Combining cycloisomerization with trienamine catalysis: A regiochemically flexible enantio- and diastereoselective synthesis of hexahydroindoles

Venkaiah Chintalapudi, Elizabeth A. Galvin, Rebecca L. Greenaway and Edward A. Anderson* Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K. Email: edward.anderson@chem.ox.ac.uk

Contents

1.	EXPERI	EXPERIMENTAL		
1.1	General Experimental Considerations		2	
1.2	Genera	l Procedures	3	
1.3	Experimental procedures and characterization of compounds		5	
	1.3.1	Synthesis of dienal 3a	5	
	1.3.2	Cycloaddition reactions of dienal 3a	8	
	1.3.3	Synthesis of dienals 4a-d and 8a	23	
	1.3.4	Cycloaddition reactions of dienals 4a-d	32	
	1.3.5	Synthesis of dienals 3b and 4e	42	
	1.3.6	Double stereodifferentiating cycloaddition reactions of dienals 3b and 4e	51	
2 .	REFERENCES		57	
3.	NMR SPECTRA		58	
	3.1	Intermediates in the synthesis of dienal 3a	58	
	3.2	Cycloaddition products of dienal 3a	63	
	3.3	Intermediates in the synthesis of dienals 4a-d and 8a	79	
	3.4	Cycloaddition products of dienals 4a-d	98	
	3.5	Intermediates in the synthesis of dienals 3b and 4e	107	
	3.6	Double stereodifferentiating cycloaddition products of dienals 3b and 4e	123	

1. EXPERIMENTAL

1.1 General Experimental Considerations

Nuclear Magnetic Resonance Spectroscopy: ¹H NMR spectra were acquired on Bruker DRX500, AVII500 (500 MHz, with cryoprobe) or AVIII400 (400 MHz) spectrometers and were referenced to residual nondeuterated solvent peaks in CDCl₃ (δ = 7.26) or C₆D₆ (δ = 7.16). Chemical shifts (δ_{H} and δ_{C}) are reported in parts per million (ppm) with signal splittings recorded as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quin), and multiplet (m); app = apparent. Coupling constants (*J*) are measured to the nearest 0.1 Hz and are presented as observed. ¹³C NMR spectra were obtained on Bruker AVII500 (126 MHz, with cryoprobe) or AVIII400 (101 MHz) spectrometers and were referenced to solvent peaks in CDCl₃ (δ = 77.16). Where diastereomeric mixtures are formed, data is given for the major diastereomer, unless specified otherwise.

Mass Spectrometry: Low-resolution mass spectra (m/z) were recorded on a Waters LCT Premier EX mass spectrometer, using electrospray ionization (ESI). High-resolution mass spectra (HRMS) were recorded by the Departmental Mass Spectrometry Service, University of Oxford on a Bruker MicroTOF (resolution = 5000 FWHM) using electrospray ionisation (ES⁺). The parent ion [M]⁺, [M+H]⁺ or [M+Na]⁺ is calculated to 4 decimal places from the molecular formula, and all values are within a tolerance of 5 ppm.

Infrared Spectroscopy: Absorption spectra were obtained in $CHCl_3$ as solvent on a Bruker Tensor 27 FT-IR spectrometer. The sample was prepared as a thin film on a diamond/ZnSe PIKE Miracle ATR module. Wavelengths of maximum absorbance (v_{max}) are quoted in wavenubers (cm⁻¹). Only selected, characteristic IR absorption data are provided for each compound.

Specific rotations: Optical rotations were recorded on a Perkin Elmer 241 or 341 polarimeter with a path length of 1 dm (using the sodium D line, 589 nm). Specific rotations ($[\alpha]_D$) are reported in units of 10⁻¹ deg cm² g⁻¹. Concentrations are reported in g/100 mL. Temperatures are reported in °C (typically 25 °C).

Chromatography: Flash chromatography refers to normal phase column chromatography on silica gel using a head pressure of N₂, using either Merck Geduran[®] Silicagel 60 (40 - 63 μ m) or Macherey-Nagel Silica 60 M (40 - 63 μ m). Thin-layer chromatography was performed on Merck Kieselgel 60 F₂₅₄ plates with visualization by ultraviolet light (254 nm) and/or heating the plate after staining with vanillin or KMnO₄. High performance liquid chromatography (HPLC) was performed on an Agilent 1200 Series running in normal phase under UV detection using a ZORBAX RX-SIL (150 mm x 4.6 mm ID) as the analytical column. Chiral analysis was carried out using DAICEL CHIRALPAK-IA, IB or IC (250 mm x 4.6 mm ID).

