Supporting Information

Aluminum Oxide Mediated C-F Bond Activation in Trifluoromethylated Arenes

O. Papaianina and K.Yu. Amsharov *

Experimental section

NMR spectra were measured on Bruker Avance 300 and Bruker Avance 400 spectrometers at 20 °C. HPLC analyses were carried out using Cosmosil 5-PYE (4.6 mm x 250 mm) column (UV-Vis detection). Chromatographic purifications were carried out with flash grade silica gel Kieselgel 60 (0.06-0.2 mm). HF elimination experiments were carried out using commercially available aluminium oxide (activated, neutral, 50-200 micron). The aluminium oxides obtained from different suppliers have shown similar activity in condensation.

General procedure for synthesis of *ortho*-substituted trifluoromethylarenes

Phenylboronic acid (22.0 mmol) and 2-bromobenzotrifluoride (20.0 mmol) or 2trifluoromethyl arylboronic acid (22.0 mmol) and arylbromide (20.0 mmol) were dissolved in the mixture of 40 mL toluene and 20 mL of methanol. Afterwards K_2CO_3 (44.0 mmol) and 50 mg of Pd(PPh_3)_4 were added. The reaction mixture was degassed under dynamic vacuum and refluxed for 12 h under argon atmosphere. After cooling to the room temperature mixture was washed three times with 100 mL of water. The organic layer was dried over sodium sulfate, filtered through a silica plug and solvent was removed under reduced pressure. Products were purified by column chromatography on silica using hexane as an eluent.

General procedure for Al₂O₃ mediated condensation

Typically 2-3 g of γ -Al₂O₃ were placed in a glass ampoule and activated by annealing in vacuum (10⁻² mbar). The temperature was increased gradually, and kept for 30 min at 600 °C. After cooling to room temperature, the ampoule was filled with argon. 20-30 mg of the respective trifluoromethyl arene were carefully mixed with activated aluminum oxide. For gram-scale synthesis 3-4 mmole of the substrate (0,8-1,2g) and 10g of aluminum oxide were used. The ampoule was evacuated again and sealed. The condensation was carried out without stirring at 30-250 °C. The respective condensation products were obtained after extraction with MeOH (or MeOH/AcOH mixture) and evaporation.

General procedure for Al₂O₃ mediated hydrolysis

Typically 1 g of γ -Al₂O₃ were mixed with 20-30 mg of the respective trifluoromethyl arene in glass ampoule under ambient atmosphere. For gram-scale synthesis 3-4 mmole of the substrate (0,8-1,2g) and 10g of aluminum oxide were used. The ampoule was heated to 100-250°C under ambient atmosphere. The hydrolysis products were obtained after extraction with MeOH/AcOH mixture and evaporation.

2-Trifluoromethyl-1,1'-biphenyl (1) was obtained according to general procedure from phenylboronic acid (22.0 mmol) and 2-bromobenzotrifluoride (20.0 mmol), Colorless liquid, yield 92%. ¹H NMR spectrum is in accordance with S1.

9H-Fluoren-9-one (2) was obtained from 1 according to general procedure for Al_2O_3 mediated condensation. Yellow solid, yield 80%. ¹H NMR spectrum is in accordance with S2.

1,1'-Biphenyl-2-carboxylic acid (3) was obtained from **1** according to general procedure for Al_2O_3 mediated hydrolysis. White solid, quantitative yield (determined by NMR). ¹H NMR spectrum in agreement with S3.

4'-Methyl-2-(trifluoromethyl)-1,1'-biphenyl (**8**) was obtained according to general procedure from 2-trifluoromethyl phenylboronic acid (16.0 mmol) and arylbromide (14.0 mmol). Colorless liquid, 94% yield. ¹H NMR spectrum is in agreement with S4.

2-Methyl-9*H***-fluoren-9-one (9)** was obtained from **8** according to general procedure for Al_2O_3 mediated condensation. Yellow liquid, yield 72%. ¹H NMR spectrum is in accordance with S2.

