Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

## **Electronic Supplementary Infomation**

## Asymmetric assembly of spirooxindole dihydropyra-nones through direct enantioselective organocatalytic vinylogous aldol-cyclization cascade reaction of 3-alkylidene oxindoles with isatins

Jeng-Liang Han\* and Chia-Hao Chang

Department of Chemistry, Chung Yuan Christian University, Taoyuan City, Taiwan 320

jlhan@cycu.edu.tw

## Table of Contents:

| 1. General Experimental Details                                                                        | S2         |
|--------------------------------------------------------------------------------------------------------|------------|
| 2. Proposed Modes of Activation of Substrates                                                          | <b>S</b> 3 |
| 3. General procedure for the asymmetric synthesis of 4                                                 | <b>S3</b>  |
| 4. Characterization Data                                                                               | <b>S3</b>  |
| 5. The Reaction of Unprotected and <i>N</i> -Benzyl Protected 3-Alkylidene<br>Oxindoles with isatin 3a | S13        |
| 6. Characterization Data of 6                                                                          | S14        |
| 7. References                                                                                          | S14        |
| 8. Absolute Configuration and X-Ray Analysis Data                                                      | S15        |
| 9. Copies of NMR Spectra of Racemic and Chiral Products                                                | <b>S17</b> |
| 10. Copies of HPLC Spectra of Products                                                                 | <b>S37</b> |

### 1. General Experimental Details.

All commercially available reagents were used without further purification unless otherwise stated. All reaction solvents were purified before use. Proton nuclear magnetic resonance (<sup>1</sup>H NMR) spectra were recorded on a commercial instrument at 400 MHz. Carbon-13 nuclear magnetic resonance (<sup>13</sup>C NMR) spectra were recorded at 100 MHz. The proton signal for residual non-deuterated solvent ( $\delta$  7.26 for CHCl<sub>3</sub>) was used as an internal reference for <sup>1</sup>H NMR spectra. For <sup>13</sup>C NMR spectra, chemical shifts are reported relative to the  $\delta$ 77.0 resonance of CHCl<sub>3</sub>. Coupling constants are reported in Hz. Infrared (IR) spectra were recorded on a commercial FTIR instrument. Optical rotations were recorded on an ATAGO POLAX-2L polarimeter. Melting points were determined on a BUCHI B-545 melting point apparatus and are uncorrected. High resolution mass spectra were recorded on a commercial high resolution mass spectrometer Analytical thin layer chromatography (TLC) was performed on Kieselgel 60 F254 glass plates precoated with a 0.25 mm thickness of silica gel. The TLC plates were visualized with UV light and/or by staining with Hanessian solution (ceric sulfate and ammonium molybdate in aqueous sulfuric acid). Column chromatography was generally performed using Kieselgel 60 (230-400 mesh) silica gel, typically using a 50-100:1 weight ratio of silica gel to crude product. The ee values determination was carried out using chiral highperformance liquid chromatography (HPLC) with Daicel Chiracel OD-H, Chiracel AD-H, or Chiracel AS-H columns on JASCO with a UV-4075 detector. The HPLC spectra of racemic mixtures were determined by mixing compound 4 and *ent-*4. Materials:



Catalysts  $1b^1$ ,  $1d^1$ ,  $1e^1$ ,  $1f^2$ ,  $1g^2$  were prepared according to known procedures. 3alkylidene oxindoles 2 were prepared according to literature procedures.<sup>3</sup>

#### 2. Proposed Modes of Activation of Substrates



Figure S1. Proposed modes of activation of substrates for the vinylogous aldol reaction

#### 3. General Procedure for the Synthesis of 4

To a solution of isatins **3** (0.1 mmol) and catalyst **1f** (0.01 mmol) in anhydrous  $CH_2Cl_2$  was added 3-alkylidene oxindoles **2** (0.15 mmol) at room temperature. The reaction mixture was stirred at room temperature for 12-18 h. After completion of the reaction, the reaction solution was concentrated in vacuum and the crude was purified by silica gel flash chromatography (Hexanes/EA 5:1 to 3:1) to afford the pure products **4**. The enantiomeric ratio was determined by HPLC on a chiral stationary phase. The corresponding opposite enantiomeris (*ent*-**4**) were obtained by using catalyst **1g** under the same reaction conditions.

### 4. Characterization Data

*tert*-Butyl (*S*)-(2-(1-benzyl-4'-methyl-2,6'-dioxo-3',6'-dihydrospiro[indoline-3,2'-pyran]-5'-yl)phenyl)carbamate (4a).



White powder; Yield : 99%;  $[\alpha]_D^{29}$ : -34.6 (c = 1.04, CH<sub>2</sub>Cl<sub>2</sub>); mp: 78-80°C; IR (CH<sub>2</sub>Cl<sub>2</sub>): 3445, 1712, 1645, 1586, 1526 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.23 (m, 2H), 7.51 (dd, J = 7.5, 0.6 Hz, 1H), 7.37-7.26 (m, 8H), 7.15-7.12 (m, 2H), 7.07 (ddd, J = 8.3, 7.5, 1.0 Hz, 1H) 4.89 (s, 2H), 3.37 (dd, J = 18.4, 1.9 Hz, 1H), 2.64 (dd, J = 18.4, 1.9 Hz, 1H), 1.86 (s, 3H), 1.47 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  174.2, 163.1, 153.6, 150.5, 142.2, 137.8, 134.8, 131.1, 130.4, 129.1, 129.0, 128.0, 127.2, 126.8, 125.4, 124.5, 123.9, 122.6, 122.2, 119.5, 110.0, 79.6, 78.9, 43.9, 37.0,

28.3, 21.4; HRMS (ESI): cacld for  $C_{31}H_{30}N_2O_5Na$  [M+Na]<sup>+</sup>: 533.2052; found: 533.2046; HPLC analysis: *ee* = 96% on an AS-H column: hexane/*i*-PrOH = 70:30, flow rate = 0.8 mL/min,  $\lambda$  = 220 nm;  $t_{minor}$  = 22.49 min,  $t_{major}$  = 46.00 min.

