Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Transition-metal Free Reactions of Boronic Acids: Cascade Addition – Ringopening of Furans towards Functionalized γ-Ketoaldehydes

Silvia Roscales and Aurelio G. Csákÿ*

Instituto Pluridisciplinar, Universidad Complutense de Madrid. Campus de Excelencia Internacional Moncloa. Paseo de Juan XXIII, 1. 28040-Madrid. Spain. E-mail: csaky@ucm.es

Supporting Information

Table of Contents

1.	General Information	S-2
2.	Synthesis of the Starting Materials	S-2
3.	Experimental Procedures and Spectroscopic Data of Compounds	S-3
4.	Copies of ¹ H, ¹³ C, and ¹⁹ F NMR Spectra of Compounds	S-27

1. General Information

All starting materials were commercially available research-grade chemicals, and were used without further purification. All solvents were dried by standard methods and distilled under argon. Silica gel 60 F254 was used for TLC, and the spots were detected with UV light or vanillin solution. Flash column chromatography was carried out on silica gel 60. ¹H NMR spectra were recorded at 300, 500 or 700 MHz. ¹³C NMR spectra were recorded at 75, 125 or 176 MHz, and ¹⁹F NMR spectra were recorded at 282 MHz, all of them in CDCl₃ solution.

2. Synthesis of the Starting Materials

Compound **1b** was prepared following a previously reported procedure starting from 3-methylfuran-2-carbaldehyde.¹ Compounds **1c**, **1d** and **1e** were prepared following a previously reported procedure starting from 3-bromofuran-2-carbaldehyde.² Compound **1f** was prepared following a previously reported procedure starting from 4-bromofuran-2-carbaldehyde.³ Compound **1g** was prepared following a previously reported procedure starting from 5-methylfuran-2-carbaldehyde.⁴ Compound **1h** was prepared following a previously reported procedure starting from 1-(furan-2-yl)ethanone.⁵ Compounds **1i** and **1j** were prepared following a previously reported procedure starting from furan-2-carbaldehyde.⁶

_

Y. Li, C. C. Nawrat, G. Pattenden, J. M. Winne, Org. Biomol. Chem. 2009, 7, 639.

 ⁽a) J. R. Allen, S. A. Hitchcock, B. Liu and W. W. Turner Jr., *PCT Int. Appl.*, 2005, WO 2005009941;
(b) D. Clark, S. M. Cramp, H. J. Dyke, T. D. Pallin and R. Zahler, *PCT Int. Appl.*, 2012, WO 2012012642.

⁽a) A. G. Taveras, J. Zheng, P. J. Biju, Y. Yu, J. Chao, J. Fine, D. Lundell, T. Priestley, A. Reggiani, J. R. Merritt, et. al., PCT Int. Appl., 2005, WO 2005068460; (b) C. Cheng, S. Liu and G. Zhu, Org Lett., 2015, 17, 1581.

⁴ A. Hashmi, K. Stephen, M. Ghanbari, M. Rudolph and F. Rominger, *Chem. Eur. J.*, 2012, **18**, 8113.

W. –P. Mai, H. –H. Wang, Z. –C. Li, J. –W. Yuan, Y. –M. Xiao, L. –R. Yang, P. Mao and L. –B. Qu, *Chem. Commun.*, 2012, 48, 10117.

⁶ M. Pawlicki, L. Latos-Grazynski and L. Szterenberg, J. Org. Chem., 2002, **67**, 5644.

3. Experimental Procedures and Spectroscopic Data of Compounds

(E)-4-Oxo-2-(2-phenylethylidene)pentanal (5a)

A solution of **1a** (20.0 mg, 0.20 mmol), boronic acid **2a** (36.2 mg, 0.24 mmol, 1.2 equiv), tartaric acid (30.5 mg, 0.20 mmol, 1 equiv) and H₂O (11 μL, 0.61 mmol, 3 equiv) in CH₂Cl₂ (0.8 mL) was stirred at rt for 18 h. The crude product **4a** was filtered over MgSO₄. To the filtrate was added Et₃N (56 μL, 0.41 mmol, 2 equiv) and the mixture was stirred at rt for 1 h. A saturated solution of NaHCO₃ (10 mL) was added. The layers were separated and the aqueous one was extracted with DCM (2 x 10 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound **5a** was isolated as a colorless oil (36.6 mg, 89%). ¹H NMR (CDCl₃, 500 MHz): δ (ppm) = 2.23 (s, 3H), 3.51 (s, 2H), 3.65 (d, J = 7.4 Hz, 2H), 6.86 (t, J = 7.4 Hz, 1H), 7.17-7.38 (m, 5H), 9.44 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) = 30.3, 35.9, 39.1, 127.4, 129.0 (2C), 129.3 (2C), 137.5, 137.9, 155.5, 194.1, 204.5. Anal. calcd. for C₁₃H₁₄O₂: C, 77.20; H, 6.98. Found: C, 77.27, H, 6.91.

(E)-2-(2-(4-Fluorophenyl)ethylidene)-4-oxopentanal (5b)

A solution of **1a** (20.0 mg, 0.20 mmol), boronic acid **2b** (40.6 mg, 0.24 mmol, 1.2 equiv), tartaric acid (30.5 mg, 0.20 mmol, 1 equiv) and H_2O (11 μL , 0.61 mmol, 3 equiv) in CH_2Cl_2 (0.8 mL) was stirred at rt for 18 h. The crude product **4b** was filtered

over MgSO₄. To the filtrate was added Et₃N (56 μL, 0.41 mmol, 2 equiv) and the mixture was stirred at rt for 1 h. A saturated solution of NaHCO₃ (10 mL) was added. The layers were separated and the aqueous one was extracted with DCM (2 x 10 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound **5b** was isolated as a colorless oil (40.8 mg, 91%). ¹H NMR (CDCl₃, 500 MHz): δ (ppm) = 2.24 (s, 3H), 3.50 (s, 2H), 3.61 (d, J = 7.4 Hz, 2H), 6.81 (t, J = 7.4 Hz, 1H), 6.97-7.07 (m, 2H), 7.11-7.21 (m, 2H), 9.43 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) = 28.9, 33.7, 37.6, 114.7 (d, J_{CF} = 22 Hz), 129.1 (d, J_{CF} = 8 Hz), 132.1 (d, J_{CF} = 3 Hz), 136.1, 153.7, 160.9 (d, J_{CF} = 244 Hz), 192.6, 203.0. ¹⁹F NMR (CDCl₃, 282 MHz): δ (ppm) = -116.1 (s). Anal. calcd. for C₁₃H₁₃FO₂: C, 70.90; H, 5.95. Found: C, 70.95, H, 6.01.

(E)-2-(2-(4-Methoxyphenyl)ethylidene)-4-oxopentanal (5c)

A solution of **1a** (20.0 mg, 0.20 mmol), boronic acid **2c** (43.5 mg, 0.24 mmol, 1.2 equiv), tartaric acid (30.5 mg, 0.20 mmol, 1 equiv) and H₂O (11 μL, 0.61 mmol, 3 equiv) in CH₂Cl₂ (0.8 mL) was stirred at rt for 18 h. The crude product **4c** was filtered over MgSO₄. To the filtrate was added Et₃N (56 μL, 0.41 mmol, 2 equiv) and the mixture was stirred at rt for 1 h. A saturated solution of NaHCO₃ (10 mL) was added. The layers were separated and the aqueous one was extracted with DCM (2 x 10 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound **5c** was isolated as a yellow oil (33.6 mg, 71%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 2.23 (s, 3H), 3.50 (s, 2H), 3.58 (d, J = 7.5 Hz, 2H), 3.80 (s, 3H), 6.80-6.89 (m, 3H), 7.09-7.13 (m, 2H), 9.43 (s, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) = 30.1, 34.8, 38.9, 55.4, 114.5, 129.5, 129.7 (4C), 136.9, 155.8, 158.7, 193.9, 204.4. Anal. calcd. for C₁₄H₁₆O₃: C, 72.39; H, 6.94. Found: C, 72.42, H, 6.88.

(E)-2-(2-Oxopropyl)-5-phenylpent-2-enal (5d)

A solution of **1a** (20.0 mg, 0.20 mmol), boronic acid **2d** (39.6 mg, 0.24 mmol, 1.2 equiv), tartaric acid (30.5 mg, 0.20 mmol, 1 equiv) and H₂O (11 μL, 0.61 mmol, 3 equiv) in CH₂Cl₂ (0.8 mL) was stirred at rt for 18 h. The crude product **4d** was filtered over MgSO₄. To the filtrate was added Et₃N (56 μL, 0.41 mmol, 2 equiv) and the mixture was stirred at rt for 1 h. A saturated solution of NaHCO₃ (10 mL) was added. The layers were separated and the aqueous one was extracted with DCM (2 x 10 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound **5d** was isolated as a colourless oil (35.7 mg, 81%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 2.15 (s, 3H), 2.69 (dt, J = 7.5 Hz, J = 7.5 Hz, 2H), 2.83 (t, J = 7.5 Hz, 2H), 3.32 (s, 2H), 6.74 (t, J = 7.5 Hz, 1H), 7.15-7.34 (m, 5H), 9.39 (s, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) = 29.9, 31.3, 34.3, 38.9, 126.6, 128.5 (2C), 128.8 (2C), 137.6, 140.4, 156.3, 193.9, 204.3. Anal. calcd. for C₁₄H₁₆O₂: C, 77.75; H, 7.46. Found: C, 77.80, H, 7.39.

(E)-2-(2-Cyclohexylethylidene)-4-oxopentanal (5e)

A solution of **1a** (20.0 mg, 0.20 mmol), boronic acid **2e** (37.6 mg, 0.24 mmol, 1.2 equiv), tartaric acid (30.5 mg, 0.20 mmol, 1 equiv) and H_2O (11 μL , 0.61 mmol, 3 equiv) in CH_2Cl_2 (0.8 mL) was stirred at rt for 18 h. The crude product **4e** was filtered

over MgSO₄. To the filtrate was added Et₃N (56 μ L, 0.41 mmol, 2 equiv) and the mixture was stirred at rt for 1 h. A saturated solution of NaHCO₃ (10 mL) was added. The layers were separated and the aqueous one was extracted with DCM (2 x 10 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound **5e** was isolated as a colourless oil (36.0 mg, 85%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 1.53-1.78 (m, 11H), 2.19 (s, 3H), 2.21 (d, J = 7.4 Hz, 2H), 3.38 (s, 2H), 6.77 (t, J = 7.4 Hz, 1H), 9.42 (s, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) = 26.3 (2C), 26.3, 29.9, 33.4 (2C), 37.2, 37.8, 39.1, 137.7, 156.9, 194.0, 204.5. Anal. calcd. for C₁₃H₂₀O₂: C, 74.96; H, 9.68. Found: C, 75.03; H, 9.61.

(E)-2-(2-Oxopropyl)pent-2-enal (5f)

A solution of **1a** (20.0 mg, 0.20 mmol), potassium trifluoroborate **3f** (36.2 mg, 0.24 mmol, 1.2 equiv), tartaric acid (30.5 mg, 0.20 mmol, 1 equiv) and H₂O (11 μ L, 0.61 mmol, 3 equiv) in CH₂Cl₂ (0.8 mL) was stirred at rt for 18 h. The crude product **4f** was filtered over MgSO₄. To the filtrate was added Et₃N (56 μ L, 0.41 mmol, 2 equiv) and the mixture was stirred at rt for 1 h. A saturated solution of NaHCO₃ (10 mL) was added. The layers were separated and the aqueous one was extracted with DCM (2 x 10 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound **5f** was isolated as a colourless oil (22.8 mg, 80%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 1.12 (t, J = 7.5 Hz, 3H), 2.20 (s, 3H), 2.32 (dt, J = 7.5 Hz, J = 7.5 Hz, 2H), 3.39 (s, 2H), 6.71 (t, J = 7.5 Hz, 1H), 9.41 (s, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) = 12.9, 23.0, 29.9, 38.8, 136.6, 159.2, 194.1, 204.4. Anal. calcd. for C₈H₁₂O₂: C, 68.54; H, 8.63. Found: C, 68.49; H, 8.70.

2-(Cyclohex-1-en-1-yl)-4-oxopentanal (4g):

A solution of **1a** (20.0 mg, 0.20 mmol), boronic acid **2g** (30.8 mg, 0.24 mmol, 1.2 equiv), tartaric acid (30.5 mg, 0.20 mmol, 1 equiv) and H₂O (11 μL, 0.61 mmol, 3 equiv) in CH₂Cl₂ (0.8 mL) was stirred at rt for 18 h. The solution was filtered over MgSO₄ and the filtrate was concentrated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound **4g** was isolated as a colourless oil (27.5 mg, 75%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 1.50-1.67 (m, 6H), 2.01-2.08 (m, 2H), 2.19 (s, 3H), 2.43 (dd, J = 17.8 Hz, J = 4.4 Hz, 1H), 3.06 (dd, J = 17.8 Hz, J = 9.4 Hz, 1H), 3.51 (dd, J = 9.4 Hz, J = 4.4 Hz, 1H), 5.57-5.62 (1H, m), 9.52 (s, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) = 22.1, 22.8, 25.6, 27.6, 30.3, 41.3, 55.4, 128.3, 131.7, 199.7, 206.7. Anal. calcd. for C₁₁H₁₆O₂: C, 73.30; H, 8.95. Found: C, 73.23; H, 9.04.

2-(Benzofuran-2-yl)-4-oxopentanal (4h):

A solution of **1a** (20.0 mg, 0.20 mmol), boronic acid **2h** (39.6 mg, 0.24 mmol, 1.2 equiv), tartaric acid (30.5 mg, 0.20 mmol, 1 equiv) and H₂O (11 μ L, 0.61 mmol, 3 equiv) in CH₂Cl₂ (0.8 mL) was stirred at rt for 18 h. The solution was filtered over MgSO₄ and the filtrate was concentrated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound **4h** was isolated as a colourless oil (38.7 mg, 88%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 2.26 (s, 3H),

2.89 (dd, J = 18.0 Hz, J = 4.9 Hz, 1H), 3.42 (dd, J = 18.0 Hz, J = 8.2 Hz, 1H), 4.45 (dd, J = 8.2 Hz, J = 4.9 Hz, 1H), 6.63 (s, 1H), 7.19-7.31 (m, 2H), 7.42-7.47 (m, 1H), 7.52-7.58 (m, 1H), 9.79 (s, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) = 30.1, 41.2, 47.7, 105.6, 111.3, 121.1, 123.2, 124.6, 128.3, 152.1, 155.3, 196.4, 205.2. Anal. calcd. for $C_{13}H_{12}O_3$: C, 72.21; H, 5.59. Found: C, 72.29; H, 5.51.

(E)-3-Methyl-4-oxo-2-(2-phenylethylidene)ventanal (5j):

A solution of **1b** (20.0 mg, 0.18 mmol), boronic acid **2a** (39.5 mg, 0.27 mmol, 1.5 equiv), tartaric acid (26.7 mg, 0.18 mmol, 1 equiv) and H₂O (10 μL, 0.54 mmol, 3 equiv) in CH₂Cl₂ (0.7 mL) was stirred at rt for 18 h. The crude product **4j** was filtered over MgSO₄. To the filtrate was added Et₃N (49 μL, 0.36 mmol, 2 equiv) and the mixture was stirred at rt for 1 h. A saturated solution of NaHCO₃ (10 mL) was added. The layers were separated and the aqueous one was extracted with DCM (2 x 10 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound **5j** was isolated as a colorless oil (32.0 mg, 83%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 1.31 (d, J = 7.0 Hz, 3H), 2.08 (s, 3H), 3.67 (t, J = 7.5 Hz, 2H), 3.76 (c, J = 7.0 Hz, 1H), 6.76 (t, J = 7.5 Hz, 1H), 7.16-7.22 (m, 2H), 7.26-7.38 (m, 3H), 9.42 (s, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) = 14.6, 28.1, 35.3, 43.8, 127.2, 128.6 (2C), 129.2 (2C), 137.5, 143.3, 155.0, 193.7, 207.4. Anal. calcd. for C₁₄H₁₆O₂: C, 77.75; H, 7.46. Found: C, 77.81; H, 7.39.

(E)-2-(2-Cyclohexylethylidene)-3-methyl-4-oxopentanal (5k)

A solution of **1b** (20.0 mg, 0.18 mmol), boronic acid **2e** (41.2 mg, 0.27 mmol, 1.5 equiv), tartaric acid (26.7 mg, 0.18 mmol, 1 equiv) and H₂O (10 μL, 0.54 mmol, 3 equiv) in CH₂Cl₂ (0.7 mL) was stirred at rt for 18 h. The crude product **4k** was filtered over MgSO₄. To the filtrate was added Et₃N (49 μL, 0.36 mmol, 2 equiv) and the mixture was stirred at rt for 1 h. A saturated solution of NaHCO₃ (10 mL) was added. The layers were separated and the aqueous one was extracted with DCM (2 x 10 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound **5k** was isolated as a colorless oil (31.3 mg, 79%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 1.14-1.29 (m, 2H), 1.21 (d, J = 7.0 Hz, 3H), 1.56-1.79 (m, 9H), 2.02 (s, 3H), 2.18-2.27 (m, 2H), 3.62 (c, J = 7.0 Hz, 1H), 6.65 (t, J = 7.6 Hz, 1H), 9.39 (s, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) = 14.4, 26.3, 28.0, 33.3, 33.4, 36.9, 38.1, 43.9, 143.9, 156.9, 193.8, 207.6. Anal. calcd. for C₁₄H₂₂O₂: C, 75.63; H, 9.97. Found: C, 75.70; H, 10.01.