4-Methyl-2'-biphenylcarboxylic acid (10) was obtained following to general procedure for Al2O3 mediated hydrolysis. White solid, quantitative yield (determined by NMR). ¹H NMR spectrum is in agreement with S5.

1-[2-(trifluoromethyl) phenyl]-naphthalene (11) was obtained according to general procedure from 1-naphthylboronic acid (16.0 mmol) and 2-bromobenzotrifluoride (14.0 mmol). Yeild 92%, white solid. ¹H NMR (CDCl₃, 400MHz) δ : 7.91 (s, 1H), 7,89 (s, 1H), 7.4 (d, J=7.81 Hz, 1H), 7.63-7.44 (m, 4H), 7.41-7.31 (m, 4H). ¹³C NMR (CD₂Cl₂, 100MHz) δ : 139.32, 136.74, 133.25, 132.67, 132.41, 131.103, 129.6 (q), 128.18, 128.05, 127.88, 127.68, 127.02, 126.18, 126.10, 126.08, 126.02, 125.97, 124.68, 124.00 (q).

7H-Benzo[*c*]fluoren-7-one (12) and *7H*-Benz[*de*]anthracen-7-one (13) were obtained from 11 according to general procedure for Al₂O₃ mediated condensation. Small amounts of 12 and 13 were separated by column chromatography for analysis. Compound 12, orange solid, yield 18%. ¹H and ¹³C NMR spectra is in accordance with S6. Compound 13, red solid, yield 40%. ¹H and ¹³C NMR spectra are in accordance with S7.

2-(1-Naphthalenyl)-benzoic acid (14) was obtained from **11** according to general procedure for Al_2O_3 mediated hydrolysis. White solid, quantitative yield (determined by NMR). ¹H and ¹³C NMR spectra are in agreement with S8.

2-(Trifluoromethyl)-terphenyl (15) was obtained according to general procedure from 2-biphenylboronic acid (16.0 mmol) and 2-bromobenzotrifluoride (14.0 mmol). Yeild 80%, colorless oil. ¹H and ¹³C NMR spectra are in accordance with S9.

4-Phenyl-9H-fluoren-9-one (16) and **9H-Tribenzo**[*ace*] cyclohepten-9-one (17) were obtained from **15** according to general procedure for Al_2O_3 mediated condensation. Small amounts of 16 and 17 for NMR analysis were separated by HPLC (5PYE column, MeOH as an eluent).

Compound **16**, orange solid, yield 8%. ¹H NMR (CDCl3, 300MHz) δ: 7.69-7.59 (m, 2H), 7.53-7.44 (m, 5H), 7.38-7.33 (m, 2H), 7.25-7.15 (m, 2H), 6.77 (m, 1H). ¹³C NMR (CD2Cl2, 75MHz) δ: 193.84 (CO), 144.86, 143.36, 139.85, 137.06, 135.05, 134.80, 134.70, 129.15 (2C), 129.07 (2C), 128.49, 124.21, 123.51, 123.31. One carbon signal is not observed due to overlapping.

Compound **17**, yellow solid, yield 52%. ¹H and ¹³C NMR spectra are in accordance with S10.

o-Terphenyl-2-carboxylic acid (18) was obtained from 15 according to general procedure for Al₂O₃ mediated hydrolysis. White solid, quantitative yield (determined by NMR). ¹H NMR (CDCl₃, 300MHz) δ : 7.8 (d, J=7.46 Hz, 1H), 7.47-7.34 (m, 4H), 7.33-7.28 (m, 2H), 7.19-7.02 (m, 6H). ¹³C NMR (CDCl₃, 100 MHz) δ :172.05 (CO), 143.14, 141.00, 140.57, 139.93, 132.19, 131.73, 130.31, 129.80, 129.78, 129.69, 128.53, 127.72, 127.63, 126.99, 126.98, 126.81, 126.44. One carbon signal is not observed due to overlapping of signals.

