Synthesis, Characterization, and Electronic Structures of a Methyl Germyliumylidene Ion and Germylone-Group VI Metal Complexes

Bochao Su,[†] Rakesh Ganguly,[‡] Yongxin Li[‡] and Rei Kinjo[†]

† Division of Chemistry and Biological Chemistry (CBC), School of Physical and Mathematical Sciences, Nanyang Technological University (NTU) and ‡ NTU-CBC Crystallography Facility, Singapore 637371, Singapore

Supporting Information

Contents

- 1. Synthesis of compounds 2–5 and their spectral data
- 2. Crystal structural parameters
- 3. UV-Vis Spectra
- 4. IR spectra
- 5. Theoretical calculation
- 6. References

1. Synthesis of compounds 2-5 and their spectral data

General considerations: All reactions were performed under an atmosphere of argon or nitrogen by using standard Schlenk or dry box techniques; solvents were dried over Na metal, K metal or CaH₂. Reagents were of analytical grade, obtained from commercial suppliers and used without further purification. ¹H and ¹³C NMR spectra were obtained with a Bruker AVIII 400MHz BBFO1 spectrometer at 298 K unless otherwise stated. NMR multiplicities are abbreviated as follows: s = singlet, d =doublet, t = triplet, m = multiplet, br = broad signal. Coupling constants *J* are given in Hz. Electrospray ionization (ESI) mass spectra were obtained at the Mass Spectrometry Laboratory at the Division of Chemistry and Biological Chemistry, Nanyang Technological University. Melting points were measured with a OpticMelt Stanford Research System. IR spectra were measured with the Bruker Alpha-FT-IR Spectrometer with an ECO-ATR module. UV-Vis spectra were measured with Cary 100 Bio UV-Visible spectrophotometer. Compound **1** was synthesized following the reported procedure.^[S1]

Compound 2: MeOTf (25 mg, 0.152 mmol) was added to a toluene solution of compound **1** (70 mg, 0.148 mmol) at room temperature. After 1 h with stirring, the solvent was removed under vacuum, and the residue was washed with hexane (3×2 mL) to afford **2** as red solid (65%). Single crystals suitable for X-ray diffraction analysis were obtained by recrystallization from a saturated toluene solution of **2** at room temperature.

M.p.:65 °C (decomposed); ¹H NMR (C₆D₆, 400 MHz, 298 K): δ 6.57 (s, 1H, *Ar*), 6.55 (s, 1H, *Ar*), 5.00–4.93 (m, 1H, NC*H*₂), 4.86–4.79 (m, 1H, NC*H*₂), 4.70–4.61 (m, 1H, NC*H*₂), 4.31–4.23 (m, 1H, NC*H*₂), 2.24 (s, 3H, Ar-C*H*₃), 2.08 (s, 3H, Ar-C*H*₃), 2.01–1.99 (m, 6H, Ar-C*H*₃ & Ad-C*H*), 1.93–1.86 (m, 6H, Ad-C*H*₂), 1.41 (d, *J* = 12.7 Hz, 3H, Ad-C*H*₂), 1.35 (d, *J* = 12.1 Hz, 3H, Ad-C*H*₂), 1.12 (s, 9H, C(C*H*₃)₃), 0.77 (s, 3H, Ge-C*H*₃); ¹³C{¹H} NMR (C₆D₆, 100 MHz, 298 K): δ 206.0 (*C*_{carbene}), 165.7 (*C*=N), 137.2 (*C*_{Ar}), 135.9 (*C*_{Ar}), 131.5 (*C*_{Ar}), 130.6 (*C*_{Ar}), 129.0 (*C*_{Ar}H), 128.8 (*C*_{Ar}H), 58.7 (Ad-*q*), 50.4 (NCH₂), 49.3 (NCH₂), 40.1 (Ad-CH₂), 39.2 (*C*(CH₃)₃), 34.9 (Ad-CH₂), 28.8 (Ad-CH), 27.8 (C(CH₃)₃), 20.0 (Ar-CH₃), 18.9 (Ar-CH₃), 18.3 (Ar-CH₃), 6.7 (Ge–CH₃), The signal for *C*F₃ could not be detected, presumably due to an overlap with other peaks; ¹⁹F NMR (376 MHz, CDCl₃): δ –77.6. HRMS (ESI): *m*/*z* calcd for C₂₈H₄₂GeN₃: 494.2591 [(*M*–OT*f*)]⁺; found: 494.2585.

General procedure for the synthesis of compound 3–5.

The respective $M(CO)_5(thf)$ (M = Cr, Mo, W) was prepared by UV-irradiation of the corresponding $M(CO)_6$ in THF.^[S2] A THF solution of the freshly prepared $M(CO)_5(thf)$ was added dropwise to a THF solution of compound 1 at room temperature. After 2 hours, the resulting solution was concentrated under reduced pressure and stored at -26 °C to afford red crystals. Compound 3–5 are tharmally stable in THF, benzene and toluene solvents, and even under heating condition at 80 °C for several hours, no decomposition was detected. However, they rapidly decompose upon exposure to air.

Compound 3: Quantity used: Cr(CO)₆ (46 mg, 0.210 mmol), compound **1** (100 mg, 0.209 mmol), THF (15 mL); yield (40 %). M.p.:92 °C (decomposed); ¹H NMR (C₆D₆, 400 MHz, 298 K): δ 6.78 (s, 2H, *Ar*), 3.50 (t, *J* = 7.3 Hz, 2H, NCH₂), 2.99 (t, *J* = 7.3 Hz, 2H, NCH₂), 2.13 (m, 12H, Ar-CH₃ & Ad-CH), 2.03 (m, 6H, Ad-CH₂), 1.75 (d, *J* = 11.9 Hz, 3H, Ad-CH₂), 1.62 (d, *J* = 12.1 Hz, 3H, Ad-CH₂), 0.77 (s, 9H, C(CH₃)₃); ¹³C{¹H} NMR (C₆D₆, 100 MHz, 298 K): 225.9 (CO), 218.6 (CO), 195.5 (*C*_{carbene}), 145.1 (*C*=N), 140.2 (*C*_{Ar}), 136.8 (*C*_{Ar}), 133.9 (*C*_{Ar}), 129.7 (*C*_{Ar}H), 54.7 (Ad-*q*), 49.9 (NCH₂), 46.8 (NCH₂), 39.7 (Ad-CH₂), 38.6 (C(CH₃)₃), 36.7 (Ad-CH₂), 29.8 (Ad-CH), 29.1 (C(CH₃)₃), 21.0 (Ar-CH₃), 19.0 (Ar-CH₃); IR *v*/cm⁻¹ (solid): 2048 (s), 1976 (m), 1917 (s), 1899 (s); UV-Vis (ε, in THF): λ = 402 nm (10800), 465 nm (8950); HRMS (ESI): *m/z* calcd for C₃₂H₄₀CrGeN₃O₅: 672.1585 [(*M*+*H*)]⁺; found: 672.1594.

