Supporting Information

Synchronous Double C-N Bond Formation via C-H Activation as a Novel Synthetic Route to Phenazine

Kapileswar Seth, Sudipta Raha Roy, and Asit K. Chakraborti.^{*} Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160 062, India. E-mail: <u>akchakraborti@niper.ac.in; akchakraborti@rediffmail.com</u>

Table of Contents

I. The s	standardisation of various reaction parameters such as the effect of catalysts, oxidants, solvents,
reactio	on temperature and time etc. on the self coupling of 1a to form 2a6
Tab	le I-A. The effect of various Pd-compounds in the absence of stabilizer for self coupling of 1a to
forn	n 2a and 3a.ª
Tab	le I-B. The effect of various Pd-based catalysts, bases, additives, and other reaction parameters on
the	self coupling of 1a to form 2a and 3a. ^a 6
Tab	le I-C. The effect of various Pd-based catalysts, metal-based additives as the oxidant, and other
read	ction parameters on the self coupling of 1a to form 2a and 3a. ^a
Tab	le I-D. The effect of different metal precursors, bases, metal/non-metal based additives as the
oxid	lant on the self coupling of 1a to form 2a and 3a. ^a 8
Tab	le I-E. The effect of different metal precursors other than Pd compounds, metal-based additives as
the	oxidant on the self coupling of 1a to form 2a and 3a. ^a 9
Tab	le I-F. The effect of different palladium compounds, bases and metal-based additives as the
oxid	lant on the self coupling of 1a to form 2a and 3a. ^a 10
Tab	le I-G. The effect of palladium compound, base, and the N_2 atmosphere for the self coupling of 1a
to fo	orm 2a and 3a. ^a
Tabl	le I-H. The effect of different stabilizers during the self coupling of 1a to form 2a and 3a. ^a
Tab	le I-I. The effect of different solvents during the self coupling of 1a to form 2a and 3a. ^a

II. Evidence of NC formation during the Pd-Ag compounds catalyzed self coupling of 1a to form 2a	14
Figure A. HRTEM image of Pd-Ag binary NC obtained from the reaction mixture of the $[PdCl_2(PPh_3)_2 mg, 1 mol \%)$, Ag ₂ CO ₃ (551 mg, 2 equiv) and TBAB (20 mol %) in DEF (2 mL) for 10 min at 100 °C	.] (7 14
Figure B. Energy dispersive X-ray spectra of Pd-Ag binary NC (Fig. A) on carbon coated Cu grid	14
Figure C. HRTEM image of Pd-Ag binary NC obtained from the reaction mixture of the PdCl ₂ (1.7 mg mol %), Ag_2CO_3 (551 mg, 2 equiv) and TBAB (20 mol %) in DEF (2 mL) for 10 min at 100 °C	g, 1 15
Figure D. HRTEM image of Pd-Ag binary NC obtained from the reaction mixture of the Na ₂ PdCl ₄ (2.9 mg, 1 mol %), Ag ₂ CO ₃ (551 mg, 2 equiv) and TBAB (20 mol %) in DEF (2 mL) for 10 min at 100 $^{\circ}$ C) 15
III. Experimental Procedure	. 16
General Information	. 16
Typical procedure for the in-situ generated Pd-Ag NC catalyzed coupling of aniline 1a by double C-H activation to generate phenazine 2a and azobenzene 3a:	┥ 16
Typical procedure for identification and analysis of the in-situ formed Pd-Ag binary NC:	17
IV. Evidences for the Proposed Mechanistic Pathway during the Self Coupling of Aniline to form	
Phenazine and Relevant Studies:	. 17
Scheme IV-A. Kinetic isotope effect study for the determination of k_H/k_D	17
(i) Typical experimental procedure for determination ion current using (+ve) ESI- MS:	17
Table IV-A. The determination of k_{H}/k_{D} during phenazine formation from aniline and aniline- d_{5} . ^a	18
Figure E. The peak area of the $(M + K)^+$ of phenazine formed from aniline corresponding to the io at $m/z = 219$:	on 18
(i) At 5 min:	18
(ii) At 10 min:	18
(iii) At 15 min:	. 19
(iv) At 20 min:	. 19
Figure F. The peak area of the (M + K) ⁺ of phenazine- d_5 formed from aniline- d_5 corresponding to ion at $m/z = 227$:	the 19
(i) At 5 min:	. 19
(ii) At 10 min:	20
(iii) At 15 min:	20

	(iv) At 20 min:	20
	Scheme IV-B. Plausible mechanism for the C-H activation mediated amination/cyclization/oxidatio	n
	cascade of phenazine formation catalysed by Pd-Ag NC	21
	Table IV-B. The control experiments of dihydrophenazine 4a to afford the 2a. ^a	21
	Scheme IV-C. Evidence for non-radical mechanism during the Pd-Ag NC catalyzed self coupling of	
	aniline to form phenazine	21
	(i) Reaction of aniline in the presence of radical scavenger.	21
	(ii) Reaction of <i>N</i> -Methylaniline 5 in the absence of radical scavenger.	22
	(iii) Reaction of <i>N</i> -Methylaniline 5 in the presence of radical scavenger	22
	Scheme IV-D. Evidence for C-H activation and synchronous double C-N bond formation during	
	phenazine formation	22
	The reaction of 2-aminodiphenyl amine	22
V	Characterization of compounds:	23
	2,7-Dimethyl-phenazine ³ (entry 2, Table 1):	23
	2,7-Bis-benzyloxy-phenazine (entry 3, Table 1):	23
	1,2,3,6,7,8-Hexamethoxy-phenazine (entry 4, Table 1):	23
	2,7-Dimethoxy-phenazine ⁴ (entry 5, Table 1):	23
	2,7-Difluoro-phenazine ³ (entry 6, Table 1):	23
	2,7-Bis-methylsulfanyl-phenazine (entry 7, Table 1):	23
	2,7-Dimethyl-phenazine ³ (entry 8, Table 1):	23
	2,7-Dimethoxy-phenazine ⁴ (entry 9, Table 1):	23
	2,7-Difluoro-phenazine ³ (entry 10, Table 1):	23
	Dibenzo[<i>a</i> , <i>h</i>]phenazine (entry 11, Table 1):	24
	Di- <i>p</i> -tolyl-diazene ² (entry 2, Table 1, Footnote c):	24
	Bis-(4-benzyloxy-phenyl)-diazene (entry 3, Table 1, Footnote c):	24
	Bis-(3,4,5-trimethoxy-phenyl)-diazene (entry 4, Table 1, Footnote c):	24
	Bis-(4-methoxy-phenyl)-diazene ² (entry 5, Table 1, Foonote c):	24

	Bis-(4-fluoro-phenyl)-diazene ² (entry 6, Table 1, Footnote c):	24
	Bis-(4-methylsulfanyl-phenyl)-diazene (entry 7, Table 1, Footnote c):	24
	(E)-1,2-dim-tolyldiazene ² (entry 8, Table 1, Footnote c):	24
	(<i>E</i>)-1,2-Bis(3-methoxyphenyl)diazene ⁵ (entry 9, Table 1, Footnote c):	25
	(<i>E</i>)-1,2-Bis(3-fluorophenyl)diazene ⁶ (entry 10, Table 1, Footnote c):	25
	Di-naphthalen-2-yl-diazene ⁷ (entry 11, Table 1, Footnote c):	25
v	I. Recovery and recyclability study of NC:	25
	Typical procedure for the recovery and recyclability of Pd-Ag binary NC catalytic system for self coupling of 1a to form 2a:-	25
	Table VI-A. Reusability of Pd-Ag binary NC system. ^a	25
	Figure G. HRTEM image of Pd-Ag binary NC in the reaction mixture at 5 th cycle	26
v	II. Scanned NMR Spectra:	27
	¹ H NMR of Phenazine (entry 1, Table 1):	27
	¹ H NMR of 2,7-Dimethyl-phenazine (entry 2, Table 1):	27
	¹ H NMR of 2,7-Bis-benzyloxy-phenazine (entry 3, Table 1):	28
	¹³ C NMR of 2,7-Bis-benzyloxy-phenazine (entry 3, Table 1):	28
	¹ H NMR of 1,2,3,6,7,8-Hexamethoxy-phenazine (entry 4, Table 1):	29
	¹³ C NMR of 1,2,3,6,7,8-Hexamethoxy-phenazine (entry 4, Table 1):	29
	¹ H NMR of 2,7-Dimethoxy-phenazine (entry 5, Table 1):	30
	¹ H NMR of 2,7-Difluoro-phenazine (entry 6, Table 1):	30
	¹ H NMR of 2,7-Bis-methylsulfanyl-phenazine (entry 7, Table 1):	31
	¹³ C NMR of 2,7-Bis-methylsulfanyl-phenazine (entry 7, Table 1):	31
	¹ H NMR of 2,7-Dimethyl-phenazine (entry 8, Table 1):	32
	¹ H NMR of 2,7-Dimethoxy-phenazine (entry 9, Table 1):	32
	¹ H NMR of 2,7-Difluoro-phenazine (entry 10, Table 1):	33
	¹ H NMR of Dibenzo[<i>a,h</i>]phenazine (entry 11, Table 1):	34