Materials: Unless otherwise stated, all reactions were carried out in oven-dried glassware under an atmosphere of argon, using anhydrous reaction solvents. Et_2O , CH_2CI_2 , THF and toluene were dried over activated alumina before use. All other commercially available reagents and solvents were either used as received, and/or dried and purified before use using standard procedures. Petroleum ether refers to the fraction of light petroleum ether boiling at 40-60 °C unless stated otherwise.

2

1.2 General Procedures

General Procedure A: Mitsunobu Reaction

DIAD (1.3 equiv.) was added dropwise to a stirred solution of alcohol (1.0 equiv.), triphenylphosphine (1.5 equiv.) and methyl tosylcarbamate (1.2 equiv.) in THF (3 mL / mmol of alcohol) at 0 °C. The reaction mixture was stirred at rt overnight, then it was filtered and concentrated. The residue was taken up in petroleum ether / Et_2O (1:1, 10 mL / mmol of alcohol), stirred for 5 min, then filtered and concentrated. The residue was once again taken up in petroleum ether / Et_2O (1:1, 10 mL / mmol of alcohol), stirred for 5 min, then filtered and concentrated. The residue was once filtrate concentrated. Purification by flash chromatography afforded the product.

General Procedure B: Carbamate deprotection of sulfonamide carbamates

To a solution of the carbamate (1.0 equiv.) in MeOH (10 mL / mmol carbamate) was added K_2CO_3 (2.0 equiv.). The reaction mixture was stirred for 5 h at RT, then it was concentrated to a volume of approximately 5 mL. The mixture was then added to NH₄Cl (10 mL / mmol carbamate), and extracted with EtOAc (3 × 10 mL / mmol carbamate). The combined organic layers were dried (MgSO₄), filtered and concentrated. Purification by flash chromatography afforded the product.

General Procedure C: Copper(II)-catalysed enynamide formation

According to the procedure of Hsung et al.¹ To a mixture of sulfonamide (1.0 equiv.), $CuSO_4 \cdot 5H_2O$ (0.2 equiv.), 1,10 phenanthroline (0.4 equiv.) and K_3PO_4 (2.0 equiv.) was added a solution of bromoalkyne (1.4 equiv.) in toluene (2 mL / mmol sulfonamide). The reaction mixture was stirred at 70 °C for 15 h before being allowed to cool to RT. The reaction mixture was filtered through Celite, eluting with Et₂O, and the filtrate was concentrated. Purification by flash chromatography afforded the ynamide.

General Procedure D: Cs₂CO₃ promoted synthesis of dichloroenamides

According to the procedure of Anderson et al.² To a stirred suspension of amide (1.0 equiv.) and Cs_2CO_3 (3.0 equiv.) in DMF (0.75 mL / mmol amide), at 50 °C, was added trichloroethylene (3.0 equiv.) dropwise over ten minutes. The resulting mixture was stirred at 50 °C for 2 h. Upon cooling to rt, the mixture was partitioned between EtOAc and water, the organic layer was separated and further washed with water (x 3). The organic layer was dried (Na₂SO₄), filtered, and concentrated. Purification by flash chromatography afforded the enamide.

General Procedure E: Synthesis of ynamides using phenyllithium

According to the procedure of Trost et al.,³ and Anderson et al.² To a stirred solution of 1,2-dichloroenamide (1.0 equiv.) in THF (10 mL / mmol of enamide), at -78 °C was added phenyllithium (2.0 M solution in dibutyl ether, 2.2 equiv.) dropwise over 10 minutes. The reaction mixture was stirred at -78 °C for 1 h, after which time iodomethane (1.2 equiv.) was added. The solution was allowed to warm to rt and stirred for 1 h. The reaction mixture was quenched with water and the aqueous layer extracted with Et₂O (x 2). The combined organic extracts were dried (MgSO₄), filtered, and concentrated. Purification by flash chromatography afforded the product ynamide.