Compound 4: Quantity used: Mo(CO)₆ (56 mg, 0.210 mmol), compound **1** (100 mg, 0.209 mmol), THF (15 mL); yield (36 %). M.p.:95 °C (decomposed); ¹H NMR (C₆D₆, 400 MHz, 298 K): δ 6.79 (s, 2H, *Ar*), 3.53 (t, *J* = 7.3 Hz, 2H, NCH₂), 2.99 (t, *J* = 7.3 Hz, 2H, NCH₂), 2.15 (m, 6H, Ar-CH₃ & Ad-CH), 2.12 (s, 6H, Ar-CH₃), 2.05 (m, 6H, Ad-CH₂), 1.75 (d, *J* = 11.9 Hz, 3H, Ad-CH₂), 1.63 (d, *J* = 12.1 Hz, 3H, Ad-CH₂), 0.77 (s, 9H, C(CH₃)₃); ¹³C{¹H} NMR (C₆D₆, 100 MHz, 298 K): 213.7 (CO), 206.7 (CO), 190.9 (*C*_{carbene}), 143.6 (*C*=N), 140.6 (*C*_{Ar}), 136.7 (*C*_{Ar}), 133.7 (*C*_{Ar}), 129.7 (*C*_{Ar}H), 54.5 (Ad-*q*), 49.9 (NCH₂), 46.9 (NCH₂), 39.6 (Ad-CH₂), 38.3 (*C*(CH₃)₃), 36.7 (Ad-CH₂), 29.8 (Ad-CH), 29.1 (C(CH₃)₃), 21.0 (Ar-CH₃), 18.9 (Ar-CH₃); IR *ν*/cm⁻¹ (solid): 2061 (s), 1985 (m), 1923 (s), 1897 (s); UV-Vis (ε, in THF): λ = 327 nm

(15700), 430 nm (11100); HRMS (ESI): *m/z* calcd for C₃₂H₄₀MoGeN₃O₅: 718.1234 [(*M*+*H*)]⁺; found: 718.1251.

Compound 5: Quantity used: W(CO)₆ (73 mg, 0.208 mmol), compound **1** (100 mg, 0.209 mmol), THF (15 mL); yield (32 %). M.p.:105 °C (decomposed); ¹H NMR (C₆D₆, 400 MHz, 298 K): δ 6.78 (s, 2H, *Ar*), 3.51 (t, *J* = 7.3 Hz, 2H, NC*H*₂), 2.99 (t, *J* = 7.3 Hz, 2H, NC*H*₂), 2.15 (m, 6H, Ar-C*H*₃ & Ad-C*H*), 2.11 (s, 6H, Ar-C*H*₃), 2.05 (m, 6H, Ad-C*H*₂), 1.75 (d, *J* = 11.9 Hz, 3H, Ad-C*H*₂), 1.63 (d, *J* = 12.2 Hz, 3H, Ad-C*H*₂), 0.76 (s, 9H, C(C*H*₃)₃); ¹³C{¹H} NMR (C₆D₆, 100 MHz, 298 K): 201.9 (CO), 197.5 (CO), 188.0 (*C*_{carbene}), 143.7 (*C*=N), 140.4 (*C*_{Ar}), 136.8 (*C*_{Ar}), 133.8 (*C*_{Ar}), 129.7 (*C*_{Ar}H), 54.5 (Ad-*q*), 49.9 (NCH₂), 47.0 (NCH₂), 39.7 (Ad-CH₂), 38.3 (C(CH₃)₃), 36.7 (Ad-CH₂), 29.8 (Ad-CH), 29.1 (C(CH₃)₃), 21.0 (Ar-CH₃), 19.0 (Ar-CH₃); IR v/cm⁻¹ (solid): 2059 (s), 1978 (m), 1917 (s), 1895 (s); UV-Vis (ε, in THF): λ = 328 nm (13300), 434 nm (8910); HRMS (ESI): *m*/*z* calcd for C₃₂H₄₀WGeN₃O₅: 804.1689 [(*M*+*H*)]⁺; found: 804.1710.

Figure S2: ¹³C NMR spectrum of 2.

Figure S3: ¹⁹F NMR spectrum of 2.

Figure S4: ¹H NMR spectrum of 3.

Figure S5: ¹³C NMR spectrum of 3.

Figure S6: ¹H NMR spectrum of 4.

Figure S7: ¹³C NMR spectrum of 4.

Figure S9: ¹³C NMR spectrum of 5.

2. Crystal structure parameters

X-ray data collection and structural refinement. Intensity data for compounds 2–5 was collected using a Bruker APEX II diffractometer. The structures were solved by direct phase determination (SHELX-2013) and refined for all data by full-matrix least squares methods on F^{2} .^[S3] All non-hydrogen atoms were subjected to anisotropic refinement. The hydrogen atoms were generated geometrically and allowed to ride in their respective parent atoms; they were assigned appropriate isotropic thermal parameters and included in the structure-factor calculations. CCDC: 1429594-1429597 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from the Cambridge Crystallography Data Center via www.ccdc.cam.ac.uk/data_request/cif.

-	-	-		
Compounds	$2 \cdot (C_6 H_6)_1$	3 •(THF) ₁	4 •(THF) ₁	5 •(THF) ₁
Formula	$C_{35}H_{48}F_3GeN_3O_3S$	C ₃₆ H ₄₇ CrGeN ₃ O ₆	$C_{36}H_{47}GeMoN_3O_6$	$\mathrm{C}_{36}\mathrm{H}_{47}\mathrm{GeWN}_{3}\mathrm{O}_{6}$
Fw	720.41	742.35	786.29	874.20
Cryst syst	monoclinic	monoclinic	monoclinic	monoclinic
Space group	P 1 21/n 1	P 1 21/c 1	P 1 21/c 1	P 1 21/c 1
Size (mm ³)	0.120 x 0.180 x 0.320	0.180 x 0.200 x 0.200	0.100 x 0.120 x 0.180	0.060 x 0.080 x 0.120
Т, К	103(2)	103(2)	103(2)	133(2)
<i>a</i> , Å	11.7454(9)	10.2157(3)	10.3172(9)	10.3691(5)
b, Å	24.4796(19)	22.5884(5)	22.6231(18)	22.6170(7)
<i>c</i> , Å	13.3037(10)	15.2996(5)	15.3939(12)	15.3476(7)
α, deg	90	90	90	90
β, deg	115.166(2)	97.6480(13)	97.423(3)	97.055(3)
γ, deg	90	90	90	90
V, Å ³	3462.0(5)	3499.07(17)	3562.9(5)	3572.0(3)
Z	4	4	4	4
$d_{\text{calcd}} \text{g} \cdot \text{cm}^{-3}$	1.382	1.409	1.466	1.626
μ , mm ⁻¹	1.000	1.218	1.244	4.107
Refl collected	40551	46257	32532	50991
T_{max}/T_{min}	0.8890/0.7400	0.8110/0.7930	0.8860/0.8070	0.7910/ 0.6380
N _{measd}	8645	11215	7754	9666
[R _{int}]	0.0751	0.0561	0.1085	0.0879
R [I>2sigma(I)]	0.0482	0.0403	0.0512	0.0416
R_{w} [I>2sigma(I)]	0.1075	0.0894	0.1292	0.0885
GOF	1.025	1.017	1.024	1.001
Largest diff. peak/hole[e∙Å ⁻³]	1.357/-0.664	1.325/-1.138	0.849/-1.298	1.397/-1.289

 Table S1 Crystallographic data for compounds 2–5.