*tert*-Butyl (*S*)-(2-(1,4'-dimethyl-2,6'-dioxo-3',6'-dihydrospiro[indoline-3,2'pyran]-5'-yl)phenyl)carbamate (4b).



White powder; Yield : 92%;  $[\alpha]_D^{29}$ : -21.8 (c = 1.01, CH<sub>2</sub>Cl<sub>2</sub>); mp: 83-84°C; IR (CH<sub>2</sub>Cl<sub>2</sub>): 3445, 1713, 1617, 1586, 1528 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.25-8.22 (m, 2H), 7.48 (dd, J = 7.4, 0.7 Hz, 1H), 7.40 (ddd, J = 8.5, 7.8, 1.2 Hz, 1H), 7.33 (ddd, J = 8.5, 7.8, 1.7 Hz, 1H), 7.16 (ddd, J = 8.1, 7.6, 0.9 Hz, 1H), 7.11, (dd, J = 7.6, 1.7 Hz, 1H), 7.04 (ddd, J = 8.1, 7.4, 1.7 Hz, 1H), 6.88 (d, J = 7.8 Hz, 1H), 3.32 (dd, J = 18.4, 1.3 Hz, 1H), 3.19 (s, 3H), 2.57 (d, J = 18.4 Hz, 1H), 1.81 (d, J = 1.1 Hz 3H), 1.53 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  174.0, 163.1, 153.6, 150.5, 143.1, 137.8, 131.1, 130.3, 129.1, 126.8, 125.4, 124.5, 123.8, 122.6, 122.1, 119.4, 109.0, 79.6, 78.8, 36.8, 28.3, 26.3, 21.3 ; HRMS (ESI): cacld for C<sub>25</sub>H<sub>26</sub>N<sub>2</sub>O<sub>5</sub>Na [M+Na]<sup>+</sup>: 457.1739; found: 457.1733; HPLC analysis: ee = 95% on an OD-H column: hexane/*i*-PrOH = 70:30, flow rate = 1.0 mL/min,  $\lambda = 220$  nm; t<sub>minor</sub> = 11.10 min, t<sub>major</sub> = 12.71 min.

*tert*-Butyl (*S*)-(2-(1-ethyl-4'-methyl-2,6'-dioxo-3',6'-dihydrospiro[indoline-3, 2'-pyran]-5'-yl)phenyl)carbamate (4c).



White powder; Yield : 94%;  $[\alpha]_D^{29}$ : -19.1 (c = 1.05, CH<sub>2</sub>Cl<sub>2</sub>); mp: 68-69°C; IR (CH<sub>2</sub>Cl<sub>2</sub>): 3445, 3316, 1712, 1651, 1616, 1586, 1529 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.26 (bs, 1H), 8.22 (d, J = 8.3 Hz, 1H), 7.49 (dd, J = 7.6, 0.7 Hz, 1H), 7.39 (ddd, J = 8.5, 7.7, 1.2 Hz, 1H), 7.33 (ddd, J = 8.5, 7.7, 1.6 Hz, 1H), 7.15 (ddd, J = 8.5, 7.5, 0.8 Hz, 1H), 7.11, (dd, J = 7.6, 1.7 Hz, 1H), 7.04 (ddd, J = 8.2, 7.4, 1.0 Hz, 1H), 6.89 (d, J = 7.8 Hz, 1H), 3.72 (m, 2H), 3.31 (dd, J = 18.5, 1.3 Hz, 1H), 2.55 (d, J = 18.5 Hz, 1H), 1.81 (d, J = 0.8 Hz, 3H), 1.52 (s, 9H), 1.27 (t, J = 6.9 Hz, 3H); <sup>13</sup>C

NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  173.7, 163.2, 153.6, 150.5, 142.1, 137.9, 131.1, 130.4, 129.1, 127.0, 125.4, 124.7, 123.6, 122.6, 122.1, 119.4, 109.1, 79.6, 78.8, 36.9, 35.0, 28.3, 21.3, 12.4; HRMS (ESI): cacld for C<sub>26</sub>H<sub>28</sub>N<sub>2</sub>O<sub>5</sub>Na [M+Na]<sup>+</sup>: 471.1896; found: 471.1895; HPLC analysis: *ee* = 94% on an AS-H column: hexane/*i*-PrOH = 85:15, flow rate = 1.0 mL/min,  $\lambda$  = 220 nm; t<sub>minor</sub> = 21.90 min, t<sub>major</sub> = 28.91 min.

*tert*-Butyl (*S*)-(2-(1-allyl-4'-methyl-2,6'-dioxo-3',6'-dihydrospiro[indoline-3, 2'-pyran]-5'-yl)phenyl)carbamate (4d).



White powder; Yield : 95%; [ $\alpha$ ]<sub>D</sub><sup>29</sup>: -28.6 (c = 1.05, CH<sub>2</sub>Cl<sub>2</sub>); mp: 65-66°C; IR (CH<sub>2</sub>Cl<sub>2</sub>): 3445, 3320, 1713, 1647, 1616, 1586, 1527 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.23-8.20 (m, 2H), 7.50 (d, J = 7.5 Hz, 1H), 7.39-7.30 (m, 2H), 7.15 (ddd, J = 8.4, 7.6, 0.8 Hz, 1H), 7.11, (dd, J = 7.7, 1.7 Hz, 1H), 7.04 (ddd, J = 8.2, 7.4, 1.0 Hz, 1H), 6.87 (d, J = 7.9 Hz, 1H), 5.86-5.78 (m, 1H), 5.28-5.24 (m, 2H), 4.31-4.29 (m, 2H), 3.33 (dd, J = 18.5, 1.1 Hz, 1H), 2.58 (d, J = 18.5 Hz, 1H), 1.82 (s, 3H), 1.51 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  173.8, 163.1, 153.6, 150.5, 142.2, 137.8, 131.1, 130.4, 129.1, 126.8, 125.4, 124.5, 123.8, 122.6, 122.1, 119.4, 118.4, 109.9, 79.6, 78.8, 42.5, 37.0, 28.3, 21.3; HRMS (ESI): cacld for C<sub>27</sub>H<sub>28</sub>N<sub>2</sub>O<sub>5</sub>Na [M+Na]<sup>+</sup>: 483.1896; found: 483.1887; HPLC analysis: ee = 95% on an OD-H column: hexane/*i*-PrOH = 70:30, flow rate = 1.0 mL/min,  $\lambda$  = 220 nm; t<sub>minor</sub> = 7.40 min, t<sub>maior</sub> = 8.75 min.

```
tert-Butyl (S)-(2-(4'-methyl-2,6'-dioxo-3',6'-dihydrospiro[indoline-
3,2' -pyran]-5'-yl)phenyl)carbamate (4e).
```