	¹³ C NMR of Dibenzo[<i>a</i> , <i>h</i>]phenazine (entry 11, Table 1):	. 34
	¹ H NMR of Diphenyl-diazene (entry 1, Table 1, Footnote c):	. 35
	¹ H NMR of Di- <i>p</i> -tolyl-diazene (entry 2, Table 1, Footnote c):	. 35
	¹ H NMR of Bis-(4-benzyloxy-phenyl)-diazene (entry 3, Table 1, Footnote c):	. 36
	¹³ C NMR of Bis-(4-benzyloxy-phenyl)-diazene (entry 3, Table 1, Footnote c):	. 36
	¹ H NMR of Bis-(3,4,5-trimethoxy-phenyl)-diazene (entry 4, Table 1, Footnote c):	. 37
	¹³ C NMR of Bis-(3,4,5-trimethoxy-phenyl)-diazene (entry 4, Table 1, Footnote c):	. 37
	¹ H NMR of Bis-(4-methoxy-phenyl)-diazene (entry 5, Table 1, Footnote c):	. 38
	¹ H NMR of Bis-(4-fluoro-phenyl)-diazene (entry 6, Table 1, Footnote c):	. 38
	¹ H NMR of Bis-(4-methylsulfanyl-phenyl)-diazene (entry 7, Table 1, Footnote c):	. 39
	¹³ C NMR of Bis-(4-methylsulfanyl-phenyl)-diazene (entry 7, Table 1, Footnote c):	. 39
	¹ H NMR of (<i>E</i>)-1,2-Bis(3-methoxyphenyl)diazene (entry 9, Table 1, Footnote c):	. 40
	¹ H NMR of (<i>E</i>)-1,2-Bis(3-fluorophenyl)diazene (entry 10, Table 1, Footnote c):	. 40
	¹ H NMR of Di-naphthalen-2-yl-diazene (entry 11, Table 1, Footnote c):	. 41
	¹ H NMR of 4,4'-di- <i>N</i> -Methyl-biphenyl, 6 (Scheme 5):	. 42
	¹³ C NMR of 4,4'-di- <i>N</i> -Methyl-biphenyl, 6 (Scheme 5):	. 42
V	III. References:	.43

I. The standardisation of various reaction parameters such as the effect of catalysts, oxidants, solvents, reaction temperature and time etc. on the self coupling of 1a to form 2a.

Table I-A. The effect of various Pd-compounds in the absence of stabilizer for self coupling of 1a to form 2a and 3a.^a

	NH ₂ Catalyst (X mol % Base (2-4 equiv) DMF, 100 °C, 20 mi	\rightarrow N + N	N-N	
	1a	2a	3a	
Entry	Catalyst (X)	Base (equiv)	Yield	(%) ^b
			2a	3a
1	$[PdCl_2(PPh_3)_2]$ (10)	$Ag_2CO_3(4)$	54	17
2	$[PdCl_2(PPh_3)_2] (5)$	$Ag_2CO_3(4)$	54	16
3	$[PdCl_2(PPh_3)_2](1)$	$Ag_2CO_3(4)$	52	16
4	$PdCl_{2}(1)$	$Ag_2CO_3(4)$	30	13
5	$Pd(OAc)_2(1)$	$Ag_2CO_3(4)$	31	11
6	$Pd(TFA)_2(1)$	$Ag_2CO_3(4)$	37	19
7	$Pd(Piv)_2(1)$	$Ag_2CO_3(4)$	22	trace
8	$Pd(acac)_2(1)$	$Ag_2CO_3(4)$	30	trace
9	$Pd(dba)_2(1)$	$Ag_2CO_3(4)$	17	trace
10	$Pd_2(dba)_3(1)$	$Ag_2CO_3(4)$	14	trace
11	$Pd(PPh_3)_4(1)$	$Ag_2CO_3(4)$	15	trace
12	Pd/C (1)	$Ag_2CO_3(4)$	trace	trace
13	$[PdCl_2(PPh_3)_2](1)$	$Ag_2CO_3(2)$	50	16
14	$[PdCl_2(PPh_3)_2](1)$	$Cu(OAc)_2 \cdot H_2O(4)$	0	0
15	$Pd(OAc)_2(1)$	$Cu(OAc)_2 \cdot H_2O(4)$	0	0
16	$[PdCl_2(PPh_3)_2](1)$	$FeCl_3(4)$	0	trace
17	$Pd(OAc)_2(1)$	$FeCl_3(4)$	0	trace

^aAniline **1a** (2 mmol, 2 equiv) was treated under various conditions in DMF (2 mL) at 100 °C for 20 min. ^bIsolated yield.

Table I-B. The effect of various Pd-based catalysts, bases, additives, and other reaction parameters on the self coupling of 1a to form 2a and 3a.^a

	NH ₂	Catalyst (X mol %) TBAB (1 equiv) Base (Y equiv) Additive (Z equiv) DMF Temp (°C) 20 min		+ N.N.			
	1a		2a	3a			
Entry	Catalyst (X)	Base (Y)	Additive (Z)	Т	Yield	l (%) ^b	
				(°C)	2a	3a	
1	$Pd(OAc)_2(10)$	$Cs_2CO_3(2)$	$Ag_2CO_3(2)$	120	65	16	
2	$Pd(OAc)_2(5)$	$Cs_2CO_3(2)$	$Ag_2CO_3(2)$	120	64	16	
3	$Pd(OAc)_{2}(2.5)$	$Cs_2CO_3(2)$	$Ag_{2}CO_{3}(2)$	120	65	15	

4	$Pd(OAc)_2(1)$	$Cs_2CO_3(2)$	$Ag_2CO_3(2)$	120	66	17
5	None	$Cs_2CO_3(2)$	$Ag_2CO_3(2)$	120	22	38
6	None	$Cs_2CO_3(4)$	None	120	0	0
7	None	$Cs_2CO_3(4)$	None	120	20	12 ^c
8	None	$Cs_2CO_3(4)$	None	120	20	10 ^d
9	None	$Cs_2CO_3(4)$	None	120	23	13 ^e
10	$Pd(OAc)_2(1)$	$Cs_2CO_3(1)$	$Ag_2CO_3(2)$	120	65	16
11	$Pd(OAc)_2(1)$	$Cs_2CO_3(0.5)$	$Ag_2CO_3(2)$	120	64	18
12	$Pd(OAc)_2(1)$	$Cs_2CO_3(0.5)$	$Ag_2CO_3(1)$	120	44	22
13	$Pd(OAc)_2(1)$	$Cs_2CO_3(1)$	$Ag_2CO_3(1)$	120	43	23
14	$Pd(OAc)_2(1)$	$Cs_2CO_3(1)$	$Ag_2CO_3(0.5)$	120	34	21
15	$Pd(OAc)_2(1)$	$Cs_2CO_3(2)$	None	120	0	0
16	$[PdCl_2(PPh_3)_2](1)$	$Cs_2CO_3(2)$	$Ag_2CO_3(2)$	120	70	13
17	$[PdCl_2(PPh_3)_2](1)$	$Cs_2CO_3(1)$	$Ag_2CO_3(2)$	120	66	14
18	$Pd(OAc)_2(1)$	$Cs_2CO_3(2)$	$Ag_2CO_3(2)$	100	40	10
19	$Pd(OAc)_2(1)$	$Cs_2CO_3(2)$	AgOAc (2)	100	0	trace
20	$Pd(OAc)_2(1)$	$Cs_2CO_3(2)$	AgOTf(2)	100	0	trace
21	$Pd(OAc)_2(1)$	$Cs_2CO_3(2)$	$AgBF_4(2)$	100	0	0
22	$Pd(OAc)_2(1)$	$Cs_2CO_3(2)$	$AgNO_3(2)$	100	0	trace
23	$PdCl_2(1)$	$Cs_2CO_3(2)$	$Ag_2CO_3(2)$	100	28	10
24	$Na_2PdCl_4(1)$	$Cs_2CO_3(2)$	$Ag_2CO_3(2)$	100	21	12
25	$\left[\text{PdCl}_2(\text{PPh}_3)_2\right](1)$	$Cs_2CO_3(2)$	$Ag_2CO_3(2)$	100	47	12
26	$Pd(acac)_2(1)$	$Cs_2CO_3(2)$	$Ag_2CO_3(2)$	100	30	11
27	$[PdCl_2(PPh_3)_2](0.5)$	$Cs_2CO_3(2)$	$Ag_2CO_3(2)$	100	41	15
28	$[PdCl_2(PPh_3)_2](0.1)$	$Cs_2CO_3(2)$	$Ag_2CO_3(2)$	100	21	12
29	$\left[\text{PdCl}_2(\text{PPh}_3)_2\right](1)$	$K_2CO_3(4)$	None	100	0	0
30	$\left[\text{PdCl}_2(\text{PPh}_3)_2\right](1)$	$Cs_2CO_3(4)$	None	100	0	0

^a**1a** (2 mmol, 2 equiv) was treated under various conditions in DMF (2 mL) for 20 min. ^bIsolated yield. ^cThe reaction was performed for 2 h. ^dThe reaction was performed for 2 h in the absence of TBAB. ^cThe reaction was performed for 2 h under O_2 bubbling (10 psi).