Benzo[*c*]-**phenanthrene-2-carboxylic acid** (**20**) was obtained from **19** according to general procedure for Al_2O_3 mediated hydrolysis. White solid, yield 96 %. ¹H and ¹³C NMR spectra are in accordance with S11.

Compound 1 deposited on alumina after heating at 200 °C for 10 min

Figure S1. Condensation of compound **1** on activated alumina at room temperature (pink) and after heating at 200°C for 10 minutes (yellow).

Figure S2. HPLC profile of MeOH extract (compound **2**, **6** and **7**) as obtained after condensation of **1** with benzene on activated alumina at 50°C for 30 minutes. HPLC conditions: 5PYE column, MeOH:cyclohexane 80:20 as eluent, 1 ml/min, 30 °C, detection 300nm. (inset) UV-Vis spectrum of **6** and **7** (MeOH:cyclohexane).

Figure S3. HPLC profile of MeOH extract (compound **9**) as obtained after condensation of **8** on activated alumina at 150°C for 30 minutes. HPLC conditions: BP column, toluene:MeOH 1:9 as eluent, 1 ml/min, 30 °C, detection 300nm. (inset) UV-Vis spectrum of **8** (toluene:MeOH).

Figure S4. HPLC profile of MeOH extract as obtained after condensation of **11** on activated alumina at 150°C for 30 minutes. HPLC conditions: 5PYE column, toluene:MeOH:20:80 as eluent, 1 ml/min, 30 °C, detection 300nm. (inset) UV-Vis spectra of **12** and **13** (MeOH).

Figure S5. HPLC profile of MeOH extract (compound **16** and **17**) as obtained after condensation of **15** on activated alumina at 150°C for 30 minutes. HPLC conditions: 5PYE column, MeOH as eluent, 1 ml/min, 30 °C, detection 300nm. (inset) UV-Vis spectra of **16** and **17** (MeOH).

Figure S6. HPLC profile of MeOH/acetic acid extract as obtained after reaction of **19** on nonactivated alumina during 60 minutes at 100°C, 150°C and 200°C. HPLC conditions: 5PYE column, toluene:MeOH (0.2% of acetic acid) 2:8 as eluent, 1 ml/min, 30°C, detection 300nm. (inset) UV-Vis spectra of **19** and **20** (toluene:MeOH 2:8).

Figure S7. ¹H NMR (CDCl₃, 300MHz) spectrum of compound 18

Figure S8. ¹H and ¹³C NMR (CDCl3, 300MHz) spectra of compound (16).

References

S 1	K. Fuchibe and T. Akiyama, J. Am. Chem. Soc., 2006, 128 , 1434.
S2	V. S. Thirunavukkarasu, K. Parthasarathy and CH. Cheng, <i>Angew</i> . <i>Chem. Int. Ed.</i> , 2008, 47 , 9462.
S 3	J. J. Mousseau, F.Vallée, M. M. Lorion, and A. B. Charette, <i>J. Am. Chem. Soc.</i> , 2010, 132 , 14412.
S4	J. Wang, G. Son and Y. Peng, Tetrahedron Lett., 2011, 52, 1477.
S5	D. N. Korolev and N. A. Bumagin, Tetrahedron Lett., 2006, 47, 4225.
S6	S. Paul, S. Samanta and J. K. Ray, Tetrahedron Lett., 2010, 51, 5604.
S 7	J. Barluenga, M. Trincado, E. Rubio and J. M. González, Angew. Chem. Int. Ed., 2006, 45 , 3140.
S 8	C. Wang, S. Rakshit and F. Glorius, <i>J. Am. Chem. Soc.</i> , 2010, 132 , 14006.
S9	S. Vuoti, J. Autio, M. Haukka and J. Pursiainen, <i>Inorganica Chimica Acta</i> , 2009, 362 , 4685.
S10	J. Luo, K. Song, F. Gu and Q. Miao, <i>Chem. Sci.</i> , 2011, 2 , 2029.
S11	Y. Zhang, J. L. Petersen and K. K. Wang, <i>Tetrahedron</i> , 2008, 64, 1285.