General Procedure F: Palladium-catalysed cycloisomerization

According to the procedure of Anderson et al.⁴ To a solution of enynamide (1.0 equiv.) in toluene (6.5 mL / mmol of enynamide) was added N,N-bis-(benzylidene)ethylenediamine (0.05 equiv.) and Pd(OAc)₂ (0.05 equiv.). The reaction mixture was stirred at 60 °C for 30 min, then cooled to rt and concentrated. Purification by flash chromatography afforded the product.

General Procedure G: TBS-deprotection of silyloxy amidodienes

To a solution of diene (1.0 equiv.) in THF (20 mL / mmol of diene) was added TBAF (1.3 equiv.). The reaction mixture was stirred at rt for 2 h, before being diluted with EtOAc, filtered through a silica plug and concentrated. Purification by flash chromatography afforded the product.

General Procedure H: Parikh-Doering Oxidation

Et₃N (5.0 equiv.), DMSO (7.0 equiv.) and SO₃•py (3.0 equiv.) were added to a solution of alcohol (1.0 equiv.) in DCM (6 mL / mmol of alcohol) at 0 °C. The solution was stirred at 0 °C for 2 h before being quenched with pH 7 phosphate buffer (20 mL). The mixture was extracted with EtOAc (3 x 20mL), washed with brine (2 x 20mL), dried (MgSO₄) and concentrated. Purification by flash chromatography afforded the product.

General Procedure I: Dess-Martin Oxidation

To a solution of alcohol (1.0 equiv.) in CH_2Cl_2 at 0 °C was added Dess-Martin periodinane (1.2 equiv.), and then the reaction was allowed to warm to rt and stirred for 1.5 h. After this time, NaHCO₃ (sat., aq.) was added and the layers were separated. The aqueous layer was extracted with CH_2Cl_2 , and the combined organic extracts were dried (Na₂SO₄), filtered, and concentrated. Purification by flash chromatography provided the aldehyde.

General Procedure J: Trienamine-catalysed Diels-Alder cycloaddition with nitrostyrenes and olefinic azlactones

To a vial containing catalyst **10** (0.2 equiv.), benzoic acid (0.2 equiv.) and the respective dienophile (1.0 equiv.) was added the amidodiene (1.4 equiv.) in toluene (5 mL / mmol of amidodiene). The resulting mixture was stirred at RT for 2-5 h, then (ethoxycarbonylmethylene)triphenylphosphorane (0.15 mmol, 1.5 equiv.) was added. The reaction was then stirred overnight, then it was concentrated and the residue directly purified by flash chromatography.

General Procedure K: Trienamine-catalysed Diels-Alder cycloaddition with olefinic oxindoles and lactones To a vial containing catalyst **10** (0.2 equiv.), benzoic acid (0.2 equiv.) and the respective dienophile (1.0 equiv.) was added the amidodiene (1.5 equiv.) in toluene (5 mL / mmol of amidodiene). The resulting mixture was stirred at RT for 2-6 h before being diluted with EtOAc, filtered through a silica plug, and concentrated.

1.3 Specific experimental procedures and characterization of compounds

1.3.1 Synthesis of dienal **3a**

Dienal 3a was synthesized according to the following Scheme:

Methyl but-3-en-1-yl(tosyl)carbamate, S1

Prepared by General Procedure **A** using but-3-en-1-ol (1.20 ml, 1.00 g, 13.9 mmol). The resulting crude material was purified by flash chromatography (petroleum ether / Et₂O (9:1)) to give **S1** as a colourless oil (3.50 g, 12.4 mmol, 89%). **IR** (thin film, v_{max} / cm⁻¹) 2980, 1728, 1691, 1450, 1355, 1293, 1185, 767; ¹H **NMR** (400 MHz, CDCl₃) δ_{H} 7.82 (2H, d, *J* = 8.4 Hz, TsH), 7.29 (2H, d, *J* = 8.4 Hz, TsH), 5.77 (1H, ddt, *J* = 17.1, 10.2 and 6.9 Hz, H3), 5.12-5.05 (2H, m, H4), 4.02-3.76 (2H, m, H1), 3.67 (3H, s, CO₂Me), 2.47 (2H, dd, *J* = 14.7 and 7.3 Hz, H2), 2.41 (3H, s, TsCH₃); ¹³C **NMR** (101 MHz, CDCl₃) δ_{C} 152.7, 144.5, 136.5, 134.0, 129.2, 128.2, 117.5, 53.6, 46.5, 34.3, 21.5; **HRMS** (ES⁺) calc. for C₁₃H₁₈O₄NS [M+H]⁺ 284.0951; found 284.0950.