3. UV -Vis spectra

Figure S10. UV-Vis spectra of 3 (top), 4 (middle) and 5 (bottom) in THF, and TDDFT calculation results with assignments of the 2^{nd} excited states.

4. IR spectra

Figure S11. The IR spectra of 3 (top), 4 (middle) and 5 (bottom) in the solid state.

5. Theoretical calculation

Gaussian 09 was used for all density functional theory (DFT) calculations.^[S4] Geometry optimization, frequency calculations, natural bond orbital (NBO) analysis, TDDFT and NICS calculations of compound 2–5 were performed at the B3LYP/6-311G(d,p) level of theory, with the LANL2TZ(f) pseudo-potential applied for the metal atoms.

Figure S12. Calculated optimized structures for 2, 3, 4 and 5.

Ge	-0.160593	-1.079018	-0.603191
С	0.828228	0.643073	-0.133302
Η	2.322121	-1.657319	-0.469518
Ν	-0.048857	1.707194	-0.038006
Ν	-1.722820	0.202143	-0.093956
Ν	2.078088	1.078868	-0.135769
С	3.152109	-1.063385	-0.863137
Н	-1.820359	-0.221594	2.420471
С	0.702593	2.981516	-0.181708

2

С	-1.434255	1.467019	-0.010778
С	-3.010452	-0.452295	-0.029616
С	2.131806	2.538925	0.118045
С	3.319484	0.234473	-0.050772
Н	2.923844	-0.824363	-1.906165
С	4.437284	-1.915184	-0.768683
С	-2.868873	-0.493889	2.528218
Н	0.357675	3.750664	0.499973
Н	0.611703	3.339677	-1.208207

С	-2.391802	2.673552	0.155468
С	-3.515835	-0.861763	1.213322
С	-3.664876	-0.782627	-1.232643
Н	2.849028	3.029482	-0.534576
Н	2.418203	2.720336	1.158264
С	3.610301	-0.116143	1.428231
С	4.516281	1.023093	-0.631812
С	5.622756	-1.123190	-1.347085
Н	4.284893	-2.832213	-1.344641
С	4.712878	-2.263099	0.707321
Н	-3.387004	0.351841	2.994126
Н	-2.928642	-1.326163	3.232255
С	-2.150379	3.310012	1.549546
С	-2.166985	3.709541	-0.981150
С	-3.889176	2.300964	0.092849
С	-4.706363	-1.595053	1.229751
С	-4.850946	-1.509929	-1.154030
С	-3.142804	-0.343333	-2.579883
Н	2.761905	-0.668110	1.845145
Н	3.727870	0.799709	2.017789
С	4.898124	-0.964317	1.514940
Н	4.312251	1.292279	-1.674176
Н	4.671726	1.950720	-0.073301
С	5.801345	0.173675	-0.538851
Н	6.535527	-1.724750	-1.299638
Н	5.448153	-0.892966	-2.403710
Η	3.887546	-2.853414	1.120665
Н	5.611895	-2.882225	0.782754

Н	-2.791486	4.188529	1.649155
Η	-1.124405	3.633316	1.722439
Н	-2.417196	2.611244	2.344578
Н	-2.171621	3.231907	-1.964376
Η	-1.254815	4.291867	-0.882799
Η	-2.994575	4.420484	-0.962348
Н	-4.176345	1.874972	-0.867547
Н	-4.456238	3.225156	0.223524
Н	-4.194231	1.616035	0.879217
Н	-5.106581	-1.907835	2.189079
С	-5.390029	-1.931994	0.064411
Н	-5.369301	-1.755027	-2.075354
Н	-3.822362	-0.659076	-3.371647
Н	-2.158768	-0.768198	-2.794203
Η	-3.044278	0.745026	-2.645830
Н	5.088329	-1.204000	2.565057
С	6.081727	-0.163571	0.938486
Η	6.630258	0.756961	-0.949552
С	-6.657347	-2.748435	0.106971
Η	7.003238	-0.747998	1.019771
Η	6.238143	0.754438	1.515969
Н	-7.380463	-2.398981	-0.633393
Η	-7.128559	-2.704718	1.090291
Η	-6.448734	-3.800500	-0.113370
С	-0.044664	-2.092758	1.145730
Η	0.742209	-2.842446	1.040237
Η	0.152115	-1.486199	2.028033
Η	-0.989348	-2.624690	1.272764

2
3

Ge	0.097271	-0.050560	-0.028143
Cr	0.289847	-2.612021	-0.042388
С	-0.936568	1.515844	-0.178296
С	-2.293230	3.370262	0.091746
С	-0.927213	3.859774	-0.351041
С	1.247163	2.515332	-0.078392
С	2.154386	3.766960	0.032578
С	1.868385	4.484933	1.379002
С	1.927036	4.728731	-1.165279
С	3.671551	3.473072	0.026101
С	2.924312	0.681195	0.033288

С	3.515144	0.365308	1.266754
С	2.845593	0.670417	2.585108
С	4.785296	-0.217752	1.264719
С	5.469891	-0.501267	0.085455
С	6.820782	-1.174353	0.107973
С	4.848470	-0.186219	-1.124634
С	3.582854	0.394844	-1.177629
С	2.964881	0.727180	-2.513492
С	-3.464831	1.135705	-0.099785
С	-3.696784	0.800330	1.395944
С	-3.341352	-0.178950	-0.891466

