Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for ChemComm.

This journal is © The Royal Society of Chemistry 2015

Double head-to-tail direct arylation as a viable strategy towards aza-analog of dihydrocyclopenta[*hi*]aceanthrylene – intriguing antiaromatic heterocycle

Dikhi Firmansyah, Irena Deperasińska, Olena Vakuliuk, Marzena Banasiewicz, Mariusz Tasior, Artur Makarewicz, Michał K. Cyrański,* Bolesław Kozankiewicz,* and Daniel T. Gryko*

Table of Contents

Page S2 General Remarks.

Page S2 Optimalization of the synthesis of 4.

Page S3 Synthesis of 5 (Scheme S1).

Page S3 Synthetic procedures.

Page S4 Analysis of 2D NMR Spectra of 4.

Pages S6 – S13 Copies of ¹H and ¹³C NMR spectra.

Pages S14 – **S17** Symmetry, absolute electronic energies at B3LYP/6-311+G^{**} (in hartree) zero point vibrational energies ZPE at B3LYP/6-311+G^{**} (in hartree), magnetic susceptibilities at CSGT/B3LYP/6-311+G^{**} (in ppm cgs) and Cartesian coordinates for molecules used in homodesmotic reactions.

Page S19 Wavelengths of the electronic $S_0 \rightarrow S_i$ transitions calculated with the aid of TD DFT B3LYP//DFT B3LYP /6-31G(d,p) method. (PCM model was used for compound 4 in *n*-hexane).

Page S20 –**S22** Vibrational frequencies of isolated compound **4** optimized in its electronic ground S_0 and excited S_1 and S_2 singlet states.

Page S23 Bond lengths in compound **4** obtained with the aid of DFT/B3LYP/6-31G(d,p) and TD DFT/B3LYP/6-31G(d,p) methods in the electronic ground S_0 and excited S_1 and S_2 states.

Page S24 Vibrations of 4 with large displacement parameter in the S1 state.

Page S25 Wavelengths of the electronic $S_0 \rightarrow S_i$ transitions for compound **5** calculated with the aid of TD DFT B3LYP//DFT B3LYP /6-31G(d,p) method.

Page S26 Comparison of the absorption spectra of compounds 4 and 5.

Page S27 Energy diagram of the electronic states according to the TD DFT//DFT B3LYP/6-31G(d,p) calculations.

Page S28 Cyclic voltammetry studies.

General remarks

All commercially available compounds were used as received. All reagent grade solvents were dried and distilled prior to use. Transformation with air-sensitive compounds were performed under argon atmosphere. The reaction progress was monitored by means of thin layer chromatography (TLC) which was performed on aluminum sheets, coated with silica gel 60 F₂₅₄ (Merck) with detection by UV-Lamp. Product purification was performed by flash column chromatography on silica (P 60, 40–63 mm, SiliCycle), and dry column vacuum chromatography (DCVC) on silica oxide (MN-Kieselgel P/UV254) or aluminum oxide (MN-Aluminumoxid G). Identity and purity of prepared compounds were proved by 1D NMR (¹H NMR and ¹³C NMR) and 2D NMR recorded on 500 MHz Varian Inova NMR spectrometr. All chemical shifts are given in ppm.

Optimalization of the synthesis of 4

Entry	Catalyst	Base	Additive	Solvent	Yield, %
1	PdCl(C ₃ H ₅)(dppb)	KOAc	-	DMA	20
2	$Pd(PPh_3)_2Cl_2$	KF	AgOAc	DMSO	0
3	Pd(OAc) ₂	K_2CO_3	PCy ₃ ·HBF ₄	PivOH	0
4	$[Rh(cod)_2Cl]_2$	K_2CO_3	PPh ₃	NMP	0
5	-	<i>t</i> BuOK	-	DMA	0
6	$Pd(OAc)_2$	Ag_2CO_3	PPh ₃ , n-Bu ₄ NBr	DMF	traces
7	$Pd(OAc)_2$	KOAc	-	DMA	22
8	$Pd(PPh_3)_2Cl_2$	KOAc	-	NMP/H ₂ O	37
9	Pd(OAc) ₂	KOAc	SPhos	DMA	40
10	Pd(OAc) ₂	KOAc	XPhos	DMA	42
11	Pd(OH) ₂ /C	KOAc	-	DMA	57