(E)-4-Oxo-3-phenyl-2-(2-phenylethylidene)pentanal (5l)

A solution of **1c** (20.0 mg, 0.11 mmol), boronic acid **2a** (25.4 mg, 0.17 mmol, 1.5 equiv), tartaric acid (17.2 mg, 0.11 mmol, 1 equiv) and H_2O (6 μ L, 0.34 mmol, 3 equiv) in CH_2Cl_2 (0.5 mL) was stirred at rt for 18 h. The crude product **4l** was filtered over MgSO₄. To the filtrate was added Et_3N (32 μ L, 0.23 mmol, 2 equiv) and the mixture

was stirred at rt for 1 h. A saturated solution of NaHCO₃ (10 mL) was added. The layers were separated and the aqueous one was extracted with DCM (2 x 10 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound **51** was isolated as a colorless oil (25.8 mg, 81%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 2.22 (s, 3H), 3.57 (d, J = 7.5 Hz, 2H), 5.00 (s, 1H), 6.84 (t, J = 7.5 Hz, 1H), 6.97-7.04 (m, 2H), 7.20-7.39 (m, 8H), 9.45 (s, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) = 29.8, 35.8, 55.8, 127.0, 127.6, 128.7 (2C), 129.0 (2C), 129.1 (2C), 129.3 (2C), 137.3, 137.6, 141.9, 157.1, 194.1, 206.0. Anal. calcd. for C₁₉H₁₈O₂: C, 81.99; H, 6.52. Found: C, 81.90; H, 6.59.

(E)-2-(2-Cyclohexylethylidene)-4-oxo-3-phenylpentanal (5m)

A solution of **1c** (20.0 mg, 0.11 mmol), boronic acid **2e** (26.5 mg, 0.17 mmol, 1.5 equiv), tartaric acid (17.2 mg, 0.11 mmol, 1 equiv) and H₂O (6 μL, 0.34 mmol, 3 equiv) in CH₂Cl₂ (0.5 mL) was stirred at rt for 18 h. The crude product **4m** was filtered over MgSO₄. To the filtrate was added Et₃N (32 μL, 0.23 mmol, 2 equiv) and the mixture was stirred at rt for 1 h. A saturated solution of NaHCO₃ (10 mL) was added. The layers were separated and the aqueous one was extracted with DCM (2 x 10 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound **5m** was isolated as a colorless oil (27.1 mg, 83%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 0.71-0.90 (m, 2H), 0.99-1.24 (m, 4H), 1.25-1.42 (m, 1H), 1.47-1.67 (m, 4H), 2.01-2.20 (m, 2H), 2.09 (s, 3H), 4.70 (s, 1H), 6.71 (t, J = 7.5 Hz, 1H), 7.09-7.15 (m, 2H), 7.18-7.29 (m, 3H), 9.37 (s, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) = 26.3, 29.6, 33.2, 33.3, 37.2, 37.9, 59.1, 127.4, 128.8 (2C), 129.3 (2C), 137.4, 142.7, 158.5, 194.1, 206.0. Anal. calcd. for C₁₉H₂₄O₂: C, 80.24; H, 8.51. Found: C, 80.30; H, 8.57.

(E)-2-(2-Cyclohexylethylidene)-3-(4-methoxyphenyl)-4-oxopentanal (5n)

A solution of **1d** (20.0 mg, 0.10 mmol), boronic acid **2e** (22.6 mg, 0.15 mmol, 1.5 equiv), tartaric acid (14.6 mg, 0.10 mmol, 1 equiv) and H₂O (5 μL, 0.29 mmol, 3 equiv) in CH₂Cl₂ (0.4 mL) was stirred at rt for 18 h. The crude product **4n** was filtered over MgSO₄. To the filtrate was added Et₃N (27 μL, 0.19 mmol, 2 equiv) and the mixture was stirred at rt for 1 h. A saturated solution of NaHCO₃ (10 mL) was added. The layers were separated and the aqueous one was extracted with DCM (2 x 10 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound **5n** was isolated as a yellow oil (24.9 mg, 81%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 0.81-0.97 (m, 2H), 1.06-1.29 (m, 4H), 1.34-1.49 (m, 1H), 1.57-1.72 (m, 4H), 2.09-2.28 (m, 2H), 2.14 (s, 3H), 3.79 (s, 3H), 4.68 (s, 1H), 6.76 (t, *J* = 7.6 Hz, 1H), 6.81-6.88 (m, 2H), 7.07-7.16 (m, 2H), 9.42 (s, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) = 25.1, 28.2, 32.1, 32.2, 36.0, 36.7, 54.2, 54.3, 113.0 (2C), 128.3, 129.3 (2C), 141.8, 157.0, 157.7, 193.0, 205.2. Anal. calcd. for C₂₀H₂₆O₃: C, 76.40; H, 8.33. Found: C, 76.32; H, 8.41.

(E)-2-(2-Cyclohexylethylidene)-3-(4-fluorophenyl)-4-oxopentanal (50)

A solution of 1e (20.0 mg, 0.10 mmol), boronic acid 2e (24.0 mg, 0.16 mmol, 1.5 equiv), tartaric acid (15.6 mg, 0.10 mmol, 1 equiv) and H₂O (6 µL, 0.31 mmol, 3 equiv) in CH₂Cl₂ (0.4 mL) was stirred at 60°C for 4 h. The crude product **40** was filtered over MgSO₄. To the filtrate was added Et₃N (29 µL, 0.20 mmol, 2 equiv) and the mixture was stirred at rt for 1 h. A saturated solution of NaHCO₃ (10 mL) was added. The layers were separated and the aqueous one was extracted with DCM (2 x 10 mL). The combined organic layers were dried over MgSO₄ and concentrated in vacuo. The residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound 50 was isolated as a colourless oil (22.9 mg, 73%). ¹H NMR (CDCl₃, 500 MHz): δ (ppm) = 0.78-0.96 (m, 2H), 1.08-1.24 (m, 4H), 1.38-1.46 (m, 1H), 1.59-1.73 (m, 4H), 2.14 (s, 3H), 2.15-2.24 (m, 2H), 4.72 (s, 1H), 6.80 (t, <math>J = 7.5 Hz, 1H), 6.967.04 (m, 2H), 7.13-7.20 (m, 2H), 9.44 (s, 1H). 13 C NMR (CDCl₃, 125 MHz): δ (ppm) = 26.5, 33.5, 33.6, 37.6, 38.2, 55.6, 55.3, 115.9 (d, $J_{CF} = 21 \text{ Hz}$), 131.2 (d, $J_{CF} = 8 \text{ Hz}$), 133.3 (d, $J_{CF} = 3$ Hz), 142.9, 158.9, 162.4 (d, $J_{CF} = 245$ Hz), 194.3, 205.8. ¹⁹F NMR (CDCl₃, 282 MHz): δ (ppm) = -115.5 (s). Anal. calcd. for C₁₉H₂₃FO₂: C, 75.47; H, 7.67. Found: C, 75.55; H, 7.59.

(E)-4-Oxo-2-phenyl-2-styrylpentanal (4p)

A solution of **1f** (20.0 mg, 0.11 mmol), boronic acid **2a** (25.4 mg, 0.18 mmol, 1.5 equiv), tartaric acid (17.2 mg, 0.11 mmol, 1 equiv) and H₂O (6 μ L, 0.34 mmol, 3 equiv) in CH₂Cl₂ (0.5 mL) was stirred at 60°C for 6 h. The crude product **4p** was filtered over a pad of silica gel and MgSO₄, and the solvent was evaporated *in vacuo*. The crude reaction product (18.5 mg) was used for the synthesis of **11a** and **12a**. ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 2.06 (s, 3H), 3.34 (d, J = 3.9 Hz, 2H), 6.27 (d, J = 16.7 Hz, 1H), 6.61 (d, J = 16.7 Hz, 1H), 7.15-7.45 (m, 10H), 9.65 (s, 1H).

(E)-2-(4-Fluorostyryl)-4-oxo-2-phenylpentanal (4q)

A solution of **1f** (20.0 mg, 0.11 mmol), boronic acid **2b** (28.6 mg, 0.18 mmol, 1.5 equiv), tartaric acid (17.2 mg, 0.11 mmol, 1 equiv) and H₂O (6 μ L, 0.34 mmol, 3 equiv) in CH₂Cl₂ (0.5 mL) was stirred at 60°C for 6 h. The crude product **4q** was filtered over a pad of silica gel and MgSO₄.and the solvent was evaporated *in vacuo*. The crude reaction product (20.4 mg) was used for the synthesis of **12b**. ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 2.14 (s, 3H), 3.40 (d, J = 1.6 Hz, 2H), 6.30 (d, J = 16.5 Hz, 1H), 6.60 (d, J = 16.5 Hz, 1H), 7.18-7.62 (m, 9H), 9.70 (s, 1H).

S-13

(E)-2-(4-Methoxystyryl)-4-oxo-2-phenylpentanal (4r)

A solution of **1f** (20.0 mg, 0.11 mmol), boronic acid **2c** (30.6 mg, 0.18 mmol, 1.5 equiv), tartaric acid (17.2 mg, 0.11 mmol, 1 equiv) and H₂O (6 μ L, 0.34 mmol, 3 equiv) in CH₂Cl₂ (0.5 mL) was stirred at 60°C for 6 h. The crude product **4r** was filtered over a pad of silica gel and MgSO₄.and the solvent was evaporated *in vacuo*. The crude reaction product (25.8 mg) was used for the synthesis of **12c**. ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 2.03 (s, 3H), 3.38 (d, J = 5.8 Hz, 2H), 3.80 (s, 3H), 6.28 (d, J = 16.4 Hz, 1H), 6.50 (d, J = 16.4 Hz, 1H), 6.73-7.88 (m, 9H), 9.69 (s, 1H).

2-(Benzofuran-2-yl)-4-oxo-2-phenylpentanal (4s)

A solution of **1f** (20.0 mg, 0.11 mmol), boronic acid **2h** (27.8 mg, 0.17 mmol, 1.5 equiv), tartaric acid (17.2 mg, 0.11 mmol, 1 equiv) and H₂O (6 μ L, 0.34 mmol, 3 equiv) in CH₂Cl₂ (0.5 mL) was stirred at 60°C for 6 h. The crude product **4s** was filtered over a pad of silica gel and MgSO₄.and the solvent was evaporated *in vacuo*. The crude reaction product (20.8 mg) was used for the synthesis of **11b**. ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 2.17 (s, 3H), 3.70 (d, J = 2.0 Hz, 2H), 6.67 (s, 1H), 7.13-7.64 (m, 9H), 10.1 (s, 1H) ppm.

2-Cinnamyl-5-methylfuran (6)

A solution of **1g** (20.0 mg, 0.18 mmol), potassium trifluoroborate **3a** (44.9 mg, 0.21 mmol, 1.2 equiv), tartaric acid (26.7 mg, 0.18 mmol, 1 equiv) and H₂O (10 μL, 0.54 mmol, 3 equiv) in CH₂Cl₂ (0.7 mL) was stirred at rt for 18 h. The solution was filtered over MgSO₄ and the filtrate was concentrated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/DCM 9:1). Compound **6** was isolated as a colourless oil (34.6 mg, 98%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 2.19 (s, 3H), 3.43 (d, J = 6.6 Hz, 2H), 5.8 (s, 1H), 5.86 (d, J = 3.1 Hz, 1H), 6.23 (dt, J = 15.8 Hz, J = 6.6 Hz, 1H), 6.42 (d, J = 15.8 Hz, 1H), 7.10-7.32 (m, 5H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) = 13.7, 32.0, 106.2, 106.4, 126.1, 126.3 (2C), 127.4, 128.6 (2C), 131.8, 137.5, 151.0, 152.0. Anal. calcd. for C₁₄H₁₄O: C, 84.81; H, 7.12. Found: C, 84.90; H, 7.19.

(E)-6-(Furan-2-yl)-4-oxo-5,6-diphenyl-2-(2-phenylethylidene)hexanal (7a)

A solution of **1i** (20.0 mg, 0.11 mmol), boronic acid **2a** (20.3 mg, 0.14 mmol, 1.2 equiv), tartaric acid (17.2 mg, 0.11 mmol, 1 equiv) and H₂O (6 μL, 0.34 mmol, 3 equiv) in cyclohexane (0.4 mL) was stirred at rt for 18 h. The mixture was filtered over MgSO₄ and the solvent was evaporated *in vacuo*. The residue was dissolved in CH₂Cl₂ (0.8 mL) and Et₃N (32 μL, 0.23 mmol, 2 equiv) was added. The mixture was stirred at rt for 1 h. A saturated solution of NaHCO₃ (10 mL) was added. The layers were separated and the aqueous one was extracted with DCM (2 x 10 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound **7a** was isolated as a

colourless oil (38.9 mg, 78%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 2.92 (dd, J = 16.6 Hz, J = 7.1 Hz, 1H), 3.06 (dd, J = 16.6 Hz, J = 7.1 Hz, 1H), 3.35 (s, 2H), 4.71 (d, J = 11.8 Hz, 1H), 4.78 (d, J = 11.8 Hz, 1H), 5.79 (d, J = 3.2 Hz, 1H), 6.01 (dd, J = 3.2 Hz, J = 1.9 Hz, 1H), 6.56 (t, J = 7.3 Hz, 1H), 6.91-6.98 (m, 2H), 7.14-7.35 (m, 12H), 7.42-7.46 (m, 2H), 9.26 (s, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) = 35.2, 38.6, 48.1, 62.6, 107.0, 110.0, 126.8, 127.1, 128.6 (2C), 128.7 (2C), 128.7 (2C), 128.8 (2C), 128.8 (2C), 128.9 (2C), 135.6, 136.3, 137.8, 140.9, 141.5, 154.5, 156.4, 193.3, 204.0. Anal. calcd. for C₃₀H₂₆O₃: C, 82.92; H, 6.03. Found: C, 82.89; H, 6.11.

(E)-2-(2-Cyclohexylethylidene)-6-(furan-2-yl)-4-oxo-5,6-diphenylhexanal (7b)

A solution of **1i** (20.0 mg, 0.11 mmol), boronic acid **2e** (21.2 mg, 0.14 mmol, 1.2 equiv), tartaric acid (17.2 mg, 0.11 mmol, 1 equiv) and H₂O (6 µL, 0.34 mmol, 3 equiv) in cyclohexane (0.4 mL) was stirred at rt for 18 h. The mixture was filtered over MgSO₄ and the solvent was evaporated in vacuo. The residue was dissolved in CH₂Cl₂ (0.8 mL) and Et₃N (32 µL, 0.23 mmol, 2 equiv) was added. The mixture was stirred at rt for 1 h. A saturated solution of NaHCO₃ (10 mL) was added. The layers were separated and the aqueous one was extracted with DCM (2 x 10 mL). The combined organic layers were dried over MgSO₄ and concentrated in vacuo. The residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound 7c was isolated as a colourless oil (37.4 mg, 74%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 1.02-1.31 (m, 4H), 1.42-1.71 (m, 9H), 3.22 (s, 2H), 4.67 (d, J = 11.7 Hz, 1H), 4.74 (d, J = 11.7 Hz, 1H), 5.76 (d, J = 3.1 Hz, 1H), 6.00 (dd, J = 3.1 Hz, J = 0.6 Hz, 1H), 6.48 (t, J = 7.4 Hz, 1H), 7.07-7.48 (m, 11H), 9.24 (s, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) = 26.2, 26.2, 26.3, 33.0, 33.1, 36.7, 37.5, 38.6, 48.0, 62.4, 106.9, 110.0, 127.0, 127.7, 128.5 (2C), 128.6 (2C), 128.7 (2C), 128.8 (2C), 136.2, 136.4, 140.9, 141.4, 154.7, 157.9, 193.5, 204.0. Anal. calcd. for C₃₀H₃₂O₃: C, 81.78; H, 7.32. Found: C, 81.85; H, 7.28.

(E)-2-Benzhydryl-5-styrylfuran (8)

A solution of **1j** (27.5 mg, 0.11 mmol), boronic acid **2a** (20.3 mg, 0.14 mmol, 1.2 equiv), tartaric acid (17.2 mg, 0.11 mmol, 1 equiv) and H₂O (6 μL, 0.34 mmol, 3 equiv) in DCM (0.4 mL) was stirred at rt for 18 h. The mixture was filtered over MgSO₄ and the solvent was evaporated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound **8** was isolated as a colorless oil (30.3 mg, 82%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 5.42 (s, 1H), 5.84 (d, J = 3.6 Hz, 1H), 6.21 (d, J = 3.6 Hz, 1H), 7.09-7.38 (m, 15 H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) = 51.2, 109.5, 110.8, 116.7, 126.4, 126.6, 126.9, 127.5, 128.6, 128.8, 128.9, 137.3, 141.9, 152.9, 156.7. Anal. calcd. for C₂₅H₂₀O: C, 89.25; H, 5.99. Found: C, 89.21; H, 6.05.