С	-4.706566	1.895024	-0.631247
С	-5.979241	1.041677	-0.471985
С	-6.190490	0.726032	1.021906
С	-4.974475	-0.054905	1.556013
С	-4.827585	-1.365632	0.760133
С	-4.610122	-1.039933	-0.730525
С	-5.827031	-0.266789	-1.267557
С	1.633205	-2.544126	-1.404459
С	1.627969	-2.567914	1.323043
С	0.394177	-4.473392	-0.029184
С	-1.028322	-2.669645	1.332933
С	-1.028560	-2.734718	-1.419164
Ν	-2.264177	1.970544	-0.336580
N	-0.105161	2.650323	-0.151644
Ν	1.587311	1.213362	-0.011097
0	2.420394	-2.567829	-2.236130
0	2.407083	-2.625140	2.161131
0	0.454986	-5.621137	-0.019886
0	-1.795973	-2.739716	2.182793
0	-1 797673		
	1.171015	-2.870512	-2.258603
Н	-2.401697	-2.870512 3.471127	-2.258603 1.184023
H H	-2.401697 -3.089692	-2.870512 3.471127 3.930653	-2.258603 1.184023 -0.393598
H H H	-2.401697 -3.089692 -0.936309	-2.870512 3.471127 3.930653 4.118251	-2.258603 1.184023 -0.393598 -1.413236
H H H H	-2.401697 -3.089692 -0.936309 -0.577045	-2.870512 3.471127 3.930653 4.118251 4.706309	-2.258603 1.184023 -0.393598 -1.413236 0.228599
H H H H H	-2.401697 -3.089692 -0.936309 -0.577045 0.828663	-2.870512 3.471127 3.930653 4.118251 4.706309 4.783535	-2.258603 1.184023 -0.393598 -1.413236 0.228599 1.507710
H H H H H	-2.401697 -3.089692 -0.936309 -0.577045 0.828663 2.482084	-2.870512 3.471127 3.930653 4.118251 4.706309 4.783535 5.387454	-2.258603 1.184023 -0.393598 -1.413236 0.228599 1.507710 1.448956
H H H H H H H	-2.401697 -3.089692 -0.936309 -0.577045 0.828663 2.482084 2.129001	-2.870512 3.471127 3.930653 4.118251 4.706309 4.783535 5.387454 3.835766	-2.258603 1.184023 -0.393598 -1.413236 0.228599 1.507710 1.448956 2.217514
H H H H H H H	-2.401697 -3.089692 -0.936309 -0.577045 0.828663 2.482084 2.129001 2.082441	-2.870512 3.471127 3.930653 4.118251 4.706309 4.783535 5.387454 3.835766 4.206881	-2.258603 1.184023 -0.393598 -1.413236 0.228599 1.507710 1.448956 2.217514 -2.112829
H H H H H H H H	-2.401697 -3.089692 -0.936309 -0.577045 0.828663 2.482084 2.129001 2.082441 2.656785	-2.870512 3.471127 3.930653 4.118251 4.706309 4.783535 5.387454 3.835766 4.206881 5.540452	-2.258603 1.184023 -0.393598 -1.413236 0.228599 1.507710 1.448956 2.217514 -2.112829 -1.109729

Н	3.993073	2.858599	0.862893
Н	4.187391	4.433551	0.105512
Н	4.004508	2.997461	-0.895032
Н	3.145706	1.656308	2.959855
Н	3.133621	-0.065410	3.337196
Н	1.758334	0.667667	2.503243
Н	5.241562	-0.468577	2.217324
Н	7.317426	-1.040865	1.071210
Н	7.476909	-0.778173	-0.671047
Н	6.722141	-2.251157	-0.065552
Н	5.355934	-0.412777	-2.057227
Н	3.481178	0.199178	-3.315777
Н	3.027304	1.800197	-2.727568
Н	1.908057	0.456060	-2.549828
Н	-3.798685	1.725072	1.975517
Н	-2.829231	0.265346	1.793734
Н	-2.482525	-0.746090	-0.529634
Н	-3.156244	0.047527	-1.946145
Н	-4.846287	2.829858	-0.080021
Н	-4.542811	2.155380	-1.682956
Н	-6.834058	1.610561	-0.853362
Н	-7.103617	0.135394	1.155720
Н	-6.325664	1.655206	1.588208
Н	-5.118898	-0.283161	2.617227
Н	-3.992352	-1.951545	1.150983
Н	-5.728972	-1.977251	0.880547
Н	-4.476652	-1.965846	-1.297541
Н	-6.733877	-0.874342	-1.172827
Н	-5.697535	-0.047229	-2.333455

4

Ge	0.075470	0.135497	-0.033753
Mo	0.322265	-2.563713	-0.041460
С	-0.980550	1.686098	-0.187211
С	-2.370499	3.517999	0.063972
С	-1.009095	4.028054	-0.371177
С	1.185921	2.718917	-0.079494
С	2.074255	3.983427	0.030056
С	1.770113	4.704848	1.370638
С	1.840228	4.935991	-1.173625
С	3.594776	3.708349	0.034152
С	2.886792	0.904998	0.040725

С	3.548055	0.620029	-1.169192
С	2.924300	0.937912	-2.505879
С	4.819927	0.052861	-1.114120
С	5.444391	-0.251669	0.097192
С	6.803454	-0.907995	0.122201
С	4.755194	0.025772	1.275180
С	3.478363	0.594337	1.275001
С	2.800242	0.887642	2.591630
С	-3.496535	1.256683	-0.105344
С	-4.760786	1.998432	-0.607390
С	-6.015642	1.121937	-0.432493

С	-6.194264	0.788986	1.061857	Н	3.918406	3.102481	0.876535
С	-4.955013	0.025485	1.566739	Н	4.098924	4.675210	0.111013
С	-3.696232	0.904617	1.391052	Н	3.938704	3.230942	-0.882048
С	-3.365141	-0.048667	-0.913253	Н	3.459631	0.429798	-3.308613
С	-4.615761	-0.932775	-0.735291	Н	2.951449	2.013024	-2.716361
С	-5.856113	-0.176824	-1.242206	Н	1.876741	0.632414	-2.545248
С	-4.798721	-1.275111	0.756227	Н	5.330341	-0.170623	-2.045854
С	1.744109	-2.478003	-1.544845	Н	6.718869	-1.985557	-0.053897
С	1.802975	-2.506456	1.402049	Н	7.295592	-0.770363	1.087134
С	-1.066144	-2.658803	1.479133	Н	7.456855	-0.501895	-0.654012
С	-1.139847	-2.732957	-1.489865	Н	5.212768	-0.219621	2.228518
С	0.469194	-4.567216	-0.031524	Н	3.065204	1.886348	2.958803
Ν	1.544546	1.422629	-0.006618	Н	3.114693	0.168591	3.349559
Ν	-0.168515	2.833606	-0.159673	Н	1.713647	0.846099	2.510217
Ν	-2.314586	2.115415	-0.353408	Н	-4.621590	2.270489	-1.659723
0	2.519577	-2.478083	-2.386857	Н	-4.906570	2.925891	-0.045348
0	2.603103	-2.551080	2.219939	Н	-6.886770	1.679592	-0.792936
0	-1.814411	-2.734390	2.344498	Н	-6.335659	1.710205	1.639486
0	-1.933039	-2.879988	-2.303812	Н	-7.094208	0.180893	1.206324
0	0.548220	-5.714440	-0.025959	Н	-5.075854	-0.214874	2.628205
Н	-2.489887	3.624838	1.154540	Н	-2.812454	0.382142	1.769246
Н	-3.172206	4.061468	-0.431933	Н	-3.803591	1.822788	1.980075
Н	-1.014491	4.281089	-1.434727	Н	-2.488545	-0.606368	-0.578548
Н	-0.677580	4.883514	0.206492	Н	-3.207749	0.193646	-1.969092
Н	0.726691	4.995151	1.488432	Н	-4.477926	-1.851389	-1.312840
Н	2.375169	5.613082	1.441597	Н	-6.750229	-0.801014	-1.135548
Н	2.028824	4.062087	2.214662	Н	-5.750745	0.053718	-2.308426
Н	2.009366	4.412542	-2.117925	Н	-5.685408	-1.905459	0.888381
Н	2.556875	5.759288	-1.117366	Н	-3.945378	-1.848761	1.126118
Н	0.848543	5.379566	-1.207450				

5

W	0.324024	-2.332169	-0.032048
Ge	0.050471	0.333801	-0.034959
С	1.800853	-2.257768	1.393930
С	1.733412	-2.233919	-1.526442
С	0.491009	-4.327208	-0.011947
С	-1.128515	-2.530760	-1.466985
С	-1.051638	-2.427447	1.481954
С	-1.030741	1.861827	-0.187454
С	-2.445525	3.672621	0.068575
С	-1.092704	4.202761	-0.368589
С	1.121296	2.926084	-0.079399