Table I-C. The effect of various Pd-based catalysts, metal-based additives as the oxidant, and other reaction parameters on the self coupling of 1a to form 2a and 3a.^a

	ĺ	NH ₂ TBAB (1 er Additive (Y of DMF, Temp (°C	mol %) quiv) equiv)), 20 min	N N	+ N ^N N		
		1a		2a	3a		
Entry	Catalyst (X)		Additive (Y)	Temp	Yield (%) ^b
					(°C)	2a	3a
1	$Pd(OAc)_2(1)$		$Ag_2CO_3(2)$		120	62	18
2	$Pd(OAc)_2(1)$		$Ag_2CO_3(1)$		120	17	23
3	$Pd(OAc)_2(1)$		$Ag_2CO_3(0.3)$	5)	120	0	0
4	$Pd(OAc)_2(1)$		None		100	0	0
5	$Pd(OAc)_2(1)$		None		100	0	0 ^c

$Pd(OAc)_2(1)$	$Ag_2CO_3(3)$	120	65	15
$Pd(OAc)_2(1)$	$Ag_2CO_3(4)$	120	71	10
$Pd(OAc)_2(1)$	None	120	0	0^{c}
$Pd(OAc)_2(1)$	$Ag_2CO_3(4)$	100	70	11
None	$Ag_2CO_3(4)$	100	20	31
None	$Ag_2CO_3(4)$	100	27	35 ^c
None	$Ag_2CO_3(4)$	100	28	37 ^d
$Pd(OAc)_2(1)$	$Ag_2CO_3(4)$	80	45	19
$Pd(OAc)_2(1)$	$Ag_2CO_3(4)$	60	21	11
$Pd(OAc)_2(1)$	AgOAc (4)	100	0	trace
$Pd(OAc)_2(1)$	AgOTf (4)	100	0	0
$Pd(OAc)_2(1)$	$AgBF_4(4)$	100	0	0
$Pd(OAc)_2(1)$	$AgNO_3(4)$	100	0	trace
$PdCl_2(1)$	$Ag_2CO_3(4)$	100	65	11
$PdCl_2(1)$	$Ag_2CO_3(4)$	100	67	14 ^e
$Na_2PdCl_4(1)$	$Ag_2CO_3(4)$	100	65	17
$Pd(PPh_3)_4(1)$	$Ag_2CO_3(4)$	100	49	16
$[PdCl_2(PPh_3)_2](1)$	$Ag_2CO_3(4)$	100	81	10
$[PdCl_2(PPh_3)_2](1)$	$Ag_{2}O(4)$	100	80	14
$Pd(acac)_2(1)$	$Ag_2CO_3(4)$	100	67	19
$Pd(Piv)_2(1)$	$Ag_2CO_3(4)$	100	27	10
$Pd(TFA)_2(1)$	$Ag_2CO_3(4)$	100	43	17
$Pd(dba)_2(1)$	$Ag_2CO_3(4)$	100	19	trace
$Pd_2(dba)_3(1)$	$Ag_2CO_3(4)$	100	16	trace
Pd/C (1)	$Ag_2CO_3(4)$	100	15	11
$[PdCl_2(PPh_3)_2](0.5)$	$Ag_2CO_3(4)$	100	73	17
$[PdCl_2(PPh_3)_2](0.1)$	$Ag_2CO_3(4)$	100	62	23
	$Pd(OAc)_{2}(1) Pd(OAc)_{2}(1) Pd(OAc)_{2}(1) Pd(OAc)_{2}(1) Pd(OAc)_{2}(1) None None Pd(OAc)_{2}(1) Pd(OAc)_{2}(1) Pd(OAc)_{2}(1) Pd(OAc)_{2}(1) Pd(OAc)_{2}(1) Pd(OAc)_{2}(1) Pd(Cl_{2}(1) PdCl_{2}(1) PdCl_{2}(1) PdCl_{2}(PPh_{3})_{2}](1) [PdCl_{2}(PPh_{3})_{2}](1) Pd(Piv)_{2}(1) Pd(Piv)_{2}(1) Pd(Dac)_{2}(1) Pd(Dac)_{$	$Pd(OAc)_2(1)$ $Ag_2CO_3(3)$ $Pd(OAc)_2(1)$ $Ag_2CO_3(4)$ $Pd(OAc)_2(1)$ $Ag_2CO_3(4)$ $None$ $Ag_2CO_3(4)$ $None$ $Ag_2CO_3(4)$ $None$ $Ag_2CO_3(4)$ $None$ $Ag_2CO_3(4)$ $None$ $Ag_2CO_3(4)$ $Pd(OAc)_2(1)$ $Ag_2CO_3(4)$ $Pd(OAc)_2(1)$ $Ag_2CO_3(4)$ $Pd(OAc)_2(1)$ $Ag_2CO_3(4)$ $Pd(OAc)_2(1)$ $AgOAc(4)$ $Pd(OAc)_2(1)$ $AgOTf(4)$ $Pd(OAc)_2(1)$ $AgBF_4(4)$ $Pd(OAc)_2(1)$ $AgBF_4(4)$ $Pd(OAc)_2(1)$ $AgDO_3(4)$ $PdCl_2(1)$ $Ag_2CO_3(4)$ $PdCl_2(1)$ $Ag_2CO_3(4)$ $PdCl_2(1)$ $Ag_2CO_3(4)$ $PdCl_2(PPh_3)_2](1)$ $Ag_2CO_3(4)$ $Pd(Piv)_2(1)$ $Ag_2CO_3(4)$ $Pd(Piv)_2(1)$ $Ag_2CO_3(4)$ $Pd(Piv)_2(1)$ $Ag_2CO_3(4)$ $Pd(dba)_2(1)$ $Ag_2CO_3(4)$ $Pd_2(dba)_3(1)$ $Ag_2CO_3(4)$ $Pd(Cl_2(PPh_3)_2](0.5)$ $Ag_2CO_3(4)$ $PdCl_2(PPh_3)_2](0.1)$ $Ag_2CO_3(4)$	$Pd(OAc)_2(1)$ $Ag_2CO_3(3)$ 120 $Pd(OAc)_2(1)$ $Ag_2CO_3(4)$ 120 $Pd(OAc)_2(1)$ $None$ 120 $Pd(OAc)_2(1)$ $Ag_2CO_3(4)$ 100 None $Ag_2CO_3(4)$ 100 None $Ag_2CO_3(4)$ 100 None $Ag_2CO_3(4)$ 100 None $Ag_2CO_3(4)$ 100 Pd(OAc)_2(1) $Ag_2CO_3(4)$ 80 $Pd(OAc)_2(1)$ $Ag_2CO_3(4)$ 60 $Pd(OAc)_2(1)$ $Ag_2CO_3(4)$ 60 $Pd(OAc)_2(1)$ $AgOAc(4)$ 100 $Pd(OAc)_2(1)$ $AgOAc(4)$ 100 $Pd(OAc)_2(1)$ $AgBF_4(4)$ 100 $Pd(OAc)_2(1)$ $AgBF_4(4)$ 100 $PdCl_2(1)$ $Ag_2CO_3(4)$ 100 $PdCl_2(1)$ $Ag_2CO_3(4)$ 100 $PdCl_2(1)$ $Ag_2CO_3(4)$ 100 $PdCl_2(PPh_3)_2(1)$ $Ag_2CO_3(4)$ 100 $Pd(Prh_3)_2(1)$ $Ag_2CO_3(4)$ 100 $Pd(Piv)_2(1)$ $Ag_2CO_3(4)$ 100 $Pd(Piv)_2(1)$ $Ag_2CO_3(4)$ 100 $Pd(dba)_2(1)$ $Ag_2CO_3(4)$ 100 $Pd_2(dba)_3(1)$ $Ag_2CO_3(4)$ 100 $PdCl_2(PPh_3)_2(0.5)$ $Ag_2CO_3(4)$ 100 $PdCl_2(PPh_3)_2(0.5)$ $Ag_2CO_3(4)$ 100 $PdCl_2(PPh_3)_2(0.5)$ $Ag_2CO_3(4)$ 100 $PdCl_2(PPh_3)_2(0.5)$ $Ag_2CO_3(4)$ 100	$\begin{array}{c ccccc} Pd(OAc)_2(1) & Ag_2CO_3(3) & 120 & 65 \\ Pd(OAc)_2(1) & Ag_2CO_3(4) & 120 & 71 \\ Pd(OAc)_2(1) & None & 120 & 0 \\ Pd(OAc)_2(1) & Ag_2CO_3(4) & 100 & 70 \\ None & Ag_2CO_3(4) & 100 & 27 \\ None & Ag_2CO_3(4) & 100 & 27 \\ None & Ag_2CO_3(4) & 100 & 28 \\ Pd(OAc)_2(1) & Ag_2CO_3(4) & 80 & 45 \\ Pd(OAc)_2(1) & Ag_2CO_3(4) & 60 & 21 \\ Pd(OAc)_2(1) & Ag_2CO_3(4) & 100 & 0 \\ Pd(OAc)_2(1) & AgOAc (4) & 100 & 0 \\ Pd(OAc)_2(1) & AgBF_4(4) & 100 & 0 \\ Pd(OAc)_2(1) & AgBF_4(4) & 100 & 0 \\ Pd(OAc)_2(1) & Ag2CO_3(4) & 100 & 65 \\ PdCl_2(1) & Ag2CO_3(4) & 100 & 67 \\ Na_2PdCl_4(1) & Ag_2CO_3(4) & 100 & 65 \\ Pd(Ph_3)_4(1) & Ag_2CO_3(4) & 100 & 67 \\ Pd(Ph_3)_2(1) & Ag2CO_3(4) & 100 & 67 \\ Pd(Ph_3)_2(1) & Ag2CO_3(4) & 100 & 43 \\ Pd(deac)_2(1) & Ag2CO_3(4) & 100 & 43 \\ Pd(deac)_2(1) & Ag_2CO_3(4) & 100 & 43 \\ Pd(deab)_2(1) & Ag_2CO_3(4) & 100 & 15 \\ Pd(Ph_3)_2(1) & Ag_2CO_3(4) & 100 & 15 \\ Pd(PdCl_2(PPh_3)_2(0.5) & Ag_2CO_3(4) & 100 & 73 \\ PdCl_2(PPh_3)_2(0.1) & Ag_2CO_3(4) & 1$

^a**1a** (2 mmol, 2 equiv) was treated under various conditions in DMF (2 mL) for 20 min. ^bIsolated yield. ^cThe reaction was performed for 1 h. ^dThe reaction was performed for 2 h. ^ePPh₃ (2 mol %) was added externally.