(E)-2,2,2-Trifluoro-1-(5-methyl-3-styrylfuran-2-yl)ethanone (9a)

A solution of **1a** (20.0 mg, 0.20 mmol), boronic acid **2a** (36.2 mg, 0.24 mmol, 1.2 equiv), tartaric acid (30.5 mg, 0.20 mmol, 1 equiv) and H₂O (11 μ L, 0.61 mmol, 3 equiv) in CH₂Cl₂ (0.8 mL) was stirred at rt for 18 h. The crude product **4a** was filtered over MgSO₄ and the solvent was evaporated *in vacuo*. The residue was redissolved in TFAA (0.8 mL) and TFA (5 μ L, 0.061 mmol, 0.3 equiv) was added at 0°C. The mixture was stirred at rt for 3 h. The solvent was evaporated *in vacuo*. NaOH 1M (10 mL) and AcOEt (10 mL) were added. The layers were separated and the organic one washed with NaOH 1M (2 x 10 mL), dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/DCM 8:2). Compound **9a** was isolated as a white solid (35.9 mg, 63%). ¹H NMR (CDCl₃, 700 MHz): δ (ppm) = 2.44 (s, 3H), 6.62 (s, 1H), 7.18 (d, J = 16.4 Hz, 1H), 7.29-7.43 (m, 3H), 7.52-7.58 (m, 3H), 7.79 (d, J = 16.4 Hz, 1H). ¹³C NMR (CDCl₃, 176 MHz): δ (ppm) = 14.2, 107.5, 116.4 (q, J_{CF} = 294 Hz), 118.8, 127.3, 128.8, 129.1, 136.0, 136.9, 140.5, 142.0, 159.9,

168.9 (q, $J_{CF} = 37 \text{ Hz}$). ¹⁹F NMR (CDCl₃, 282 MHz): δ (ppm) = -74.7 (s). Anal. calcd. for $C_{15}H_{11}F_3O_2$: C, 64.29; H, 3.96. Found: C, 64.34; H, 3.87.

(E)-2,2,2-Trifluoro-1-[3-(4-fluorostyryl)-5-methylfuran-2-yl]ethanone (9b)

A solution of **1a** (20.0 mg, 0.20 mmol), boronic acid **2b** (40.6 mg, 0.24 mmol, 1.2 equiv), tartaric acid (30.5 mg, 0.20 mmol, 1 equiv) and H₂O (11 μL, 0.61 mmol, 3 equiv) in CH₂Cl₂ (0.8 mL) was stirred at rt for 18 h. The crude product **4b** was filtered over MgSO₄ and the solvent was evaporated *in vacuo*. The residue was redissolved in TFAA (0.8 mL) and TFA (5 μL, 0.061 mmol, 0.3 equiv) was added at 0°C. The mixture was stirred at rt for 3 h. The solvent was evaporated *in vacuo*. NaOH 1M (10 mL) and AcOEt (10 mL) were added. The layers were separated and the organic one washed with NaOH 1M (2 x 10 mL), dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/DCM 8:2). Compound **9b** was isolated as a white solid (39.5 mg, 65%). ¹H NMR (CDCl₃, 700 MHz): δ (ppm) = 2.44 (s, 3H), 6.60 (s, 1H), 7.04-7.17 (m, 3H), 7.49-7.57 (m, 2H), 7.70 (d, J = 16.4 Hz, 1H). ¹³C NMR (CDCl₃, 176 MHz): δ (ppm) = 14.3, 107.4, 115.6, 116.3 (q, J_{CF} = 292 Hz), 117.7, 128.9, 132.3, 135.6, 140.3, 142.0, 160.0, 163.2 (d, J_{CF} = 250 Hz), 169.0 (q, J_{CF} = 36.5 Hz). ¹⁹F NMR (CDCl₃, 282 MHz): δ (ppm) = -74.7 (s, 3F), -111.8 (s, 1F). Anal. calcd. for C₁₅H₁₀F₄O₂: C, 60.41; H, 3.38. Found: C, 60.50; H, 3.29.

(E)-2,2,2-Trifluoro-1-[5-methyl-3-(3-phenylprop-1-en-1-yl)furan-2-yl]ethanone (9c)

A solution of **1a** (20.0 mg, 0.20 mmol), boronic acid **2d** (39.6 mg, 0.24 mmol, 1.2 equiv), tartaric acid (30.5 mg, 0.20 mmol, 1 equiv) and H₂O (11 μL, 0.61 mmol, 3 equiv) in CH₂Cl₂ (0.8 mL) was stirred at rt for 18 h. The crude product **4d** was filtered over MgSO₄ and the solvent was evaporated *in vacuo*. The residue was redissolved in TFAA (0.8 mL) and TFA (5 μL, 0.061 mmol, 0.3 equiv) was added at 0°C. The mixture was stirred at rt for 3 h. The solvent was evaporated *in vacuo*. NaOH 1M (10 mL) and AcOEt (10 mL) were added. The layers were separated and the organic one washed with NaOH 1M (2 x 10 mL), dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/DCM 8:2). Compound **9c** was isolated as a white solid (36.5 mg, 61%). ¹H NMR (CDCl₃, 700 MHz): δ (ppm) = 2.39 (s, 3H), 3.60 (d, J = 7.1 Hz, 2H), 6.43 (s, 1H), 6.49 (dt, J = 15.9 Hz, J = 7.1 Hz, 1H), 7.12-7.34 (m, 6H). ¹³C NMR (CDCl₃, 126.5 MHz): δ (ppm) = 14.2, 39.6, 107.9, 116.3 (q, $J_{CF} = 290$ Hz), 120.7, 126.5, 128.5, 128.6, 138.7, 138.9, 140.3, 141.5, 159.8, 168.9 (q, $J_{CF} = 36$ Hz). ¹⁹F NMR (CDCl₃, 282 MHz): δ (ppm) = -74.7 (s). Anal. calcd. for C₁₆H₁₃F₃O₂: C, 65.30; H, 4.45. Found: C, 65.21; H, 4.38.

(E)-1-[3-(2-Cyclohexylvinyl)-5-methylfuran-2-yl]-2,2,2-trifluoroethanone (9d)

A solution of **1a** (20.0 mg, 0.20 mmol), boronic acid **2e** (37.6 mg, 0.24 mmol, 1.2 equiv), tartaric acid (30.5 mg, 0.20 mmol, 1 equiv) and H₂O (11 μ L, 0.61 mmol, 3 equiv) in CH₂Cl₂ (0.8 mL) was stirred at rt for 18 h. The crude product **4e** was filtered over MgSO₄ and the solvent was evaporated *in vacuo*. The residue was redissolved in TFAA (0.8 mL) and TFA (5 μ L, 0.061 mmol, 0.3 equiv) was added at 0°C. The mixture was stirred at rt for 3 h. The solvent was evaporated *in vacuo*. NaOH 1M (10 mL) and AcOEt (10 mL) were added. The layers were separated and the organic one washed with NaOH 1M (2 x 10 mL), dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/DCM 8:2). Compound **9d** was isolated as a white solid (37.3 mg, 64%). ¹H NMR (CDCl₃, 700 MHz): δ (ppm) = 1.48-1.80 (m, 11H), 2.39 (s, 3H), 3.33 (dd, J = 15.9 Hz, J = 6.1 Hz, 1H), 6.45 (s, 1H),

7.01 (d, J = 15.9 Hz, 1H). ¹³C NMR (CDCl₃, 176 MHz): δ (ppm) = 14.2, 25.8, 26.0, 32.4, 41.4, 107.8, 116.4 (q, $J_{CF} = 292$ Hz), 117.4, 141.2, 141.3, 146.3, 159.7, 168.7 (q, $J_{CF} = 38$ Hz). ¹⁹F NMR (CDCl₃, 282 MHz): -74.7 (s). Anal. calcd. for C₁₅H₁₇F₃O₂: C, 62.93; H, 5.99. Found: C, 63.02; H, 6.07.

1-[3-(Cyclohex-1-en-1-yl)-5-methylfuran-2-yl]-2,2,2-trifluoroethanone (9e)

To a solution of **4g** (20.0 mg, 0.11 mmol) in TFAA (0.4 mL) and TFA (3 μL, 0.033 mmol, 0.3 equiv) was added at 0°C. The mixture was stirred at rt for 3 h. The solvent was evaporated *in vacuo*. NaOH 1M (10 mL) and AcOEt (10 mL) were added. The layers were separated and the organic one washed with NaOH 1M (2 x 10 mL), dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/DCM 8:2). Compound **9e** was isolated as a white solid (16.9 mg, 59%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 1.63-1.79 (m, 4H), 2.17 (s, 3H), 2.18-2.25 (m, 2H), 2.26-2.34 (m, 2H), 6.24 (s, 1H), 6.35 (m, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) = 14.2, 21.6, 22.5, 25.7, 27.7, 111.8, 116.7 (q, J_{CF} = 286 Hz), 128.5, 131.9, 145.6, 159.4, 167.8 (q, J_{CF} = 36 Hz). ¹⁹F NMR (CDCl₃, 282 MHz): -73.9 (s). Anal. calcd. for C₁₃H₁₃F₃O₂: C, 60.46; H, 5.07. Found: C, 60.51; H, 5.11.

(E)-1-(4,5-Dimethyl-3-styrylfuran-2-yl)-2,2,2-trifluoroethanone (9f)

A solution of **1b** (20.0 mg, 0.18 mmol), boronic acid **2a** (39.5 mg, 0.27 mmol, 1.5 equiv), tartaric acid (26.7 mg, 0.18 mmol, 1 equiv) and H_2O (10 μ L, 0.54 mmol, 3 equiv) in CH_2Cl_2 (0.7 mL) was stirred at rt for 18 h. The crude product **4j** was filtered over MgSO₄ and the solvent was evaporated *in vacuo*. The residue was redissolved in

TFAA (0.7 mL) and TFA (4 μL, 0.054 mmol, 0.3 equiv) was added at 0°C. The mixture was stirred at rt for 3 h. The solvent was evaporated *in vacuo*. NaOH 1M (10 mL) and AcOEt (10 mL) were added. The layers were separated and the organic one washed with NaOH 1M (2 x 10 mL), dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/DCM 8:2). Compound **9f** was isolated as a white solid (35.6 mg, 68%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 2.16 (s, 3H), 2.31 (s, 3H), 7.17-7.35 (m, 4H), 7.46-7.53 (m, 2H), 7.68 (d, J = 16.8 Hz, 1H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) = 8.6, 12.4, 114.7, 116.9 (q, J_{CF} = 35 Hz), 127.4, 128.4, 136.7, 137.1, 138.9, 141.9, 156.9, 168.5 (q, J_{CF} = 290 Hz). ¹⁹F NMR (CDCl₃, 282 MHz): δ (ppm) = -74.2 (s). Anal. calcd. for C₁₆H₁₃F₃O₂: C, 65.30; H, 4.45. Found: C, 65.39; H, 4.39.

(E)-2-(2-Phenylethylidene)pentane-1,4-diol (10a)

To a solution of **5a** (20.0 mg, 0.10 mmol) in EtOH/THF 1:2 (1.5 mL) at 0°C was added NaBH₄ (3.7 mg, 0.10 mmol, 1 equiv). The mixture was stirred for 10 min. The solvent was evaporated *in vacuo* and the residue was purified by column chromatography over silica gel (hexane/AcOEt 4:6). Compound **10a** was isolated as a colourless oil (20.1 mg, 99%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 1.19 (d, J = 6.2 Hz, 3H), 2.23 (dd, J = 14.2 Hz, J = 8.8 Hz, 1H), 2.45 (dd, J = 14.2 Hz, J = 2.1 Hz, 1H), 2.56 (t, J = 7.3 Hz, 1H), 2.62 (bs, 1H), 3.34 (d, J = 7.3 Hz, 2H), 3.86-3.97 (m, 1H), 4.01 (s, 2H), 5.69 (t, J = 7.3 Hz, 1H), 7.05-7.16 (m, 3H), 7.16-7.26 (m, 2H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) = 23.8, 34.2, 39.1, 67.5, 68.8, 126.3, 128.5 (2C), 128.7 (2C), 130.1, 136.9, 140.5. Anal. calcd. for C₁₃H₁₈O₂: C, 75.69; H, 8.80. Found: C, 75.77; H, 8.71.

(E)-2-(2-Cyclohexylethylidene)pentane-1,4-diol (10b)

To a solution of **5e** (20.0 mg, 0.10 mmol) in EtOH/THF 1:2 (1.5 mL) at 0°C NaBH₄ (3.7 mg, 0.10 mmol, 1 equiv) was added. The mixture was stirred for 10 min. The solvent was evaporated *in vacuo* and the residue was purified by column chromatography over silica gel (hexane/AcOEt 4:6). Compound **10b** was isolated as a colourless oil (20.1 mg, 99%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 1.12-1.27 (m, 4H), 1.23 (d, J = 6.2 Hz, 3H), 1.59-1.73 (m, 7H), 1.93 (t, J = 7.2 Hz, 2H), 2.17 (dd, J = 14.1 Hz, J = 9.0 Hz, 1H), 2.40 (dd, J = 14.1 Hz, J = 3.0 Hz, 1H), 2.60 (bs, 2H), 3.86-3.99 (m, 1H), 4.05 (s, 2H), 5.90 (t, J = 7.2 Hz, 1H). ¹³C NMR (CDCl₃, 75 MHz): 23.7, 26.5 (2C), 26.6, 33.3, 33.4, 35.8, 38.4, 39.2, 67.5, 69.2, 131.0, 136.4. Anal. calcd. for C₁₃H₂₄O₂: C, 73.54; H, 11.39. Found: C, 73.60; H, 11.31.

(E)-5-Methyl-3-(2-phenylethylidene)dihydrofuran-2(3H)-one (11a)

MnO₂ (229.2 mg, 2.63 mmol, 27.2 equiv) was added to a solution of **10a** (20.0 mg, 0.10 mmol) in DCM (1.3 mL). The mixture was stirred at rt for 4 h and then was filtered over a pad of celite. The solvent was evaporated *in vacuo* and the residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound **11a** was isolated as a colourless oil (14.3 mg, 73%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 1.44 (d, J = 6.2 Hz, 3H), 2.47 (m, 1H), 3.06 (m, 1H), 3.52 (d, J = 7.4 Hz, 2H), 4.64-4.75 (m, 1H), 6.87-6.95 (m, 1H), 7.13-7.36 (m, 5H). ¹³C NMR (CDCl₃, 75 MHz): δ (ppm) = 22.4, 33.1, 36.4, 74.2, 126.9, 127.6, 128.6 (2C), 129.0 (2C), 137.8, 138.4, 170.9. Anal. calcd. for C₁₃H₁₄O₂: C, 77.20; H, 6.98. Found: C, 77.29; H, 6.91.

(E)-3-(2-Cyclohexylethylidene)-5-methyldihydrofuran-2(3H)-one (11b)

MnO₂ (229.2 mg, 2.63 mmol, 27.2 equiv) was added to a solution of **10b** (20.0 mg, 0.10 mmol) in DCM (1.3 mL). The mixture was stirred at rt for 4 h and then was filtered over a pad of celite. The solvent was evaporated *in vacuo* and the residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound **11b** was isolated as a colourless oil (13.7 mg, 70%). ¹H NMR (CDCl₃, 500 MHz): δ (ppm) = 0.77-1.04 (m, 2H), 1.16-1.30 (m, 2H), 1.41 (d, J = 6.2 Hz, 3H), 1.51-1.77 (m, 6H), 2.01-2.10 (m, 2H), 2.16-2.24 (m, 1H), 2.38 (m, 1H), 2.99 (m, 1H), 4.60-4.72 (m, 1H), 6.81-6.81 (m, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) = 21.3, 25.1, 25.2, 28.7, 32.0, 32.2, 36.8, 72.9, 126.0, 138.8, 169.9. Anal. calcd. for C₁₃H₂₀O₂: C, 74.96; H, 9.68. Found: C, 75.04; H, 9.74.

(E)-4-Phenyl-4-styrylcyclopent-2-enone (12)

A solution of **1f** (20.0 mg, 0.11 mmol), boronic acid **2a** (25.4 mg, 0.18 mmol, 1.5 equiv), tartaric acid (17.2 mg, 0.11 mmol, 1 equiv) and H₂O (6 μ L, 0.34 mmol, 3 equiv) in CH₂Cl₂ (0.5 mL) was stirred at 60°C for 6 h. The crude product **4p** was filtered over MgSO₄, and the solvent was evaporated *in vacuo*. The residue (18.5 mg) was redissolved in ^tBuOH (1.4 mL) and K₂CO₃ (79.3 mg, 0.57 mmol, 5 equiv) was added at rt. The mixture was stirred at reflux for 2 h, then was cooled at rt, diluted with Et₂O and was filtered over a pad of celite. The solvent was evaporated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound **12** was isolated as a colourless oil (14.3 mg, 48%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 2.82 (d, J = 18.6 Hz, 1H), 2.96 (d, J = 18.6 Hz, 1H), 6.31 (d, J = 5.7 Hz, 1H), 6.34 (d, J = 16.3 Hz, 1H), 7.23-7.43 (m, 10H), 7.82 (d, J = 5.7 Hz, 1H).

¹³C NMR (CDCl₃, 75 MHz): δ (ppm) = 50.1, 54.7, 126.5 (2C), 126.8 (2C), 127.3, 128.0, 128.8 (2C), 129.0 (2C), 130.2, 132.4, 133.8, 136.6, 144.0, 167.9, 208.8. Anal. calcd. for C₁₉H₁₆O: C, 87.66; H, 6.19. Found: C, 87.58; H, 6.27.