С	1.991136	4.203402	0.030785
С	1.676319	4.920020	1.371627
С	1.742633	5.152039	-1.173008
С	3.515662	3.951573	0.035055
С	-3.541439	1.396565	-0.105368
С	-3.730173	1.030604	1.388983
С	-3.397929	0.099342	-0.923981
С	-4.816572	2.127009	-0.596269
С	-6.060040	1.234263	-0.422681
С	-6.228091	0.887923	1.069834
С	-4.977708	0.135417	1.563481

С	-4.809550	-1.157096	0.742317	Н	4.004806	4.926240	0.110125
С	-4.636978	-0.801111	-0.747211	Н	3.866699	3.477740	-0.880204
С	-5.888492	-0.056228	-1.243120	Н	3.848675	3.352556	0.878668
С	2.850830	1.138692	0.038913	Н	-3.845280	1.942755	1.985872
С	3.516080	0.864744	-1.171257	Н	-2.839408	0.514771	1.759571
С	2.887596	1.172417	-2.508140	Н	-2.512946	-0.449261	-0.597097
С	4.797300	0.319266	-1.116127	Н	-3.248282	0.351432	-1.978667
С	5.427204	0.026330	0.095229	Н	-4.971497	3.048226	-0.026460
С	6.796846	-0.607453	0.120378	Н	-4.685566	2.408537	-1.647181
С	4.733943	0.292766	1.273344	Н	-6.939206	1.784345	-0.775135
С	3.447530	0.839022	1.273268	Н	-7.120135	0.268165	1.213631
С	2.764905	1.120352	2.590200	Н	-6.377921	1.803033	1.655038
Ν	-2.370813	2.271738	-0.351767	Н	-5.090602	-0.114396	2.623580
Ν	-0.234263	3.020567	-0.159211	Н	-3.948133	-1.723588	1.104249
Ν	1.499811	1.634742	-0.008258	Н	-5.688278	-1.798775	0.873072
0	2.609669	-2.289073	2.207046	Н	-4.489991	-1.713415	-1.332328
0	2.511291	-2.220427	-2.369107	Н	-5.790464	0.183819	-2.307949
0	0.582342	-5.475602	-0.000399	Н	-6.774497	-0.692037	-1.137624
0	-1.924054	-2.692753	-2.278959	Н	2.904964	2.247095	-2.722160
0	-1.802569	-2.498033	2.348479	Н	1.842993	0.857128	-2.546179
Н	-2.564252	3.775625	1.159574	Н	3.426633	0.666390	-3.309634
Н	-3.255682	4.205487	-0.424859	Н	5.311045	0.103520	-2.047808
Н	-1.103383	4.455672	-1.432086	Н	7.289487	-0.455493	1.082902
Н	-0.772428	5.062606	0.208778	Н	7.441211	-0.196048	-0.660537
Н	1.943713	4.280753	2.215599	Н	6.728895	-1.687366	-0.048217
Н	0.629116	5.196341	1.489553	Н	5.195726	0.055323	2.226635
Н	2.2689999	5.836307	1.442714	Н	3.081226	0.397522	3.343665
Н	0.743432	5.578125	-1.208550	Н	1.678731	1.073629	2.506698
Н	1.922533	4.631856	-2.117104	Н	3.024268	2.117964	2.964166
Н	2.444633	5.987752	-1.115300]			

Compound 3:

S20

Compound 4:

LUMO+3 (-0.5864)

LUMO+2 (-0.7758)

LUMO+1 (-0.9578)

LUMO (-1.0735)

HOMO-2 (-5.8627)

HOMO-7(-7.4807)

Compound 5:

LUMO+3 (-0.6455)

LUMO+2 (-0.8912)

LUMO+1 (-1.0572)

LUMO (-1.1557)

HOMO (-4.3095)

HOMO-1 (-5.6861)

HOMO-2 (-5.8646)

HOMO-7 (-7.7052)

Figure S14. Calculated NICS values for 1, 3, 4 and 5.

	1	3	4	5	
NICS(0)	-9.36	-9.79	-9.80	-9.86	
NICS(1)	-6.27	-6.15	-6.15	-6.13	

Figure S15. NBO result showing the bonding interaction between the Ge and Cr atoms in **3**.

(Occupancy)	Bond orbital	/ Coeffi	cients/ Hybrids
1. (1.79133) BD (64	(1)Ge 1 - .92%) 0.805	Cr 2 8*Ge 1	s(59.66%)p 0.68(40.29%)d 0.00(0.05%) 0.7711 -0.0445 -0.0001 0.0020 0.0008 -0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.1051 0.0028 0.0065 0.0005 0.0009 0.0000 0.0000 -0.6257 -0.0079 -0.0049 -0.017 -0.0024 0.0000 0.0000 0.0142 0.0006 0.0004 0.0001 0.0002 0.0000 0.0000 0.0108 0.0147 0.0002 -0.0019 -0.0008 -0.0001 0.0030 0.0016 0.0001 -0.0016 0.0048 -0.0003 0.0048 0.0102 0.0000
(35	.08%) 0.592	2*cr 2	s(15.46%)p 3.63(56.09%)d 1.84(28.45%) f 0.00(0.00%) -0.0020 0.3897 -0.0505 0.0138 0.0029 0.0011 0.0002 0.0000 0.0003 -0.0521 0.0019 0.0012 -0.0001 -0.0024 0.7466 -0.0264 0.0005 0.0009 -0.0001 0.0000 -0.0007 0.0003 0.0000 -0.0489 0.0161 0.0002 0.0085 -0.0013 -0.0006 -0.0037 -0.0026 0.0000 -0.4453 0.0910 0.0063 -0.2687 0.0535 0.0035 0.0000 0.0001 -0.0008 -0.0001 0.0000 0.0003 -0.0010
2. (1.58324) BD (1	(2)Ge 1 - .67%) 0.129	Cr 2 3*Ge 1	s(0.42%)p99.99(99.05%)d 1.24(0.53%) -0.0641 -0.0044 -0.0072 0.0067 0.0034 0.0007 -0.0001 0.0000 0.0000 0.0000 0.0000 -0.5241 -0.0324 -0.0078 -0.0033 0.0014 0.0000 -0.0003 -0.1467 -0.0015 -0.0077 -0.0002 -0.0002 0.0000 0.0000 0.8319 0.0312 0.0033 0.0012 -0.0011 0.0000 0.0000 0.0007 0.0568 -0.0004 -0.0051 0.0045 0.0001 0.0012 -0.0421 0.0006 0.0089 -0.0109 0.0001 0.0012 0.0041 -0.0002
(98	.33%) 0.991	б*сr 2	s(0.00%)p 1.00(1.69%)d58.14(98.31%) f 0.00(0.00%) -0.0002 0.0034 -0.0015 0.0001 0.0004 0.0000 0.0000 0.0000 -0.0013 0.0728 -0.0026 -0.0017 -0.0001 -0.0002 0.0041 -0.0018 0.0002 0.0000 0.0023 -0.1075 0.0016 0.0010 0.0002 -0.5231 -0.0264 0.0000 -0.0468 -0.0013 0.0003 0.8380 0.0410 0.0003 0.0512 0.0035 0.0000 -0.0009 0.0009 0.0000 0.0009 0.0003 0.0001 0.0003 -0.0001 -0.0005 -0.0001