Yellow powder; Yield : 90%; [ $\alpha$ ]<sub>D</sub><sup>29</sup>: -17.0 (c = 1.03, CH<sub>2</sub>Cl<sub>2</sub>); mp: 100-101°C; IR (CH<sub>2</sub>Cl<sub>2</sub>): 3445, 3323, 1720, 1624, 1586, 1526 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.92 (bs, 1H), 8.04 (bs, 2H), 7.44 (d, J = 7.4 Hz, 1H), 7.34 (ddd, J = 8.6, 7.7, 1.7 Hz, 1H ), 7.28 (ddd, J = 8.4, 7.9, 1.0 Hz, 1H ), 7.15 (dd, J = 7.7, 1.5 Hz, 1H), 7.12-7.06,

(m, 2H), 6.87 (d, J = 7.9 Hz, 1H), 3.29 (dd, J = 18.4, 1.0 Hz, 1H), 2.61 (d, J = 18.4 Hz, 1H), 1.81 (s, 3H), 1.46 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  176.3, 163.2, 153.8, 150.4, 140.3, 137.4, 131.2, 130.6, 129.1, 127.1, 125.2, 124.5, 123.7, 123.2, 122.7, 120.1, 111.3, 79.3, 36.9, 28.3, 21.3; HRMS (ESI): cacld for C<sub>24</sub>H<sub>24</sub>N<sub>2</sub>O<sub>5</sub>Na [M+Na]<sup>+</sup>: 443.1583; found: 443.1582; HPLC analysis: *ee* = 95% on an OD-H column: hexane/*i*-PrOH = 85:15, flow rate = 1.0 mL/min,  $\lambda = 220$  nm; t<sub>minor</sub> = 11.43 min, t<sub>major</sub> = 13.75 min.

*tert*-Butyl (*S*)-(2-(1-benzyl-5-chloro-4'-methyl-2,6'-dioxo-3',6'-dihydro-spiro[indoline-3,2'-pyran]-5'-yl)phenyl)carbamate (4f).



White powder; Yield : 92%;  $[\alpha]_D^{29}$ : -41.8 (c = 1.10, CH<sub>2</sub>Cl<sub>2</sub>); mp: 100-101°C; IR (CH<sub>2</sub>Cl<sub>2</sub>): 3449, 1716, 1648, 1617, 1586, 1526 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.23 (d, J = 8.2 Hz, 1H), 8.14 (bs, 1H), 7.50 (bs, 1H), 7.36-7.25 (m, 7H), 7.14 (d, J = 7.4, 1H), 7.07 (m, 1H), 6.68 (d, J = 8.3 Hz, 1H), 4.87 (dd, J = 23.5, 15.8 Hz, 2H), 3.34 (d, J = 18.8 Hz, 1H), 2.63 (d, J = 18.8 Hz, 1H), 1.86 (s, 3H), 1.46 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  173.4, 162.6, 153.5, 150.3, 140.6, 137.8, 134.3, 131.0, 130.4, 129.3, 129.2, 129.1, 128.3, 128.2, 127.2, 125.4, 125.2, 122.3, 122.2, 119.5, 111.1, 79.7, 78.6, 44.0, 36.8, 28.3, 21.4; HRMS (ESI): cacld for C<sub>31</sub>H<sub>29</sub>N<sub>2</sub>O<sub>5</sub>Na<sup>35</sup>Cl [M+Na]<sup>+</sup>: 567.1663; found: 567.1656; HPLC analysis: ee = 90% on an OD-H column: hexane/*i*-PrOH = 80:20, flow rate = 0.8 mL/min,  $\lambda = 220$  nm; t<sub>minor</sub> = 18.90 min, t<sub>major</sub> = 28.33 min.

# *tert*-Butyl (*S*)-(2-(1-benzyl-6-chloro-4'-methyl-2,6'-dioxo-3',6'-dihydro-spiro[indoline-3,2'-pyran]-5'-yl)phenyl)carbamate (4g).



White powder; Yield : 80%;  $[\alpha]_D^{29}$ : -23.3 (c = 0.86, CH<sub>2</sub>Cl<sub>2</sub>); mp: 85-86°C; IR (CH<sub>2</sub>Cl<sub>2</sub>): 3450, 1717, 1648, 1617, 1586, 1526 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.23 (d, J = 8.8 Hz, 1H), 8.12 (bs, 1H), 7.43 (d, J = 8.2 Hz, 1H), 7.38-7.26 (m, 6H), 7.14-7.10 (m, 2H), 7.06 (ddd, J = 8.2, 7.4, 1.0 Hz, 1H), 6.76 (d, J = 1.7 Hz, 1H), 4.86

(s, 2H), 3.34 (dd, J = 18.5, 1.5 Hz, 1H), 2.61 (d, J = 18.5 Hz, 1H), 1.85 (s, 3H), 1.46 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  174.2, 162.8, 153.5, 150.4, 143.4, 137.7, 137.0, 134.2, 130.4, 129.3, 129.2, 128.3, 127.2, 125.6, 125.4, 125.2, 123.9, 122.4, 122.2, 119.5, 110.7, 79.7, 78.4, 44.0, 36.9, 28.3, 21.4; HRMS (ESI): cacld for C<sub>31</sub>H<sub>29</sub>N<sub>2</sub>O<sub>5</sub>Na<sup>35</sup>Cl [M+Na]<sup>+</sup>: 567.1663; found: 567.1658; HPLC analysis: *ee* = 98% on an OD-H column: hexane/*i*-PrOH = 80:20, flow rate = 0.8 mL/min,  $\lambda$  = 220 nm; t<sub>minor</sub> = 17.39 min, t<sub>major</sub> = 37.39 min.