(E)-4,6-Diphenylhex-4-en-2-one (13a)

A solution of **1f** (20.0 mg, 0.11 mmol), boronic acid **2a** (25.4 mg, 0.18 mmol, 1.5 equiv), tartaric acid (17.2 mg, 0.11 mmol, 1 equiv) and H₂O (6 μL, 0.34 mmol, 3 equiv) in CH₂Cl₂ (0.5 mL) was stirred at 60°C for 6 h. The crude product **4p** was filtered over MgSO₄, and the solvent was evaporated *in vacuo*. The residue (18.5 mg) was redissolved in THF:MeOH 2:1 (0.6 mL) and KOH 10% (90 μL) was added. The mixture was stirred at rt for 2 h, then was added brine (10 mL) and Et₂O (10 mL). Layers were separated, and the organic one was washed with brine and dried over MgSO₄. The solvent was evaporated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound **13a** was isolated as a colourless oil (15.8 mg, 55%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 2.12 (s, 3H), 3.55 (d, J = 7.5 Hz, 2H), 3.71 (s, 2H), 6.17 (t, J = 7.5 Hz, 1H), 7.18-7.38 (m, 10H). ¹³C NMR (CDCl₃, 176 MHz): δ (ppm) = 29.9, 35.3, 46.0, 126.2 (2C), 126.4, 127.4, 128.5, (2C), 128.6 (2C), 128.8 (2C), 131.0, 133.9, 140.1, 142.1, 206.4. Anal. calcd. for C₁₈H₁₈O: C, 86.36; H, 7.25. Found: C, 86.44; H, 7.17.

(E)-6-(4-Fluorophenyl)-4-phenylhex-4-en-2-one (13b)

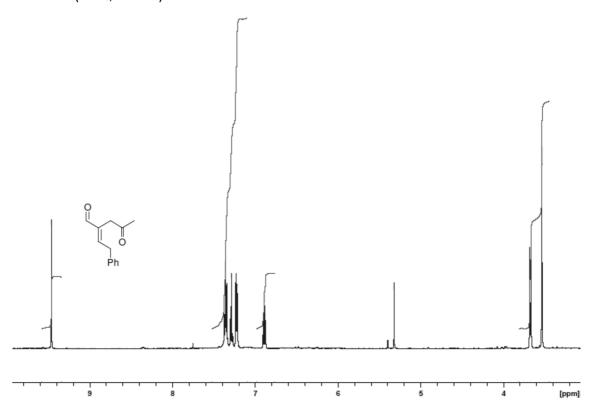
A solution of **1f** (20.0 mg, 0.11 mmol), boronic acid **2b** (28.6 mg, 0.18 mmol, 1.5 equiv), tartaric acid (17.2 mg, 0.11 mmol, 1 equiv) and H₂O (6 μL, 0.34 mmol, 3 equiv) in CH₂Cl₂ (0.5 mL) was stirred at 60°C for 6 h. The crude product **4q** was filtered over MgSO₄, and the solvent was evaporated *in vacuo*. The residue (20.4 mg) was redissolved in THF:MeOH 2:1 (0.6 mL) and KOH 10% (90 μL) was added. The mixture was stirred at rt for 2 h, then was added brine (10 mL) and Et₂O (10 mL). Layers were separated, and the organic one was washed with brine and dried over MgSO₄. The solvent was evaporated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound **13b** was isolated as a colourless oil (12.9 mg, 42%). ¹H NMR (CDCl₃, 700 MHz): δ (ppm) = 2.12 (s, 3H), 3.50 (d, J = 7.5 Hz, 2H), 3.69 (s, 2H), 6.11 (t, J = 7.5 Hz, 1H), 6.99 (t, J = 8.6 Hz, 2H), 7.19 (dd, J = 8.6 Hz, J = 5.5 Hz, 2H), 7.29-7.34 (m, 5H). ¹³C NMR (CDCl₃, 175 MHz): δ (ppm) = 31.2, 31.7, 45.9, 115.4, 115.6, 126.2 (2C), 127.5, 128.7 (2C), 129.9, 130.0, 130.8, 134.0, 142.0, 207.2. ¹⁹F NMR (CDCl₃, 282 MHz): δ (ppm) = -116.4 (s). Anal. calcd. for C₁₈H₁₇FO: C, 80.57; H, 6.39. Found: C, 80.66; H, 6.47.

(E)-6-(4-Methoxyphenyl)-4-phenylhex-4-en-2-one (13c)

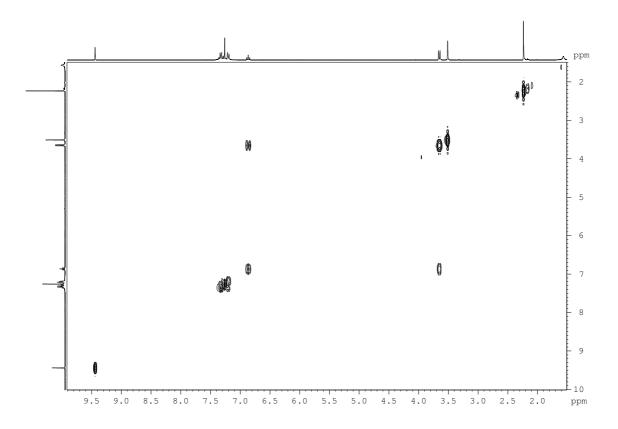
A solution of **1f** (20.0 mg, 0.11 mmol), boronic acid **2c** (30.6 mg, 0.18 mmol, 1.5 equiv), tartaric acid (17.2 mg, 0.11 mmol, 1 equiv) and H_2O (6 μ L, 0.34 mmol, 3 equiv) in CH_2Cl_2 (0.5 mL) was stirred at 60°C for 6 h. The crude product **4r** was filtered over MgSO₄, and the solvent was evaporated *in vacuo*. The residue (25.8 mg) was redissolved in THF:MeOH 2:1 (0.6 mL) and KOH 10% (90 μ L) was added. The mixture was stirred at rt for 2 h, then was added brine (10 mL) and Et_2O (10 mL). Layers were separated, and the organic one was washed with brine and dried over MgSO₄. The solvent was evaporated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound **13c** was isolated as a yellow oil (19.3 mg, 60%). ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 2.11 (s, 3H), 3.48

(d, J = 7.3 Hz, 2H), 3.69 (s, 2H), 3.79 (s, 3H), 6.14 (t, J = 7.3 Hz, 1H), 6.83-6.89 (m, 2H), 7.11-7.36 (m, 7H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) = 29.7, 34.3, 45.8, 55.3, 114.0 (2C), 126.0 (2C), 127.2, 127.3, 127.6, (2C), 128.4, 128.6 (2C), 129.3, 132.0, 157.9, 207.0. Anal. calcd. for C₁₉H₂₀O₂: C, 81.40; H, 7.19. Found: C, 81.49; H, 7.10.

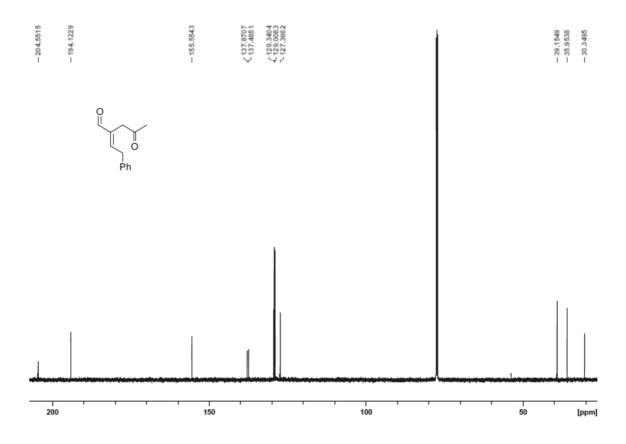
4-(Benzofuran-2-yl)-4-phenylbutan-2-one (14)

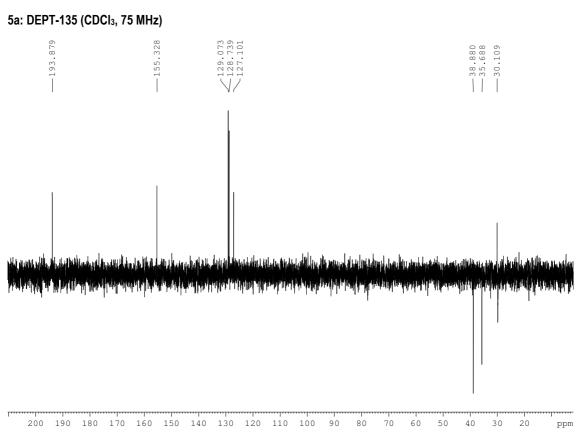


A solution of **1f** (20.0 mg, 0.11 mmol), benzofuran-2-ylboronic acid (29.2 mg, 0.18 mmol, 1.5 equiv), tartaric acid (17.2 mg, 0.11 mmol, 1 equiv) and H₂O (6 μ L, 0.34 mmol, 3 equiv) in CH₂Cl₂ (0.5 mL) was stirred at 60°C for 6 h. The crude product **4s** was filtered over MgSO₄, and the solvent was evaporated *in vacuo*. The residue (25.8 mg) was redissolved in THF:MeOH 2:1 (0.6 mL) and KOH 10% (90 μ L) was added. The mixture was stirred at rt for 2 h, then was added brine (10 mL) and Et₂O (10 mL). Layers were separated, and the organic one was washed with brine and dried over MgSO₄. The solvent was evaporated *in vacuo*. The residue was purified by column chromatography over silica gel (hexane/AcOEt 8:2). Compound **14** was isolated as a colorless oil (18.2 mg, 63%). Characterization data are in agreement with those previously reported for **14**.⁷ ¹H NMR (CDCl₃, 300 MHz): δ (ppm) = 2.17 (s, 3H), 3.15 (dd, J = 17.1 Hz, 7.5 Hz, 1H), 3.39 (dd, J = 17.1 Hz, 7.5 Hz, 1H), 4.77 (t, J = 7.5 Hz, 1H), 6.41 (s, 1H), 7.13-7.59 (m, 9H). C NMR (CDCl₃, 100 MHz): δ (ppm) = 30.5, 40.5, 48.1, 102.9, 111.0, 120.6, 122.6, 123.6, 127.2, 127.9, 128.5, 128.7, 140.9, 154.8, 159.6, 205.9. Anal. calcd. for C₁₈H₁₆O₂: C, 81.79; H, 6.10. Found: C, 81.94; H, 6.23.

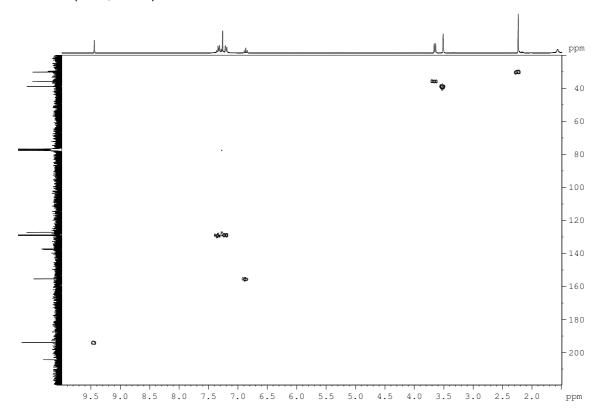

S-26

⁷ S. Dhiman and S. S. V. Ramasastry, *J. Org. Chem.*, 2013, **78**, 10427.

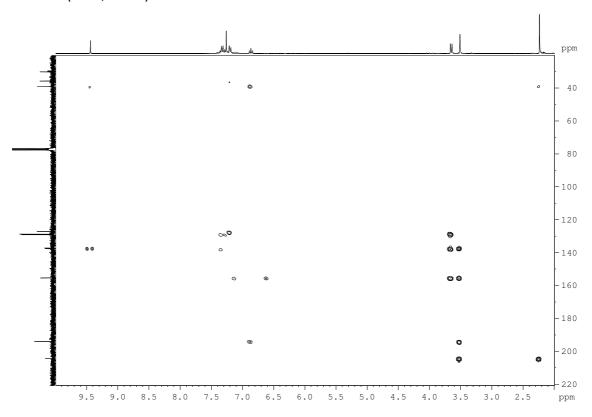

5a: ¹H-NMR (CDCI₃, 500 MHz)

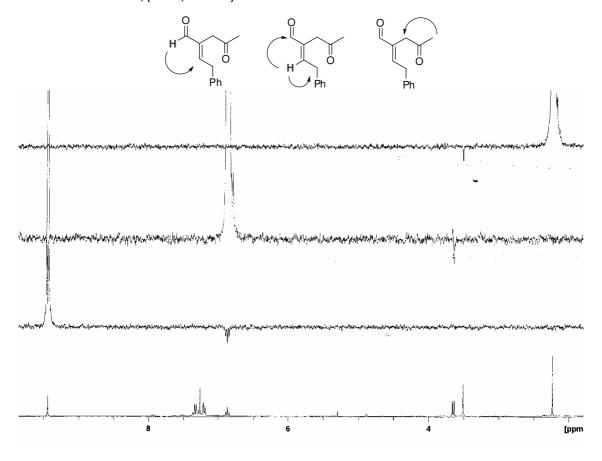


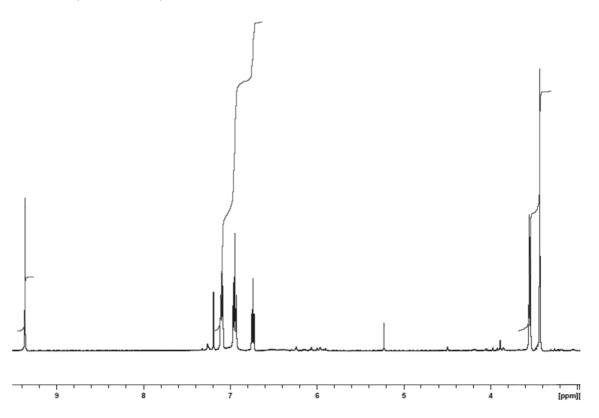
5a: COSY (CDCI₃, 300 MHz)

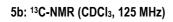


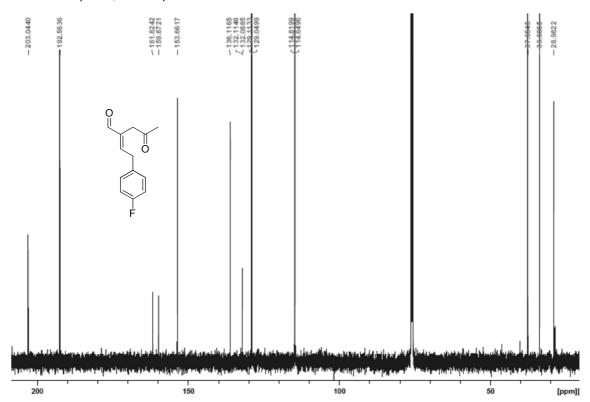
5a: 13C-NMR (CDCI₃, 125 MHz)



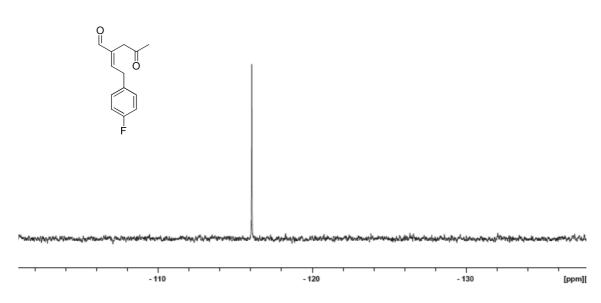

5a: HMQC (CDCI₃, 75 MHz)

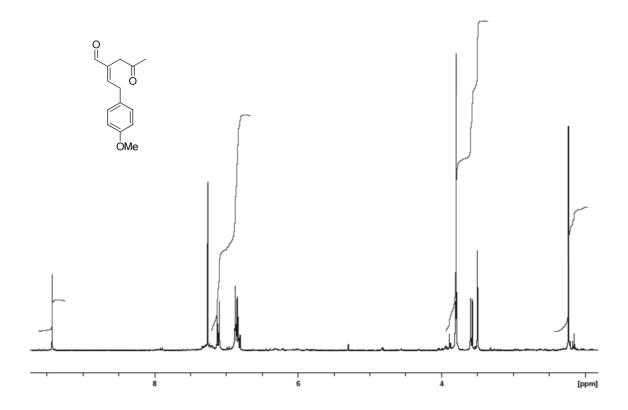

5a: HMBC (CDCI₃, 75 MHz)



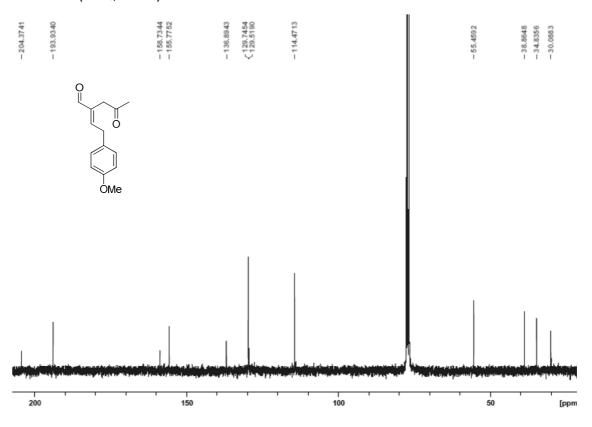

5a: NOE measurements, (CDCl₃, 300 MHz)

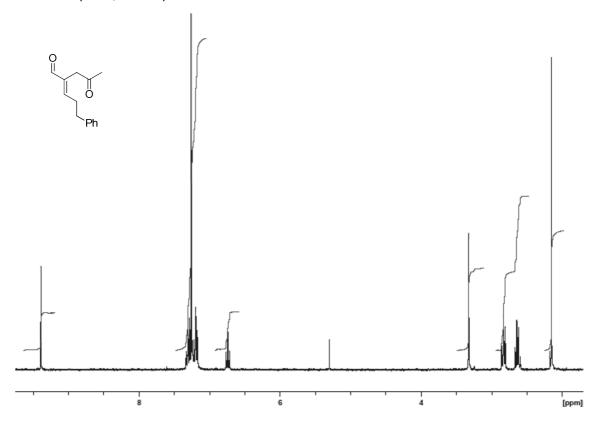
5b: ¹H-NMR (CDCI₃, 500 MHz)