		Natural				
Atom	No	Charge	Core	Valence	Rydberg	Total
Ge	1	1. 16572	28.00000	2.81526	0. 01902	30. 83428
Cr	2	-2.62631	17.95983	8.61342	0.05307	26.62631
С	3	-0.21821	1.99908	4.18238	0.03675	6.21821
С	4	-0.18038	1.99943	4.16410	0.01685	6.18038
С	5	-0.18004	1.99941	4.16423	0.01640	6.18004
С	6	0.44634	1.99903	3.52166	0.03298	5.55366
С	7	-0.06207	1.99935	4.04942	0.01330	6.06207
С	8	-0.57130	1.99943	4.56078	0.01109	6.57130
С	9	-0.57742	1.99944	4.56687	0.01112	6.57742
С	10	-0.58013	1.99945	4.56811	0.01256	6.58013
С	11	0.12865	1.99886	3.85219	0.02029	5.87135
С	12	-0.00752	1.99906	3.99259	0.01587	6.00752
С	13	-0.60024	1.99943	4.59148	0.00933	6.60024
С	14	-0.20829	1.99908	4.19436	0.01484	6.20829
С	15	0.00360	1.99917	3.98265	0.01458	5.99640
С	16	-0.59058	1.99944	4.58229	0.00884	6.59058
С	17	-0.20860	1.99908	4.19466	0.01485	6.20860
С	18	-0.00394	1.99906	3.98914	0.01573	6.00394
С	19	-0.59527	1.99944	4.58660	0.00924	6.59527
С	20	0.19598	1.99927	3.78294	0.02182	5.80402
С	21	-0.41686	1.99933	4.40149	0.01604	6.41686
С	22	-0.40754	1.99933	4.39008	0.01813	6.40754
С	23	-0.40521	1.99934	4.38889	0.01698	6.40521
С	24	-0.19347	1.99942	4.17716	0.01689	6.19347
С	25	-0.39057	1.99941	4.37556	0.01560	6.39057
С	26	-0.19369	1.99942	4.17750	0.01676	6.19369
С	27	-0.39586	1.99940	4.38120	0.01526	6.39586
С	28	-0.19500	1.99941	4.17901	0.01658	6.19500
С	29	-0.38941	1.99941	4.37445	0.01555	6.38941
С	30	0.84444	1.99908	3.10053	0.05595	5.15556
С	31	0.84454	1.99907	3.10048	0.05591	5.15546
С	32	0.84078	1.99890	3.10402	0.05631	5.15922
С	33	0.83992	1.99907	3.10446	0.05655	5.16008
С	34	0.83677	1.99907	3.10771	0.05645	5.16323
Ν	35	-0.51624	1.99931	5.49484	0.02209	7.51624
Ν	36	-0.39452	1.99922	5.38331	0.01199	7.39452
Ν	37	-0.72730	1.99934	5.71014	0.01781	7.72730
0	38	-0.45335	1.99975	6.44250	0.01110	8.45335

Table S2. The NPA charges of **3** calculated at the B3LYP/6-311G(d,p) level of theory, with the LANL2TZ(f) pseudo-potential applied for the Cr atom.

0	39	-0.45493	1.99975	6.44407	0.01112	8.45493
0	40	-0.45660	1.99975	6.44619	0.01065	8.45660
0	41	-0.46172	1.99975	6.45083	0.01114	8.46172
0	42	-0.45632	1.99975	6.44551	0.01106	8.45632
Н	43	0.17303	0.00000	0.82280	0.00417	0.82697
Н	44	0.20707	0.00000	0.79126	0.00167	0.79293
Н	45	0.19876	0.00000	0.79810	0.00314	0.80124
Н	46	0.20678	0.00000	0.79061	0.00261	0.79322
Н	47	0.19132	0.00000	0.80747	0.00122	0.80868
Н	48	0.20249	0.00000	0.79552	0.00199	0.79751
Н	49	0.20767	0.00000	0.79046	0.00187	0.79233
Н	50	0.20614	0.00000	0.79189	0.00197	0.79386
Н	51	0.20391	0.00000	0.79409	0.00200	0.79609
Н	52	0.19714	0.00000	0.80165	0.00122	0.80286
Н	53	0.21499	0.00000	0.78290	0.00211	0.78501
Н	54	0.20052	0.00000	0.79739	0.00208	0.79948
Н	55	0.21175	0.00000	0.78622	0.00203	0.78825
Н	56	0.20262	0.00000	0.79543	0.00195	0.79738
Н	57	0.21743	0.00000	0.78103	0.00154	0.78257
Н	58	0.22133	0.00000	0.77754	0.00113	0.77867
Н	59	0.20098	0.00000	0.79633	0.00268	0.79902
Н	60	0.20440	0.00000	0.79434	0.00126	0.79560
Н	61	0.20582	0.00000	0.79286	0.00132	0.79418
Н	62	0.21459	0.00000	0.78396	0.00146	0.78541
Н	63	0.20074	0.00000	0.79657	0.00269	0.79926
Н	64	0.21237	0.00000	0.78629	0.00134	0.78763
Н	65	0.20063	0.00000	0.79724	0.00213	0.79937
Н	66	0.22286	0.00000	0.77584	0.00129	0.77714
Н	67	0.19328	0.00000	0.80400	0.00271	0.80672
Н	68	0.21420	0.00000	0.78353	0.00228	0.78580
Н	69	0.20853	0.00000	0.78776	0.00371	0.79147
Н	70	0.21092	0.00000	0.78548	0.00360	0.78908
Н	71	0.19372	0.00000	0.80347	0.00281	0.80628
Н	72	0.20499	0.00000	0.79169	0.00332	0.79501
Н	73	0.20506	0.00000	0.79278	0.00216	0.79494
Н	74	0.19875	0.00000	0.79884	0.00241	0.80125
Н	75	0.19360	0.00000	0.80432	0.00209	0.80640
Н	76	0.20719	0.00000	0.79052	0.00229	0.79281
Н	77	0.21027	0.00000	0.78696	0.00277	0.78973
Н	78	0.19674	0.00000	0.80073	0.00253	0.80326
Н	79	0.21470	0.00000	0.78273	0.00257	0.78530
Н	80	0. 19792	0.00000	0.79967	0.00241	0.80208
H	81	0. 19700	0.00000	0.80096	0.00205	0.80300