Scheme S1

Synthetic Procedures

Imidazo[1,2-*a*]**pyridine** (1) was synthesized *via* known procedure [1]. Spectral and physical properties concur with published data [1,2].

5-Bromoimidazo[1,2-*a*]**pyridine** (2): 2-amino-6-bromopyridine (1.73g, 10 mmol) was dissolved in C₂H₅OH (20 mL), subsequently chloroacetaldehyde (5 ml, 40 mmol, 50% aqueous solution) was added in one portion and resulting mixture was refluxed for 20 h. Next, it was cooled down and the solvent was removed under the reduced pressure. The residue was dissolved in 100 ml of DCM and washed with NaHCO₃(aq.) and water, dried over anhydrous MgSO₄. The crude product was purified by column chromatography (DCVC, alumina, EtOAc : hexanes = 15:85) to give pure product as white needles (recrystallized form EtOAc/hexanes, 1,98 g, 74%). ¹H NMR (500 MHz, CDCl₃) δ 7.06 (m, 1H), 7.10 (m, 1H), 7.64 (d, 1H, *J*₁ = 8.8 Hz), 7.71 (d, 1H, *J* = 0.7 Hz), 7.80 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 1113.6, 114.3, 116.2, 116.6, 124.6, 133.4, 146.1; EI-MS HR obsd. 195.9637 [M⁺]; calcd. exact mass 195.9636 (C₇H₅N₂Br);

5-Bromo-7-methylimidazo[1,2-*a***]pyridine (S1)**: 2-amino-6-bromo-4-methylpyridine (462.5 mg, 2.5 mmol) was dissolved in C₂H₅OH (5 mL), subsequently chloroacetaldehyde (1.25 ml, 10 mmol, 50% aqueous solution) was added in one portion and resulting mixture was refluxed for 20 h. Next, it was cooled down and the solvent was removed under the reduced pressure. The residue was dissolved in 50 ml of DCM and washed with NaHCO₃(aq.) and water, dried over anhydrous MgSO₄. The crude product was purified by column chromatography (DCVC, alumina, EtOAc : hexanes = 15:85) to give pure product as white needles (recrystallized form EtOAc/hexanes, 391 mg, 75%). ¹H NMR (500 MHz, CDCl₃): δ 2.44 (s, 3H), 7.13 (s, 1H), 7.76 (bs, 2H), 8.10 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 21.4, 113.4, 114.3, 114.4, 114.6, 121.0, 131.0, 140.5; EI-MS HR obsd. 209.9783 [M⁺]; calcd. exact mass 209.9793 (C₈H₇N₂Br);

3,5'-Biimidazo[1,2-*a***]pyridine (3)**: imidazo[1,2-*a*]pyridine **1** (0.3 mL, 3 mmol), 5-bromoimidazo[1,2-*a*]pyridine **2** (384 mg, 2 mmol) and KOAc (400 mg, 4 mmol) were added to the solution of Pd(OAc)₂ (0.45 mg, 0.002 mmol, 0.1