Prepared by General Procedure **B** using methyl but-3-en-1-yl(tosyl)carbamate **S1** (4.20 g, 14.8 mmol). The resulting crude material was purified by flash chromatography (petroleum ether / Et₂O (4:1)) to give **S2** as a colourless oil (3.01 g, 13.4 mmol, 90%); ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.74 (2H, d, *J* = 8.5 Hz, TsH), 7.30 (2H, d, *J* = 8.5 Hz, TsH), 5.61 (1H, ddt, *J* = 17.0, 10.5 and 7.0 Hz, H3), 5.07-4.98 (2H, m, H4), 4.63 (1H, br s, NH), 3.00 (2H, app q, *J* = 6.5 Hz, H1), 2.42 (3H, s, TsCH₃), 2.18 (2H, app q, *J* = 7.0 Hz, H2); ¹³**C NMR** (101 MHz, CDCl₃) $\delta_{\rm C}$ 143.6, 137.1, 134.3, 129.9, 127.2, 118.2, 42.2, 33.7, 21.7; **HRMS** (ES⁺) calc. for $C_{11}H_{16}O_2NS [M+H]^+$ 226.0896; found 226.0896. Data identical to literature values.⁵

N-(But-3-en-1-yl)-N-(4-((tert-butyldimethylsilyl)oxy)but-1-yn-1-yl)-4-methylbenzenesulfonamide, 5a

Prepared by General Procedure **C** using sulfonamide **S2** (1.83 g, 8.12 mmol, 1.0 equiv.) and ((4-bromobut-3yn-1-yl)oxy)(*tert*-butyl)dimethylsilane (2.57 g, 9.75 mmol, 1.2 equiv.). The resulting crude material was purified by flash chromatography (petroleum ether / EtOAc (95:5)) to give **5a** as a colourless oil (2.76 g, 6.78 mmol, 84%); **IR** (thin film, v_{max} / cm⁻¹) 2929, 2222, 1364, 1171, 1105; ¹H NMR (400 MHz, CDCl₃) δ_{H} 7.76 (2H, d, *J* = 8.0 Hz, TsH), 7.32 (2H, d, *J* = 8.0 Hz, TsH), 5.70 (1H, ddt, *J* = 17.0, 10.2 and 6.8 Hz, H8), 5.11-4.99 (2H, m, H9), 3.66 (2H, t, *J* = 7.1 Hz, H1), 3.31 (2H, t, *J* = 7.3 Hz, H6), 2.47 (2H, t, *J* = 7.1 Hz, H2), 2.43 (3H, s, TsCH₃), 2.35 (2H, dd, *J* = 14.8 and 6.9 Hz, H7), 0.87 (9H, s, Sit-Bu), 0.04 (6H, s, SiMe₂); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 144.3, 134.6, 133.7, 129.6, 127.6, 117.4, 73.7, 67.5, 62.1, 50.7, 32.0, 25.8, 22.8, 21.5, 18.2, -5.4; **HRMS** (ES⁺) calc. for C₂₁H₃₄O₃NSSi [M+H]⁺ 408.2023; found 408.2021.