Table I-D. The effect of different metal precursors, bases, metal/non-metal based additives as the oxidant on the self coupling of 1a to form 2a and 3a.^a

	NH ₂ 1a	Catalyst (X mol %) TBAB (1 equiv) Base (Y equiv) Additive (Z equiv) DMF, 100 °C, 20 min	$\frac{1}{2a} + \frac{1}{3a} + \frac{1}{3a}$		
Entry	Catalyst (X)	Base (Y)	Additive (Z)	Yield ((%) ^b
				2a	3a
1	$Pd(OAc)_2(1)$	None	$Cu(OAc)_2 \cdot H_2O(4)$	0	0
2	$Pd(OAc)_2(1)$	$Cs_2CO_3(2)$	$Cu(OAc)_2 \cdot H_2O(2)$	0	0
3	$Pd(OAc)_2(1)$	None	$CuCO_3 \cdot Cu(OH)_2(4)$	0	trace
4	$Pd(OAc)_2(1)$	$Cs_2CO_3(2)$	$CuCO_3 \cdot Cu(OH)_2(2)$	0	trace
5	$Pd(OAc)_2(1)$	None	CuI (4)	0	trace
6	$Pd(OAc)_2(1)$	$Cs_2CO_3(2)$	CuI (2)	0	trace

7	$Pd(OAc)_2(1)$	None	$FeCl_3(4)$	0	trace
8	$Pd(OAc)_2(1)$	$Cs_2CO_3(2)$	$\operatorname{FeCl}_{3}(2)$	0	trace
9	$[PdCl_2(PPh_3)_2](1)$	None	$PhNO_2(4)$	0	0
10	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	$K_2CO_3(4)$	$PhNO_2(4)$	0	0
11	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	$Ag_{2}CO_{3}(2)$	$PhNO_2(2)$	17	trace
12	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	$Ag_{2}CO_{3}(2)$	$PhNO_2(4)$	19	trace
13	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	None	TBHP (4)	0	0
14	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	None	TBHP (4)	0	0^{c}
15	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	$Ag_2CO_3(2)$	TBHP (4)	0	0
16	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	$Cs_2CO_3(2)$	TBHP (2)	0	0^d
17	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	$K_{2}CO_{3}(2)$	$Ag_2CO_3(2) + AgNO_3(4)$	0	trace
18	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	$K_{2}CO_{3}(2)$	$Ag_2CO_3(2)$	0	trace
			$+ CuCO_3 \cdot Cu(OH)_2(4)$		
19	$[PdCl_2(PPh_3)_2](1) +$	None	$K_2S_2O_8(2)$	0	0
	$Ag_2CO_3(10)$				
20	$[PdCl_2(PPh_3)_2](1) +$	$K_{2}CO_{3}(2)$	$K_2S_2O_8(2)$	0	0
	$Ag_2CO_3(10)$				
21	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	$Cs_2CO_3(2)$	$K_2S_2O_8(2)$	0	0^d
22	$[PdCl_2(PPh_3)_2](1) +$	None	$PhI(OAc)_2(2)$	0	0
	$Ag_2CO_3(10)$				
23	$[PdCl_2(PPh_3)_2](1) +$	$K_{2}CO_{3}(2)$	$PhI(OAc)_2(2)$	0	0
	$Ag_2CO_3(10)$				
24	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	$Cs_2CO_3(2)$	$PhI(OAc)_2(2)$	0	0^d
25	$[PdCl_2(PPh_3)_2](1) +$	None	DDQ (2)	0	0
	$Ag_2CO_3(10)$				
26	$[PdCl_2(PPh_3)_2](1) +$	$K_{2}CO_{3}(2)$	DDQ (2)	0	0
	$Ag_2CO_3(10)$				
27	$[PdCl_2(PPh_3)_2](1)$	$Cs_2CO_3(2)$	NIS (4)	11	14^{d}

^a**1a** (2 mmol, 2 equiv) was treated under various conditions in DMF (2 mL) at 100 °C for 20 min. ^bIsolated yield. ^cThe reaction was carried out under O₂ bubbling (10 psi). ^dThe reaction was performed for 1 h under O₂ bubbling (10 psi). [NIS = *N*-Iodosuccinimide].

Table I-E. The effect of different metal precursors other than Pd compounds, metalbased additives as the oxidant on the self coupling of 1a to form 2a and 3a.^a

	NH ₂	Catalyst (X mol %) TBAB (1 equiv) Additive (Y equiv) DMF, 100 °C, 20 min	+	
	1a	2a	3a	
Entry	Catalyst (X)	Additive (Y)	Yield (%) ^b
-			2a	3a
1	$[NiCl_2(PPh_3)_2](1)$	$Ag_2CO_3(4)$	52	14
2	$NiCl_2 \cdot 6H_2O(1)$	$Ag_2CO_3(4)$	41	12
3	$NiSO_4(1)$	$Ag_2CO_3(4)$	30	12
4	$[RuCl_2(p-cym)]_2(1)$	$Ag_2CO_3(4)$	0	trace

5	$[RuCl_2(p-cym)]_2 (1)$	$AgBF_4(0.1) + PivOH(0.1)$	0	0^{c}
6	$\operatorname{Ru}(\operatorname{acac})_{3}(1)$	$Ag_2CO_3(4)$	0	trace
7	$Cu(OAc)_2 \cdot H_2O(1)$	$Ag_2CO_3(4)$	0	18
8	$Cu(OAc)_2 \cdot H_2O(1)$	$Ag_2CO_3(2)$	0	0^d

^a**1a** (2 mmol, 2 equiv) was treated under various conditions in DMF (2 mL) at 100 °C for 20 min. ^bIsolated yield. ^cDCE was used as solvent at reflux. ^dThe reaction was carried out under O_2 bubbling (10 psi).

Table I-F. The effect of different palladium compounds, bases and metal-based additives as the oxidant on the self coupling of 1a to form 2a and 3a.^a

		Catalyst (X mol %) AB (1 equiv), Base (Y equiv) Iditive (Z equiv), O ₂ (15 psi) DMF, 100 °C, 20 min	N +			
Fntry	1a Catalyst (X)	Base (V)	2a Additive (7)	Ja Vield	(%) ^b	
Lintry	Cuturyst (IX)	Duse (1)		2a	3a	
1	$\left[PdCl_2(PPh_3)_2 \right] (1)$	None	None	0	0	
2	$\left[PdCl_2(PPh_3)_2 \right] (1)$	$K_2CO_3(4)$	None	0	0	
3	[PdCl ₂ (PPh ₃) ₂] (1)	$Ag_2CO_3(2)$	None	83	12	
4	None	$Ag_2CO_3(2)$	None	15	22	
5	$[PdCl_2(PPh_3)_2](1)$	$Ag_2O(2)$	None	81	14	
6	$\left[PdCl_2(PPh_3)_2 \right] (1)$	$Ag_2CO_3(1)$	None	26	trace	
7	$\left[PdCl_{2}(PPh_{3})_{2}\right] (1)$	$Ag_2CO_3(1)$	None	50	10°	
8	$\left[PdCl_{2}(PPh_{3})_{2}\right] (1)$	$Ag_2CO_3(2) + K_2CO_3$	(2) None	82	13	
9	$\left[\text{PdCl}_2(\text{PPh}_3)_2\right](1)$	$Ag_2CO_3(1) + Cs_2CO_3(1)$	$_{3}(1)$ None	25	trace	
10	$[PdCl_2(PPh_3)_2](1)$	$Ag_2CO_3(1) + Cs_2CC$	3(1) None	77	12 ^c	
11	$\left[PdCl_2(PPh_3)_2 \right](1)$	$Ag_2CO_3(0.5) + Cs_2C$	$O_3(2)$ None	20	trace ^d	
12	$\left[PdCl_2(PPh_3)_2 \right](1)$	$Ag_2CO_3(0.25) + Cs_2O_3(0.25)$	$CO_3(2)$ None	0	0^{d}	
13	$\left[PdCl_2(PPh_3)_2 \right](1)$	$Cs_2CO_3(2)$	None	0	0^{d}	
14	$\left[PdCl_2(PPh_3)_2 \right](1)$	$Ag_2CO_3(2)$	None	18	trace ^e	
15	$[PdCl_2(PPh_3)_2](1)$	$Ag_2CO_3(2)$	None	80	12 ^f	
16	$\left[PdCl_{2}(PPh_{3})_{2}\right] (1)$	$Ag_2CO_3(2)$	None	81	13 ^g	
17	$\left[PdCl_{2}(PPh_{3})_{2}\right] (1)$	$Ag_2CO_3(2) + KOAc$	(2) None	80	12	
18	$\left[PdCl_{2}(PPh_{3})_{2}\right] (1)$	$Ag_2CO_3(1) + KOAc$	(1) None	23	trace	
19	$\left[PdCl_{2}(PPh_{3})_{2}\right] (1)$	$Ag_2O(1)$	None	28	11	
20	$\left[PdCl_{2}(PPh_{3})_{2}\right] (1)$	$Ag_{2}O(1) + K_{2}CO_{3}(1)$) None	26	trace	
21	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	$Ag_{2}O(2) + K_{2}CO_{3}(2)$) None	79	15	
22	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	$Ag_{2}O(0.2)$	None	0	0	
23	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	$Ag_2CO_3(0.2)$	None	0	0	
		$+ \operatorname{Cu}(\operatorname{OAc})_2 \cdot \operatorname{H}_2 O(0.2)$	2)			
24	$\left[\mathrm{PdCl}_{2}(\mathrm{PPh}_{3})_{2}\right](1)$	$Cu(OAc)_2 \cdot H_2O(0.2)$	None	0	0	
25	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	$Ag_{2}O(0.2)$	None	0	0	
		$+ \operatorname{Cu}(\operatorname{OAc})_2 \cdot \operatorname{H}_2 O(0.1)$	2)			
26	$\left[\mathrm{PdCl}_{2}(\mathrm{PPh}_{3})_{2}\right](1)$	$Ag_{2}O(0.2)$	None	0	0	
		$+ \operatorname{Cu}(\operatorname{OAc})_2 \cdot \operatorname{H}_2 O(0.2)$	2)			

