, CDCl₃): δ 8.62-8.61 (m, 1H), 7.77-7.73 (m, 3H), 7.65 (d, J = 8 Hz, 1H), 7.22-7.20 (m, 1H), 6.80 (d, J = 4 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃ + CD₃OD): δ 159.5, 159, 150.3, 138.6, 132.1, 129.8, 129.7, 122.8, 121.9, 117, 116.9; IR (CHCl₃): v_{max} 3585, 3333, 2921, 2851, 1595, 1564, 1518, 1470, 1443, 1268, 1237, 1173, 1020 cm⁻¹; ESI-MS: m/z 172.18 [M+H]⁺.

2-(4-Chlorophenyl) pyridine (3k):

Yellow solid; m.p. 47-51 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.69 (d, J = 4 Hz, 1H), 7.95 (d, J = 8 Hz, 2H), 7.76-7.69 (m, 2H), 7.46 (d, J = 12 Hz, 2H), 7.26 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 156.2, 149.7, 137.8, 136.8, 135.1, 128.9, 128.2, 122.3, 120.3; IR (CHCl₃): v_{max} 3584, 3357, 2922, 2851, 1588, 1464, 1434, 1398, 1089, 1012 cm⁻¹; GC-MS: m/z (EI) 189 (M⁺, 100), 127 (34), 102 (5); HR-ESIMS: m/z 190.0411 calcd for C₁₁H₈ClN+H⁺ (190.0418).

2-(4-Bromophenyl) pyridine (3l):

Page S7

Yellow solid; m.p. 60-65 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.69-8.68 (m, 1H), 7.88-7.86 (m, 2H), 7.75 (m, 1H), 7.70-7.69 (m, 1H), 7.61-7.59 (m, 2H), 7.26-7.23 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 156.3, 149.8, 138.3, 136.8, 131.9, 128.5, 123.4, 122.4, 120.3; IR (CHCl₃): v_{max} 3584, 3050, 3007, 2923, 2851, 1586, 1560, 1464, 1433, 1289, 1100, 1030 cm⁻¹; GC-MS: *m/z* (EI) 233 (M⁺, 100), 155 (10), 127 (20); HR-ESIMS: *m/z* 233.9913 calcd for C₁₁H₉BrN+H⁺ (233.9913).

2-(2-Chlorophenyl) pyridine (3m):

Yellow oil; HPLC: 85% ($t_{\rm R}$ = 4.17 min); ¹H NMR (400 MHz, CDCl₃): δ 8.75-8.73 (m, 1H), 7.81-7.76 (m, 1H), 7.68-7.65 (m, 1H), 7.62-7.60 (m, 1H), 7.50-7.48 (m, 1H), 7.38-7.30 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 156.8, 149.5, 139.1, 136, 132.2, 131.6, 130.1, 130, 127, 125, 122.5; IR (CHCl₃): $v_{\rm max}$ 3584, 3356, 2923, 2852, 1652, 1615, 1429, 1321, 1219, 1156, 1020 cm⁻¹; ESI-MS: m/z 190.00 [M+H]⁺; HR-ESIMS: m/z 190.0410 calcd for [C₁₁H₈ClN+H]⁺ (190.0418).

2-(2, 4-Dichlorophenyl) pyridine (3n):

Yellow solid; m.p. 80-85 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.74-8.72 (m, 1H), 7.78-7.76 (m, 1H), 7.66-7.64 (m, 1H), 7.58-7.56 (m, 1H), 7.51 (d, *J* = 4 Hz, 1H), 7.38-7.30 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 154.4, 148.2, 136.1, 134.6, 133.4, 131.5, 131, 128.5, 126, 123.4, 121.3; IR (CHCl₃): v_{max} 3584, 3360, 3069, 2957, 2926, 2854, 1726, 1593, 1571, 1460, 1432, 1376, 1287, 1105, 1084, 1051 cm⁻¹; GC-MS: *m/z* (EI) 224 (M⁺, 100), 190 (25), 153 (16), 126 (10); HR-ESIMS: *m/z* 224.0029 calcd for [C₁₁H₇Cl₂N+H]⁺ (224.0028).

2-(5-Chloro-[1, 1'-biphenyl]-2-yl) pyridine (30):

Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.69 (dd, J = 2, 4.8 Hz, 1H), 7.73(dd, J = 1.6, 7.6 Hz, 1H), 7.35-7.28 (m, 6H), 7.20-7.15 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 155.9, 148.5, 139.6, 138.7, 138.6, 136.1, 134, 131.3, 129.5, 128.5, 128.1, 127.4, 122.3; IR (CHCl₃): v_{max} 3584, 3352, 3057, 3852, 2924, 1724, 1579, 1596, 1579, 1443, 1419, 1091, 1073, 1012 cm⁻¹; GC-MS: m/z (EI) 265 (M⁺, 100), 228 (41), 202 (8), 114 (13); HR-ESIMS: m/z 266.0735 calcd for C₁₇H₁₂ClN+H⁺ (266.0731).

2-(2, 3, 4-Trichlorophenyl) pyridine (3p):

White solid; m.p. 75-80 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.72 (d, J = 4 Hz, 1H), 7.81-7.77 (m, 1H), 7.61 (d, J = 8 Hz, 1H), 7.50-7.42 (m, 2H), 7.34-7.32 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 156, 149.7, 139.7, 136.1, 134.2, 132.5, 132.4, 129.5, 128.4, 124.8, 123; IR (CHCl₃): v_{max} 3584, 3356, 3055, 2924, 2853, 1726, 1649, 1588, 1568, 1445, 1429, 1359, 1286, 1153, 1020 cm⁻¹; GC-MS: m/z (EI) 256 (M⁺, 100), 222 (37), 186 (77), 152 (26), 111 (32); HR-ESIMS: m/z 257.9636 calcd for [C₁₁H₈Cl₃N+H]⁺ (257.9639).