*tert*-Butyl (*S*)-(2-(1-benzyl-7-chloro-4'-methyl-2,6'-dioxo-3',6'-dihydro-spiro[indoline-3,2'-pyran]-5'-yl)phenyl)carbamate (4h).



White powder; Yield : 99%;  $[\alpha]_D^{29}$ : -8.62 (c = 1.16, CH<sub>2</sub>Cl<sub>2</sub>); mp: 78-79°C; IR (CH<sub>2</sub>Cl<sub>2</sub>): 3445, 3333, 1717, 1650, 1613, 1586, 1526 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.22 (d, J = 8.6 Hz, 1H), 8.13 (bs, 1H), 7.45 (dd, J = 7.4, 1.1 Hz, 1H), 7.36-7.20 (m, 7H), 7.14-7.03 (m, 3H), 5.33 (dd, J = 25.3, 16.3 Hz, 2H), 3.34 (dd, J = 18.4, 1.1 Hz, 1H), 2.61 (d, J = 18.4 Hz, 1H), 1.84 (s, 3H), 1.39 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  175.0, 162.8, 153.5, 150.2, 138.3, 137.8, 136.3, 133.6, 130.4, 129.7, 129.2, 128.8, 127.5, 126.2, 125.4, 124.9, 123.3, 122.3, 122.2, 119.5, 116.3, 79.6, 78.2, 45.0, 37.3, 28.3, 21.4; HRMS (ESI): cacld for C<sub>31</sub>H<sub>29</sub>N<sub>2</sub>O<sub>5</sub>Na<sup>35</sup>Cl [M+Na]<sup>+</sup>: 567.1663; found: 567.1658; HPLC analysis: ee = 91% on an OD-H column: hexane/*i*-PrOH = 80:20, flow rate = 0.8 mL/min,  $\lambda = 220$  nm; t<sub>minor</sub> = 23.50 min, t<sub>major</sub> = 36.90 min.

*tert*-Butyl (*S*)-(2-(1-benzyl-5-fluoro-4'-methyl-2,6'-dioxo-3',6'-dihydro-spiro[indoline-3,2'-pyran]-5'-yl)phenyl)carbamate (4i).



White powder; Yield : 99%;  $[\alpha]_D^{29}$ : -18.2 (c = 1.10, CH<sub>2</sub>Cl<sub>2</sub>); mp: 101-102°C; IR (CH<sub>2</sub>Cl<sub>2</sub>): 3446, 1713, 1646, 1586, 1526 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.23 (d, J = 8.3 Hz, 1H), 8.19 (bs, 1H), 7.36-7.24 (m, 7H), 7.13 (dd, J = 7.6, 1.2 Hz, 1H), 7.06 (dd, J = 7.6, 7.5, 1.2 Hz, 1H), 6.99 (dd, J = 9.5, 9.0, 2.6 Hz, 1H), 6.69 (dd, J = 8.7,

4.0 Hz, 1H), 4.87 (dd, J = 19.5, 15.8 Hz, 2H ), 3.33 (dd, J = 18.5, 1.2 Hz, 1H), 2.64 (d, J = 18.5 Hz, 1H), 1.85 (s, 3H), 1.46 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  174.1, 162.7, 159.6 (d, J = 244 Hz), 153.6, 150.4, 138.0 (d, J = 2.2 Hz), 137.8, 134.4, 130.4, 129.2, 129.1, 128.3, 128.2, 128.1, 127.2, 125.4, 122.4, 122.2, 119.5, 117.5 (d, J = 23.7 Hz), 112.8 (d, J = 25.5 Hz), 110.9 (d, J = 7.8 Hz), 80.0, 78.8, 44.0, 36.9, 28.3, 21.4; HRMS (ESI): cacld for C<sub>31</sub>H<sub>29</sub>N<sub>2</sub>O<sub>5</sub>NaF [M+Na]<sup>+</sup>: 551.1958; found: 551.1954; HPLC analysis: ee = 99% on an OD-H column: hexane/*i*-PrOH = 80:20, flow rate = 0.8 mL/min,  $\lambda = 220$  nm; t<sub>minor</sub> = 17.71 min, t<sub>major</sub> = 23.40 min.

*tert*-Butyl (*S*)-(2-(1-benzyl-7-fluoro-4'-methyl-2,6'-dioxo-3',6'-dihydro-spiro[indoline-3,2'-pyran]-5'-yl)phenyl)carbamate (4j).



Yellow powder; Yield : 91%; [ $\alpha$ ]<sub>D</sub><sup>29</sup>: -20.8 (c = 0.96, CH<sub>2</sub>Cl<sub>2</sub>); mp: 80-81°C; IR (CH<sub>2</sub>Cl<sub>2</sub>): 3450, 1717, 1634, 1587, 1525 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.24 (d, J = 8.3 Hz, 1H), 8.14 (bs, 1H), 7.37-7.27 (m, 7H), 7.14-7.04 (m, 4H), 5.03 (dd, J = 26.4, 15.6 Hz, 2H), 3.33 (dd, J = 18.4, 1.3 Hz, 1H), 2.61 (d, J = 18.4 Hz, 1H), 1.84 (d, J = 0.8 Hz, 3H), 1.47 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  174.1, 162.7, 153.6, 150.2, 147.4 (d, J = 246.0 Hz), 137.7, 135.9, 130.4, 129.6 (d, J = 3.0 Hz), 129.2, 128.8 (d, J = 9.3 Hz), 128.8, 128.0, 127.4 (d, J = 1.5 Hz), 125.4, 124.8 (d, J = 6.4 Hz), 122.4, 122.2, 120.5 (d, J = 3.5 Hz), 119.5, 119.3 (d, J = 19.4 Hz), 80.0, 78.7, 45.5 (d, J = 4.5 Hz), 37.1, 28.3, 21.4; HRMS (ESI): cacld for C<sub>31</sub>H<sub>29</sub>N<sub>2</sub>O<sub>5</sub>NaF [M+Na]<sup>+</sup>: 551.1958; found: 551.1949; HPLC analysis: ee = 94% on an OD-H column: hexane/*i*-PrOH = 80:20, flow rate = 0.8 mL/min,  $\lambda$  = 220 nm; t<sub>minor</sub> = 14.96 min, t<sub>major</sub> = 17.78 min.