		$+ K_2 CO_3(2)$			
27	$[PdCl_2(PPh_3)_2](1)$	AgOAc (0.2)	None	0	0
		+ TBHP (2) $+$ Cs ₂ CO ₃ ((2)		
28	$[PdCl_2(PPh_3)_2](1)$	AgOAc (0.2)	None	0	$0^{\rm c}$
		+ TBHP (2) $+$ Cs ₂ CO ₃ ((2)		
29	$[PdCl_2(PPh_3)_2](1)$	AgOAc (0.2)	None	0	0
		$+ PhI(OAc)_2(2)$			
		$+ Cs_2CO_3(2)$			
30	$[PdCl_2(PPh_3)_2](1)$	AgOAc (0.2)	None	0	$0^{\rm c}$
		$+ PhI(OAc)_2(2)$			
		$+ Cs_2CO_3(2)$			
31	$[PdCl_2(PPh_3)_2](1)$	AgOAc (0.2)	None	0	0
		$+ K_2 S_2 O_8 (2) + C S_2 C O_3$	(2)		
32	$[PdCl_2(PPh_3)_2](1)$	AgOAc (0.2)	None	0	$0^{\rm c}$
		$+ K_2 S_2 O_8 (2) + C s_2 C O_3$	(2)		
33	$[PdCl_2(PPh_3)_2](1)$	$AgNO_3(2)$	None	0	0
34	$[PdCl_2(PPh_3)_2](1)$	$AgNO_{3}(2) + K_{2}CO_{3}(2)$	None	0	trace
35	$[NiCl_2(PPh_3)_2](1)$	$Ag_2CO_3(2)$	None	55	11
36	$[PdCl_2(PPh_3)_2](1)$	None	None	0	0
	+ NiCl ₂ ·6H ₂ O (1)				
37	$[PdCl_2(PPh_3)_2](1)$	None	None	0	0
	$+ [NiCl_2(PPh_3)_2](1)$				
38	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	None	$Cu(OAc)_2 \cdot H_2O(2)$	0	0
39	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	$Cs_2CO_3(2)$	$Cu(OAc)_2 \cdot H_2O(2)$	0	0
40	$PdCl_2(1)$	$Ag_2CO_3(2)$	None	68	17
41	$Na_2PdCl_4(1)$	$Ag_2CO_3(2)$	None	61	13
42	$PdCl_2(1)$	$Ag_2CO_3(2)$	None	74	14 ^g
43	$PdCl_2(1)$	$Ag_2CO_3(2)$	None	76	11 ^h
44	$PdCl_2(1)$	$Ag_2CO_3(2)$	None	80	12 ⁱ
45	$\left[PdCl_2(PPh_3)_2 \right](1)$	$Ag_2CO_3(1)$	None	0	0 ^j
		+ NHPI (0.2)			
46	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	$Ag_2CO_3(1)$	None	0	0
		+ NHPI (0.2)			
47	$\left[PdCl_{2}(PPh_{3})_{2}\right] (1)$	$Ag_{2}O(0.2)$	None	0	0
		+ NHPI (0.2) $+$ K ₂ CO ₃ ((2)		

^a**1a** (1 mmol) was treated under various conditions in DMF (2 mL) at 100 °C for 20 min under O₂ bubbling (15 psi). ^bIsolated yield. ^cThe reaction was performed for 1 h. ^dThe reaction was performed for 2 h. ^eThe reaction was performed under O₂ bubbling (10 psi). ^gThe reaction was performed under O₂ bubbling (25 psi). ^hPPh₃ (2 mol %) was added externally. ⁱPCy₃ (2 mol %) was added externally. ^j(biphenyl)PCy₂ (2 mol %) was added externally. ^kDCE was used as solvent under reflux. [NHPI = *N*-Hydroxy phthalimide].

Table I-G. The effect of palladium compound, base, and the N_2 atmosphere for the self coupling of 1a to form 2a and 3a.ª

	$ \begin{array}{c} NH_2\\ \underbrace{TBAB}_{(1 \text{ equiv}), \text{ Base (Y equiv)}}\\ \underbrace{N_2, \text{ DMF, 100 °C, 20 min}}\\ \end{array} + \underbrace{N_N}_{N} $				
	1a	2a	3a		
Entry	Catalyst (X)	Base (Y)	Yield ((%) ^b	
			2a	3a	
1	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	$Ag_2CO_3(2)$	20	16	
2	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	$Ag_2CO_3(2)$	27	18 ^c	
3	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	$Ag_2CO_3(2)$	31	20^{d}	
4	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	$Ag_2CO_3(1) + Cs_2CO_3(1)$	12	trace	
5	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	$Ag_2CO_3(1) + Cs_2CO_3(1)$	16	11 ^c	
6	$\left[PdCl_{2}(PPh_{3})_{2} \right](1)$	$Ag_2CO_3(4)$	80	13	
7	$\left[\text{PdCl}_2(\text{PPh}_3)_2\right](1)$	$Ag_2CO_3(2) + Cs_2CO_3(2)$	21	14	

^a**1a** (1 mmol) was treated under various conditions in degassed DMF (2 mL) at 100 $^{\circ}$ C for 20 min under N₂ atmosphere. ^bIsolated yield. ^cThe reaction was performed for 1 h. ^dThe reaction was performed for 5 h.

Table I-H. The effect of different stabilizers during the self coupling of 1a to form 2a and 3a.^a

Entry	Stabilizer	Х	Yield (%) ^b
			2a 3a
1	Tetrabutylammonium bromide (TBAB)	1	81 10
2	TBAB	0.5	80 12
3	TBAB	0.2	81 11
4	TBAB	0.2	79 13 ^c
5	TBAB	0.1	60 10
6	None		51 18
7	TBAF	0.2	78 12
8	TBACl	0.2	78 11
9	Tetrabutylammonium iodide (TBAI)	0.2	61 17
10	[bmim]Br	0.2	55 20
11	[bdmim]Br	0.2	53 19
12	Sodium dioctyl sulfosuccinate (SDOSS)	0.2	13 0
13	Sodium dodecyl sulfate (SDS)	0.2	trace 0
14	Tween 40	0.2	trace 0
15	Span 60	0.2	trace 0
16	Triton X 110	0.2	trace 0

^a**1a** (2 mmol, 2 equiv) was treated in the presence of $[PdCl_2(PPh_3)_2]$ (1 mol %), Ag₂CO₃ (2 equiv) in different stabilizer in DMF (2 mL) at 100 °C for 20 min under O₂ bubbling (10 psi). ^bIsolated yield. ^cAg₂CO₃ (1 equiv) and Cs₂CO₃ (1 equiv) were used instead of Ag₂CO₃ (2 equiv) and the reaction was performed for 1 h.

	NH ₂ (PdCl ₂ (PPh ₃) ₂] (1 mol %) TBAB (0.2 equiv) Ag ₂ CO ₃ (2 equiv) O ₂ (10 psi) Solvent T °C, 20 min	N + N	Nin		
	1a	2a	3a		
Entry	Solvent	Temp (°C)	Yield	(%) ^b	
			2a	3 a	
1	HCONH ₂	100	0	0	
2	DMF	100	81	10	
3	Diethylformamide (DEF)	100	87	10	
4	N,N-Dimethylacetamide (DMA)	100	86	11	
5	DMPU	100	51	40	
6	NMP	100	60	31	
7	DMSO	100	64	20	
8	1,4-Dioxane	100	54	30	
9	MeCN	reflux	0	0	
10	H ₂ O	100	0	0	
11	H ₂ O	100	0	0^{c}	
12	DCE	reflux	14	trace	
13	Toluene	reflux	28	17	
14	THF	reflux	0	0	
15	ⁱ PrOH	reflux	12	10	
16	PEG 400	130	0	0	

Table I-I. The effect of different solvents during the self coupling of 1a to form 2a and $3a.^a$

^a**1a** (2 mmol, 2 equiv) was treated in the presence of $[PdCl_2(PPh_3)_2]$ (1 mol %), Ag₂CO₃ (2 equiv) and TBAB (0.2 equiv) in different solvents (2 mL) at 100 °C for 20 min under O₂ bubbling (10 psi). ^bIsolated yield. ^cSDOSS was used instead of Ag₂CO₃.

II. <u>Evidence of NC formation during the Pd-Ag compounds catalyzed self coupling of 1a to form 2a.</u>

Figure A. HRTEM image of Pd-Ag binary NC obtained from the reaction mixture of the [PdCl₂(PPh₃)₂] (7 mg, 1 mol %), Ag₂CO₃ (551 mg, 2 equiv) and TBAB (20 mol %) in DEF (2 mL) for 10 min at 100 °C.

Pd-Ag binary NC: (Pd particles size 3 nm – 8 nm and Ag particles size 20 nm – 40 nm)

Figure B. Energy dispersive X-ray spectra of Pd-Ag binary NC (Fig. A) on carbon coated Cu grid.

Figure C. HRTEM image of Pd-Ag binary NC obtained from the reaction mixture of the PdCl₂ (1.7 mg, 1 mol %), Ag₂CO₃ (551 mg, 2 equiv) and TBAB (20 mol %) in DEF (2 mL) for 10 min at 100 $^{\circ}$ C.