2-(3-Nitrophenyl)pyridine (3q):

Yellow solid; m.p. 120-125 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.97-8.96 (m, 1H), 8.56-8.53 (m, 1H), 8.34- 8.31 (m, 1H), 7.99-7.97 (m, 1H), 7.89-7.87 (m, 1H), 7.74-7.70 (m, 2H), 7.54-7.52 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 154.8, 148.9, 140.6, 138.5, 132.9, 130.9, 129.9, 128.9, 124, 121.8, 120; IR (CHCl₃): v_{max} 3584, 3352, 2925, 2853, 1723, 1592, 1531, 1347, 1281, 1072, 1020 cm⁻¹; ESI-MS: *m/z* 201.1 [M+H]⁺.

N-(4-(Pyridin-2-yl) phenyl) acetamide (3r):

Yellow solid; m.p. 155- 160 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.66 (d, *J* = 4 Hz, 1H), 7.94 (d, *J* = 8 Hz, 2H), 7.75-7.71 (m, 1H), 7.69 (d, *J* = 4 Hz, 1H), 7.63 (d, *J* = 8 Hz, 2H), 7.22-7.19 (m, 1H), 2.18 (s, 3H); ¹³C NMR (125 MHz, CDCl₃ + CD₃OD): δ 170.2, 157, 148.8, 139.5, 137.7, 134.3, 127.5, 122.1, 121.1, 119.9, 23.6; IR (CHCl₃): v_{max} 3584, 3300, 2923, 2852, 1668, 1600, 1536, 1467, 1404, 1371, 1317, 1153, 1018 cm⁻¹; ESI-MS: *m/z* 213.1 [M+H]⁺; HR-ESIMS: *m/z* 213.0997 calcd for [C₁₃H₁₂N₂+H]⁺ (213.1022).

2, 3'-Bipyridine (3s):

N N

Yellow oil; HPLC: 92% ($t_R = 3.83 \text{ min}$); ¹H NMR (400 MHz, CD₃OD): δ 9.17-9.16 (m, 1H), 8.70-8.69 (m, 1H), 8.62 (d, J = 4 Hz, 1H), 8.45-8.42 (m, 1H), 7.96-7.95 (m, 2H), 7.60-7.56 (m, 1H), 7.46-7.42 (m, 1H); ¹³C NMR (100 MHz, CD₃OD): δ 154.2, 149.5, 148.9, 147.2, 137.7, 135.3, 135.1, 124, 123.2, 121.2; IR (CHCl₃): v_{max} 3584, 3348, 1925, 2853, 1723, 1587, 1460, 1433, 1282, 1017 cm⁻¹; GC-MS: m/z (EI) 156 (M⁺, 100), 130 (30), 104 (10); HR-ESIMS: m/z 157.0758 calcd for [C₁₀H₈N₂+H]⁺(157.0760).

2, 2'-Bipyridine (3t):

Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.69-8.68 (m, 2H), 8.41-8.39 (m, 2H), 7.84-7.80 (m, 2H), 7.32-7.29 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 156.2, 149.2, 136.9, 123.7, 121.1; IR (CHCl₃): v_{max} 3410, 3055, 3008, 2978, 1965, 1801, 1581, 1559, 1455, 1418, 1252, 1215, 1090, 1040, 1068 cm⁻¹; GC-MS: *m/z* (EI) 156 (M⁺, 100), 128 (12), 102 (5); HR-ESIMS: *m/z* 157.0753 calcd for [C₁₀H₈N₂+H]⁺ (157.0760).

3-(2-Chlorophenyl)-2-methylpyridine (5a):

Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.55- 8.53 (m, 1H), 7.50-7.46 (m, 2H), 7.46-7.32 (m, 3H), 7.23-7.18 (m, 1H), 2.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 157.9, 150, 139.9, 138.6, 135.9, 134.8, 132.3, 131.1, 130.7, 128.3, 122.2, 24.2; IR (CHCl₃): v_{max} 3583, 3382, 2921, 2850, 1649, 1627, 1569, 1434, 1262, 1125, 1076, 1035, 1005 cm⁻¹; GC-MS: *m/z* (EI) 203 (M⁺, 100), 139 (12), 126 (10), 115 (6); HR-ESIMS: *m/z* 204.0580 calcd for [C₁₂H₁₀ClN+H]⁺ (204.0575).

3-(4-Methoxyphenyl)-2-methylpyridine (5b):

Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.47-8.46 (m, 1H), 7.51-7.48 (m, 1H), 7.25-7.23 (m, 2H), 7.16-6.99 (m, 1H), 6.98-6.95 (m, 2H), 3.85 (s, 3H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159, 155.9, 147.6, 137.2, 136.7, 132.2, 130.1, 121, 113.8, 56.3, 23.4; GC-MS: *m/z* (EI) 199 (M⁺, 100), 154 (10).

SECTION S2. Scanned copies of ¹H, ¹³C and DEPT135 NMR spectras of all compounds

S2.2. ¹H, ¹³C and DEPT135 NMR spectra of 2-phenylpyridine (**3a**)

Page S13

S2.3. ¹H, ¹³C and DEPT135 NMR spectra of 2-(4-methoxyphenyl) pyridine (**3b**)

Page S15

S2.4. ¹H, ¹³C and DEPT135 NMR spectra of 2-(p-tolyl) pyridine (**3c**)

Page S17

S2.5. 1 H, 13 C and DEPT135 NMR spectra of 2-(m-tolyl) pyridine (3d)

Page S18

Page S19

S2.6.¹H, ¹³C and DEPT135 NMR spectra of 2-(3,4-dimethoxyphenyl)pyridine (**3e**)

S2.7. ¹H, ¹³C and DEPT135 NMR spectra of 2-(3, 4, 5-trimethoxyphenyl) pyridine (**3f**)

Page S21

S2.8. ¹H, ¹³C and DEPT135 NMR spectra of 4-methoxy-2-(pyridin-2-yl) phenol (**3g**)

Page S23

S2.9. ¹H, ¹³C and DEPT135 NMR spectra of 2-(naphthalen-2-yl) pyridine (**3h**)

Page S24

S2.10. ¹H, ¹³C and DEPT135 NMR spectra of 3-(pyridin-2-yl) phenol (**3i**)