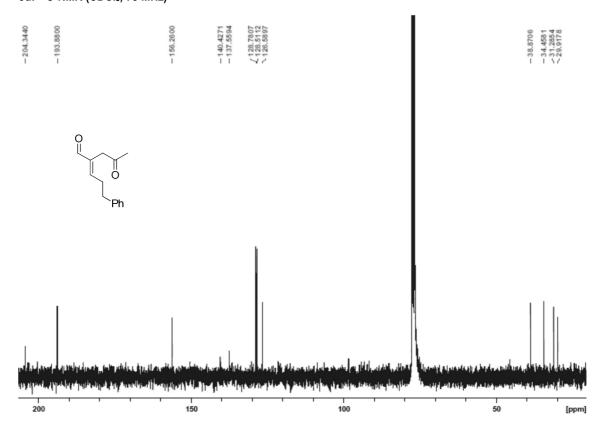


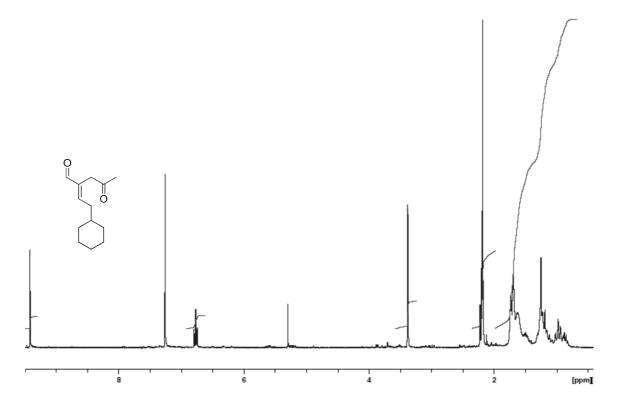


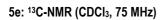
5b: 19F-NMR (CDCl₃, 282 MHz)

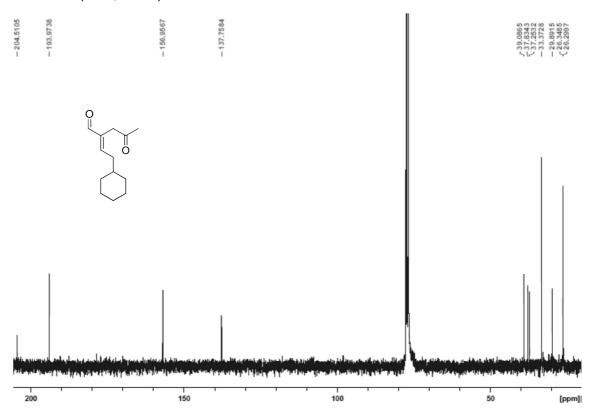


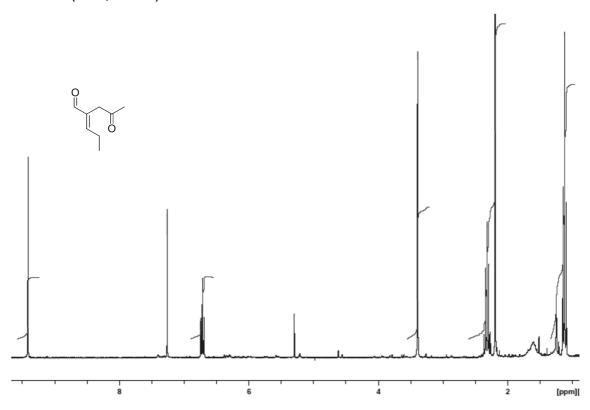

5c: ¹H-NMR (CDCI₃, 300 MHz)

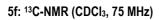

5c: ¹³C-NMR (CDCl₃, 75 MHz)

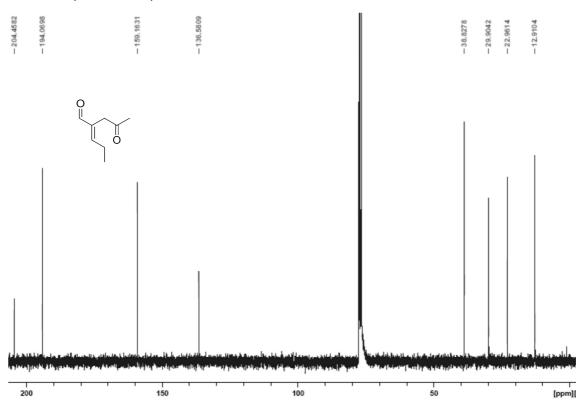


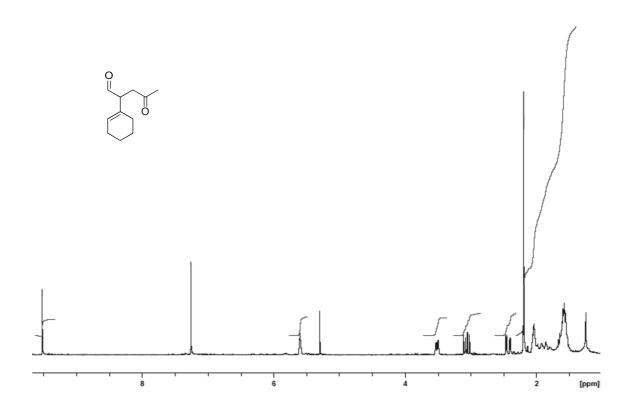


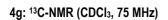

5d: 13C-NMR (CDCI₃, 75 MHz)

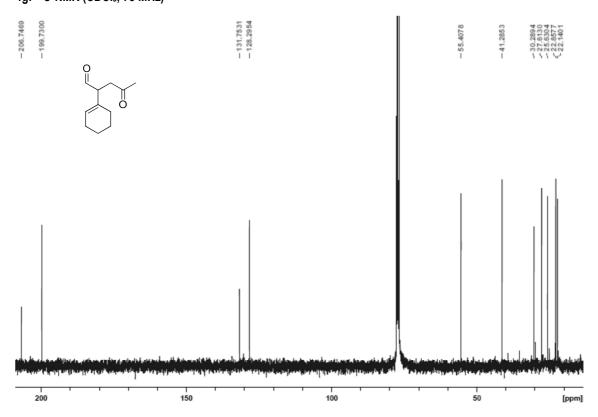

5e: ¹H-NMR (CDCI₃, 300 MHz)

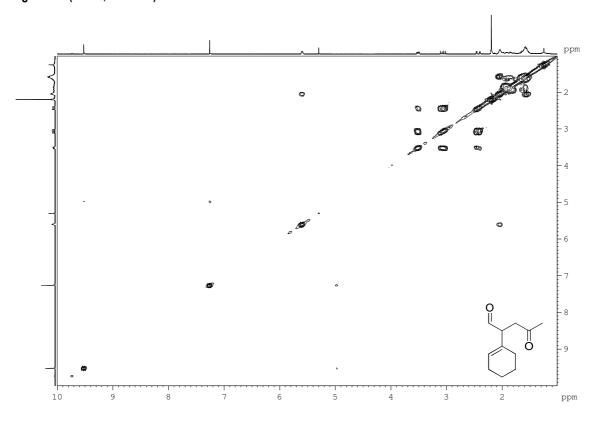


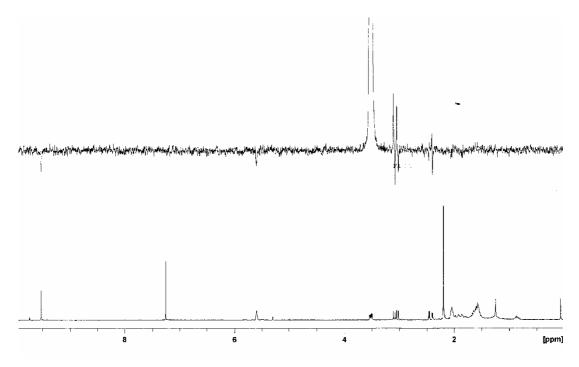



5f: ¹H-NMR (CDCl₃, 300 MHz)

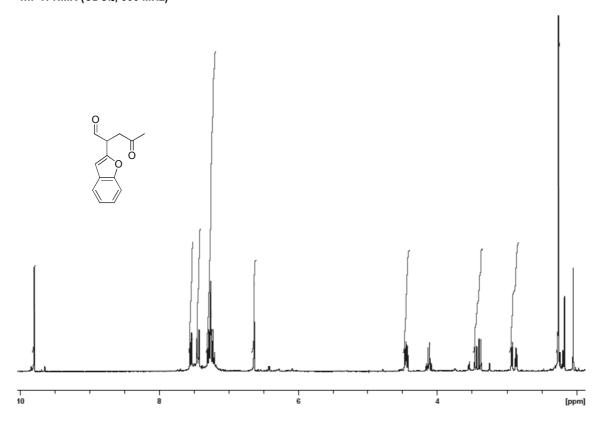




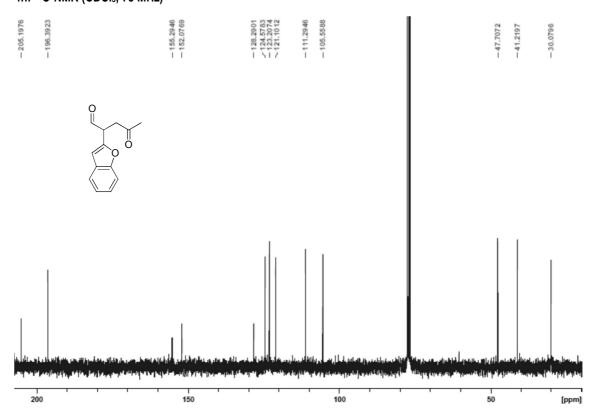

4g: ¹H-NMR (CDCI₃, 300 MHz)

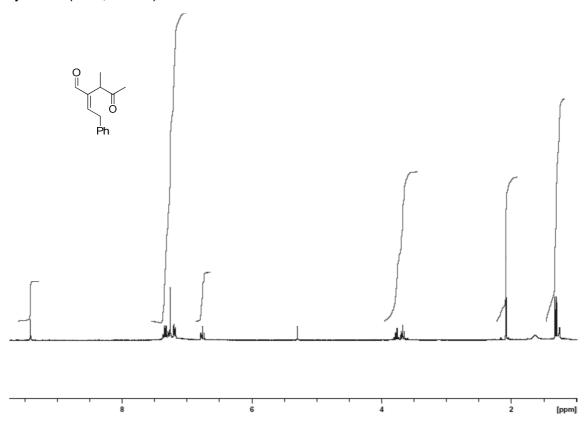


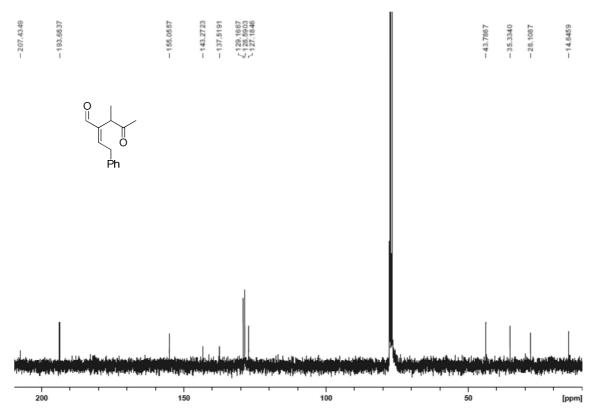
4g: COSY (CDCI₃, 300 MHz)

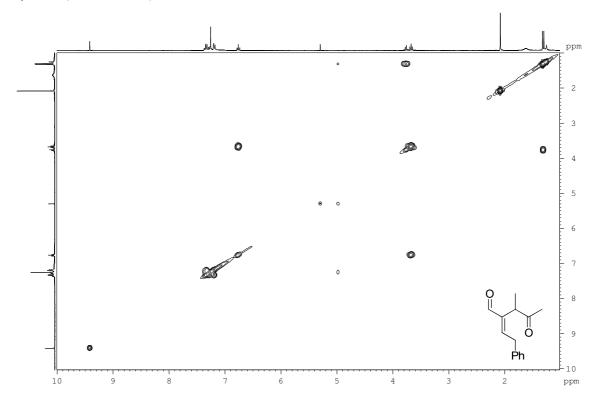


.4g: NOE measurements, (CDCl₃, 300 MHz)

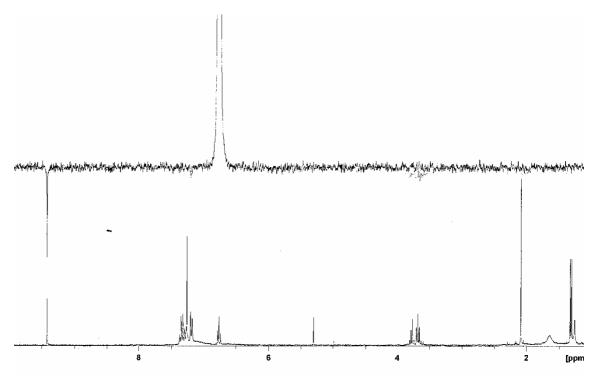



4h: ¹H-NMR (CDCI₃, 300 MHz)

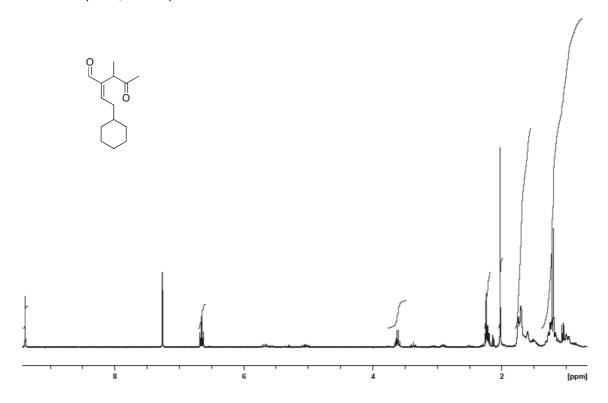

4h: 13C-NMR (CDCl₃, 75 MHz)



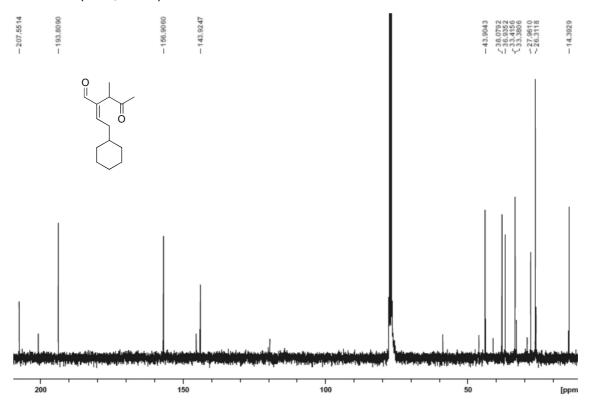
5j: 13C-NMR (CDCI₃, 75 MHz)

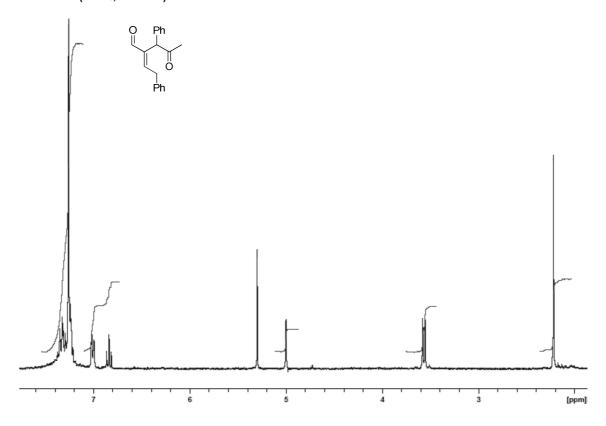


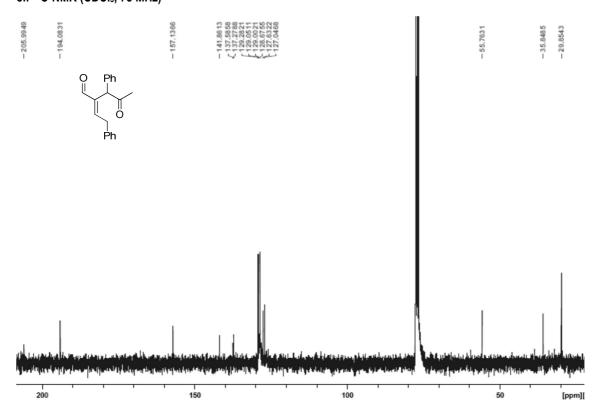
5j: COSY (CDCl₃, 300 MHz)

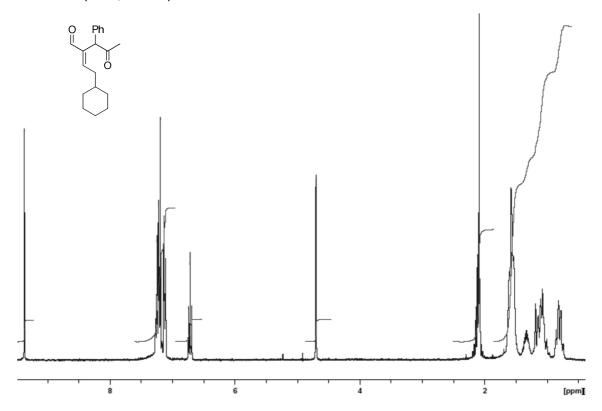


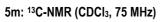
5j: NOE measurements (CDCl₃, 300 MHz)