Pd-Ag binary NC: (Pd particles size 10 nm – 15 nm and Ag particles size 20 nm – 40 nm)

Figure D. HRTEM image of Pd-Ag binary NC obtained from the reaction mixture of the Na_2PdCl_4 (2.9 mg, 1 mol %), Ag_2CO_3 (551 mg, 2 equiv) and TBAB (20 mol %) in DEF (2 mL) for 10 min at 100 °C.

Pd-Ag binary NC: (Pd particles size 12 nm – 20 nm and Ag particles size 20 nm – 40 nm)

III. Experimental Procedure

General Information

The ¹H and ¹³C NMR spectra were recorded on a Bruker Avance 400 MHz NMR spectrometer in CDCl₃ with residual undeuterated solvent (CDCl₃ : 7.26/77.0) using Me₄Si as an internal standard. Chemical shifts (δ) are given in ppm and *J* values are given in Hz. The IR spectra were recorded either on KBr pellets (for solids) or neat (for liquids) on a Nicolet Impact 410 FTIR spectrometer. The HRMS spectra were obtained with a Bruker Maxis instrument. Melting points were measured with Gupta scientific, India melting point apparatus. Column chromatography, thin layer chromatography (TLC) was performed on Silica gel [Fisher Scientific silica gel 100-200 mesh or 60-120 mesh, F254 and Merck[®] silica gel respectively]. Evaporation of solvents was performed at reduced pressure, using a Búchi rotary evaporator. All chemicals were purchased from Aldrich, Lancaster, Alfa Aesar, Fluka Chemicals and Loba Chemie and used as received. All the HRTEM images were taken on carbon coated Cu grids in FEI-TECHNAI-G²-F20 instrument equipped with EDAX facility.

Typical procedure for the in-situ generated Pd-Ag NC catalyzed coupling of aniline 1a by double C-H activation to generate phenazine 2a and azobenzene 3a:-

Method A: To a magnetically stirred solution of TBAB (64.4 mg, 0.2 mmol, 20 mol %), [PdCl₂(PPh₃)₂] (7 mg, 0.01 mmol, 1 mol %) and Ag₂CO₃ (551 mg, 2 mmol, 2 equiv) in diethylformamide, DEF (2 mL) was added aniline **1a** (186 mg, 0.18 mL, 2 mmol, 2 equiv) under O₂ bubbling (10 psi) at 100 °C. Upon completion of the reaction (20 min, monitored by TLC), the reaction mixture was cooled to rt and was filtered through a short pad of celite; DEF was evaporated to dryness under vacuum (10 mm Hg). The residue was passed through chromatography column (silica-gel: 100-200 mesh) and eluted with Et₃N-hexane-EtOAc solvent system to afford the phenazine¹ **2a** as brown solid, (157 mg, 87%) and azobenzene² **3a** as red solid, (18 mg, 10%). **2a**: mp: 172-175 °C [lit. mp: 172-176 °C]; TLC (Hexane:EtOAc, 95:5 v/v): $R_f \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.83 – 7.88 (m, 4H), 8.24 – 8.28 (m, 4H); IR (KBr) v_{max}: 2922, 1275, 1260, 1054, 1033 cm⁻¹; MS (ESI) (M⁺) = 180.5. **3a**: mp: 67-70 °C [lit. mp: 65-68 °C]; TLC (Hexane:EtOAc, 98:2 v/v): $R_f \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.45 – 7.54 (m, 6H), 7.91 – 7.94 (m, 4H); IR (KBr) v_{max}: 3139, 2956, 1737, 1365, 1216 cm⁻¹; MS (ESI) (M⁺) = 182.7.

Method B: To a magnetically stirred solution of TBAB (64.4 mg, 0.2 mmol, 20 mol %), $[PdCl_2(PPh_3)_2]$ (7 mg, 0.01 mmol, 1 mol %), Ag_2CO_3 (276 mg, 1 mmol, 1 equiv) and Cs_2CO_3 (326 mg, 1 mmol, 1 equiv) in DEF (2 mL) was added **1a** (186 mg, 0.18 mL, 2 mmol, 2 equiv) under O₂ bubbling (10 psi) at 100 °C. Upon completion of the reaction (60 min, monitored by

TLC), the reaction mixture was cooled to rt and was filtered through a short pad of celite; DEF was evaporated to dryness under vacuum (10 mm Hg). The residue was passed through chromatography column (silica-gel: 100-200 mesh) and eluted with Et₃N-hexane-EtOAc solvent system to afford the $2a^1$ as brown solid, (142 mg, 79%) and $3a^2$ as red solid, (24 mg, 13%).

Typical procedure for identification and analysis of the in-situ formed Pd-Ag binary NC: The mixture of TBAB (64.4 mg, 0.2 mmol, 20 mol %), $[PdCl_2(PPh_3)_2]$ (7 mg, 0.01 mmol, 1 mol %) and Ag₂CO₃ (551 mg, 2 mmol, 2 equiv) in DEF (2 mL) was stirred magnetically at 100 °C. An aliquot portion (3 µL) of the reaction mixture was withdrawn after 10 min, diluted and from the diluted solution, another aliquot portion (3 µL) was kept on carbon coated Cu grid (200 mesh size). The grid was air dried and was subjected to TEM analyses to identify the Pd-Ag binary NC (Pd particles 3 nm - 8 nm and Ag particles 20 nm - 40 nm).

IV. <u>Evidences for the Proposed Mechanistic Pathway during the Self Coupling of</u> <u>Aniline to form Phenazine and Relevant Studies:</u>

Scheme IV-A. Kinetic isotope effect study for the determination of k_H/k_D .

(i) Typical experimental procedure for determination ion current using (+ve) ESI-MS:

To a magnetically stirred solution of TBAB (64.4 mg, 0.2 mmol, 20 mol %), $[PdCl_2(PPh_3)_2]$ (7 mg, 0.01 mmol, 1 mol %), Ag₂CO₃ (551 mg, 2 mmol, 2 equiv) in DEF (2 mL) was added aniline (186 mg, 0.18 mL, 2 mmol, 2 equiv) and aniline- d_5 (196 mg, 0.18 mL, 2 mmol, 2 equiv) separately, under O₂ bubbling (10 psi) at 100 °C. At the time interval of 5 min, 10 min, 15 min and 20 min, 10 µL of the aliquot of the reaction mixture was withdrawn from the individual reaction mixture and dissolved in DCM (1 mL). From the resultant solution an aliquot amount (50 µL) was subjected to (+ve) ESI-MS in advance Thermo Scientific LTQ-XL mass spectrometer.

The total ion current corresponding to the peak area of the potassium adduct $(M + K)^+$ of the phenazine formed from aniline (m/z = 219) (Fig. E) was compared with that of the phenazine- d_5 formed from aniline- d_5 (m/z = 227) (Fig. F). In all the cases, ion current corresponding to phenazine was found to be much greater in comparison to the ion current of the corresponding phenazine- d_5 . These provided direct evidences of the k_H/k_D (Table IV-A).

Entry	Time (min)	Ion current o	f the $(M+K^+)$ peak	
		$X (R = H)^{b}$	$Y (R = D)^{b}$	$k_{ m H}/k_{ m D}{}^{ m c}$
1	5	$1.45 \ge 10^5$	3.30 X 10 ⁴	4.39
2	10	2.03×10^5	4.69 X 10 ⁴	4.33
3	15	2.36×10^5	4.75 X 10 ⁴	4.98
4	20	2.50×10^5	4.84 X 10 ⁴	5.18

Table IV-A. The determination of k_H/k_D during phenazine formation from aniline and aniline- d_5 .^a

^aAniline (1 mmol) and aniline- d_5 (1 mmol) were separately subjected to the reaction and after the specific time interval 10 µL of the respective reaction mixture was withdrawn and subjected to ESI-MS analysis. ^bThe area of the ion peak of the potassium adduct of the corresponding phenazine. ^cThe relative rate ($k_{\rm H}/k_{\rm D}$) is represented by the ratio X/Y.

Figure F. The peak area of the $(M + K)^+$ of phenazine- d_5 formed from aniline- d_5 corresponding to the ion at m/z = 227: (i) At 5 min:

Scheme IV-B. Plausible mechanism for the C-H activation mediated amination/cyclization/oxidation cascade of phenazine formation catalysed by Pd-Ag NC.

Table IV-B. The control experiments of dihydrophenazine 4a to afford the 2a.ª

	N H 4a	2a	
Entry	Condition	Time (min)	Yield (%) ^b
1	O ₂ bubbling (10 psi)	20	96
2	Ag_2CO_3 (1 equiv)	30	94
3	O_2 bubbling (10 psi) + Ag ₂ CO ₃ (1 equiv)	5	96
3	O_2 bubbling (10 psi) + Ag ₂ CO ₃ (10 mol %)	20	96

DEF. 100 °C

^a4a (1 mmol) was treated under various conditions in DEF (2 mL) at 100 °C. ^bIsolated yield of 2a.

Scheme IV-C. <u>Evidence for non-radical mechanism during the Pd-Ag NC catalyzed self</u> <u>coupling of aniline to form phenazine</u>

(i) Reaction of aniline in the presence of radical scavenger.

To a magnetically stirred solution of TBAB (64.4 mg, 0.2 mmol, 20 mol %), $[PdCl_2(PPh_3)_2]$ (7 mg, 0.01 mmol, 1 mol %) and Ag₂CO₃ (551 mg, 2 mmol, 2 equiv) in DEF (2 mL) were added TEMPO (46.9 mg, 0.3 mmol, 30 mol %) and **1a** (186 mg, 0.18 mL, 2 mmol, 2 equiv) under O₂ bubbling (10 psi) at 100 °C. Upon completion of the reaction (20 min, monitored by TLC), the reaction mixture was cooled to rt and was filtered through a short pad of celite; DEF was evaporated to dryness under vacuum (10 mm Hg). The residue was passed through chromatography column (silica-gel: 100-200 mesh) and eluted with Et₃N-hexane-EtOAc solvent system to afford the **2a** as brown solid (149 mg, 83%) and **3a** as red solid (18 mg, 10%).