Page S26

S2.11. ¹H, ¹³C, DEPT135 NMR and HPLC spectra of 4-(pyridin-2-yl) phenol (**3j**)

Page S27

<Sample Information>

Sample Name Sample ID Data Filename Method Filename	: Rs-319 : Rs-319 : Rs-319 : 2-phenylpyridine.lcm								
Vial #	1-2	Sample Type	: Unknown						
Date Acquired Date Processed	: 20 uL : 05-10-2015 11:03:36 : 05-10-2015 11:27:22	Acquired by Processed by	: System Administrator : System Administrator						

<Chromatogram>

<Peak Table>

PDA Ch4 300nm									
Peak#	Ret. Time	Area	Height	Peak Start	Peak End	Area%			
1	3.228	23905481	2262850	2.837	3.520	95.387			
2	3.564	1156005	263802	3.520	3.680	4.613			
Total		25061485	2526652			100.000			

S2.12. ¹H, ¹³C and DEPT135 NMR spectra of 2-(4-chlorophenyl) pyridine (**3k**)

S2.13. ¹H, ¹³C and DEPT135 NMR spectra of 2-(4-bromophenyl) pyridine (**3**I)

Page S31

Page S32

S2.14. ¹H, ¹³C, DEPT135 NMR and HPLC spectra of 2-(2-chlorophenyl) pyridine (**3m**)

28-may-c13-sorav RS-332	9.465	5.021 1.557 1.557 0.126 9.665	2.484												Г	Parameter	Value
	1		199												1	L Data File Name	C:/ Users/ Rohit/ Desktop/ 28- may-c13- sorav/ 13/ fid
															1	2 Title	28-may-c13- sorav
		- 11 i													3	3 Comment	RS-332
			1												4	Origin	UXNMR, Bruker
	1																Analytische Messtechnik GmbH
		- i - H - I														Owner	root
																5 Site	
															7	7 Spectrometer 8 Author	spect
															9	9 Solvent	CDCIB
															1	10 Temperature	292.9
															1	11 Pulse Sequence	dept135
															1	2 Number of Scans	800
															1	13 Receiver Gair	16384
															1	14 Relaxation Delay	1.0000
															1	15 Pulse Width	8.4500
					. 1						. 1			h.		16 Acquisition Time	1.0912
والدوالة المتعادلة والمتعارك	ulinhada	hh all a	lo dal	hhhh	it in the	diden.		hilida	Well	bhl.	nd belgh	ساللل	hull	highla	1	17 Acquisition Date	2015-05-28T 14:02:50
						and a					1				1	18 Modification	2015-06-01T
and an an and the		a sull	d a cha	t. it.a		. 16										Date	10:37:42
	l i interna	uktorie i pr	la ku ku ku ku		11.11	S. WILLIA	laita di		ubi di bi	16 No	له, الدارق	tredy, the h	in the	1111		19 Spectrometer Frequency	125.76
and a life for high a	huld an al	outo k.	huhu a	1.1111.1	ן ז וייי	ւյլվի	L. a. h.	- I - I	. la . l	ւթվե	, ili ili.		1.14	ul	1	20 Spectral Width	30030.0
												1			2	21 Lowest Frequency	-2439.7
															2	22 Nucleus	13C
																23 Acquired Size	32768
180 170 160	150 14	0 130	120	110	100 f1	90 (ppm)	80	70	60	50	40	30	20	10	0	24 Spectral Size	65536

Analysis Report

<Sample Information>

Sample Name	: Rs-332								
Sample ID	: Rs-332								
Data Filename	: RS-332.lcd								
Method Filename	: 2-phenylpyridine.lcm								
Vial #	: : 1-4 : 10l	Sample Type	: Unknown						
Date Acquired	: 05-10-2015 11:48:59	Acquired by	: System Administrator						
Date Processed	: 05-10-2015 12:03:15	Processed by	: System Administrator						

<Chromatogram>

S2.15. ¹H, ¹³C and DEPT135 NMR spectra of 2-(5-chloro-[1, 1'-biphenyl]-2-yl) pyridine (**3n**)

Page S36

S2.16. ¹H, ¹³C and DEPT135 NMR spectra of 2-(5-chloro-[1, 1'-biphenyl]-2-yl) pyridine (**30**)

S2.17. ¹H, ¹³C and DEPT135 NMR spectra of 2-(2, 3, 4-trichlorophenyl) pyridine (**3p**)

Page S39

S2.18. ¹H, ¹³C and DEPT135 NMR spectra of 2-(3-nitrophenyl) pyridine (3q)

Page S41

S2.19.¹H, ¹³C and DEPT135 NMR spectra of N-(4-(pyridin-2-yl) phenyl) acetamide (**3r**)

Page S42

Page S43

S2.20. ¹H, ¹³C, DEPT135 and HPLC NMR spectra of 2, 3'-bipyridine (**3s**)

Page S44

Analysis Report

<Sample Information>

Sample Name Sample ID Data Filename Method Filename	: Rs-322 : Rs-322 : RS-322.lcd : 2-phenylpyridine.lcm		
Vial #	: 1-3 : 10 ul	Sample Type	: Unknown
Date Acquired Date Processed	: 05-10-2015 11:29:27 : 05-10-2015 11:47:55	Acquired by Processed by	: System Administrator : System Administrator

<Chromatogram>

<Peak Table>

PDA Ch3 280nm				
Peak#	Ret. Time	Peak Start	Peak End	Area%
1	3.837	3.712	4.128	92.313
2	4.224	4.149	4.277	4.679
3	4.821	4.747	4.939	3.009
Total				100.000

S2.21. ¹H, ¹³C and DEPT135 NMR spectra of 2, 2'-bipyridine (3t)

Page S47

S2.22. ¹H, ¹³C and DEPT135 NMR spectra of 3-(2-chlorophenyl)-2-methylpyridine (**5a**)

Page S48

S2.23. ¹H, ¹³C and DEPT135 NMR spectra of 3-(4-methoxyphenyl)-2-methylpyridine (**5b**)

Page S51

SECTION S3. COMPUTATIONAL DETAILS

S3.1. General information

Geometry optimization of all reactants, intermediates, final compound and their corresponding tautomers and conformers have been carried out using Gaussian09 suite of programs.² Density Functional B3LYP/6-311+ $G(d,p)^3$ method was utilized to carry out geometry optimization.