*tert*-Butyl (*S*)-(2-(1-benzyl-5-bromo-4'-methyl-2,6'-dioxo-3',6'-dihydro-spiro[indoline-3,2'-pyran]-5'-yl)phenyl)carbamate (4k).



White powder; Yield : 87%; [ $\alpha$ ]<sub>D</sub><sup>29</sup>: -49.0 (c = 1.02, CH<sub>2</sub>Cl<sub>2</sub>); mp: 145-146°C; IR (CH<sub>2</sub>Cl<sub>2</sub>): 3445, 1716, 1646, 1614, 1586, 1525 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 

8.23 (d, J = 8.2 Hz, 1H), 8.12 (bs, 1H), 7.64, (d, J = 1.8 Hz, 1H), 7.41 (dd, J = 8.4, 1.9 Hz, 1H), 7.36-7.26 (m, 6H), 7.14-7.05 (m, 2H), 6.64 (d, J = 8.4 Hz, 1H), 4.86 (dd, J = 24.6, 15.7 Hz, 2H), 3.35 (d, J = 18.4 Hz, 1H), 2.63 (d, J = 18.4 Hz, 1H), 1.86 (s, 3H), 1.46 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  173.8, 162.6, 153.5, 150.3, 141.1, 137.7, 134.3, 133.9, 130.4, 129.2, 129.1, 128.6, 128.2, 128.0, 127.2, 125.4, 122.3, 122.3, 119.5, 116.5, 111.6, 79.7, 78.6, 44.0, 36.9, 28.3, 21.4; HRMS (ESI): cacld for C<sub>31</sub>H<sub>29</sub>N<sub>2</sub>O<sub>5</sub>Na<sup>79</sup>Br [M+Na]<sup>+</sup>: 611.1158; found: 611.1160; HPLC analysis: *ee* = 98% on an OD-H column: hexane/*i*-PrOH = 80:20, flow rate = 0.8 mL/min,  $\lambda$  = 220 nm; t<sub>minor</sub> = 21.65 min, t<sub>major</sub> = 33.83 min.

# *tert*-Butyl (*S*)-(2-(1-benzyl-4',5-dimethyl-2,6'-dioxo-3',6'-dihydrospiro[indoline-3,2'-pyran]-5'-yl)phenyl)carbamate (4l).



White powder; Yield : 95%;  $[\alpha]_D^{29}$ : -26.8 (c = 1.12, CH<sub>2</sub>Cl<sub>2</sub>); mp: 88-89°C; IR (CH<sub>2</sub>Cl<sub>2</sub>): 3441, 3320, 1712, 1627, 1606, 1586, 1526 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.25-8.23 (m, 2H), 7.36-7.27 (m, 7H), 7.14 (dd, J = 7.6, 1.6 Hz, 1H), 7.09-7.04 (m, 2H), 6.65 (d, J = 8.0 Hz, 1H) ,4.86 (s, 2H), 3.36 (dd, J = 18.5, 1.2 Hz, 1H), 2.61 (d, J = 18.5 Hz, 1H), 2.32 (s, 3H), 1.85 (s, 3H), 1.47 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  174.2, 163.1, 153.6, 150.5, 139.7, 137.9, 134.9, 133.6, 131.3, 130.4, 129.1, 129.0, 127.9, 127.2, 126.8, 125.4, 125.3, 122.6, 122.2, 119.5, 109.8, 79.6, 79.0, 43.9, 37.1, 28.3, 21.3, 21.0; HRMS (ESI): cacld for C<sub>32</sub>H<sub>32</sub>N<sub>2</sub>O<sub>5</sub>Na [M+Na]<sup>+</sup>: 547.2209; found: 547.2205; HPLC analysis: ee = 97% on an AS-H column: hexane/*i*-PrOH = 70:30, flow rate = 0.8 mL/min,  $\lambda = 220$  nm; t<sub>minor</sub> = 16.84 min, t<sub>major</sub> = 28.02 min.

# *tert*-Butyl (*S*)-(2-(1-benzyl-5-methoxy-4'-methyl-2,6'-dioxo-3',6'-dihydro-spiro[indoline-3,2'-pyran]-5'-yl)phenyl)carbamate (4m).



Yellow solid; Yield : 85%;  $[\alpha]_D^{29}$ : -10.0 (c = 1.00, CH<sub>2</sub>Cl<sub>2</sub>); mp: 59-60°C; IR (CH<sub>2</sub>Cl<sub>2</sub>): 3445, 1708, 1636, 1587, 1527 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.26-

8.22 (m, 2H), 7.35-7.26 (m, 6H), 7.15-7.03 (m, 3H), 6.80 (dd, J = 8.5, 2.5 Hz, 1H), 6.65 (d, J = 8.5 Hz, 1H), 4.85 (s, 2H), 3.77 (s, 3H), 3.35 (d, J = 18.3 Hz, 1H), 2.63 (d, J = 18.3 Hz, 1H), 1.85 (s, 3H), 1.46 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  174.0, 163.1, 156.8, 153.6, 150.4, 137.9, 135.2, 134.9, 130.4, 129.1, 129.0, 128.0, 127.9, 127.2, 125.4, 125.3, 122.6, 122.2, 119.5, 115.7, 111.5, 110.7, 79.6, 79.2, 55.9, 44.0, 37.2, 28.3, 21.3; HRMS (ESI): cacld for C<sub>32</sub>H<sub>32</sub>N<sub>2</sub>O<sub>6</sub>Na [M+Na]<sup>+</sup>: 563.2158; found: 563.2162; HPLC analysis: *ee* = 94% on an OD-H column: hexane/*i*-PrOH = 70:30, flow rate = 1.0 mL/min,  $\lambda = 220$  nm; t<sub>minor</sub> = 8.66 min, t<sub>maior</sub> = 11.97 min.