mol%) in DMA (8 mL). The resulting mixture was reacted overnight at 150 °C under inert atmosphere. Subsequently, it was absorbed on celite, purified by DCVC (SiO₂, MeOH:CH₂Cl₂ = 2:98) and crystallized (MeOH/CH₂Cl₂) to afford white crystals (351 mg, 75%), ¹H NMR (500 MHz, CDCl₃): δ 7.98 (s, 1 H), 7.80 – 7.72 (m, 3H), 7.68 (d, 1 H, J = 1 Hz), 7.36 – 7.30 (m, 2 H), 7.24 (s, 1 H), 7.03 (dd, 1 H, $J_1 = 6.9$ Hz, $J_2 = 1$ Hz,), 6.89 (td, $J_1 = 6.9$ Hz, $J_2 = 1$ Hz, 1 H), ¹³C NMR (125 MHz, CDCl₃): δ 146.9, 146.0, 135.2, 134.5, 126.5, 125.8, 124.6, 124.0 (2 signals), 118.8, 118.4, 115.3, 113.6, 111.5; EI-MS HR obsd. 234.0903 [M⁺]; calcd. exact mass 234.0905 (C₁₄H₁₀N₄);

2,2a¹,5b¹,7-Tetraazacyclopenta[*hi*]**aceanthrylene** (**4**): 5-bromoimidazo[1,2-*a*]pyridine **2** (100 mg, 0.5 mmol), KOAc (102 mg, 1 mmol), and Pd(OH)₂/C (72 mg, 20 mol%) were placed in sealed Schlenk flask under inert atmosphere. Subsequently DMA_{dry} (2 mL) was added and resulting mixture was stirred at 145 °C for 17h. Next it was cooled down and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (DCVC, SiO₂, MeOH:CH₂Cl₂ = 5:95) and crystallized (DCM/hexanes) to afford orange solid (34 mg, 58%); ¹H NMR (500 MHz, C₆D₆): δ 5.14 (d, 2 H, *J* = 6.6 Hz), 5.95 (dd, 2H, *J*₁ = 9 Hz, *J*₂ = 7 Hz), 6.39 (d, 2 H, *J*₁ = 9.1 Hz), 6.88 (s, 2 H); ¹³C NMR (125 MHz, C₆D₆): δ 102.9, 115.4, 118.6, 129.1, 129.8, 132.4, 147.7; ESI-MS HR obsd. 233.0821 [M+H]⁺; calcd. exact mass 233.0827 (C₁₄H₉N₄);

7,7'-Dimethyl-2,2a',5b',7-tetraazacyclopenta[*hi*]**aceanthrylene** (**5**): 5-bromo-7-methylimidazo[1,2-*a*]pyridine **S2** (108.7 mg, 0.5 mmol), KOAc (102 mg, 1 mmol), and Pd(OH)₂/C (72 mg, 20 mol%) were placed in sealed Schlenk flask under inert atmosphere. Subsequently DMA_{dry} (2 mL) was added and resulting mixture was stirred at 145 °C for 17h. Next it was cooled down and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (DCVC, SiO₂, MeOH:CH₂Cl₂ = 5:95) and crystallized (DCM/hexanes) to afford orange solid (47.4 mg, 68%); ¹H NMR (500 MHz, CHCl₃): δ 2.09 (s, 6H), 5.96 (s, 2H), 6.48 (s, 2H), 7.27 (s, 2H); ¹³C NMR (125 MHz, CHCl₃): δ 21.4, 105.8, 113.7, 117.7, 129.7, 140.0, 140.8, 147.1; ESI-MS HR obsd. 261.1139 [M+H]⁺; calcd. exact mass 261.1140 (C₁₆H₁₃N₄);

Analysis of 2D NMR Spectra of 4

Figure 1. ¹H and ¹³C shifts (in brackets) are given in ppm.

During the analysis of COSY spectrum, two groups of signals were identified. Peaks with chemical shifts 5.14 ppm, 5.95 ppm and 6.39 ppm were assigned to the one spin system, thus belonged to the pyridine-type ring. The signal at 6.88 ppm (singlet) didn't show any correlation peak and was identified as belonging to the proton at C_2 from the five-membered ring.

Next, interpretation of the 13 C NMR was performed according to the literature (for C₃ and C₅) [3] and 13 C¹H-HSQC data.