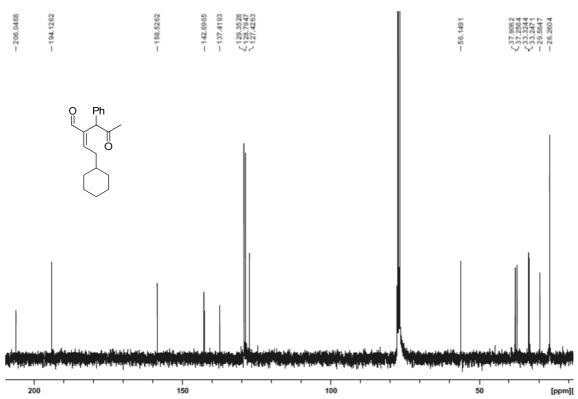


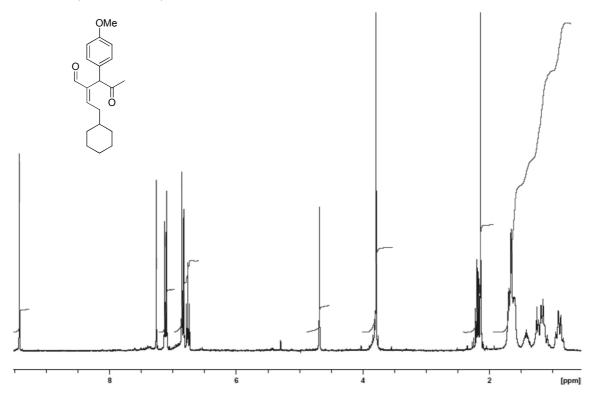

5k: ¹H-NMR (CDCI₃, 300 MHz)

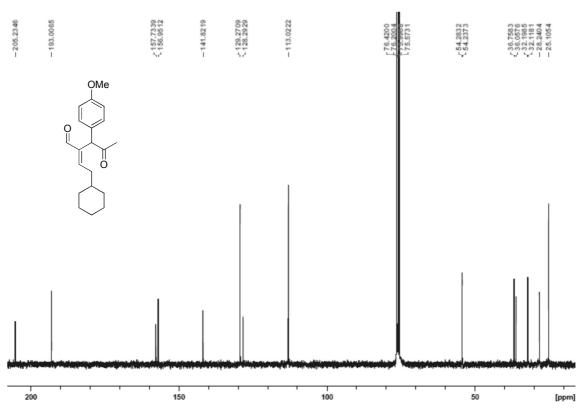

5k: ¹³C-NMR (CDCl₃, 75 MHz)

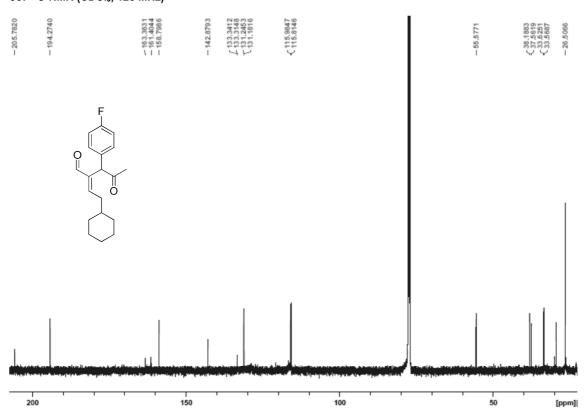

5I: ¹H-NMR (CDCI₃, 300 MHz)

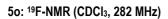



5I: 13C-NMR (CDCI₃, 75 MHz)

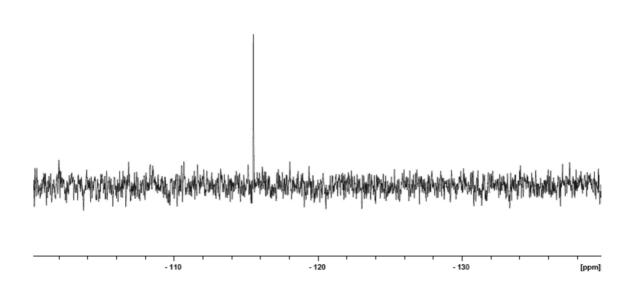




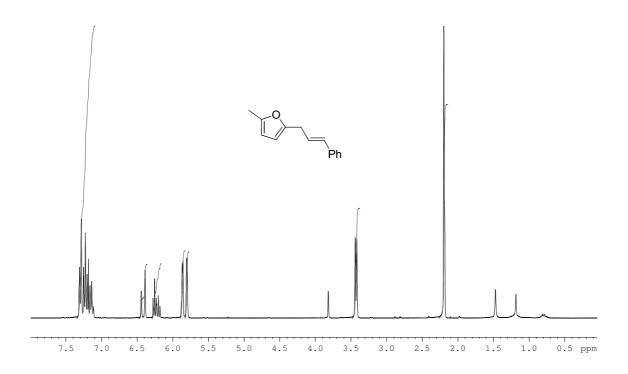

5n: ¹³C-NMR (CDCl₃, 75 MHz)

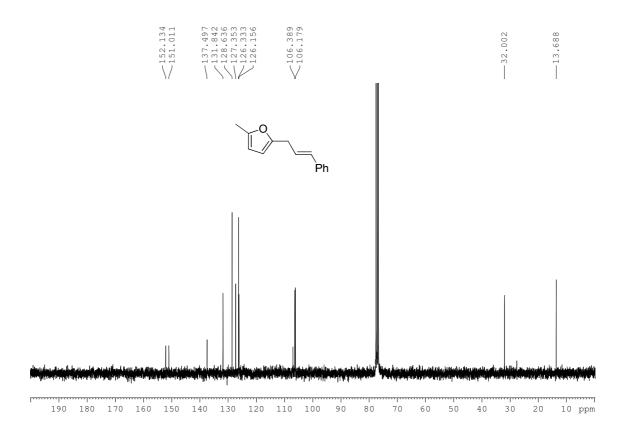


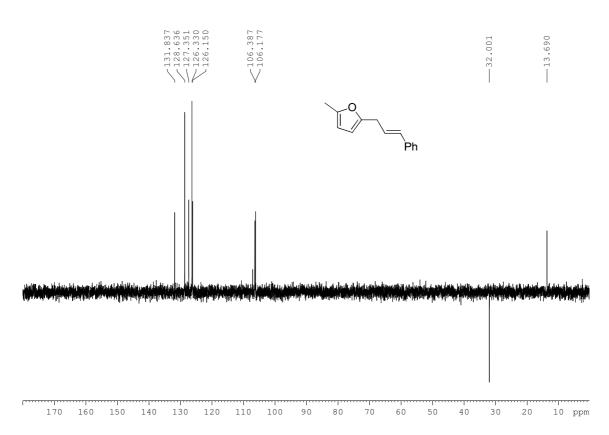
5o: ¹H-NMR (CDCI₃, 500 MHz)

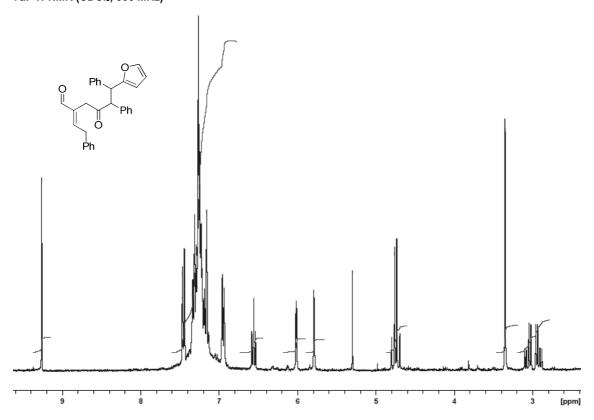


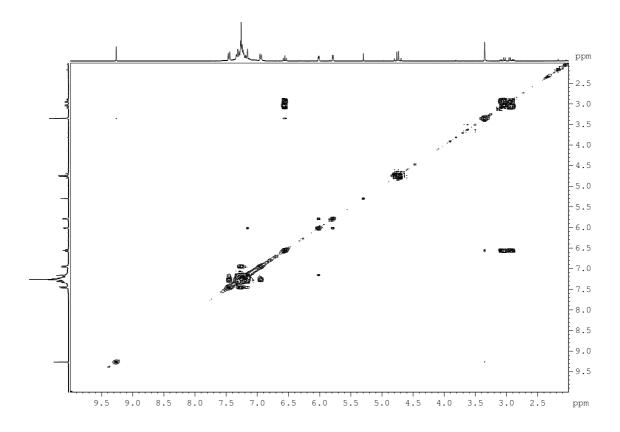
5o: 13C-NMR (CDCI₃, 125 MHz)

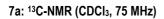


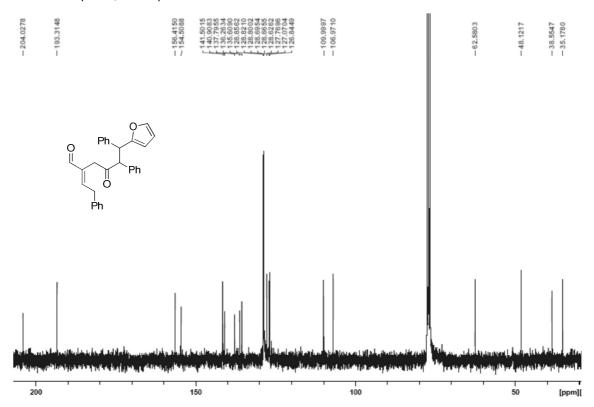


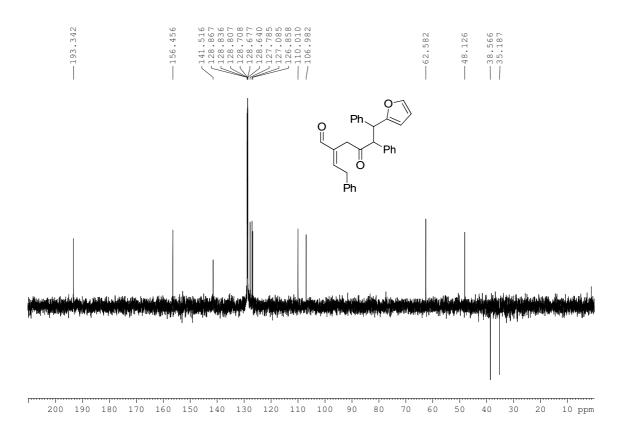

6: ¹H-NMR (CDCI₃, 300 MHz)

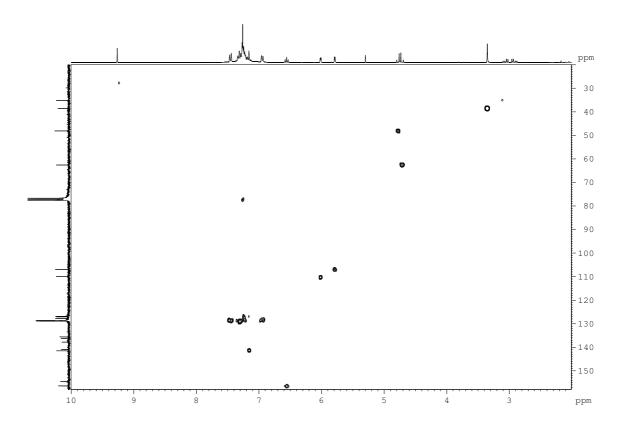

6: 13C-NMR (CDCI₃, 75 MHz)

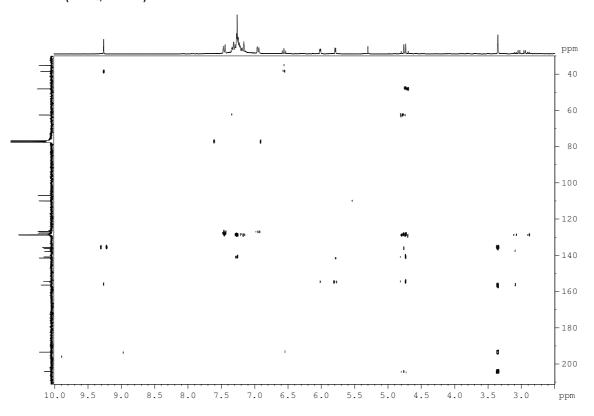

6: DEPT-135 (CDCI₃, 75 MHz)



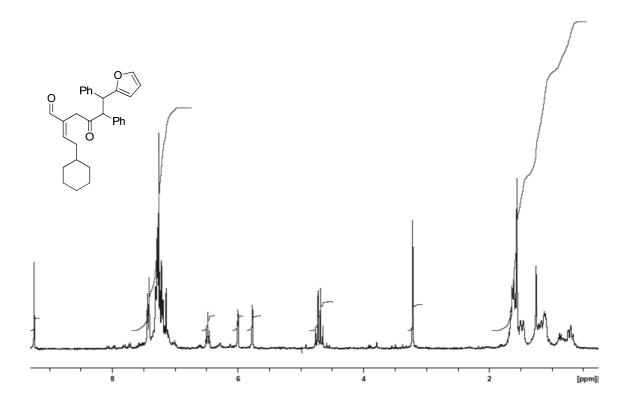

7a: ¹H-NMR (CDCI₃, 300 MHz)

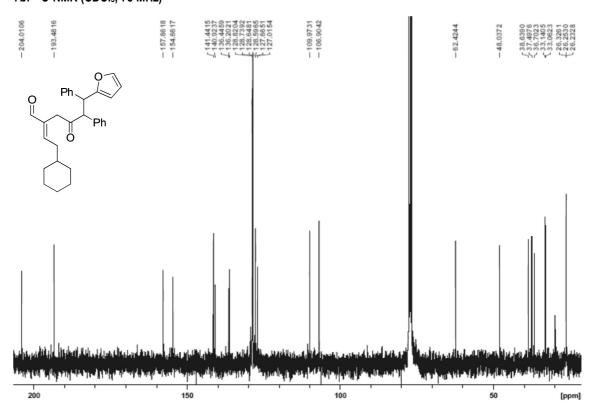

7a: COSY (CDCI₃, 300 MHz)

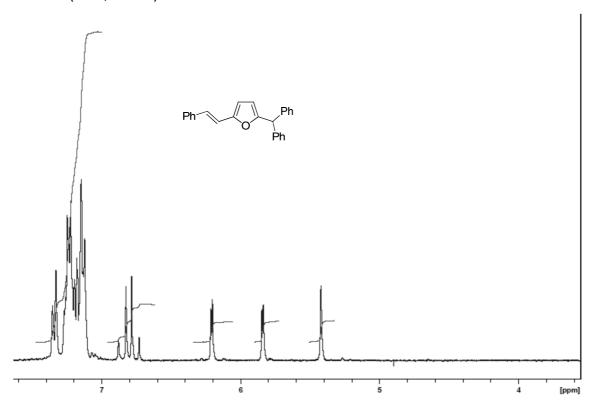


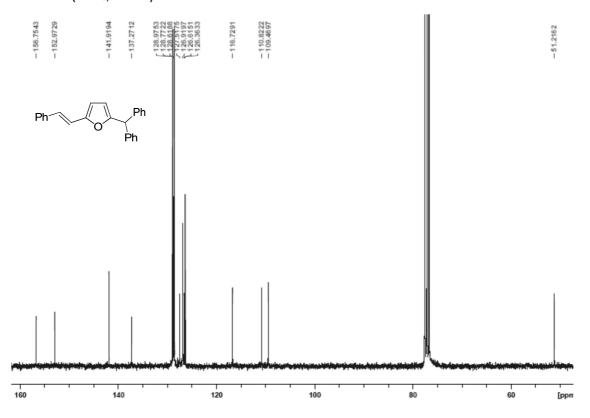


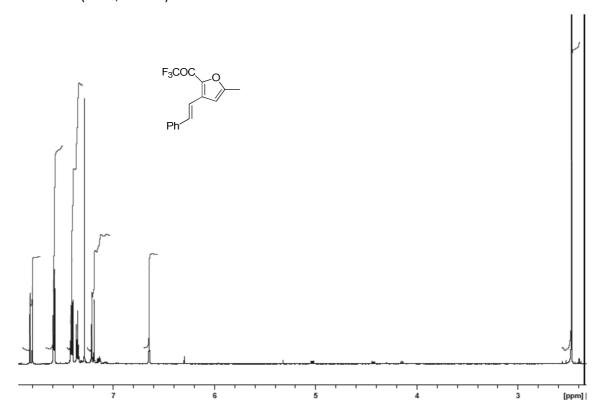
7a: DEPT-135 (CDCI₃, 75 MHz)

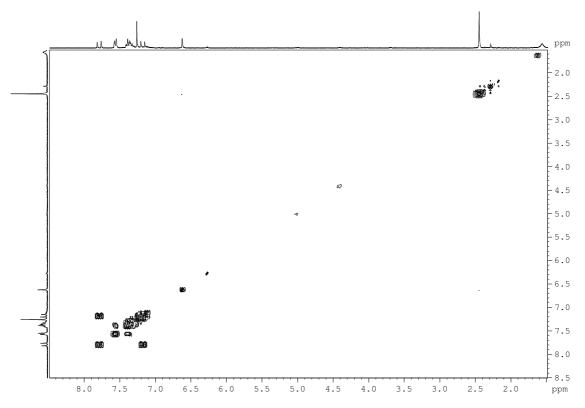




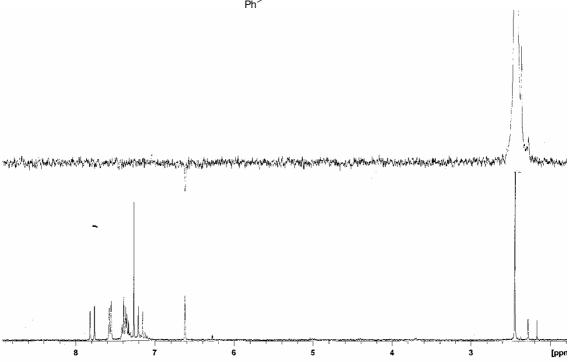

7b: ¹H-NMR (CDCI₃, 300 MHz)