*tert*-Butyl (*S*)-(2-(1-benzyl-4'-methyl-5-nitro-2,6'-dioxo-3',6'-dihydrospiro-[indoline-3,2'-pyran]-5'-yl)phenyl)carbamate (4n).



Yellow solid; Yield : 62%;  $[\alpha]_D^{29}$ : -43.7 (c = 0.69, CH<sub>2</sub>Cl<sub>2</sub>); mp: 123-124°C; IR (CH<sub>2</sub>Cl<sub>2</sub>): 3445, 1721, 1622, 1586, 1524 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.42 (d, J = 2.2 Hz, 1H), 8.25-8.20 (m, 2H), 7.95 (bs, 1H), 7.38-7.26 (m, 6H), 7.16-7.06 (m, 2H), 6.87 (d, J = 8.7 Hz, 1H), 4.93 (dd, J = 28.4, 15.7 Hz, 1H), 3.44 (d, J = 18.5 Hz, 1H), 2.67 (d, J = 18.5 Hz, 1H), 1.87 (s, 3H), 1.46 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  174.5, 162.1, 153.4, 150.5, 147.6, 144.2, 137.6, 133.6, 130.4, 129.4, 129.3, 128.6, 128.0, 127.9, 127.3, 125.4, 122.4, 122.1, 120.7, 119.5, 110.0, 79.8, 78.1, 44.4, 36.5, 28.3, 21.4; HRMS (ESI): cacld for C<sub>31</sub>H<sub>29</sub>N<sub>3</sub>O<sub>7</sub>Na [M+Na]<sup>+</sup>: 578.1903; found: 578.1910; HPLC analysis: ee = 98% on an AD-H column: hexane/*i*-PrOH = 85:15, flow rate = 1.0 mL/min,  $\lambda = 220$  nm; t<sub>maior</sub> = 36.34 min, t<sub>minor</sub> = 42.87 min.

*tert*-Butyl (*S*)-(2-(1-benzyl-4'-methyl-2,6'-dioxo-3',6'-dihydrospiro[indoline-3,2'-pyran]-5'-yl)-4-fluorophenyl)carbamate (40).



Yellow powder; Yield : 98%; [ $\alpha$ ]<sub>D</sub><sup>29</sup>: -35.7 (c = 1.12, CH<sub>2</sub>Cl<sub>2</sub>); mp: 161-162°C; IR (CH<sub>2</sub>Cl<sub>2</sub>): 3450, 1711, 1618, 1528 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.21-8.18 (m, 2H), 7.50 (d, J = 7.5 Hz, 1H), 7.35-7.26 (m, 6H ), 7.14 (t, J = 7.6, 1H), 7.04 (ddd, J = 9.0, 8.5, 3.0 Hz, 1H), 6.88 (dd, J = 9.0, 3.0 Hz, 1H), 6.77 (d, J = 7.7 Hz, 1H), 4.88 (s, 2H ), 3.38 (dd, J = 18.5, 1.0 Hz, 1H), 2.63 (d, J = 18.5 Hz, 1H), 1.86 (s, 3H), 1.45 (s,

9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  174.2, 162.8, 157.7 (d, J = 242 Hz), 153.7, 151.2, 142.1, 134.7, 134.0 (d, J = 2.9 Hz), 131.2, 129.0, 128.1, 127.2, 126.6, 124.6, 124.5 (d, J = 1.4 Hz), 124.0, 117.0 (d, J = 22.6 Hz), 115.7 (d, J = 21.7 Hz), 110.1, 79.8, 78.9, 43.9, 37.0, 28.3, 21.3; HRMS (ESI): cacld for C<sub>31</sub>H<sub>29</sub>N<sub>2</sub>O<sub>5</sub>NaF [M+Na]<sup>+</sup>: 551.1958; found: 551.1954; HPLC analysis: *ee* = 98% on an OD-H column: hexane/*i*-PrOH = 85:15, flow rate = 0.6 mL/min,  $\lambda = 220$  nm; t<sub>minor</sub> = 31.07 min, t<sub>major</sub> = 35.90 min.

*tert*-Butyl (*S*)-(2-(1-benzyl-5-methoxy-4'-methyl-2,6'-dioxo-3',6'-dihydro-spiro[indoline-3,2'-pyran]-5'-yl)-4-fluorophenyl)carbamate (4p).



Orangr powder; Yield : 96%; [α]<sub>D</sub><sup>29</sup>: -50.4 (c = 1.07, CH<sub>2</sub>Cl<sub>2</sub>); mp: 65-66°C; IR (CH<sub>2</sub>Cl<sub>2</sub>): 3310, 1709, 1655, 1607, 1528 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.24 (bs, 1H), 8.11 (bs, 1H), 7.34-7.26 (m, 5H ), 7.10 (d, J = 2.5 Hz, 1H), 7.03 (ddd, J = 9.7, 8.8, 3.0 Hz, 1H), 6.87 (dd, J = 8.6, 3.0 Hz, 1H), 6.80 (dd, J = 8.6, 2.6 Hz, 1H), 6.65 (d, J = 8.6Hz, 1H), 4.84 (s, 2H), 3.76 (s, 3H), 3.35 (dd, J = 18.6, 1.2 Hz, 1H), 2.62 (d, J = 18.6 Hz, 1H), 1.82 (s, 3H), 1.44 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 173.9, 162.7, 157.7 (d, J = 242 Hz), 156.8, 153.7, 151.0, 135.2, 134.8, 134.1 (d, J = 2.4 Hz), 129.0, 128.0, 127.7, 127.2, 124.5 (d, J = 1.4 Hz), 117.0 (d, J = 22.6 Hz), 115.8, 115.7 (d, J = 21.7 Hz), 111.5, 110.7, 79.7, 79.2, 55.9, 44.0, 37.1, 28.3, 21.3; HRMS (ESI): cacld for C<sub>32</sub>H<sub>31</sub>N<sub>2</sub>O<sub>6</sub>NaF [M+Na]<sup>+</sup>: 581.2064; found: 581.2060; HPLC analysis: ee = 97% on an OD-H column: hexane/*i*-PrOH = 70:30, flow rate = 1.0 mL/min,  $\lambda = 220$  nm; t<sub>minor</sub> = 7.86 min, t<sub>major</sub> = 10.44 min.

