Chemo-enzymatic Baeyer-Villiger oxidation of 4-methylcyclohexanone *via* kinetic resolution of racemic carboxylic acids: direct access to enantioenriched lactone

Agnieszka Drożdż,^a Anna Chrobok*^a

Silesian University of Technology, Faculty of Chemistry, ul. Krzywoustego 4, 44-100 Gliwice, Poland; Fax: 48 3223 71032; Tel: 48 3223 72917; E-mail: anna.chrobok@polsl.pl

Materials

Cyclohexanones, carboxylic acids, esters and native CALB [5, 000 LU/G] were purchased from Sigma Aldrich. Novozyme-435 was donated by Novozymes. Synthesis of 3-phenylcyclobutanone was performed according to a previously described method (A. Drożdż, A. Foreiter and A. Chrobok, *Synlett*, 2014, **25**, 559).

Instrumentation

¹H-NMR and ¹³C-NMR spectra of the lactone were recorded at 300 MHz in CDCl₃ (Varian Unity Inova plus spectrometer with a TMS internal standard). GC analysis was performed using a Perkin Elmer Clarus 500 chromatograph with a SUPELCOWAXTM 10 column (30 m×0.2 mm×0.2 µm) with *n*-decane as an external standard or Astec CHIRALDEXTM G-TA capillary column (30 m×0.25 mm×0.12 µm).

General method for Baeyer-Villiger oxidation: the ketone (0.5 mmol), carboxylic acid (1 mmol) and 1 ml of toluene were introduced into a 25 ml round-bottom flask and the contents of the flask was shaken. Next, 0.1 g of native CALB was introduced, and 30% H₂O₂ (1 mmol) was added dropwise. The flask was sealed with a septum and mixed in a thermostatted shaker ($\pm 0.5^{\circ}$ C) with orbital stirring at 250 rpm at 18 and 25°C for 3-8 days, depending on the reaction rate. Periodically, 15 µl of the sample diluted with 1 ml of dichloromethane was collected during the reaction to monitor the progress of the reaction (yield and *ee*) utilising GC (SUPELCOWAXTM 10 column (30 m×0.2 mm×0.2 µm) with *n*-decane as an external standard or Astec CHIRALDEXTM G-TA capillary column (30 m×0.25 mm×0.12 µm)). When the reaction was completed, the post-reaction mixture was washed with 5 ml of a 10% NaHCO₃ solution in water, dried over anhydrous MgSO₄ and concentrated under vacuum. The yield of 4-methylcaprolactone after purification by column chromatography with a hexane:ethyl acetate ratio of 4:1 as an eluent was 93%.

Table S1	The influence of the structure of peracid precursor on the yield and ee of (R) -4-
	methylcaprolactone ^{<i>a</i>}

		25°C		18°C	
No.	Carboxylic acid	Yield	ee (R)	Yield	ee (R)
		[%]	[%]	[%]	[%]
	0	21	37	16	41
1		(8 days)		(8 days)	
1	ν γ OH				
	O	47	40	82	57
2	ОН	(3 days)		(8 days)	
	Ph	× • /		× • /	
	Ph O	31	48	33	47
3	СН	(4 days)		(8 days)	.,

^{*a*} *Reaction conditions:* 4-methylcyclohexanone (0.5 mmol), 30% aq. H₂O₂ (1 mmol), acid (1 mmol), 0.10 g of CALB, toluene (1 ml), yields and *ee* determined by GC.

Table S2The influence of the structure of peracid precursor on the yield and ee of (R)-4-
methylcaprolactone a

No.		25°C	
	Ester	Yield	ee (R)
		[%]	[%]
1	0	92	66
	OCH3	(8 days)	
2	0 	90	65
	OC ₂ H ₅	(8 days)	05
3	0	86	50
	OCH3	(8 days)	39
4	<u>ه</u>	95	55
	OCH3	(8 days)	55
5	0	30	54
	OCH3	(7 days)	54
6	Ph O	12	34
	OCH3	(7 days)	
7	0	9	
	OCH3	(7 days)	23
8	OH O }	23	24
	OCH3	(7 days)	24

^{*a*} *Reaction conditions:* 4-methylcyclohexanone (0.5 mmol), 30% aq. H₂O₂ (1 mmol), ester (1 mmol), 0.10 g of CALB, 25 °C, toluene (1 ml), yields and *ee* determined by GC.

Fig. S1. The influence of the amount of (\pm) -4-methyloctanoic acid on the yield of 4-methylcaprolactone obtained during the chemo-enzymatic oxidation of 4-methylcyclohexanone (0.5 mmol) with 30% aq. H₂O₂ (1 mmol) in the presence of 0.10 g of CALB at 18 °C in toluene (1 ml).

Fig. S2. The influence of the structure of primary oxidant on the yield of 4-methylcaprolactone obtained during the chemo-enzymatic oxidation of 4-methylcyclohexanone (0.5 mmol) in the presence of oxidant (1 mmol) and (±)-4-methyloctanoic acid (1 mmol) and 0.10 g of CALB at 18 °C in toluene (1 ml).

Fig. S3. The influence of the amount of 30% aq. H_2O_2 on the yield of 4-methylcaprolactone obtained during the chemo-enzymatic oxidation of 4-methylcyclohexanone (0.5 mmol) in the presence of (±)-4-methylcotanoic acid (1 mmol) and 0.10 g of CALB at 18 °C in toluene (1 ml).

Fig. S4. The influence of the amount of CALB on the yield of 4-methylcaprolactone obtained during the chemoenzymatic oxidation of 4-methylcyclohexanone (0.5 mmol) with 30% aq. H₂O₂(1 mmol) in the presence of (±)-4-methyloctanoic acid (1 mmol) at 18 °C in toluene (1 ml).

No.	Solvent	V [ml]	Time [days]	Yield [%]	<i>ee</i> (<i>R</i>) [%]
1	toluene	0.5	8	95	87
	toluene	1.0	8	97	96
	diethyl ether	1.0	6	79	37
2	diethyl ether	1.0	7	79	48
	diethyl ether	1.0	8	79	56
	hexane	1.0	6	86	40
3	hexane	1.0	7	88	45
	hexane	1.0	8	89	55

Table S3The influence of the solvent on the reaction ^a

^{*a*} Reaction conditions: 4-methylcyclohexanone (0.5mmol), 30% aq. H_2O_2 (1 mmol), (±)-4-methylcyclohexanoic acid (1mmol), 0.10g of CALB, 18 °C,

No.	Ketone	Lactone	Time	Yield	ee (R)
			[n]	[%]	[%]
1		\sim	4	69	63
		o Jun	8	97	96
2	0	0	4	85	35
	CoHe	C ₂ H ₅	6	99	69
3	, D	0	4	72	39
			6	99	76

^{*a*} Reaction conditions: ketone (0.5 mmol), 30% aq. H₂O₂(1 mmol), (±)-4-methyloctanoic acid (1 mmol), 0.10 g of CALB, 18 °C, toluene (1 ml), yields and *ee* determined by GC.