Further signals assignment in ¹H NMR spectrum was performed basing on their multiplicity (for the proton at C₇) as well as analysis of ¹³C¹H-HMBC spectra (for the protons at C₆ and C₈). Moreover, in order to achieve the final conformation, 1D NOE experiment was performed. It clearly proved the space correlation between protons at C₂ and C₆.

References

[1] Sh. Wang, W. Liu, J. Cen, J. Liao, J. Huang and H. Zhan, Tetrahedron Lett., 2014, 55, 1589-1592;

[2] B. Frett, N. McConnell, C. C. Smith, Y. Wang, N. P. Shah and H. Li, Eur. J. Med. Chem., 2015, 94, 123–131

[3] R. J. Pugmire, J. C. Smith, D. M. Grant, B. Stanovnik, M. Tisler and B. Vercek, J. Heterocyc. Chem. 1987, 24, 805-809.

Symmetry, absolute electronic energies at B3LYP/6-311+G** (in hartree) zero point vibrational energies ZPE at B3LYP/6-311+G** (in hartree), magnetic susceptibilities at CSGT/B3LYP/6-311+G** (in ppm cgs) and Cartesian coordinates for molecules used in homodesmotic reactions.

Compound	Point group	Energy	ZPE	Magnetic suceptibility
	$C_{2\mathrm{h}}$	-757.505166	0.193748	-92.61
С		2.149245	-3.005499	0.000000
С		0.894322	-3.562053	0.000000
С		-0.229934	-2.700909	0.000000
С		1.263426	-0.749363	0.000000
С		2.345411	-1.597085	0.000000
Ν		-1.541430	-2.947872	0.000000
С		-2.149245	-1.734370	0.000000
С		-1.229960	-0.695131	0.000000
С		1.229960	0.695131	0.000000
С		-1.263426	0.749363	0.000000
С		2.149245	1.734370	0.000000
Ν		-0.009906	1.329651	0.000000
С		0.229934	2.700909	0.000000
С		-2.345411	1.597085	0.000000
С		-2.149245	3.005499	0.000000
С		-0.894322	3.562053	0.000000
Ν		0.009906	-1.329651	0.000000
Ν		1.541430	2.947872	0.000000
Н		3.020351	-3.649617	0.000000
Н		0.730462	-4.630703	0.000000
Н		3.344176	-1.183002	0.000000
Н		-3.225717	-1.648786	0.000000
Н		3.225717	1.648786	0.000000

	-3.344176	1.183002	0.000000
	-3.020351	3.649617	0.000000
	-0.730462	4.630703	0.000000
Point group	Energy	ZPE	Magnetic suceptibility
Cs	-379.9479832	0.117322	-72.52
	-1.055052	1.622701	0.000000
	1.358788	0.935133	0.000000
	-2.189741	0.839919	0.000000
	0.000000	0.734412	0.000000
	-0.567670	-0.555801	0.000000
	2.191967	-0.143885	0.000000
	1.660368	-1.464769	0.000000
	0.304397	-1.667487	0.000000
	-1.894341	-0.489407	0.000000
	-3.212713	1.186270	0.000000
	3.261615	0.019246	0.000000
	2.337184	-2.310325	0.000000
	-0.134113	-2.656740	0.000000
	-0.907385	2.689365	0.000000
	1.697458	1.962279	0.000000
Point group	Energy	ZPE	Magnetic suceptibility
$D_{2\mathrm{h}}$	-769.5821797	0.252708	-151.39
	Point group Cs Point group	-3.344176 -3.020351 -0.730462 Point group Energy Cs -379.9479832 -1.055052 1.358788 -2.189741 0.000000 -0.567670 2.191967 1.660368 0.304397 -1.894341 -3.212713 3.261615 2.337184 -0.134113 -0.907385 1.697458 Point group Energy	-3.344176 1.183002 -3.020351 3.649617 -0.730462 4.630703 Point group Energy ZPE Cs -379.9479832 0.117322 -1.055052 1.622701 1.358788 1.358788 0.935133 -2.189741 -2.189741 0.839919 0.000000 0.000000 0.734412 -0.567670 0.000000 0.734412 -0.567670 1.660368 -1.464769 0.304397 -1.667487 1.1894341 -0.489407 -3.212713 1.186270 3.261615 0.019246 2.337184 -2.310325 -0.134113 -2.656740 -0.907385 2.689365 1.697458 1.962279