## *tert*-Butyl (*S*)-(2-(1-benzyl-4'-methyl-5-nitro-2,6'-dioxo-3',6'-dihydrospiro-[indoline-3,2'-pyran]-5'-yl)-4-fluorophenyl)carbamate (4q).



Yellow powder; Yield : 84%; [ $\alpha$ ]<sub>D</sub><sup>29</sup>: -53.8 (c = 0.97, CH<sub>2</sub>Cl<sub>2</sub>); mp: 117-118°C; IR (CH<sub>2</sub>Cl<sub>2</sub>): 3334, 1721, 1655, 1622, 1526 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.41 (d, J = 2.2 Hz, 1H), 8.24 (dd, J = 8.7, 2.2 Hz, 1H), 8.16 (bs, 1H), 7.94 (bs, 1H), 7.38-7.26

(m, 4H), 7.05 (dd, J = 9.3, 8.7, 3.1 Hz, 1H), 7.03 (ddd, J = 9.7, 8.8, 3.0 Hz, 1H), 6.90-6.86 (m, 2H), 4.93 (dd, J = 25.4, 15.8 Hz, 2H), 3.46 (dd, J = 18.6, 1.1 Hz, 1H), 2.66 (d, J = 18.6 Hz, 1H), 1.88 (s, 3H), 1.45 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 174.4, 161.8, 157.8 (d, J = 244 Hz), 153.5, 151.1, 147.6, 144.2, 133.8 (d, J = 2.3 Hz), 133.6, 129.3, 128.6, 128.0, 127.5, 127.2, 120.8, 117.0 (d, J = 22.7 Hz), 116.0 (d, J =21.9 Hz), 110.1, 79.9, 78.1, 44.4, 36.4, 28.3, 21.4; HRMS (ESI): cacld for  $C_{31}H_{28}N_3O_7NaF$  [M+Na]<sup>+</sup>: 596.1809; found: 596.1804; HPLC analysis: ee = 98% on an AD-H column: hexane/*i*-PrOH = 70:30, flow rate = 1.0 mL/min,  $\lambda = 220$  nm; t<sub>major</sub> = 10.50 min, t<sub>minor</sub> = 14.06 min.

*tert*-Butyl (*S*)-(2-(1-benzyl-4'-methyl-2,6'-dioxo-3',6'-dihydrospiro[indoline-3,2'-pyran]-5'-yl)-4-chlorophenyl)carbamate (4r).



Yellow powder; Yield : 96%;  $[\alpha]_D^{29}$ : -17.5 (c = 1.15, CH<sub>2</sub>Cl<sub>2</sub>); mp: 86-87°C; IR (CH<sub>2</sub>Cl<sub>2</sub>): 3438, 3313, 1713, 1649, 1617, 1577, 1521 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.38 (bs, 1H), 8.36 (bs, 1H), 7.49 (d, J = 7.6 Hz, 1H), 7.35-7.26 (m, 6H), 7.14 (t, J = 7.6, 1H), 7.06-7.01 (m, 2H), 6.77 (d, J = 7.9 Hz, 1H), 4.88 (s, 2H), 3.39 (dd, J = 18.7, 1.0 Hz, 1H), 2.61 (d, J = 18.7 Hz, 1H), 1.85 (s, 3H), 1.46 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  174.3, 163.0, 153.3, 151.2, 142.1, 139.1, 135.0, 134.7, 131.4, 131.2, 129.0, 128.1, 127.2, 126.6, 124.6, 124.0, 122.2, 120.1, 119.1, 110.1, 80.1, 78.9, 43.9, 37.0, 28.3, 21.4; HRMS (ESI): cacld for C<sub>31</sub>H<sub>29</sub>N<sub>2</sub>O<sub>5</sub>Na<sup>35</sup>Cl [M+Na]<sup>+</sup>: 567.1663; found: 567.1664; HPLC analysis: ee = 87% on an OD-H column: hexane/*i*-PrOH = 70:30, flow rate = 1.0 mL/min,  $\lambda = 220$  nm; t<sub>minor</sub> = 8.19 min, t<sub>major</sub> = 9.68 min.

## *tert*-Butyl (*S*)-(2-(1-benzyl-2,6'-dioxo-4'-phenyl-3',6'-dihydrospiro[indoline-3,2'-pyran]-5'-yl)phenyl)carbamate (4s).



Yellow powder; Yield : 98%;  $[\alpha]_D^{27}$ : +45.8 (c = 1.18, CH<sub>2</sub>Cl<sub>2</sub>); mp: 78-79°C; IR (CH<sub>2</sub>Cl<sub>2</sub>): 3445, 3326, 1713, 1616, 1586, 1530 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$ 

8.32 (bs, 1H), 8.04 (d, J = 8.0 Hz, 1H), 7.57 (dd, J = 7.4, 0.5 Hz, 1H), 7.36-7.07 (m, 15H), 6.94 (ddd, J = 7.9, 7.6, 1.0 Hz, 1H), 6.79 (d, J = 7.8 Hz, 1H), 4.93 (s, 2H), 3.74 (d, J = 18.5 Hz, 1H), 3.04 (d, J = 18.5 Hz, 1H), 1.45 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  174.2, 163.9, 153.3, 149.7, 142.1, 137.8, 137.3, 134.7, 131.2, 131.1, 129.2, 129.0, 128.3, 128.0, 127.5, 127.2, 126.8, 125.7, 124.6, 124.0, 122.1, 110.1, 79.5, 79.1, 43.9, 37.3, 28.4; HRMS (ESI): cacld for C<sub>36</sub>H<sub>32</sub>N<sub>2</sub>O<sub>5</sub>Na[M+Na]<sup>+</sup>: 595.2209; found: 595.2211; HPLC analysis: *ee* = 87% on an OD-H column: hexane/*i*-PrOH = 70:30, flow rate = 1.0 mL/min,  $\lambda = 220$  nm; t<sub>major</sub> = 8.55 min, t<sub>minor</sub> = 10.22 min.