Table S1. List of energy values for all the optimized geometries calculated at B3LYP/6 311+G(d,p) level.

Figure S1. Potential energy surface diagrams of pathway 1 (without I_2) and pathway 3 (with I_2). y axis is showing relative energy values in kcal/mol. All energy differences are taken from the most stable tautomer **VIII**.

S3.2 Cartesian coordinates of optimized geometries

1a			
01			
С	-3.53601800	-0.02648000	0.01027700
С	-2.81076300	-1.19546200	0.24050000
С	-1.42008400	-1.17314100	0.22811200
С	-0.72480000	0.02229600	-0.00492400
С	-1.46455600	1.18960500	-0.24224100
С	-2.85685000	1.16536900	-0.23533600
Н	-4.62005600	-0.04522100	0.01693700
Н	-3.33087700	-2.12800600	0.42976000
Н	-0.85151100	-2.07847900	0.39660100
Н	-0.95658400	2.12179900	-0.45976600
Н	-3.41068000	2.07696900	-0.43028000
С	0.76287700	0.02461300	-0.00165400
С	1.50301000	1.18815200	0.26223700
С	2.89088200	1.13134600	0.24492200
С	2.70258700	-1.19234100	-0.25542400
С	3.51399700	-0.08381900	-0.02458500
Ν	1.37035600	-1.14951500	-0.24609700
Н	3.47655400	2.02100000	0.44864100
Н	4.59307600	-0.17600400	-0.04840800
Н	3.14510700	-2.16377100	-0.45995900

2a

Н

01			
С	-2.59038500	0.11447400	0.00000400
С	-1.82101600	1.27642500	-0.00001600
С	-0.43059100	1.19137100	-0.00002300
С	0.20445300	-0.05768000	-0.00000400
С	-0.57995700	-1.21974300	0.00001700
С	-1.96662200	-1.13473600	0.00002000
Н	-3.67269100	0.18124300	0.00000600
Н	-2.30281800	2.24755300	-0.00002900
Н	0.15389700	2.10337400	-0.00004100
Н	-0.07728100	-2.17917000	0.00003100
Н	-2.56421100	-2.03935300	0.00003700
С	1.69881900	-0.20441700	-0.00000700
0	2.21337200	-1.30703900	-0.00004000
С	2.55853800	1.04628600	0.00003800
Н	2.35532300	1.66056700	-0.88200400
Н	2.35534700	1.66049000	0.88214000
Н	3.60602500	0.74972100	0.00001200
_			
3a			
01			
С	-1.27558100	0.49571100	0.05244900
Н	-1.30075000	1.24966500	-0.74164300
Н	-1.25398600	1.04367800	1.00896300
С	-0.00001800	-0.33560300	-0.08221700
Н	-0.00039700	-1.11803900	0.68996500
Н	0.00037100	-0.84847100	-1.04762900
С	1.27566500	0.49547100	0.05326900
Н	1.25391400	1.04252300	1.01041100
Н	1.30054500	1.25043200	-0.73993400
Ν	-2.46565200	-0.35022500	-0.10440500
Ν	2.46556900	-0.34994800	-0.10462500
Н	3.31458000	0.20441700	-0.07619100
Н	2.52708500	-1.03089700	0.64609300
Н	-3.31459100	0.20437800	-0.07540100
Н	-2.52658400	-1.02994700	0.64757400
т			
1			
01			
С	-3.22655900	-1.80260400	0.11663200
С	-2.87351900	-1.11152700	1.27458400
С	-1.99514700	-0.03199200	1.20533100
С	-1.44219900	0.35975200	-0.01961000
С	-1.80246600	-0.34101100	-1.17653900

С	-2.69166200	-1.41190500	-1.10976200
Н	-3.91474900	-2.63860900	0.16953000
Н	-3.28386600	-1.41079300	2.23264800
Н	-1.72803900	0.50158200	2.11131100
Н	-1.38828100	-0.04185300	-2.13332600
Н	-2.96501000	-1.94163500	-2.01562200
С	-0.50761200	1.53868100	-0.09385900
С	-1.13547500	2.88344600	0.18868300
Н	-1.94232800	3.08626000	-0.52354900
Н	-1.58692300	2.90043900	1.18615600
Н	-0.38076700	3.66642200	0.11928700
С	1.42344000	0.23510100	-0.63047600
Н	0.82181400	-0.64946900	-0.38417800
Н	1.64238700	0.19058500	-1.70537500
С	2.74368300	0.20236700	0.14676400
Н	3.31015000	1.11009100	-0.09059000
Н	2.54033200	0.23045400	1.22168600
С	3.58568900	-1.03301800	-0.16906000
Н	3.77060100	-1.07452900	-1.25559500
Н	3.02310800	-1.93680900	0.08898700
Ν	0.73188900	1.49351600	-0.38205300
Ν	4.81754200	-1.03619600	0.62986900
Н	5.36265100	-1.87439200	0.45832000
Н	5.40387400	-0.24272100	0.38947900

Π

01

С	-4.16467600	-0.96517000	-0.03179100
С	-4.01721200	0.41839400	-0.04373800
С	-2.74416100	0.98781200	-0.03036800
С	-1.59633200	0.18373100	-0.00282300
С	-1.76140300	-1.21077400	0.00965900
С	-3.02890600	-1.77764200	-0.00556000
Н	-5.15390800	-1.40885400	-0.04380400
Н	-4.89141900	1.05944900	-0.06373800
Н	-2.65932600	2.06711300	-0.03975500
Н	-0.87538600	-1.83169000	0.03003900
Н	-3.13498200	-2.85684400	0.00211800
С	-0.21996000	0.77317100	0.01344800
С	-0.10717900	2.28272200	-0.07543300
Н	-0.60500300	2.65622600	-0.97442600
Н	-0.59593300	2.75268100	0.78318000
Н	0.92745300	2.61744300	-0.09581600
С	2.14221300	0.44058200	0.12872000
Н	2.35525100	1.11039800	-0.71436300
Н	2.33277100	1.01362400	1.04740300
С	3.10093000	-0.75892500	0.06886400
Н	2.82330000	-1.45255200	0.87293900