(Z)-2-(3-((tert-Butyldimethylsilyl)oxy)propylidene)-3-methylene-1-tosylpyrrolidine, S3

Prepared by General Procedure **F** using ynamide **5a** (1.02 g, 2.50 mmol). The crude material was purified by flash chromatography (petroleum ether / EtOAc (95:5)) to give **S3** as a colourless oil (0.91 g, 2.23 mmol, 89%); **IR** (thin film, v_{max} / cm⁻¹) 2928, 2857, 1357, 1166, 1092; ¹H NMR (400 MHz, CDCl₃) δ_{H} 7.67 (2H, d, J = 6.5 Hz, TsH), 7.23 (2H, d, J = 7.8 Hz, TsH), 6.03 (1H, t, J = 6.7 Hz, H3), 5.22 (1H, s, H9), 4.66 (1H, s, H9), 3.76 (2H, t, J = 6.1 Hz, H1), 3.53 (2H, t, J = 6.6 Hz, H6), 2.75 (2H, app q, J = 6.5 Hz, H2), 2.41 (3H, s, TsCH₃), 1.83 (2H, t, J = 6.4 Hz, H7), 0.91 (9H, s, Si*t*-Bu), 0.07 (6H, s, SiMe₂); ¹³C NMR (101 MHz, CDCl₃) δ_{C}

143.8, 143.1, 137.5, 135.9, 129.5, 127.7, 118.3, 103.9, 62.6, 48.5, 33.3, 29.0, 25.9, 21.6, 18.3, -5.2; **HRMS** (ES⁺) calc. for C₂₁H₃₄O₃NSSi [M+H]⁺ 408.2023; found 408.2021.

(Z)-3-(3-Methylene-1-tosylpyrrolidin-2-ylidene)propan-1-ol, S4

Prepared by General Procedure **G** using **S3** (508 mg, 1.25 mmol). The resulting crude material was purified by flash chromatography (petroleum ether / EtOAc (1:1)) to give the title compound **S4** as a colourless oil (350 mg, 1.19 mmol, 96%); **IR** (thin film, v_{max} / cm⁻¹) 3450, 2925, 1090, 1162, 1348, 1597; ¹H **NMR** (400 MHz, CDCl₃) δ_{H} 7.68 (2H, d, *J* = 8.3 Hz), 7.24 (2H, d, *J* = 8.3 Hz), 5.98 (1H, t, *J* = 7.7 Hz, H3), 5.26 (1H, t, *J* = 2.4 Hz, H9), 4.69 (1H, t, *J* = 2.2 Hz, H9), 3.85 (2H, t, *J* = 6.0 Hz, H1), 3.55 (2H, t, *J* = 7.4 Hz, H6), 2.84 (2H, app. q, *J* = 6.8 Hz, H2), 2.41 (3H, s, TsCH₃), 1.85-1.80 (2H, m, H7); ¹³C **NMR** (101 MHz, CDCl₃) δ_{C} 144.1, 142.8, 138.6, 135.5, 129.6, 127.7, 118.3, 104.6, 62.3, 48.6, 32.8, 28.8, 21.6; **HRMS** (ES⁺) calc. for C₁₅H₂₀O₃NS [M+H]⁺ 294.1158; found 294.1157.

(E)-3-(3-Methyl-1-tosyl-4,5-dihydro-1H-pyrrol-2-yl)acrylaldehyde, 3a

Prepared by General Procedure **H** using **S4** (199 mg, 0.68 mmol). The resulting crude material was purified by flash chromatography (petroleum ether \rightarrow petroleum ether / EtOAc (1:1)) to give **3a** as a light yellow oil (108 mg, 0.37 mmol, 55%); **IR** (thin film, v_{max} / cm⁻¹) 3334, 2946, 1738, 1367, 1217, 1021; ¹**H NMR** (400 MHz, CDCl₃) δ_{H} 9.59 (1H, d, *J* = 7.8 Hz, H1 (*this peak appears to be an unresolved ddd*)), 7.50 (2H, d, *J* = 8.0 Hz, TsH), 7.37-7.29 (3H, m, TsH and H3), 6.36 (1H, dd, *J* = 16.0 and 7.8 Hz, H2), 3.67 (2H, t, *J* = 8.3 Hz, H6), 2.35 (3H, s, TsCH₃), 1.96 (2H, t, *J* = 8.0 Hz, H7), 1.74 (3H, s, H9); ¹³**C NMR** (101 MHz, CDCl₃) δ_{C} 193.8, 144.2, 142.0, 138.0, 133.7, 133.2, 131.7, 129.6, 127.8, 49.0, 35.3, 21.6, 14.9; **HRMS** (ES⁺) calc. for C₁₅H₁₈O₃NS [M+H]⁺ 292.1002; found 292.1001.