0.000000 0.000000 1.438071

С

С	0.000000	0.000000	-1.438071
С	0.000000	2.423842	-1.477276
С	0.000000	2.423842	1.477276
С	0.000000	-2.423842	1.477276
С	0.000000	-2.423842	-1.477276
С	0.000000	-2.419300	-2.881927
С	0.000000	2.419300	-2.881927
С	0.000000	-2.419300	2.881927
С	0.000000	2.419300	2.881927
С	0.000000	0.000000	2.871393
С	0.000000	0.000000	-2.871393
С	0.000000	-1.231580	3.571074
С	0.000000	1.231580	3.571074
С	0.000000	-1.231580	-3.571074
С	0.000000	1.231580	-3.571074
С	0.000000	1.247901	0.737738
С	0.000000	-1.247901	0.737738
С	0.000000	1.247901	-0.737738
С	0.000000	-1.247901	-0.737738
Н	0.000000	3.382114	0.975683
Н	0.000000	-3.382114	-0.975683
Н	0.000000	3.382114	-0.975683
Н	0.000000	-3.382114	0.975683
Н	0.000000	-1.218289	4.655535
Н	0.000000	-1.218289	-4.655535
Н	0.000000	1.218289	-4.655535
Н	0.000000	1.218289	4.655535
Н	0.000000	3.362674	3.416090
Н	0.000000	-3.362674	-3.416090
Н	0.000000	-3.362674	3.416090
Н	0.000000	3.362674	-3.416090

Compound	Point group	Energy	ZPE	Magnetic suceptibility
	D_{2h}	-385.9888714	0.146886	-88.87
C		0.00000	2 / 30615	0 707669
C		0.000000	1 2/3877	1.400843
C		0.000000	0.000000	0.715780
C C		0.000000	0.000000	-0 715780
C C		0.000000	1 243877	-1 400843
C C		0.000000	2 430615	-0 707669
C		0.000000	-1 243877	1 400843
C		0.000000	-2.430615	0 707669
C		0.000000	-2.430615	-0 707669
C		0.000000	-1.243877	-1.400843
Н		0.000000	-3.373373	1.243259
Н		0.000000	-3.373373	-1.243259
Н		0.000000	3.373373	1.243259
Н		0.000000	1.242486	2.486065
Н		0.000000	1.242486	-2.486065
Н		0.000000	3.373373	-1.243259
Н		0.000000	-1.242486	2.486065
Н		0.000000	-1.242486	-2.486065
Compound	Point group	Energy	ZPE	Magnetic suceptibility
_\	C _{2h}	-156.0407988	0.084724	-29.26
С		0.601482	1.748113	0.000000
С		0.601482	0.410172	0.000000
С		-0.601482	-0.410172	0.000000
С		-0.601482	-1.748113	0.000000
Н		1.523050	2.317553	0.000000

Н	-0.324357	2.315008	0.000000
Н	1.549917	-0.123283	0.000000
Н	-1.549917	0.123283	0.000000
Н	-1.523050	-2.317553	0.000000
Н	0.324357	-2.315008	0.000000