Н	3.00949200	-1.28485300	-0.88305300
С	4.53491100	-0.35198400	0.28720000
Н	4.73063100	0.18474600	1.24388400
Ν	0.76616900	-0.03374600	0.10758000
0	5.44306600	-0.56527000	-0.47834200

II-C

01			
С	3.83829100	0.34101900	-0.53844800
С	3.04976500	1.39467300	-0.07843700
С	1.73918400	1.16415000	0.33175900
С	1.19644900	-0.12688300	0.29472900
С	1.99546300	-1.17897000	-0.17604300
С	3.30644500	-0.94654100	-0.58552000
Н	4.85775600	0.52228200	-0.85979600
Н	3.45156900	2.40138600	-0.04947100
Н	1.12050000	1.98843600	0.66589200
Н	1.59521200	-2.18632100	-0.19345000
Н	3.91513100	-1.77355200	-0.93411800
С	-0.20349800	-0.37408900	0.74529300
С	-0.66674200	0.15591000	1.89493000
Н	-1.67385600	0.00211600	2.25588600
Н	-0.00272300	0.72612400	2.52784400
С	-2.34273200	-1.46481400	0.03747400
Н	-2.56110800	-2.45803500	-0.36556500
Н	-2.59549500	-1.50351200	1.09879300
С	-3.24716900	-0.45072500	-0.70547100
Н	-3.01979100	-0.44581600	-1.77513500
Н	-4.28667900	-0.78617800	-0.58328200
С	-3.18208500	0.97087000	-0.19905200
Н	-3.43562500	1.10865500	0.87336500
Ν	-0.91814300	-1.23071600	-0.09141800
Ο	-2.90873600	1.92259800	-0.88877300
Н	-0.56823100	-1.26894600	-1.03813700

II-H₂O Complex

0.1			
01			
С	3.85528800	0.49349300	0.15665300
С	3.15071300	0.11703000	1.29927500
С	1.85977400	-0.39412500	1.19108400
С	1.25229500	-0.54384100	-0.06257300
С	1.96552100	-0.15255800	-1.20449200
С	3.25699300	0.35744000	-1.09520900
Н	4.86026600	0.89164800	0.24119200
Н	3.60291600	0.23003400	2.27847000
Н	1.30620400	-0.66433000	2.08246700
Н	1.51038400	-0.26985600	-2.18083000

Н	3.79909900	0.64266800	-1.99015600
С	-0.12187800	-1.11181100	-0.17999200
С	-0.48305900	-2.19451200	0.54213900
Н	-1.46610700	-2.64190000	0.49307100
Н	0.24584500	-2.69203600	1.16517700
С	-2.32490700	-0.77220700	-1.26284300
Н	-2.62503500	-0.57502200	-2.29573000
Н	-2.47153700	-1.83893000	-1.09415800
С	-3.28271500	0.06644000	-0.35589900
Н	-3.30701400	1.09431400	-0.72456600
Н	-4.28807300	-0.36212400	-0.44056000
С	-2.88522800	0.09858000	1.09419400
Н	-3.13685300	-0.78886400	1.70531400
Ν	-0.92049800	-0.46176100	-1.11860200
0	-2.31055800	1.03728800	1.60781600
Н	-0.70713400	0.52679200	-1.22360100
Н	-1.39950200	2.24297500	0.36430900
0	-1.02002700	2.52958200	-0.48513300
Н	-0.29206800	3.11842600	-0.26566600

II-H₂O-TS

01			
С	-3.66217600	0.00487200	0.42033300
С	-3.00148700	-1.15262900	0.00793800
С	-1.63334900	-1.28854300	0.20927500
С	-0.90798400	-0.24743800	0.80851400
С	-1.57608600	0.92072600	1.20871300
С	-2.94837400	1.03995300	1.02334300
Н	-4.73153100	0.10091200	0.26983200
Н	-3.55264400	-1.94740700	-0.48092800
Н	-1.11015800	-2.16139700	-0.15903000
Н	-1.02091300	1.71876100	1.68747400
Н	-3.46058200	1.93804600	1.34825800
С	0.53908400	-0.36605700	1.00339900
С	1.23863800	-1.65625200	1.21816900
Н	1.85172200	-1.64517300	2.12639300
Н	0.54139300	-2.48816400	1.28005200
С	2.75600700	0.55593200	0.88877200
Н	3.17959300	1.48318500	0.50886100
Н	3.00510900	0.48046600	1.95135800
С	3.28523400	-0.68464000	0.11942400
Н	3.64024200	-0.38588700	-0.86651500
Н	4.12638100	-1.10157700	0.68216500
С	2.17982700	-1.74775200	-0.07923800
Н	2.63039200	-2.75113000	-0.04778700
Ν	1.29613600	0.67610400	0.78793700