1.3.2 Cycloaddition reactions of dienal 3a

3a was reacted with the following dienophiles:

(3'*S*,5*S*,7*R*)-1'-*tert*-Butyl 5-ethyl 2'-oxo-7-(2-oxoethyl)-1-tosyl-1,2,3,4,5,7-hexahydrospiro[indole-6,3'-indoline]-1',5-dicarboxylate, 11a

Prepared by General Procedure **K** using catalyst (*S*)-**10** (3.2μ L, 0.02 mmol, 0.2 equiv.), **3a** (21.8 mg, 0.075 mmol, 1.5 equiv.) and olefinic oxindole **9a** (15.8 mg, 0.050 mmol, 1.0 equiv.). Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave **11a** as a yellow oil (25.5 mg, 0.042 mmol, 84%); $[\alpha]_{D}^{25}$ -13.7 (*c* = 1.0, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2925, 1716, 1598, 1348, 1210, 1369, 1346, 706; ¹H **NMR** (400 MHz, CDCl₃) δ_{H} 9.69 (1H, s, H9), 7.98 (1H, d, *J* = 7.8 Hz, PhH), 7.36-7.27 (3H, m, TsH and PhH), 7.03 (2H, d, *J* = 7.9 Hz, TsH), 6.76 (1H, td, *J* = 7.6 and 1.0 Hz, PhH), 6.55 (1H, d, *J* = 6.8 Hz, PhH), 4.01-3.82 (3H, m, H2 and OCH₂CH₃), 3.77-3.61 (2H, m, H2 and H7), 3.32 (dd, *J* = 11.4, and 7.0 Hz, H5), 3.23 (dd, *J* = 18.9 and 9.1 Hz, H8), 3.03 (1H, dd, *J* = 19.0 and 1.4 Hz, H8), 2.71 (1H, dd, *J* = 18.5 and 6.9 Hz, H4), 2.49-2.39 (6H, m, H4, H3 and TsCH₃), 1.63 (9H, s, C(CH₃)₃), 0.99 (3H, t, *J* = 7.1 Hz, OCH₂CH₃); ¹³C **NMR** (101 MHz, CDCl₃) δ_{C} 198.2, 176.3, 171.2, 149.0, 143.6, 139.8, 135.8, 133.7, 133.6, 129.7, 128.0, 127.5, 123.7, 122.9, 120.4, 115.2, 83.9, 61.0, 49.9, 49.1, 43.3, 41.4, 36.8, 30.8, 28.0, 25.5, 21.5, 13.6; **HRMS** (ES⁺) calc. for C₃₂H₃₇O₈N₂S [M+H]⁺ 609.2265; found 609.2265.

HPLC data is listed on the next page.

Chiralpak IB (15% IPA in hexane, flow rate = 1.3 mL/min, 230 nm) Minor diastereomer: $t_{\rm R}$ major – 9.6 min, minor – 18.2 min; Major diastereomer: $t_{\rm R}$ major – 12.8 min, minor – 25.7 min. (98% *ee*).

Proof of stereochemistry for oxindole cycloadditions: Cycloadduct **11a** was used to assign the relative stereochemistry of the cycloaddition through ¹H NMR nOe experiments (1D nOe / 2D NOESY). On the beta face (as depicted below), enhancements were seen between H5 and H8, indicating these groups to be on the same face. On the alpha face, enhancements between H7 and one of the aryl protons of the oxindole, indicating these groups to be on the same face.

Prepared by General Procedure **K** using catalyst (*S*)-**10** (3.2 μ L, 0.02 mmol, 0.2 equiv.), **3a** (21.8 mg, 0.075 mmol, 1.5 equiv.) and olefinic oxindole **9b** (17.5 mg, 0.050 mmol, 1.0 equiv.). Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave **11b** as a light yellow oil (22 mg, 0.034 mmol, 68%); $[\alpha]_{\rm p}^{25}$