Point group	Energy	ZPE	Magnetic suceptibility
D_{2h}	-78.6155126	0.050788	-17.08
	0.000000	0.000000	0.664357
	0.000000	0.000000	-0.664357
	0.000000	0.922545	1.235378
	0.000000	-0.922545	1.235378
	0.000000	0.922545	-1.235378
	0.000000	-0.922545	-1.235378
	Point group D _{2h}	Point group Energy D2h -78.6155126 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000	Point group Energy ZPE D2h -78.6155126 0.050788 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.922545 0.000000 0.922545 0.000000 0.922545 0.000000 0.922545

	gas				hexa	ne
oscillator ma	jor				C	oscillator
no sym λ [nm] strength cont	ribs	molecular	orbitals	;	symλ [nm] ^s	strength
1 AG 522.7 0.000 H-0->	•L+0	L+4	a _u		AG 520.1	0.000
2 BU 384.7 0.170 H-0->	•L+1 0.02 -	L+3	a		BU 388.8	0.250
3 BU 288.2 0.135 H-0->	L+2 0.00 -	L+2			BU 289.8	0.227
4 AG 269.0 0.000 H-1->	-0.02 - •L+1 -0.04 -	L+1	b g		BU 271.3	0.618
5 BU 268.0 0.423 H-1->	L+0 -0.06 -	L+0	b _g		AG 269.3	0.000
6 BG 256.4 0.000 H-4->	- 0.08- L+0 ج ق -0.10-		au		AG 252.8	0.000
7 AG 253.3 0.000 H-3->	•L+0 bg-0.12 -	- చిస్తితిన			BU 251.7	0.367
8 BU 249.5 0.445 H-2->	•L+0 -0.16 -				BG 251.4	0.000
9 AG 245.6 0.000 H-2->	•L+1 -0.18 -	- <u>H-0</u> -	bg		AG 245.6	0.000
10 AU 241.6 0.001 H-4->	-0.20 - L+1 -0.22 -		bg		AU 237.5	0.001
11 AU 237.0 0.001 H-5->	•L+0 -0.24 -	H-1			AG 233.0	0.000
12 AG 231.6 0.000 H-0->	-0.26 - L+3 -0.28 -	H-2 H-3 H-4		\$	AU 232.7	0.001
13 BG 224.6 0.000 H-5->	•L+1		bu b u		BG 221.0	0.000
14 AG 219.6 0.000 H-0->	∙L+4			50	BU 220.6	0.561
15 BU 218.2 0.478 H-3->	•L+1				AG 219.7	0.000

Wavelengths of the electronic $S_0 \rightarrow S_i$ transitions calculated with the aid of TD DFT B3LYP//DFT B3LYP /6-31G(d,p) method. (PCM model was used for compound 4 in *n*-hexane).

Vibrational frequencies of isolated compound 4 optimized in its electronic ground S_0 and excited S_1 and S_2 . singlet states.

	\mathbf{S}_0			\mathbf{S}_1			\mathbf{S}_2		
		$\Box v \Box [cr]$	n⁻		$\Box v \Box [cr$	n⁻		$\Box v \Box [cr]$	n⁻
No	sym	¹]	IR act	sym	¹]	IR act	sym	1]	IR act
1	AU	81.0	2.07	AU	90.7	1.34	AU	84.5	1.27
2	AU	106.1	0.36	AU	95.4	0.54	AU	100.2	1.26
3	AU	208.1	0.18	AU	169.7	2.75	AU	194.2	0.09
4	BG	208.6	0.00	BG	210.9	0.00	BG	208.8	0.00
5	BU	250.2	2.74	BG	228.2	0.00	BG	230.6	0.00
6	BG	256.3	0.00	BU	242.9	1.88	BU	245.3	4.01
7	BG	301.6	0.00	BG	264.0	0.00	BG	294.7	0.00
8	AU	327.4	8.21	AU	363.1	4.75	AU	321.4	8.38
9	AG	376.1	0.00	AG	379.6	0.00	AG	368.6	0.00
10	AG	410.3	0.00	AG	407.9	0.00	AG	413.6	0.00
11	AG	491.2	0.00	AU	426.0	0.15	AU	472.5	0.04
12	AU	520.2	0.99	AG	486.1	0.00	BG	477.6	0.00
13	BU	530.7	10.52	BG	488.8	0.00	AG	492.3	0.00
14	BG	532.4	0.00	BU	522.0	12.06	BU	522.9	11.03
15	BG	588.1	0.00	BG	560.6	0.00	BG	544.8	0.00
16	AG	608.0	0.00	AG	600.4	0.00	AU	600.0	0.60
17	AU	643.8	2.10	AU	611.8	6.16	AG	600.2	0.00
18	AG	647.0	0.00	AU	631.5	0.49	AU	629.6	0.15
19	\mathbf{BU}	655.5	6.62	AG	635.9	0.00	BU	638.9	3.29
20	AU	661.1	0.20	BU	637.5	6.67	AG	640.5	0.00
21	\mathbf{BU}	673.0	1.45	BG	660.9	0.00	BG	654.1	0.00
22	BG	682.1	0.00	BU	674.4	3.94	BU	665.7	0.28
	I			I			I		