0	1.45509100	-1.57665800	-1.23108000
Н	0.96833900	1.30114200	0.01917000
Н	1.27371800	-0.42306100	-1.53184800
0	1.06505300	0.78602900	-1.67695200
Н	1.08040000	1.06829100	-2.59378300
III			
01			
С	-4.41364700	-0.34418600	0.20297000
С	-4.01798200	0.52495800	-0.81517200
С	-2.69735200	0.94637900	-0.90202900
С	-1.73926600	0.50617400	0.02442800
С	-2.14704300	-0.37233900	1.03665200
С	-3.47372700	-0.78945000	1.12779700
Н	-5.44446700	-0.67323800	0.27118900
Н	-4.74178500	0.87199100	-1.54416300
Н	-2.38290600	1.62411600	-1.68485600
Н	-1.44135700	-0.74354600	1.76846300
Н	-3.76851900	-1.46564800	1.92219000
С	-0.33120700	1.00004100	-0.09479300
С	0.75974000	0.30265700	0.69110300
С	2.02469300	1.15157900	0.85348000
Н	0.41650200	-0.01219700	1.67094100
С	1.20395900	2.59651600	-1.02716100
С	2.39314700	1.80144600	-0.47531600
Н	1.32278400	2.76452500	-2.10221500
Н	3.25982900	2.45374700	-0.34251900
Ν	-0.12053700	2.02466000	-0.83102000
0	1.80107700	2.10717700	1.89728200
Н	1.13643900	2.74619000	1.61560700
Н	2.83989900	0.53101800	1.22354700
Н	2.67838100	1.01433100	-1.17778300
Н	1.16916000	3.60527200	-0.59349000
Ι	1.24572200 ·	-1.65451400	-0.26641100
IV			
01			
С	-4.27671400	-0.83807600	0.08043400
С	-4.08064700	0.39980300	-0.53479600
С	-2.82471000	0.99210800	-0.53221000
С	-1.73362700	0.36314400	0.08879500
С	-1.94251000	-0.87996800	0.70069200

01			
С	-4.27671400	-0.83807600	0.08043400
С	-4.08064700	0.39980300	-0.53479600
С	-2.82471000	0.99210800	-0.53221000
С	-1.73362700	0.36314400	0.08879500
С	-1.94251000	-0.87996800	0.70069200
С	-3.20314300	-1.47496100	0.69545400
Н	-5.25728900	-1.30073400	0.07793200
Н	-4.91108700	0.90393600	-1.01651000
Н	-2.66365100	1.95168300	-1.00553400
Н	-1.12467700	-1.41364000	1.16677300

Н	-3.34064100	-2.44019000	1.16946600
С	-0.40393400	1.04756800	0.08762900
С	0.72102900	0.46965200	0.90894000
С	1.77082300	1.44348800	1.26128900
С	0.96262500	2.87418200	-0.56524400
С	1.89537200	2.57477500	0.56541700
Н	1.47000200	2.68548300	-1.52577700
Н	2.66737100	3.29952100	0.80280300
Ν	-0.28346800	2.13343900	-0.57726200
Н	2.43398400	1.19861100	2.08302700
Н	0.71283700	3.94127000	-0.58576800
Н	0.37545300	-0.10952200	1.75700300
Ι	1.70404900	-1.23548700	-0.29096200
v			
0.1			
01	2.96125000	1 11721000	0 10110200
C	3.86135900	-1.11/31900	-0.19110200
C	2.76259300	-1.64357600	0.48547800
C	1.62413/00	-0.865/0400	0.6/80/000
C	1.5/413600	0.44868900	0.19485200
C	2.685/6000	0.96826300	-0.484//100
U II	3.82047900	0.19091400	-0.6/691400
H	4./4686300	-1./24/8800	-0.3410/000
Н	2.79018200	-2.66003300	0.86062500
H	0.//644800	-1.29822800	1.19394400
Н	2.63617100	1.98557100	-0.85253600
Н	4.6/39/900	0.60105/00	-1.2044/400
C	0.39095400	1.34356600	0.38561500
0	0.39974100	2.49/54800	0.00166800
C	-0.84168100	0.82645300	1.10636800
Н	-0.62727300	0.1809/100	1.95285100
Н	-1.45974300	1.66843500	1.39799300
1	-2.11322600	-0.37058700	-0.22653300
VI			
01			
С	3.43356900	-3.18863700	0.19603000
С	2.87784400	-2.60995500	1.33581600
С	1.79250800	-1.74321300	1.22242800
С	1.26006100	-1.43582300	-0.03475500
С	1.82106300	-2.02308800	-1.17441800
С	2.90217800	-2.89457300	-1.05872100
Н	4.27570500	-3.86537900	0.28510100
Н	3.28801900	-2.83309300	2.31429800
Н	1.36475200	-1.29429600	2.11267200
Н	1.41193300	-1.79425200	-2.15267900
Н	3.32942000	-3.34280800	-1.94873900

```
Page S59
```

С	0.08247400	-0.50063700	-0.15789600
С	-1.22155400	-1.20735900	0.13624100
Н	-1.38353300	-2.01730600	-0.57487900
Н	-1.20807400	-1.63742300	1.13722500
С	1.37970200	1.40716400	-0.74896500
Н	2.26430800	0.77921900	-0.58149900
Н	1.36581800	1.67913800	-1.81169000
С	1.47310000	2.68539800	0.09164400
Н	0.56015900	3.27098500	-0.06301400
Н	1.50666200	2.42836900	1.15481200
С	2.69930300	3.52873300	-0.25592100
Н	2.67660700	3.77054300	-1.33166200
Н	3.60866200	2.94274900	-0.08403600
Ν	0.12371000	0.72326700	-0.47664900
Ν	2.76840100	4.71498800	0.60555700
Н	3.60627200	5.25523800	0.41807800
Н	1.97421600	5.32602000	0.44126800
Ι	-3.01673900	0.02182000	0.04667000

VIII

01			
С	3.65415000	-2.84981400	0.14908200
С	3.02113600	-2.38450500	1.30036300
С	1.87588100	-1.59730400	1.19958100
С	1.36130100	-1.25485900	-0.05604700
С	2.00072800	-1.72710900	-1.20794400
С	3.14090700	-2.52127400	-1.10459800
Н	4.54294400	-3.46516500	0.22844200
Н	3.41788000	-2.63394900	2.27788500
Н	1.38825500	-1.23700600	2.09923500
Н	1.60547400	-1.47128700	-2.18520500
Н	3.62856800	-2.88169700	-2.00327200
С	0.12272700	-0.40271000	-0.16558100
С	-1.13565200	-1.19994500	0.08921600
Н	-1.24385500	-1.98430700	-0.65986000
Н	-1.09582900	-1.67568000	1.06847200
С	1.29091000	1.60545000	-0.67948600
Н	2.21693300	1.04302700	-0.51121500
Н	1.27701600	1.91657600	-1.73124500
С	1.26491000	2.85971000	0.21109100
Н	0.28915400	3.34503400	0.08033000
Н	1.38028500	2.60134900	1.26556700
С	2.33057000	3.85126800	-0.18112000
Н	2.31520400	4.15603100	-1.25232900
Ν	0.08139200	0.83100900	-0.44939100