=

Atom	No	Natural Charge	Core	Valence	Rydberg	Total
Ge	1	1.15111	28.00000	2.83007	0.01882	30. 84889
Mo	2	-2.34130	35.94126	8.36519	0.03485	44.34130
С	3	-0.20646	1.99909	4.17045	0.03692	6.20646
С	4	-0.18053	1.99943	4.16426	0.01683	6.18053
С	5	-0.18014	1.99941	4.16435	0.01638	6.18014
С	6	0.44763	1.99903	3. 52076	0.03257	5.55237
С	7	-0.06222	1.99935	4.04957	0.01330	6.06222
С	8	-0.57118	1.99943	4.56067	0.01108	6.57118
С	9	-0.57738	1.99944	4.56683	0.01111	6.57738
С	10	-0.58017	1.99945	4.56820	0.01251	6.58017
С	11	0.13044	1.99886	3.85048	0.02021	5.86956
С	12	-0.00453	1.99906	3.99009	0.01537	6.00453
С	13	-0. 59578	1.99944	4.58727	0.00907	6. 59578
С	14	-0.20921	1.99908	4.19531	0.01482	6.20921
С	15	0.00324	1.99917	3.98301	0.01459	5.99676
С	16	-0. 59058	1.99944	4.58230	0.00884	6. 59058
С	17	-0.20831	1.99908	4. 19437	0.01486	6.20831
С	18	-0.00813	1.99906	3.99350	0.01557	6.00813
С	19	-0.59984	1.99943	4. 59125	0.00915	6. 59984
С	20	0.19587	1.99927	3.78299	0.02187	5.80413
С	21	-0. 40558	1.99934	4. 38928	0.01696	6.40558
С	22	-0. 19335	1.99942	4.17704	0.01689	6. 19335
С	23	-0.39054	1.99941	4.37553	0.01561	6.39054
С	24	-0.19382	1.99942	4.17765	0.01674	6.19382
С	25	-0. 41698	1.99933	4. 40160	0.01604	6. 41698
С	26	-0.40762	1.99933	4.39045	0.01785	6.40762
С	27	-0.19554	1.99941	4.17955	0.01658	6. 19554
С	28	-0.38945	1.99941	4.37449	0.01555	6.38945
С	29	-0.39492	1.99941	4.38028	0.01523	6.39492
С	30	0.78445	1.99918	3.15476	0.06161	5.21555
С	31	0.78295	1.99917	3.15617	0.06171	5.21705
С	32	0.77871	1.99917	3.16055	0.06157	5.22129
С	33	0.77598	1.99917	3.16316	0.06170	5.22402
С	34	0.77082	1.99898	3.16771	0.06250	5.22918

Table S3. The NPA charges of **4** calculated at the B3LYP/6-311G(d,p) level of theory, with the LANL2TZ(f) pseudo-potential applied for the Mo atom.

Ν	35	-0.72126	1.99935	5.70446	0.01746	7.72126
Ν	36	-0.39440	1.99923	5.38328	0.01190	7.39440
Ν	37	-0.51480	1.99931	5.49367	0.02182	7.51480
0	38	-0.44799	1.99975	6.43788	0.01037	8.44799
0	39	-0. 44955	1.99975	6. 43937	0.01044	8.44955
0	40	-0.45477	1.99975	6.44463	0.01040	8.45477
0	41	-0.45156	1.99975	6.44143	0.01039	8.45156
0	42	-0.45558	1.99975	6.44555	0.01028	8.45558
Н	43	0.17303	0.00000	0.82278	0.00419	0.82697
Н	44	0.20716	0.00000	0.79117	0.00167	0.79284
Н	45	0.19874	0.00000	0.79816	0.00310	0.80126
Н	46	0.20684	0.00000	0.79056	0.00260	0.79316
Н	47	0.19131	0.00000	0.80748	0.00121	0.80869
Н	48	0.20256	0.00000	0.79545	0.00199	0.79744
Н	49	0.20756	0.00000	0.79057	0.00187	0.79244
Н	50	0.20607	0.00000	0.79196	0.00197	0.79393
Н	51	0.20398	0.00000	0.79402	0.00200	0.79602
Н	52	0.19711	0.00000	0.80167	0.00121	0.80289
Н	53	0.21486	0.00000	0.78304	0.00210	0.78514
Н	54	0.20062	0.00000	0.79729	0.00208	0.79938
Н	55	0.21194	0.00000	0.78605	0.00201	0.78806
Н	56	0.21189	0.00000	0.78678	0.00134	0.78811
Н	57	0.20067	0.00000	0.79719	0.00214	0.79933
Н	58	0.22352	0.00000	0.77526	0.00122	0.77648
Н	59	0.20089	0.00000	0.79641	0.00270	0.79911
Н	60	0.21460	0.00000	0.78394	0.00146	0.78540
Н	61	0.20448	0.00000	0.79426	0.00126	0.79552
Н	62	0.20588	0.00000	0.79280	0.00132	0.79412
Н	63	0.20122	0.00000	0.79608	0.00269	0.79878
Н	64	0.20254	0.00000	0.79549	0.00197	0.79746
Н	65	0.21608	0.00000	0.78241	0.00151	0.78392
Н	66	0.22189	0.00000	0.77701	0.00109	0.77811
Н	67	0.20482	0.00000	0.79185	0.00333	0.79518
Н	68	0.19412	0.00000	0.80309	0.00279	0.80588
Н	69	0.20514	0.00000	0.79270	0.00216	0.79486
Н	70	0.19371	0.00000	0.80421	0.00209	0.80629
Н	71	0.19884	0.00000	0.79874	0.00241	0.80116
Н	72	0.20736	0.00000	0.79032	0.00231	0.79264
Н	73	0.21423	0.00000	0.78372	0.00205	0.78577
Н	74	0.19344	0.00000	0.80383	0.00273	0.80656
Н	75	0.20959	0.00000	0.78645	0.00396	0.79041
Н	76	0.21002	0.00000	0.78658	0.00340	0.78998
Н	77	0.21519	0.00000	0.78229	0.00253	0.78481
Н	78	0.19798	0.00000	0.79961	0.00242	0.80202

Н	79	0.19698	0.00000	0.80097	0.00205	0.80302
Н	80	0.19714	0.00000	0.80033	0.00253	0.80286
Н	81	0.20829	0.00000	0. 78906	0.00265	0.79171
* Total		0. 00000	143. 91456	221. 09102	0. 99442	366. 00000

Table S4.	The NPA ch	narges of	5 calculat	ed at the	B3LYP	P/6-311G(d,	p) level	of theory,
with the L	ANL2TZ(f)	pseudo-p	otential a	pplied for	r the W	atom.		