23	AU	745.3	13.82	AU	700.7	1.63	AU	693.8	56.31
24	BG	748.0	0.00	BG	702.5	0.00	BG	695.6	0.00
25	AU	787.0	93.20	BG	755.5	0.00	AU	717.0	4.52
26	BG	789.9	0.00	AU	759.1	97.55	BG	717.4	0.00
27	AG	818.9	0.00	AG	823.4	0.00	BG	737.0	0.00
28	BU	853.5	3.63	BU	848.1	16.15	AU	742.9	68.46
29	BG	865.2	0.00	AU	855.1	0.07	BG	787.6	0.00
30	AU	865.6	1.62	BG	855.6	0.00	AU	788.3	19.14
31	AU	871.4	23.13	AU	874.1	28.89	AG	816.3	0.00
32	BG	874.7	0.00	BG	876.4	0.00	BU	849.6	13.98
33	AG	928.7	0.00	AG	916.6	0.00	AG	923.4	0.00
34	BU	943.4	19.46	BU	927.9	12.80	BU	924.9	8.49
35	BG	974.0	0.00	AU	931.1	0.59	BG	950.7	0.00
36	AU	975.0	0.23	BG	931.5	0.00	AU	951.3	0.25
37	AG	1044.2	0.00	BU	1044.6	93.36	AG	1041.0	0.00
38	BU	1062.2	8.02	BU	1049.4	19.13	BU	1051.9	5.40
39	AG	1071.3	0.00	AG	1050.3	0.00	AG	1071.6	0.00
40	BU	1114.8	7.57	AG	1053.8	0.00	BU	1083.6	16.36
41	AG	1168.7	0.00	BU	1166.4	16.72	BU	1165.7	104.05
42	BU	1177.7	85.51	AG	1176.4	0.00	AG	1165.8	0.00
43	BU	1195.9	25.07	BU	1196.3	7.07	AG	1189.4	0.00
44	AG	1212.0	0.00	AG	1207.3	0.00	BU	1197.2	20.31
45	BU	1227.3	100.32	AG	1248.5	0.00	BU	1217.5	8.99
46	AG	1261.5	0.00	BU	1249.9	62.06	AG	1237.1	0.00
47	AG	1320.0	0.00	AG	1282.8	0.00	BU	1277.3	67.89
48	BU	1325.4	108.63	BU	1290.4	45.77	AG	1291.5	0.00
49	BU	1341.7	82.46	AG	1337.2	0.00	BU	1318.3	23.22
				I			I		