0	3.15620300	4.31377500	0.56662400
Ι	-3.00201500	-0.08138900	0.04921900

VIII-C

01			
С	2.81934800	2.89244700	0.59213700
С	2.06189700	2.20648700	1.54035100
С	0.98378300	1.42033200	1.14049800
С	0.65348700	1.31542700	-0.21440200
С	1.41012300	2.01435100	-1.16170600
С	2.49231900	2.79449300	-0.75941200
Н	3.66074900	3.50054500	0.90490700
Н	2.30966800	2.28225300	2.59305000
Н	0.39319500	0.88727200	1.87624300
Н	1.15769000	1.93233600	-2.21286500
Н	3.08102800	3.32208000	-1.50148400
С	-0.53170400	0.51362400	-0.64202300
С	-0.59906800	-0.82857700	-0.57741100
Н	-1.45896000	-1.39944000	-0.88728600
С	-2.90892900	0.83963700	-1.39306200
Н	-3.35417600	1.47460900	-2.16379400
Н	-2.86473300	-0.16557100	-1.81701500
С	-3.84225600	0.87605000	-0.15728900
Н	-3.92684500	1.89662900	0.22564800
Н	-4.83910200	0.55338200	-0.48803400
С	-3.43674700	-0.02746200	0.98336500
Н	-3.38545800	-1.11057900	0.74243000
Ν	-1.55742300	1.31088800	-1.15657600
0	-3.20255800	0.36100300	2.10159100
Н	-1.48986200	2.27927100	-0.87733500
Ι	0.99293800	-2.10599800	-0.02297100

VIII-H₂O Complex

01			
С	0.51163700	3.96899500	0.30863100
С	0.51593800	2.99425100	1.30550500
С	0.21782100	1.67029200	0.99250100
С	-0.09054400	1.30704000	-0.32262600
С	-0.10773800	2.29301500	-1.31618300
С	0.19949900	3.61519700	-1.00310800
Н	0.74935900	4.99834300	0.55291200
Н	0.75192400	3.26408700	2.32883300
Н	0.21767800	0.91444300	1.76827500
Н	-0.35135700	2.01621500	-2.33525600
Н	0.19683200	4.36766700	-1.78378300
С	-0.45089400	-0.10064800	-0.66320400
С	0.36364300	-1.15888500	-0.47211800

Н	0.08994000	-2.17173400	-0.71640700
С	-2.34452400	-1.47580800	-1.52228500
Н	-3.02372600	-1.34736800	-2.36914300
Н	-1.58357500	-2.18838800	-1.84103400
С	-3.20158000	-2.06380100	-0.35368600
Н	-4.11344500	-1.47061500	-0.25727000
Н	-3.47489300	-3.09123800	-0.61935300
С	-2.50519300	-2.06750000	0.97967900
Н	-1.78594900	-2.88594000	1.17276300
Ν	-1.71685500	-0.20306800	-1.24201500
0	-2.69521500	-1.22290600	1.83143500
Н	-2.36596500	0.51148300	-0.92051500
Н	-3.52043900	0.44229700	1.20291400
0	-3.80485900	1.08995500	0.53414200
Н	-3.79789400	1.94666200	0.97107900
Ι	2.40342800	-1.07007000	0.09465700

VIII-H₂O-TS

01			
С	-3.70126300	0.02062500	0.55536000
С	-3.08320900	-1.14896000	0.11222900
С	-1.70689600	-1.29942100	0.22515400
С	-0.92977100	-0.26605300	0.77144200
С	-1.55901400	0.91124300	1.20912000
С	-2.93751400	1.04935800	1.10558700
Н	-4.77657600	0.12982200	0.47177200
Н	-3.67438600	-1.94095300	-0.33202700
Н	-1.22796400	-2.18793900	-0.16516200
Н	-0.96511700	1.69984500	1.65510200
Н	-3.41660500	1.95522700	1.45797500
С	0.52675900	-0.38740200	0.88049200
С	1.22568100	-1.69441700	1.05304200
Н	0.53955100	-2.52455700	0.94680400
С	2.72969600	0.63377200	0.80689300
Η	3.09982300	1.54297700	0.33858500
Н	2.94635100	0.68078500	1.87669500
С	3.36997600	-0.63222500	0.19009400
Н	3.81255000	-0.39622300	-0.77843000
Н	4.16262000	-0.98363500	0.85456500
С	2.32541500	-1.73452600	-0.04136600
Н	2.81041300	-2.71729700	-0.01430400
Ν	1.26723100	0.66447800	0.66736500
0	1.61305700	-1.57996600	-1.22863500
Н	0.93863300	1.26577200	-0.13376500
Н	1.41289000	-0.47988300	-1.55376100
0	1.11469400	0.75229200	-1.74969300
Н	1.27002100	1.09149800	-2.63384400
Ι	1.88182100	-1.96343100	3.18717100