(ii) Reaction of *N*-Methylaniline 5 in the absence of radical scavenger.

To a magnetically stirred solution of TBAB (64.4 mg, 0.2 mmol, 20 mol %), [PdCl₂(PPh₃)₂] (7 mg, 0.01 mmol, 1 mol %) and Ag₂CO₃ (551 mg, 2 mmol, 2 equiv) in DEF (2 mL) was added *N*-methylaniline **5** (214 mg, 0.216 mL, 2 mmol, 2 equiv) under O₂ bubbling (10 psi) at 100 °C. Upon completion of the reaction (20 min, monitored by TLC), the reaction mixture was cooled to rt and was filtered through a short pad of celite; DEF was evaporated to dryness under vacuum (10 mm Hg). The residue was passed through chromatography column (silica-gel: 60-120 mesh) and eluted with hexane-EtOAc solvent system to afford the 4,4'-di-*N*-methyl-biphenyl **6** as reddish oil, (191 mg, 90%); TLC (Hexane:EtOAc, 95:5 v/v): $R_f \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 2.97 (s, 6H), 6.84 – 6.78 (m, 4H), 7.26 – 7.22 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 33.9, 112.6, 118.6, 129.4, 149.0; IR (KBr) v_{max}: 3355, 2227, 1736, 1628, 1597, 1217, 1024 cm⁻¹; HRMS (ESI) (M + Na)⁺ Calcd. for C₁₄H₁₆N₂Na, 235.1211; found 235.1220.

(iii) Reaction of *N*-Methylaniline 5 in the presence of radical scavenger.

To a magnetically stirred solution of TBAB (64.4 mg, 0.2 mmol, 20 mol %), $[PdCl_2(PPh_3)_2]$ (7 mg, 0.01 mmol, 1 mol %), Ag₂CO₃ (551 mg, 2 mmol, 2 equiv) in DEF (2 mL) were added TEMPO (46.9 mg, 0.3 mmol, 30 mol %) and **5** (214 mg, 0.216 mL, 2 mmol, 2 equiv) under O₂ bubbling (10 psi) at 100 °C. Upon completion of the reaction (20 min, monitored by TLC), the reaction mixture was cooled to rt and was filtered through a short pad of celite; DEF was evaporated to dryness under vacuum (10 mm Hg). The residue was passed through chromatography column (silica-gel: 60-120 mesh) and eluted with hexane-EtOAc solvent system to afford **6** as reddish oil (191 mg, 90%).

Scheme IV-D. <u>Evidence for C-H activation and synchronous double C-N bond</u> <u>formation during phenazine formation</u>.

The reaction of 2-aminodiphenyl amine

V. Characterization of compounds:

2,7-Dimethyl-phenazine³ (entry 2, Table 1):- Yellow solid; mp: 161-163 °C. TLC (Hexane:EtOAc, 85:15 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 2.64 (s, 6H), 7.65 (d, 2H, J = 8.8 Hz), 7.96 (s, 2H), 8.10 (d, 2H, J = 8.8 Hz); IR (KBr) $v_{\rm max}$: 2948, 1654, 1453, 1031 cm⁻¹; MS (ESI) (M + H)⁺ = 209.3.

2,7-Bis-benzyloxy-phenazine (entry 3, Table 1):- Yellow solid; mp: 153-156 °C; TLC (Hexane:EtOAc, 25:75 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 5.27 (s, 4H), 7.35 – 7.39 (m, 2H), 7.42 – 7.45 (m, 4H), 7.49 – 7.53 (m, 6H), 7.58 (dd, 2H, J = 2.7 Hz, 9.4 Hz), 8.06 (d, 2H, J = 9.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 70.6, 106.1, 126.2, 127.8, 128.4, 128.7, 130.0, 136.0, 140.5, 143.4, 159.3; IR (KBr) $v_{\rm max}$: 2921, 2847, 1602, 1450, 1275 cm⁻¹; HRMS (ESI) (M + H)⁺ Calcd. for C₂₆H₂₁N₂O₂, 393.1603; found 393.1590.

1,2,3,6,7,8-Hexamethoxy-phenazine (entry 4, Table 1):- Yellow solid; mp: 155-157 °C; TLC (Hexane:EtOAc, 80:20 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 4.06 (s, 6H), 4.13 (s, 6H), 4.23 (s, 6H), 7.37 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 56.4, 61.6, 62.2, 102.2, 135.8, 139.8, 144.6, 145.4, 155.8; IR (KBr) $v_{\rm max}$: 2923, 2850, 1602, 1406, 1048 cm⁻¹; HRMS (ESI) (M + Na)⁺ Calcd. for C₁₈H₂₀N₂O₆Na, 383.1219; found 383.1221.

2,7-Dimethoxy-phenazine⁴ (entry 5, Table 1):- Yellow solid; TLC (Hexane:EtOAc, 82:18 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 4.02 (s, 6H), 7.41 (s, 2H), 7.50 (d, 2H, J = 9.4 Hz), 8.04 (d, 2H, J = 9.4 Hz); IR (KBr) $v_{\rm max}$: 2922, 1634, 1275 cm⁻¹; MS (ESI) (M + H)⁺ = 241.3.

2,7-Difluoro-phenazine³ (entry 6, Table 1):- Yellow solid; mp: 252-254 °C; TLC (Hexane:EtOAc, 95:5 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.67 – 7.72 (m, 2H), 7.84 (dd, 2H, J = 2.6 Hz, 9.1 Hz), 8.22 – 8.26 (m, 2H); IR (KBr) v_{max}: 2923, 2855, 1275, 1260, 749 cm⁻¹; MS (ESI) (M + H)⁺ = 217.2.

2,7-Bis-methylsulfanyl-phenazine (entry 7, Table 1):- Yellow solid; mp: 211-213 °C; TLC (Hexane:EtOAc, 90:10 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 2.67 (s, 6H), 7.62 (dd, 2H, J = 2.1 Hz, 9.1 Hz), 7.75 (d, 2H, J = 2.1 Hz), 8.00 (d, 2H, J = 9.1 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 15.1, 121.0, 128.9, 130.7, 142.1, 142.8, 143.1; IR (KBr) v_{max}: 2917, 2851, 1731, 1615, 1454, 1275, 1260, 1049 cm⁻¹; HRMS (ESI) (M + H)⁺ Calcd. for C₁₄H₁₃N₂S₂, 273.0520; found 273.0512.

2,7-Dimethyl-phenazine³ **(entry 8, Table 1):-** Yellow solid; mp: 161-163 °C. TLC (Hexane:EtOAc, 85:15 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 2.66 (s, 6H), 7.67 (dd, 2H, J = 1.9 Hz, 8.9 Hz), 7.99 (s, 2H), 8.12 (d, 2H, J = 8.9 Hz); IR (KBr) $v_{\rm max}$: 2949, 1651, 1450, 1033 cm⁻¹; MS (ESI) (M + H)⁺ = 209.4.

2,7-Dimethoxy-phenazine⁴ (entry 9, Table 1):- Yellow solid; TLC (Hexane:EtOAc, 82:18 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 4.04 (s, 6H), 7.43 (d, 2H, J = 2.7 Hz), 7.52 (dd, 2H, J = 2.8 Hz, 9.4 Hz), 8.06 (d, 2H, J = 9.4 Hz); IR (KBr) $v_{\rm max}$: 2920, 1635, 1277 cm⁻¹; MS (ESI) (M + H)⁺ = 241.2.

2,7-Difluoro-phenazine³ (entry 10, Table 1):- Yellow solid; mp: 252-254 °C; TLC (Hexane:EtOAc, 95:5 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.69 – 7.74 (m, 2H),

7.86 (dd, 2H, J = 2.7 Hz, 9.2 Hz), 8.25 – 8.28 (m, 2H); IR (KBr) v_{max} : 2921, 2857, 1277, 1263, 751 cm⁻¹; MS (ESI) (M + H)⁺ = 217.3.

Dibenzo[*a*,*h*]**phenazine (entry 11, Table 1):-** Light yellow solid; mp: 177 - 179 °C; TLC (Hexane:EtOAc, 90:10 v/v): $R_f \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.84 (dt, 2H, J = 1.4 Hz, 7.3 Hz), 7.90 (dt, 2H, J = 1.4 Hz, 8.4 Hz), 8.02 (d, 2H, J = 7.9 Hz), 8.09 – 8.12 (m, 4H), 9.67 (d, 2H, J = 7.9 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 125.2, 127.0, 127.7, 128.2, 129.3, 131.4, 132.4, 133.3, 140.6, 142.8; IR (KBr) v_{max} : 2919, 2859, 1617, 1401, 1259, 1047 cm⁻¹; HRMS (ESI) [M + H]⁺ Calcd. for C₂₀H₁₃N₂, 281.1079; found 281.1066.

Di-*p***-tolyl-diazene² (entry 2, Table 1, Footnote c):-** Red solid; mp: 140-142 °C; TLC (Hexane:EtOAc, 95:5 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 2.43 (s, 6H), 7.30 (s, 4H), 7.81 (s, 4H); IR (KBr) v_{max}: 2970, 1737, 1365, 1228, 1216, 750 cm⁻¹; MS (ESI) (M + H)⁺ = 211.3.