50	AG	1346.9	0.00	BU	1337.4	116.31	AG	1327.7	0.00
51	AG	1358.7	0.00	BU	1371.3	55.61	AG	1352.0	0.00
52	AG	1365.9	0.00	AG	1373.3	0.00	BU	1378.7	11.90
53	BU	1376.1	30.27	BU	1412.7	10.12	AG	1382.7	0.00
54	BU	1399.6	44.54	AG	1421.0	0.00	BU	1393.5	17.31
55	BU	1442.2	4.27	AG	1434.2	0.00	BU	1418.4	4.68
56	AG	1459.1	0.00	BU	1443.3	27.23	AG	1442.7	0.00
57	BU	1523.3	74.16	BU	1482.6	48.16	BU	1473.8	4.94
58	AG	1529.1	0.00	AG	1487.9	0.00	AG	1475.1	0.00
59	AG	1565.7	0.00	BU	1516.9	21.23	BU	1519.3	11.55
60	BU	1573.7	7.45	AG	1544.6	0.00	AG	1532.6	0.00
61	BU	1587.2	234.74	BU	1552.8	37.06	BU	1603.3	146.84
62	AG	1604.9	0.00	AG	1631.1	0.00	AG	1608.0	0.00
63	BU	1674.3	151.10	BU	1649.2	32.80	AG	1641.0	0.00
64	AG	1678.5	0.00	AG	1695.1	0.00	BU	1650.9	697.56
65	AG	3203.4	0.00	BU	3206.2	3.69	BU	3200.7	18.78
66	BU	3203.6	24.32	AG	3207.1	0.00	AG	3200.7	0.00
67	AG	3230.0	0.00	BU	3221.5	22.90	BU	3237.2	0.12
68	BU	3230.1	4.61	AG	3221.7	0.00	AG	3237.2	0.00
69	AG	3240.6	0.00	BU	3242.8	5.60	AG	3247.7	0.00
70	BU	3240.6	2.81	AG	3243.0	0.00	BU	3248.0	10.46
71	AG	3250.1	0.00	BU	3245.0	0.63	BU	3263.7	5.34
72	BU	3250.2	9.03	AG	3245.4	0.00	AG	3264.7	0.00

Bond lengths in compound 4 obtained with the aid of DFT/B3LYP/6-31G(d,p) and TD DFT/B3LYP/6-31G(d,p) methods in the electronic ground S₀ and excited S₁ and S₂ states.

Vibrations of 4 with large displacement parameter in the S_1 state.

Wavelengths of the electronic $S_0 \rightarrow S_i$ transitions for compound 5 calculated with the aid of TD DFT B3LYP//DFT B3LYP /6-31G(d,p) method

		0.000 -0.000 -0.000 -0.000 -0.000 -0.000	2 Sec. 2	الم بالم بالم بالم بالم بالم بالم بالم ب	
			oscillator		oscillator
no	sym	λ [nm]	strength	λ [nm]	strength
1	AG	502.26	0.000	512.45	0.001
2	AU	385.48	0.197	384.99	0.182
3	AU	289.23	0.118	288.77	0.124
4	AG	273.80	0.000	271.70	0.051
5	AU	265.22	0.660	266.28	0.461
6	AG	253.61	0.000	253.93	0.000
7	AU	253.45	0.379	253.02	0.050
8	AG	251.16	0.000	252.19	0.299
9	AG	248.86	0.000	247.03	0.095
10	AU	241.83	0.001	241.55	0.001
11	AG	233.03	0.000	234.76	0.000
12	AU	232.35	0.000	232.35	0.001
13	AG	224.65	0.000	224.49	0.000
14	AU	219.77	0.544	219.66	0.101
15	AG	219.37	0.000	218.77	0.406

Fig. S27 Comparison of the absorption spectra of compounds 4 and 5.

Fig. S28. Energy diagram of the electronic states according to the TD DFT//DFT B3LYP/6-31G(d,p) calculations. Energy of the levels in the geometry of molecule optimized for the S₀, S₁ and S₂ states. Black line indicates the only one transition which has been verified experimentally.

Fig. S29. Cyclic voltammetry for compound 4.

Fig. S30. Cyclic voltammetry for compound 5.