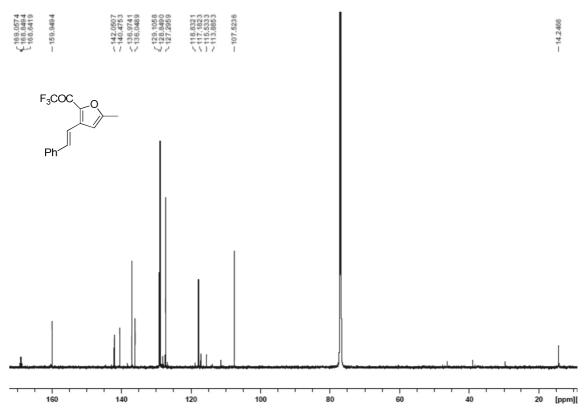

7b: ¹³C-NMR (CDCI₃, 75 MHz)


8: ¹H-NMR (CDCI₃, 300 MHz)

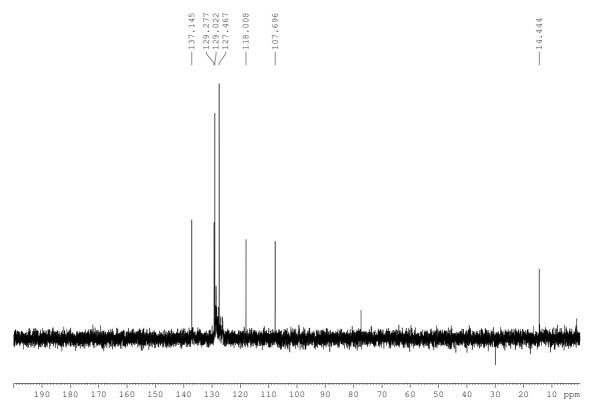

8: 13C-NMR (CDCl₃, 75 MHz)

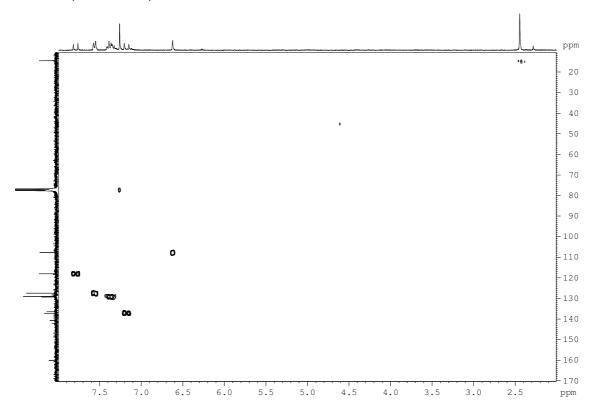
9a: ¹H-NMR (CDCI₃, 700 MHz)

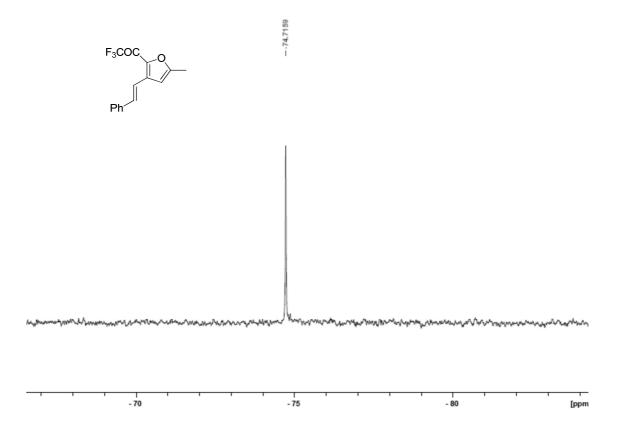


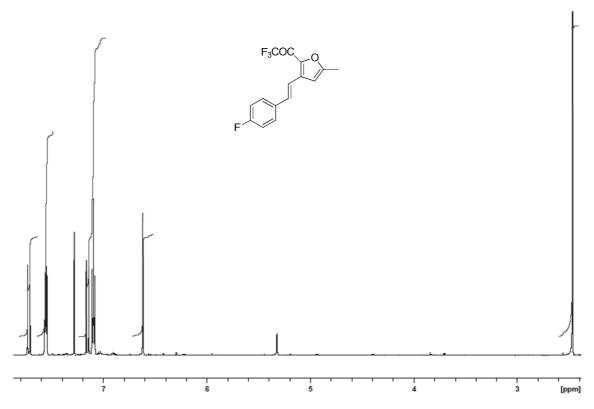


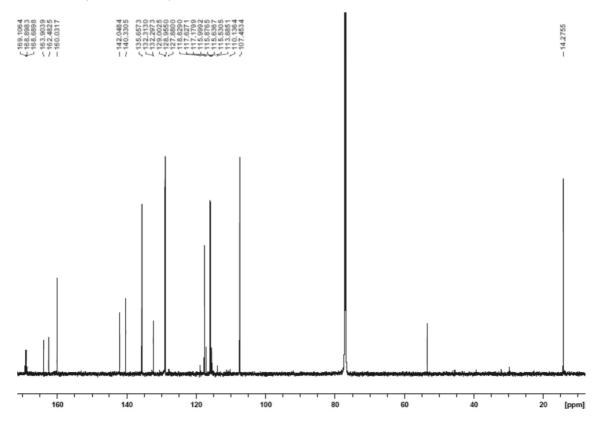
9a: NOE measurements (CDCI₃, 300 MHz)

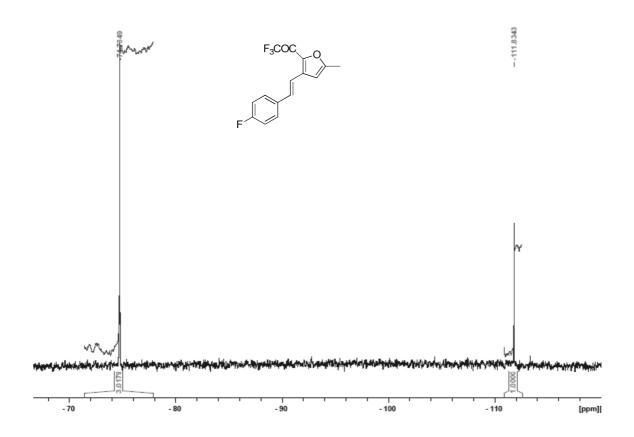


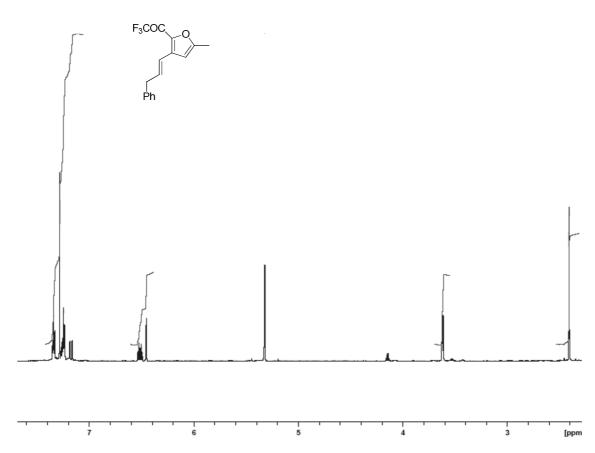

9a: 13C-NMR (CDCI₃, 176 MHz)

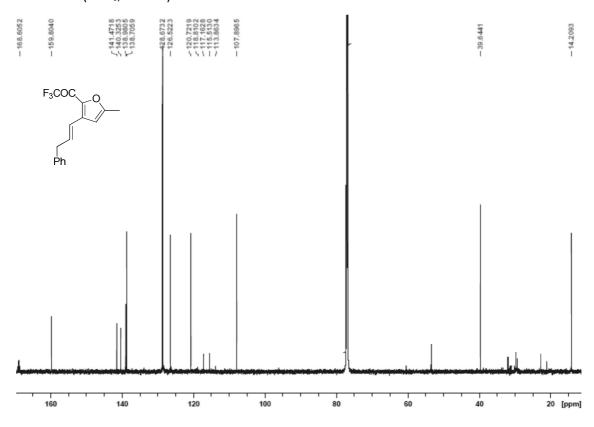

9a: DEPT-135 (CDCI₃, 75 MHz)

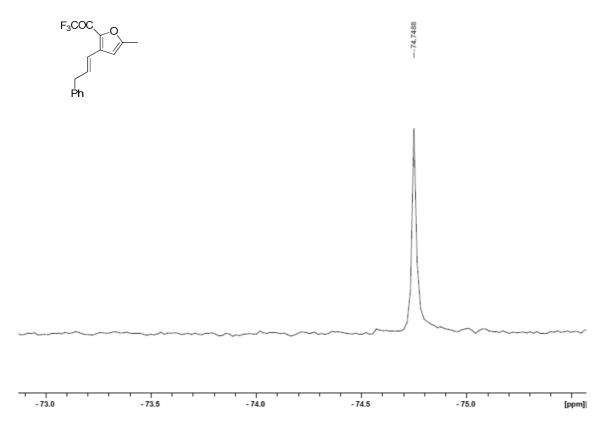

9a: HMQC (CDCI₃, 75 MHz)

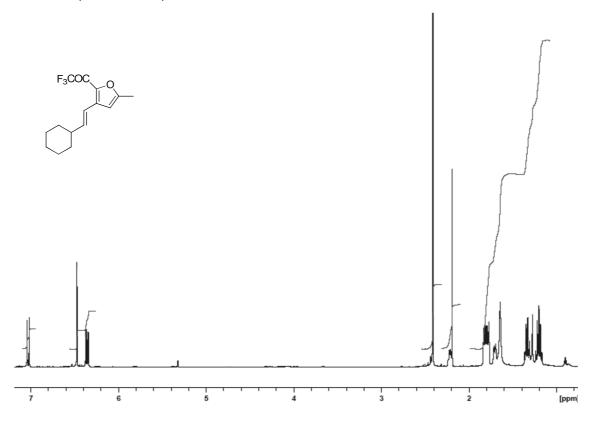

9a: 19F-NMR (CDCI₃, 176 MHz)

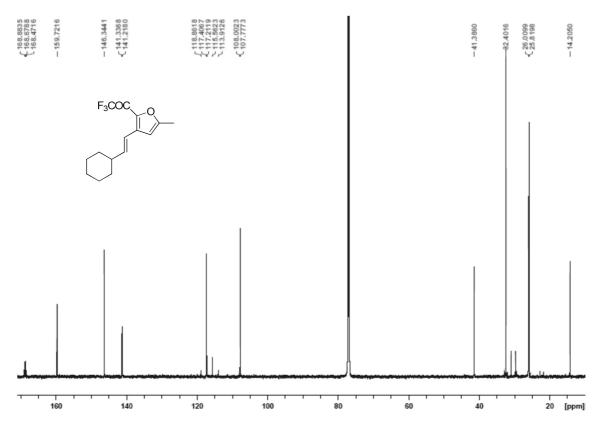

9b: ¹H-NMR (CDCI₃, 700 MHz)

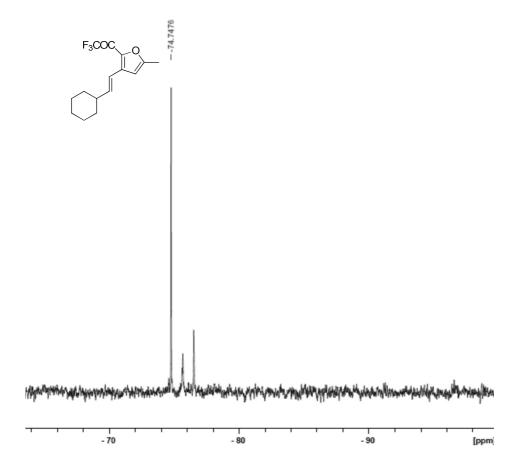

9b: ¹³C-NMR (CDCl₃, 176 MHz)

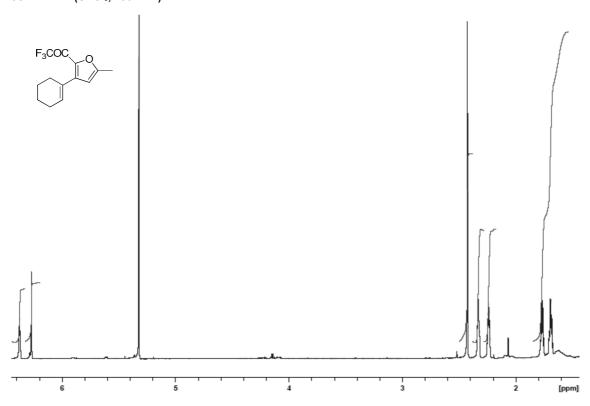

9b: ¹⁹F-NMR (CDCI₃, 282 MHz)

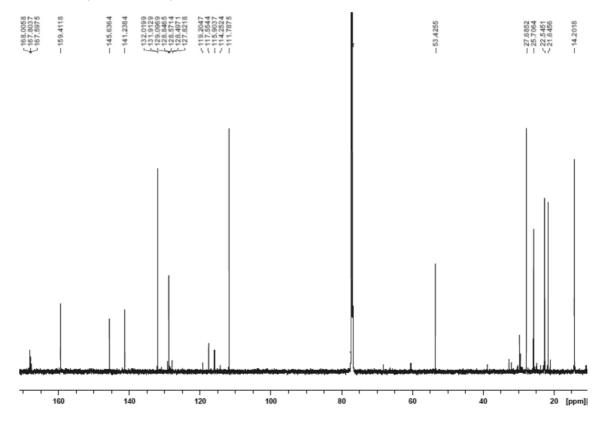

9c: ¹H-NMR (CDCI₃, 700 MHz)

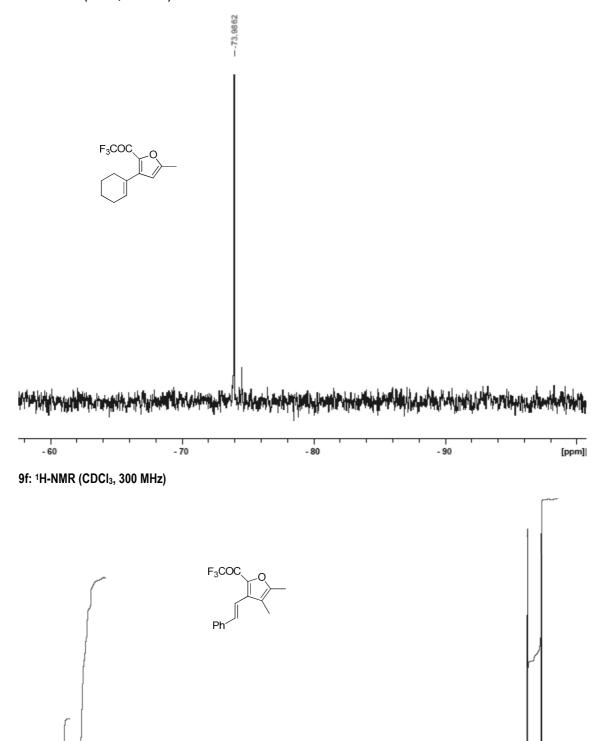

9c: 13C-NMR (CDCI₃, 176 MHz)

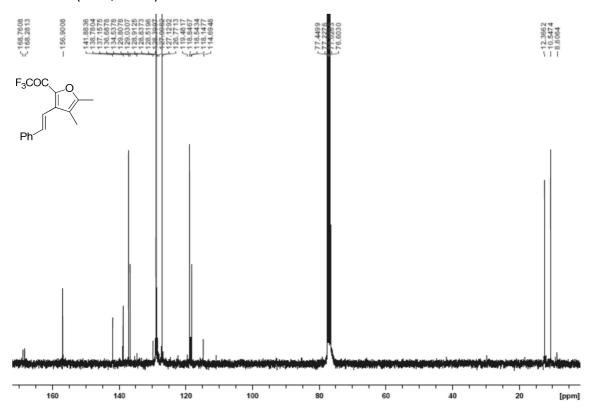


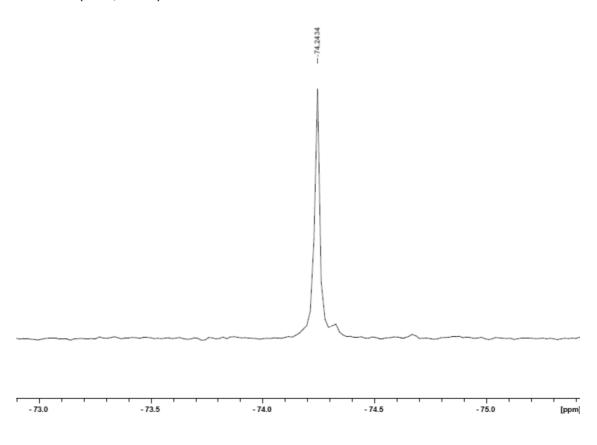

9d: ¹H-NMR (CDCI₃, 700 MHz)

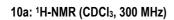

9d: ¹³C-NMR (CDCl₃, 176 MHz)


9d: 19F-NMR (CDCI₃, 282 MHz)