IX

01			
С	3.96097800	-0.27193200	0.18577200
С	3.37590800	0.98319900	0.36848800
С	2.00463400	1.14502800	0.22212100
С	1.18224300	0.05329500	-0.10203000
С	1.78103300	-1.20085500	-0.28127100
С	3.15948300	-1.36104300	-0.14284400
Н	5.03198500	-0.39716300	0.29932600
Н	3.99361500	1.83652500	0.62598200
Н	1.54187500	2.11460500	0.35380400
Н	1.18206900	-2.06282600	-0.54703300
Н	3.60351000	-2.33875300	-0.29279900
С	-0.28428700	0.26544600	-0.26663100
С	-1.24311500	-0.91019400	-0.31988400
С	-2.49187900	-0.68047500	0.56283100
Н	-1.58438800	-1.00734700	-1.36106400
С	-2.16950800	1.60160200	-0.53513200
С	-2.93226500	0.79871400	0.52983700
Н	-2.42545700	2.66105000	-0.47393600
Н	-4.01116700	0.85214700	0.35874700
Ν	-0.72495500	1.46222600	-0.38368700
0	-3.53463200	-1.59066000	0.20072500
Н	-3.80334500	-1.41040700	-0.70723100
Н	-2.24979500	-0.96517900	1.58775000
Н	-2.74462900	1.25953800	1.50353800
Н	-2.46060100	1.26858800	-1.54352100
Н	-0.78127000	-1.85778700	-0.05109300
X			
01			
С	-3.60997700	0.02601700	0.09781600
С	-2.93341300	-1.17937000	-0.10063400
С	-1.54579900	-1.20139200	-0.16884300
С	-0.80446700	-0.01629400	-0.04945300
С	-1.49350100	1.18751900	0.14901100
С	-2.88537800	1.20789600	0.22668500
Н	-4.69288500	0.04176800	0.15095300
Н	-3.49187500	-2.10331400	-0.20333800
Н	-1.00996300	-2.13071200	-0.31414300
Н	-0.94661200	2.11551700	0.26604100
Н	-3.40100400	2.14770900	0.38989000
С	0.68519500	-0.06361900	-0.11586500
С	1.43279000	1.17254700	-0.45082000
С	2.74119300	1.24705100	-0.18076900
С	2.73003400	-1.21866000	-0.01017100

С	3.43024200	0.06498900	0.44391800
Н	3.09423800	-2.07972600	0.55467000
Н	4.48921900	0.03387600	0.17234500
N	1.27253500	-1.18408300	0.10751000
Н	3.30190200	2.15431300	-0.38360000
Н	3.39273700	0.15685000	1.53950400
Н	2.96876000	-1.41193100	-1.06768800
Н	0.90621100	2.00413900	-0.90245300

SECTION S4. Effect of HCl loading on product yield

The effect of the variation in loading of HCl quantity along with amount of 1,3-diaminopropane (2) was studied, and results are shown in Figure S2.

Equivalent of 1,3-diaminopropane

Figure S2. Effect of HCl loading on product yield.

SECTION S5. The gram-scale reaction

Figure S3. The gram-scale reaction for synthesis of 3a. Reagents and conditions: (a) 1a (1g, 8.33 mmol), 2 (24.99 mmol), I_2 (8 mol%), HCl (100 μ l), DMSO (15 mL), 80 °C, 4 h, 85%.

SECTION S6. LC-ESI-MS based mechanistic studies for synthesis of 2-(4-methoxyphenyl) pyridine (3b). In order to further support experimentally the most plausible pathway 3, a LCMS study of the reaction mixture was performed, in order to trap possible reaction intermediates using the model reaction of 4-methoxyacetophenone (1b) with diamine 2 under optimized condition. After 2 hrs of reaction time, LCMS analysis of reaction mixture was performed.

LC-ESI-MS/MS analysis was carried out on Agilent Triple-Quad LC-MS/MS system (model 6410). Liquid chromatography analyses were carried out using an Agilent 1260 Infinity (Agilent, USA) quaternary pump equipped with an autosampler, column heater and online degasser. A Chromolith C_{18} (Merck, Germany) column (4.6 x 100 mm) was used at 30 °C temperature and the injection volume was 10 µl. The elution was carried out with binary solvent system consisting of water (solvent A) and acetonitrile (solvent B) at a constant flow-rate of 0.5 ml/min. The gradient elution was used, as depicted in Table S2. The LCMS chromatogram and MS spectras are shown in Figure S3.

Table S2. Gradient details used in LC-ESI-MS/MS analysis

Time (min)	0	10	15	17	20
% B (ACN)	10	70	70	10	10

⁽b)

(d)

Figure S4. Experimental evidence to support reaction mechanism pathway 3: LCMS analysis of reaction mixture after 2 hrs. (a). LC chromatogram of a reaction mixture; (b) MS spectrum of peak at t_R 3.1 min; (c) MS spectrum of peak at t_R 6.5 min; (d) MS spectrum of peak at t_R 15.9 min; (e) MS spectrum of peak at t_R 9.1 min.

<u>SECTION S7</u>. Synthesis of intermediate α -iodoacetophenone V and further its reaction with diamine 2 to produce 2-phenylpyridine 3a

The procedure for synthesis of intermediate V has been provided in section S1. Next, the intermediate V was reacted with diamine 2 using the similar procedure as described for synthesis of 2-phenylpyridines **3a-t** in section S1.

Figure S5. Experimental evidence to support reaction mechanism pathway 3: Synthesis of intermediate V and further its reaction with diamine 2 to produce 2-phenylpyridine **3a**

- A. Synthesis of intermediate α -iodoacetophenone V. Reagents and conditions: (a) CuO/ I₂, EtOH, 80 °C, 2 h, 75%;
- B. Reaction of α-iodoacetophenone V with diamine 2 produces product 3a. (b) α-iodoacetophenone V (1 equiv.), 1,3-diaminopropane (3 equiv.), I₂ (8 mol%), HCl (10 µl), DMSO (2 mL), 80 °C, O₂, 4 h, 95%.

SECTION S8. References associated with ESI

- M. Gao, Y. Yang, Y.-D. Wu, C. Deng, L.-P. Cao, X.-G. Meng, A.-X. Wu, Org. Lett. 2010, 12, 1856-1859.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A., Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian 09: EM64L-G09RevB.01*, Gaussian, Inc., Wallingford CT, **2010**.
- (a) R. G. Parr, W. Yang, Density-Functional Theory of atoms and molecules, Oxford University Press, New York, 1989. (b) A. Becke, J. Chem. Phys. 1993, 98, 5648–5652. (c) C. Lee, W. Yang, R. Parr, Phys. Rev. B. 1988, 37, 785-789.