5. The Reaction of Unprotected and *N*-Benzyl Protected 3-Alkylidene Oxindoles with isatin 3a



### Schem S1.

We had examined the reactivity of unprotected and *N*-benzyl protected 3-alkylidene oxindoles 2e and 2f with isatin 3a. As shown in scheme S1, the unprotected oxindole delivered no product in our optimal conditions. This is probably due to slightly solubility of oxindole 2e in CH<sub>2</sub>Cl<sub>2</sub>. The *N*-benzyl protected oxindole 2f, in contrast, gave the vinylogous aldol adduct 6 in 70% yield after 72h in our optimal conditions. We didn't prove the absolute configuration of 6, but it is probably the addition may be still through the *Si* face by the catalyst 1f. From these results, we presumed the occurrence of intramolecular lactonization was probably due to an increasing reactivity of the oxindole ring by placing the Boc protecting group on nitrogen atom.

#### 6. Characterization Data of 6

# (*Z*)-1-benzyl-3-(2-(1-benzyl-2-oxoindolin-3-ylidene)propyl)-3-hydroxyindolin-2-one



Yellow oil; Yield : 70%; IR (CH<sub>2</sub>Cl<sub>2</sub>): 3395, 1715, 1697, 1606 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.60 (d, J = 7.6 Hz, 1H), 7.42 (d, J = 7.4 Hz, 1H), 7.38-7.25 (m, 10H ), 7.22-7.18 (m, 2H), 7.07 (t, J = 7.6 Hz, 1H ), 7.02 (t, J = 7.4 Hz, 1H ), 6.80 (d, J = 7.6, 1H), 6.75 (d, J = 7.9 Hz, 1H), 6.07 (bs, 1H), 5.04 (d, J = 15.8 Hz, 1H), 5.00 (d, J = 5.3 Hz, 2H ), 4.81 (d, J = 15.8 Hz, 1H), 3.79 (d, J = 13.0 Hz, 1H), 3.55 (d, J = 13.0 Hz, 1H), 2.39 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  177.7, 169.4, 152.4, 142.0, 141.3, 135.9, 135.8, 131.0, 129.5, 128.9, 128.8, 128.3, 127.7, 127.6, 127.4, 127.2, 124.5, 124.2, 123.6, 122.8, 122.5, 109.4, 109.1, 78.2, 44.8, 43.9, 43.6, 27.0; HRMS (ESI): cacld for C<sub>33</sub>H<sub>28</sub>N<sub>2</sub>O<sub>3</sub>Na[M+Na]<sup>+</sup>: 523.1998; found: 523.1992;

### 7. References

- a) B. Vakulya, S. Varga, A. Csámpai, T. Soós, Org. Lett. 2005, 7, 1967-1969; b)
   K. Asano, S. Matsubara, J. Am. Chem. Soc. 2011, 133, 16711–16713.
- 2. W. Yang, D.-M. Du, Org. Lett. 2010, 12, 5450-5453.
- a) B. M. Trost, N. Cramer, S. M. Silverman, J. Am. Chem. Soc. 2007, 129, 12396-12397; b) G. Rassu, V. Zambrano, R. Tanca, A. Sartori, L. Battistini, F. Zanardi, C. Curti, G. Casiraghi, Eur. J. Org. Chem. 2012, 466-470.

## 8. Absolute Configuration and X-Ray Analysis Data

 Table 1. Crystal data and structure refinement for 4K

| Identification code                      | 11833_0m                                    |                |  |
|------------------------------------------|---------------------------------------------|----------------|--|
| Empirical formula                        | C31 H29 Br N2 O5                            |                |  |
| Formula weight                           | 589.47                                      |                |  |
| Temperature                              | 296(2) K                                    |                |  |
| Wavelength                               | 0.71073 Å                                   |                |  |
| Crystal system                           | Monoclinic                                  |                |  |
| Space group                              | P2 <sub>1</sub>                             |                |  |
| Unit cell dimensions                     | a = 10.6073(4) Å                            | a= 90°.        |  |
|                                          | b = 9.8229(4)  Å                            | b=107.283(2)°. |  |
|                                          | c = 14.4413(6)  Å                           | g = 90°.       |  |
| Volume                                   | 1436.76(10) Å <sup>3</sup>                  |                |  |
| Z                                        | 2                                           |                |  |
| Density (calculated)                     | 1.363 Mg/m <sup>3</sup>                     |                |  |
| Absorption coefficient                   | 1.472 mm <sup>-1</sup>                      |                |  |
| F(000)                                   | 608                                         |                |  |
| Crystal size                             | 0.400 x 0.200 x 0.100 mm <sup>3</sup>       |                |  |
| Theta range for data collection          | 2.011 to 28.345°.                           |                |  |
| Index ranges                             | -14<=h<=14, -13<=k<=13, -18<=l<=19          |                |  |
| Reflections collected                    | 26335                                       |                |  |
| Independent reflections                  | 7077 [R(int) = 0.0320]                      |                |  |
| Completeness to theta = $25.242^{\circ}$ | 99.9 %                                      |                |  |
| Absorption correction                    | None                                        |                |  |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup> |                |  |
| Data / restraints / parameters           | 7077 / 1 / 353                              |                |  |
| Goodness-of-fit on $F^2$                 | 1.049                                       |                |  |
| Final R indices [I>2sigma(I)]            | R1 = 0.0358, wR2 = 0.0903                   |                |  |
| R indices (all data)                     | R1 = 0.0490, wR2 = 0.0956                   |                |  |
| Absolute structure parameter             | 0.015(9)                                    |                |  |
| Extinction coefficient                   | n/a                                         |                |  |
| Largest diff. peak and hole              | 0.436 and -0.365 e.Å <sup>-3</sup>          |                |  |



Datablock 11833\_0m - ellipsoid plot



## 9. Copies of NMR Spectra of Products









































10. Copies of HPLC Spectra of Racemic and Chiral Products4a



ent-4a

















4b











4c













*ent*-4e









ent-4f









4f













4g

























4i











































| 2     | 10.90 | 27.91  | 1237.80  | 4.5200 |  |
|-------|-------|--------|----------|--------|--|
| Total |       | 985.22 | 27345.38 | 100    |  |















































4q















ent-4s







**4s** 