Bis-(4-benzyloxy-phenyl)-diazene (entry 3, Table 1, Footnote c):- Light orange solid; mp: 177-179 °C; TLC (Hexane:EtOAc, 96:4 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 5.15 (s, 4H), 7.06 – 7.09 (m, 4H), 7.34 – 7.37 (m, 2H), 7.39 – 7.43 (m, 4H), 7.45 – 7.47 (m, 4H), 7.86 – 7.88 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 70.2, 115.1, 124.4, 127.5, 128.1, 128.7, 136.5, 147.2, 160.8; IR (KBr) v_{max} : 2915, 2859, 1601, 1452, 1244, 1015, 843, 733, 691 cm⁻¹; HRMS (ESI) (M + H)⁺ Calcd. for C₂₆H₂₃N₂O₂, 395.1760; found 395.1757.

Bis-(3,4,5-trimethoxy-phenyl)-diazene (entry 4, Table 1, Footnote c):- Orange solid; mp: 207-209 °C; TLC (Hexane:EtOAc, 90:10 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 3.94 (s, 6H), 3.98 (s, 12H), 7.25 (s, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 56.2, 61.0, 100.3, 140.6, 148.4, 153.5; IR (KBr) $v_{\rm max}$: 2927, 2847, 1595, 1275, 1259, 1049 cm⁻¹; HRMS (ESI) (M + H)⁺ Calcd. for C₁₈H₂₃N₂O₆, 363.1556; found 363.1552.

Bis-(4-methoxy-phenyl)-diazene² (entry 5, Table 1, Foonote c):- Orange solid; mp: 158-160 °C; TLC (Hexane:EtOAc, 92:8 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 3.88 (s, 6H), 7.00 (d, 4H, J = 7.6 Hz), 7.88 (d, 4H, J = 7.6 Hz); IR (KBr) $v_{\rm max}$: 2976, 1624, 1275 cm⁻¹; MS (ESI) (M + H)⁺ = 243.4.

Bis-(4-fluoro-phenyl)-diazene² (entry 6, Table 1, Footnote c):- Orange solid; mp: 99-101 °C; TLC (Hexane:EtOAc, 97:3 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.16 – 7.24 (m, 4H), 7.89 – 7.97 (m, 4H); IR (KBr) v_{max}: 2924, 2847, 1275, 1260, 764 cm⁻¹; MS (ESI) (M + H)⁺ = 219.3.

Bis-(4-methylsulfanyl-phenyl)-diazene (entry 7, Table 1, Footnote c):- Red solid; mp: 172-174 °C; TLC (Hexane:EtOAc, 98:2 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 2.54 (s, 6H), 7.33 (d, 4H, J = 7.8 Hz), 7.84 (d, 4H, J = 7.8 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 15.3, 123.3, 126.0, 142.6, 150.0; IR (KBr) $v_{\rm max}$: 2918, 2851, 1584, 1555, 1434, 1404, 1086, 837 cm⁻¹; HRMS (ESI) (M + H)⁺ Calcd. for C₁₄H₁₅N₂S₂, 275.0677; found 275.0684.

(*E*)-1,2-*dim*-tolyldiazene² (entry 8, Table 1, Footnote c):- Red solid; mp: 136-139 °C; TLC (Hexane:EtOAc, 97:3 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 2.50 (s, 6H), 7.01 (d, 2H, *J* = 7.5 Hz), 7.44 (t, 2H, *J* = 7.8 Hz), 7.77 (s, 4H); IR (KBr) v_{max}: 2921, 1479, 1274, 1265 cm⁻¹; MS (ESI) (M + H)⁺ = 211.4.

(*E*)-1,2-Bis(3-methoxyphenyl)diazene⁵ (entry 9, Table 1, Footnote c):- Red solid; mp: 72-74 °C; TLC (Hexane:EtOAc, 92:8 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 3.93 (s, 6H), 7.01 (dd, 2H, J = 2.0 Hz, 8.1 Hz), 7.44 – 7.50 (m, 4H), 7.60 (m, 2H); IR (KBr) v_{max}: 2922, 1477, 1277, 1263 cm⁻¹; MS (ESI) (M + H)⁺ = 243.4.

(*E*)-1,2-Bis(3-fluorophenyl)diazene⁶ (entry 10, Table 1, Footnote c):- Red solid; mp: 77-79 °C; TLC (Hexane:EtOAc, 94:6 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.24 (dd, 2H, J = 2.4 Hz, 8.2 Hz), 7.51 – 7.56 (m, 2H), 7.62 – 7.65 (m, 2H), 7.80 (d, 2H, J = 7.9 Hz); IR (KBr) $v_{\rm max}$: 2921, 1475, 1274, 1252 cm⁻¹; MS (ESI) (M + H)⁺ = 219.3.

Di-naphthalen-2-yl-diazene⁷ (entry 11, Table 1, Footnote c):- Orange solid; mp: 195 - 197 °C; TLC (Hexane:EtOAc, 97:3 v/v): $R_{\rm f} \approx 0.5$; ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.58 - 7.62 (m, 4H), 7.93 - 7.98 (m, 4H), 8.06 - 8.08 (m, 2H), 8.17 (dd, 2H, J = 1.9 Hz, 8.8 Hz), 8.54 (d, 2H, J = 1.5 Hz); IR (KBr) $v_{\rm max}$: 2929, 2856, 1619, 1400, 1257, 1051 cm⁻¹; MS (ESI) (M + H)⁺ = 283.3.

VI. Recovery and recyclability study of NC:

Typical procedure for the recovery and recyclability of Pd-Ag binary NC catalytic system for self coupling of 1a to form 2a:-

To a magnetically stirred solution of TBAB (64.4 mg, 0.2 mmol, 20 mol %), $[PdCl_2(PPh_3)_2]$ (7 mg, 0.01 mmol, 1 mol %) and Ag₂CO₃ (551 mg, 2 mmol, 2 equiv) in DEF (2 mL) was added aniline **1a** (186 mg, 0.18 mL, 2 mmol, 2 equiv) under O₂ bubbling (10 psi) at 100 °C. Upon completion of the reaction (20 min, monitored by TLC), the reaction mixture was cooled to rt and was centrifuged (8000 RPM) for 10 min. DEF layer was decanted off and the remaining solid portions (contains the Pd-Ag NC) was washed with DM water (2 × 5 mL); kept in a vacuum oven for dryness (1 h) to obtain the recovered Pd-Ag NC. The recovered Pd-Ag NC was charged with DEF (2 mL), **1a** (2 mmol, 2 equiv), Ag₂CO₃ (276 mg, 1 mmol, 1 equiv) and the mixture was magnetically stirred at 100 °C under O₂ bubbling (10 psi) for 20 min to obtain **2a** in 83% yield after usual workup and purification. The fresh batches of reaction involving **1a** (2 mmol, 2 equiv) were repeated for four consecutive times with the recovered Pd-Ag NC after each fresh reaction to obtain **2a** in 80, 76, 71, and 63% yields.

Entry	No. of Runs	Yield	(%) ^b	
		2a	3a	
1	Fresh	87	10	
2	1 st reuse	83	10	
3	2 nd reuse	80	11	
4	3 rd reuse	76	10	
5	4 th reuse	71	trace	
6	5 th reuse	63	trace	

Table VI-A. Reusability of Pd-Ag binary NC system.^a

^a**1a** (2 mmol, 2 equiv) was treated in DEF (2 mL) with the recovered catalyst and Ag_2CO_3 (1 mmol, 1 equiv) for each cycle. ^bThe isolated yield.

Figure G. HRTEM image of Pd-Ag binary NC in the reaction mixture at 5th cycle. Pd-Ag binary NC: (Pd particles size 20 nm – 25 nm and Ag particles size 50 nm – 60 nm)

VII. Scanned NMR Spectra:

¹H NMR of 2,7-Bis-benzyloxy-phenazine (entry 3, Table 1):-

¹H NMR of 2,7-Bis-methylsulfanyl-phenazine (entry 7, Table 1):-

¹H NMR of 2,7-Dimethyl-phenazine (entry 8, Table 1):-

¹H NMR of Bis-(4-benzyloxy-phenyl)-diazene (entry 3, Table 1, Footnote c):-

¹³C NMR of Bis-(4-benzyloxy-phenyl)-diazene (entry 3, Table 1, Footnote c):-

6	~		~	
5	2	30-06	8	0 2 9 4
8	4	200004	15	55.90
-	-		-	
		IV/		VI

S39

¹H NMR of (*E*)-1,2-Bis(3-methoxyphenyl)diazene (entry 9, Table 1, Footnote c):-

VIII. References:

- 1. (a) J. K. Laha, K. S. S. Tummalapalli and A. Gupta, *Eur. J. Org. Chem.*, 2014, **37**, 4773; (b) J. K. Laha, K. S. S. Tummalapalli and A. Gupta, *Org. Lett.*, 2014, **16**, 4392.
- 2. C. Zhang and N. Jiao, *Angew*. *Chem. Int. Ed.*, 2010, **49**, 6174.
- 3. L. Yu, X. Zhou, D. Wu and H. Xiang, J. Organometllic Chem., 2012, 705, 75.
- 4. J. D. Winkler, B. M. Twenter and T. Gendrineau, *Heterocycles*, 2012, 84, 1345.
- 5. R. Thorwirth, F. Bernhardt, A. Stolle, B. Ondruschka and J. Asghari, *Chem. Eur. J.*, 2010, **16**, 13236.
- 6. A. V. Biradar, T. V. Kotbagi, M. K. Dongare and S. B. Umbarkar, *Tetrahedron Lett.*, 2008, **49**, 3616.
- 7. G. R. Srinivasa, K. Abiraj and D. C. Gowda, *Tetrahedron Lett.*, 2003, 44, 5835.