		Natural				
Atom	No	Charge	Core	Valence	Rydberg	Total
W	1	-2. 18292	67. 94744	8. 19983	0. 03566	76. 18292
Ge	2	1.17580	28.00000	2.80553	0.01867	30.82420
С	3	0.74305	1.99910	3.19460	0.06325	5.25695
С	4	0.74476	1.99911	3.19294	0.06319	5.25524
С	5	0.72887	1.99887	3.20830	0.06396	5.27113
С	6	0.73499	1.99909	3.20265	0.06326	5.26501
С	7	0.73775	1.99910	3.20012	0.06303	5.26225
С	8	-0.20138	1.99907	4. 16541	0.03690	6.20138
С	9	-0.18045	1.99943	4.16418	0.01684	6.18045
С	10	-0.18009	1.99941	4.16425	0.01643	6.18009
С	11	0.44932	1.99904	3. 51948	0.03216	5.55068
С	12	-0.06234	1.99935	4.04969	0.01329	6.06234
С	13	-0.57118	1.99943	4.56069	0.01107	6.57118
С	14	-0.57732	1.99944	4.56677	0.01111	6.57732
С	15	-0.58019	1.99945	4.56821	0.01252	6.58019
С	16	0.19570	1.99927	3.78319	0.02185	5.80430
С	17	-0.41701	1.99933	4.40165	0.01603	6.41701
С	18	-0.40787	1.99933	4.39058	0.01796	6.40787
С	19	-0.40571	1.99934	4.38943	0.01695	6.40571
С	20	-0.19327	1.99942	4.17696	0.01689	6.19327
С	21	-0.39059	1.99941	4.37557	0.01560	6. 39059
С	22	-0.19374	1.99942	4.17756	0.01676	6.19374
С	23	-0.39503	1.99941	4.38039	0.01523	6.39503
С	24	-0.19569	1.99941	4.17967	0.01660	6. 19569
С	25	-0.38948	1.99941	4.37452	0.01554	6. 38948
С	26	0.12911	1.99886	3.85166	0.02036	5.87089
С	27	-0.00451	1.99906	3.98992	0.01553	6.00451
С	28	-0. 59567	1.99944	4.58712	0.00911	6. 59567
С	29	-0.20871	1.99908	4. 19481	0.01482	6.20871
С	30	0.00413	1.99917	3.98213	0.01457	5.99587

С	31	-0.59067	1.99944	4.58239	0.00885	6.59067
С	32	-0.20764	1.99908	4.19369	0.01487	6.20764
С	33	-0.00785	1.99906	3.99305	0.01575	6.00785
С	34	-0.60016	1.99943	4. 59154	0.00918	6.60016
Ν	35	-0.51382	1.99931	5.49255	0.02196	7.51382
Ν	36	-0.39312	1.99923	5.38210	0.01180	7.39312
Ν	37	-0.71935	1.99934	5.70289	0.01712	7.71935
0	38	-0.44863	1.99975	6.43777	0.01112	8.44863
0	39	-0.44658	1.99975	6.43582	0.01102	8.44658
0	40	-0.45564	1.99975	6.44516	0.01073	8.45564
0	41	-0.45062	1.99975	6.43977	0.01110	8.45062
0	42	-0.45420	1.99975	6.44335	0.01110	8.45420
Н	43	0.17340	0.00000	0.82246	0.00414	0.82660
Н	44	0.20767	0.00000	0.79067	0.00166	0.79233
Н	45	0.19911	0.00000	0.79780	0.00309	0.80089
Н	46	0.20724	0.00000	0.79016	0.00260	0.79276
Н	47	0.20776	0.00000	0.79037	0.00186	0.79224
Н	48	0.19127	0.00000	0.80753	0.00121	0.80873
Н	49	0.20287	0.00000	0.79515	0.00198	0.79713
Н	50	0.19709	0.00000	0.80169	0.00121	0.80291
Н	51	0.20622	0.00000	0.79182	0.00196	0.79378
Н	52	0.20426	0.00000	0.79375	0.00200	0.79574
Н	53	0.20084	0.00000	0.79708	0.00208	0.79916
Н	54	0.21214	0.00000	0.78585	0.00201	0.78786
Н	55	0.21496	0.00000	0.78294	0.00210	0.78504
Н	56	0.19345	0.00000	0.80382	0.00273	0.80655
Н	57	0.21411	0.00000	0.78378	0.00211	0.78589
Н	58	0.20905	0.00000	0.78670	0.00425	0.79095
Н	59	0.21002	0.00000	0.78663	0.00335	0.78998
Н	60	0.19412	0.00000	0.80309	0.00279	0.80588
Н	61	0.20479	0.00000	0.79189	0.00331	0.79521
Н	62	0.20518	0.00000	0.79266	0.00216	0.79482
Н	63	0.19901	0.00000	0.79858	0.00241	0.80099
Н	64	0.19364	0.00000	0.80427	0.00209	0.80636
Н	65	0.20767	0.00000	0.79002	0.00231	0.79233
Н	66	0.20870	0.00000	0.78851	0.00279	0.79130
Н	67	0.19721	0.00000	0.80025	0.00253	0.80279
Н	68	0.21587	0.00000	0.78160	0.00252	0.78413
Н	69	0.19692	0.00000	0.80103	0.00205	0.80308
Н	70	0.19813	0.00000	0.79946	0.00241	0.80187
Н	71	0.20067	0.00000	0.79721	0.00212	0.79933
Н	72	0.22280	0.00000	0.77599	0.00121	0.77720
Н	73	0.21267	0.00000	0.78599	0.00134	0.78733
Н	74	0.20112	0.00000	0.79618	0.00270	0.79888

17	75	0.20459	0.00000	0.79415	0.00126	0.79541
[7	76	0.20590	0.00000	0.79278	0.00132	0.79410
[7	77	0.21498	0.00000	0.78355	0.00146	0.78502
[7	78	0.20151	0.00000	0.79580	0.00269	0.79849
[7	79	0.21721	0.00000	0.78125	0.00154	0.78279
[8	30	0.22104	0.00000	0.77788	0.00108	0.77896
[8	81	0.20276	0.00000	0.79529	0.00195	0.79724
* Total *		0.00000	175.92034	221.07352	1.00614	398.00000
	1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	75 76 77 78 79 80 81 81 41 *	75 0. 20459 76 0. 20590 77 0. 21498 78 0. 20151 79 0. 21721 80 0. 22104 81 0. 20276	75 0. 20459 0. 00000 76 0. 20590 0. 00000 77 0. 21498 0. 00000 78 0. 20151 0. 00000 79 0. 21721 0. 00000 80 0. 22104 0. 00000 81 0. 20276 0. 00000 41 * 0. 00000	75 0.20459 0.00000 0.79415 76 0.20590 0.00000 0.79278 77 0.21498 0.00000 0.78355 78 0.20151 0.00000 0.79580 79 0.21721 0.00000 0.78125 80 0.22104 0.00000 0.77788 81 0.20276 0.00000 0.79529	75 0.20459 0.00000 0.79415 0.00126 76 0.20590 0.00000 0.79278 0.00132 77 0.21498 0.00000 0.78355 0.00146 78 0.20151 0.00000 0.79580 0.00269 79 0.21721 0.00000 0.78125 0.00154 80 0.22104 0.00000 0.79529 0.00195 81 0.20276 0.00000 0.79529 0.00195

6. References

- [S1] B. Su, R. Ganguly, Y. Li, R. Kinjo, Angew. Chem., Int. Ed., 2014, 53, 13106.
- [S2] W. Strohmeier, Angew. Chem., Int. Ed., 1964, 3, 730.
- [S3] Bruker AXS SHELXTL, Madison, WI; SHELX-97G. M. Sheldrick, Acta Crystallogr. A, 2008, 64, 112–122, SHELX-2013, <u>http://shelx.uni-ac.gwdg.de/SHELX/index.php</u>.
- [S4] Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, **2010**.