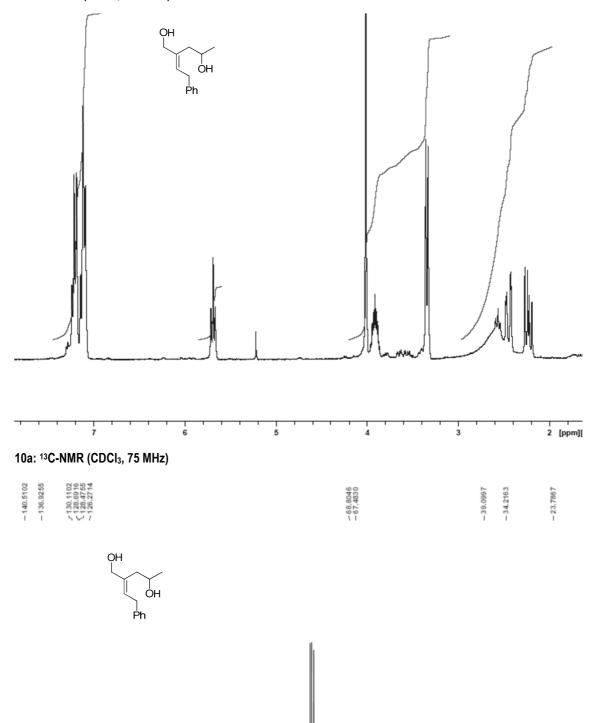


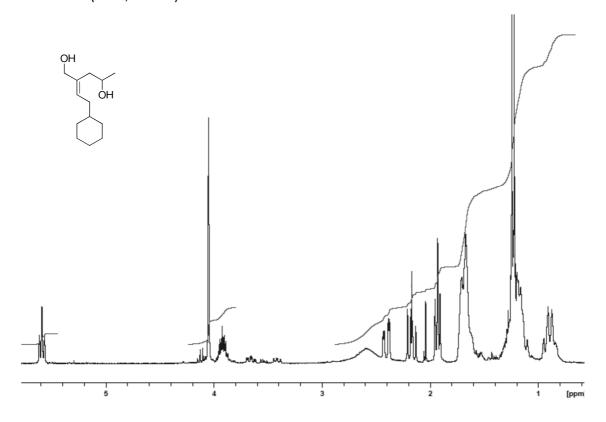

9e: 13C-NMR (CDCI₃, 176 MHz)



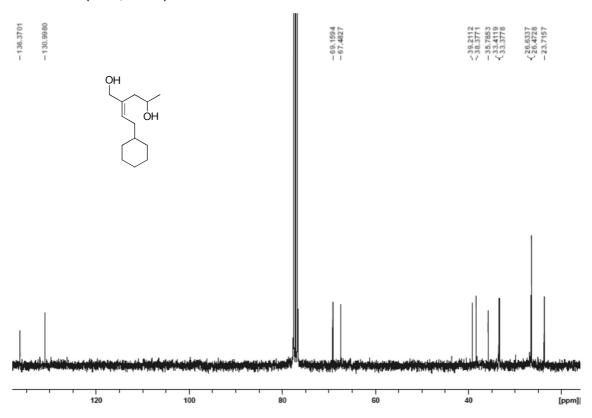


9f: ¹³C-NMR (CDCI₃, 75 MHz)

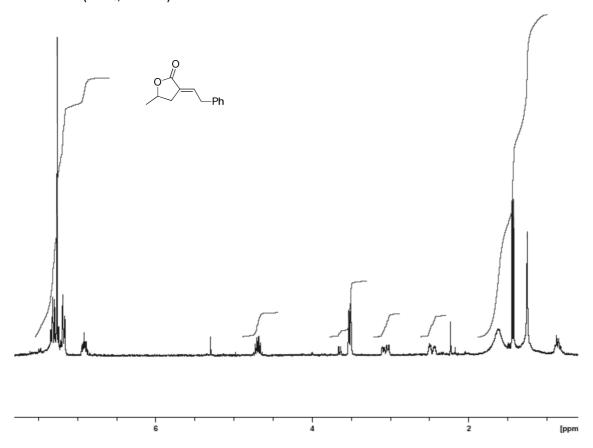

9f: 19F-NMR (CDCI₃, 75 MHz)

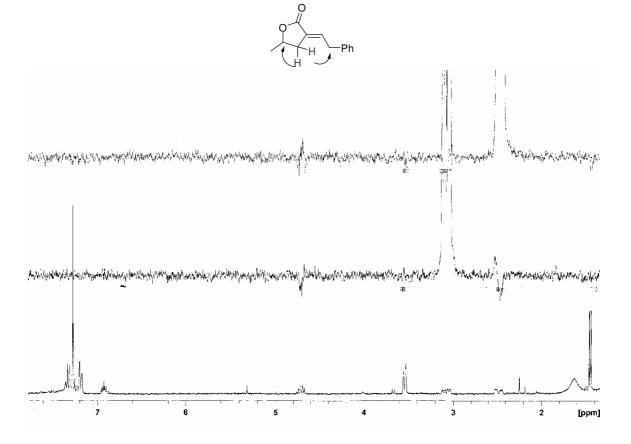

120

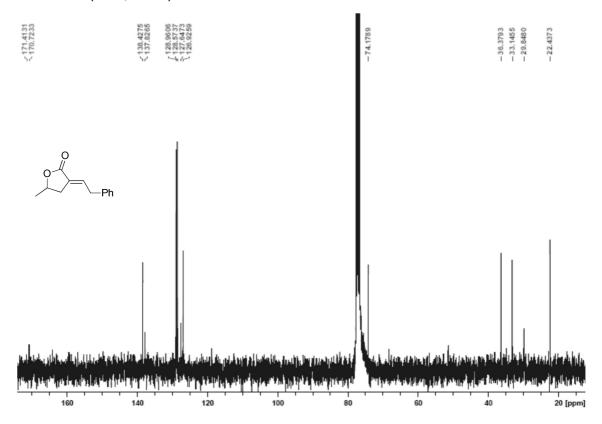
140

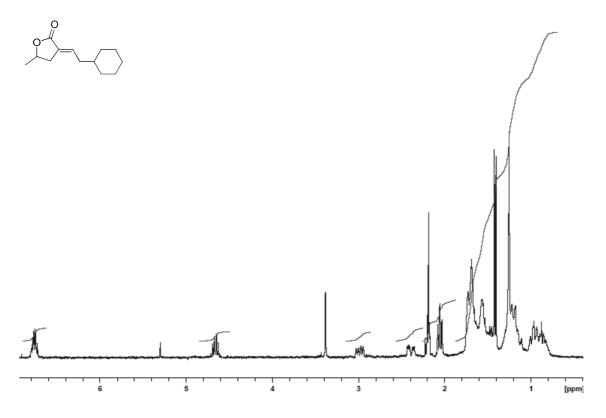


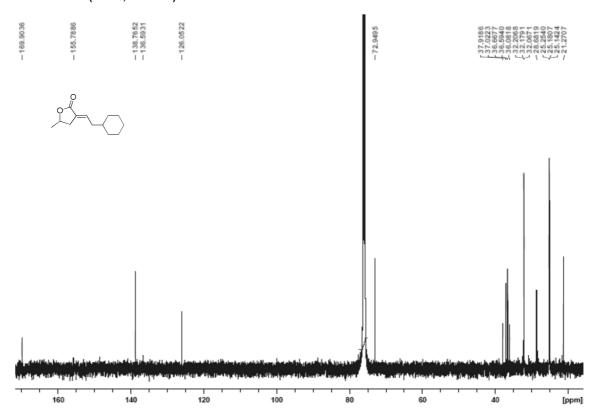
[ppm]

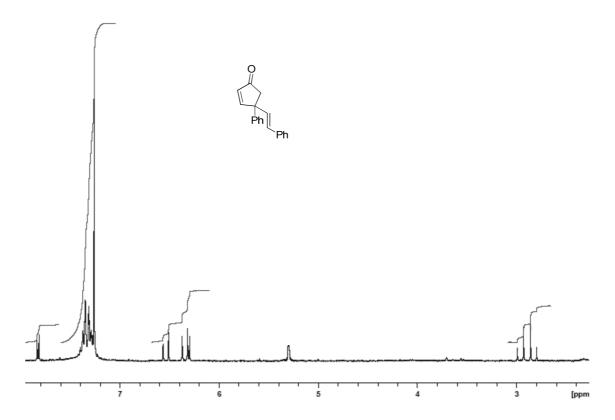

10b: ¹H-NMR (CDCI₃, 300 MHz)

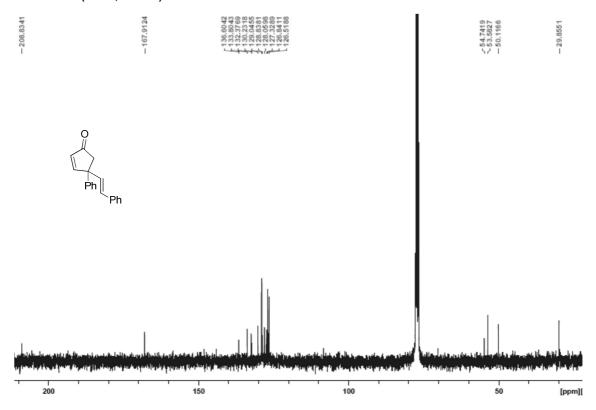

10b: 13C-NMR (CDCI₃, 75 MHz)

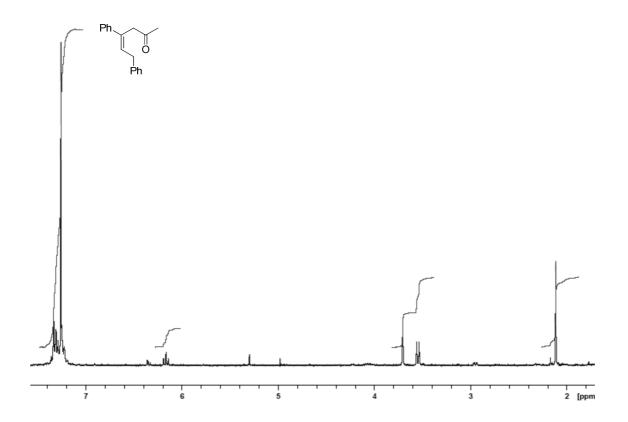

11a: ¹H-NMR (CDCl₃, 300 MHz)

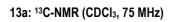

11a: NOE measurements (CDCI₃, 300 MHz)

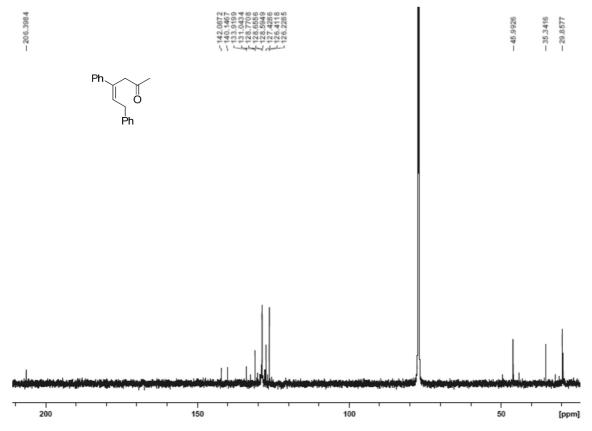

11a: 13C-NMR (CDCI₃, 75 MHz)

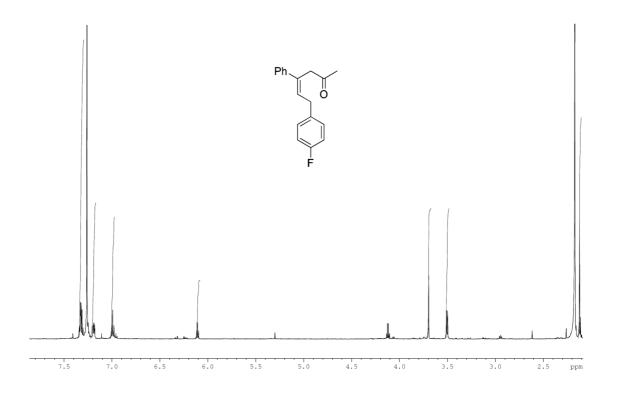

11b: ¹H-NMR (CDCI₃, 500 MHz)

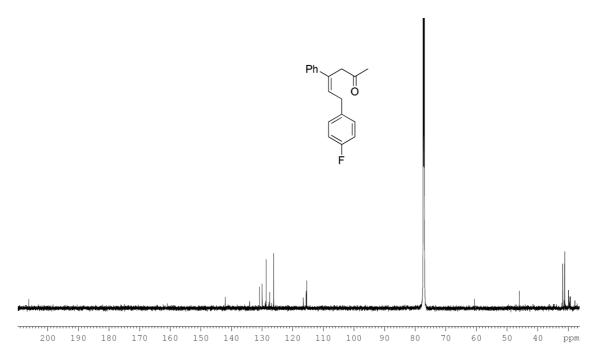

11b: 13C-NMR (CDCI₃, 125 MHz)

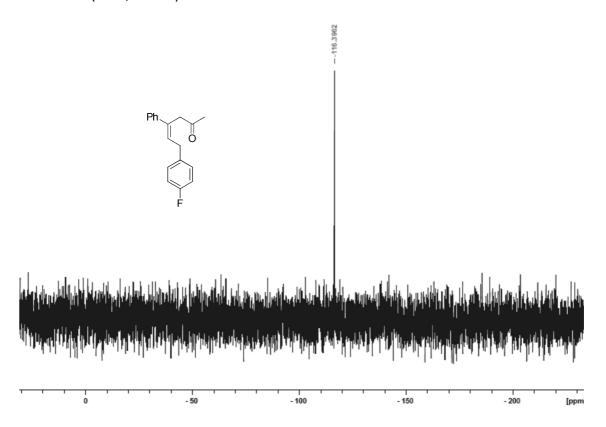

12: ¹H-NMR (CDCI₃, 300 MHz)

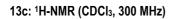


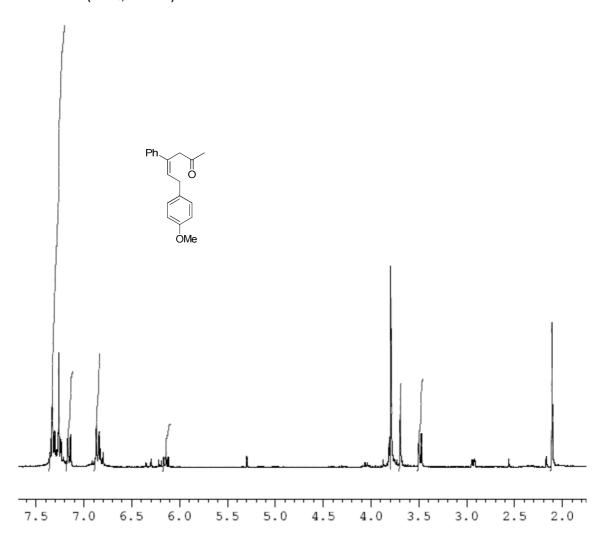

12: 13C-NMR (CDCI₃, 75 MHz)

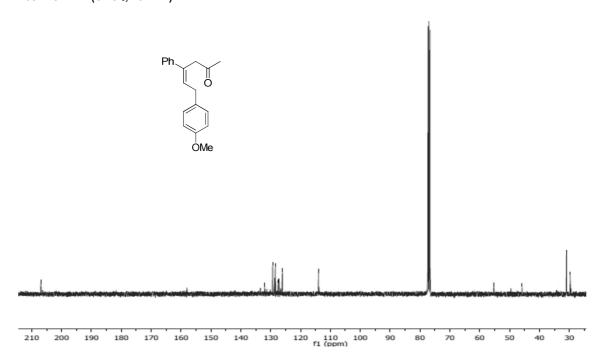

13a: ¹H-NMR (CDCI₃, 300 MHz)

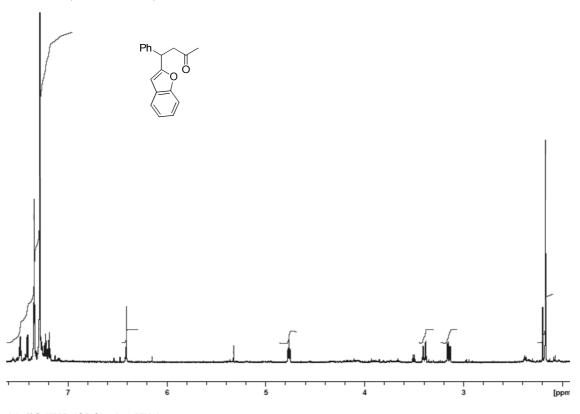


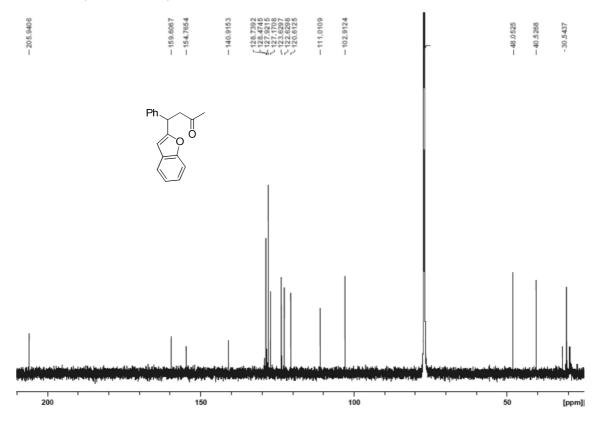



13b: ¹H-NMR (CDCI₃, 300 MHz)




13b: 19F-NMR (CDCI₃, 282 MHz)




13c: 13C-NMR (CDCl₃, 75 MHz)

14: 13C-NMR (CDCI₃, 176 MHz)