-15.6 (*c* = 1.2, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2982, 1790, 1762, 1727, 1473, 1272, 1151, 909, 728; ¹**H NMR** (500 MHz, CDCl₃) δ_{H} 9.69 (1H, s, H9), 7.97 (1H, d, *J* = 8.7 Hz, PhH), 7.34 (2H, d, *J* = 8.2 Hz, TsH), 7.28 (1H, dd, *J* = 8.7 and 2.2, PhH), 7.09 (2H, d, *J* = 8.0 Hz, TsH), 6.44 (1H, d, *J* = 2.1 Hz, PhH), 4.01 (1H, td, *J* = 10.8 and 6.3 Hz, H2), 3.96-3.83 (2H, m, OCH₂CH₃), 3.74-3.59 (2H, m, H2 and H7), 3.32 (1H, dd, *J* = 11.6 and 7.1Hz, H5), 3.21 (1H, dd, *J* =19.1 and 9.0 Hz, H4), 3.08 (1H, dd, *J* = 19.1 and 1.2 Hz, H4), 2.73 (1H, dd, *J* = 18.5 and 7.0 Hz, H8), 2.54-2.44 (2H, m, H8 and H3), 2.41 (3H, s, TsCH₃), 2.39-2.35 (1H, m, H3), 1.63 (9H, s, C(CH₃)₃), 1.04 (3H, t, *J* = 7.1 Hz, OCH₂CH₃); ¹³C NMR (126 MHz, CDCl₃) δ_{C} 198.0, 175.7, 171.1, 148.9, 144.1, 138.6, 135.7, 133.4, 132.4, 130.0, 128.9, 128.1, 127.2, 123.1, 119.7, 116.4, 84.3, 61.3, 50.0, 49.1, 43.3, 41.3, 36.5, 30.6, 28.0, 25.4, 21.6, 13.7; HRMS (ES⁺) calc. for C₃₂H₃₅O₈N₂ClNaS [M+Na]⁺ 665.1694; found 665.1686.

Chiralpak IA (20% IPA in hexane, flow rate = 1.0 mL/min, 254 nm) $t_{\rm R}$ major - 10.0 min, minor - 8.2 min (>99% *ee*).

hexahydrospiro[indole-6,3'-indoline]-1',5-dicarboxylate, 11c

Prepared by General Procedure **K** using catalyst (*S*)-**10** (3.2 μ L, 0.02 mmol, 0.2 equiv.), **3a** (21.8 mg, 0.075 mmol, 1.5 equiv.) and olefinic oxindole **9c** (17.3 mg, 0.05 mmol, 1.0 equiv.). Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave **11c** as a red oil (29 mg, 0.045 mmol, 91%); $[\alpha]_{D}^{25}$ – 2.03 (*c* = 1.3, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2931, 1787, 1757, 1722, 1597, 1485, 1279, 1155, 771; ¹**H NMR** (400 MHz, CDCl₃) δ_{H} 9.63 (1H, s, H9), 7.86 (1H, d, *J* = 8.9 Hz, PhH), 7.26 (2H, d, *J* = 8.2 Hz, TsH), 6.98 (2H, d, *J* = 8.1 Hz, TsH), 6.82-6.72 (1H, m, PhH), 6.08 (1H, d, *J* = 2.6 Hz, PhH), 3.99-3.73 (3H, m, H2 and OCH₂CH₃), 3.66-3.51 (2H, m, H2 and H7), 3.49 (3H, s, OCH₃), 3.28-3.13 (2H, m, H5 and H8), 2.97 (1H, d, *J* = 17.9 Hz, H8), 2.64 (1H, dd, *J* = 18.4 and 6.6 Hz, H4), 2.40-2.33 (6H, m, H4, H3 and TsCH₃), 1.57 (9H, s, C(CH₃)₃), 0.95 (3H, t, *J* = 7.1 Hz, OCH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 198.0, 176.2, 171.2, 155.7, 149.1, 143.6, 135.9, 133.5, 133.3, 131.7, 129.8, 127.5, 120.1, 115.9, 112.0, 110.0, 83.8, 61.1, 54.8, 50.2, 49.0, 43.4, 41.3, 36.8, 30.7, 28.0, 25.5, 21.5, 13.6; **HRMS** (ES⁺) calc. for C₃₃H₃₉O₉N₂S [M+H]⁺ 639.2370; found 639.2365.

Chiralpak IB (20% IPA in hexane, flow rate = 1.3 mL/min, 230 nm) $t_{\rm R}$ major – 9.8 min, minor – 25.9 min and $t_{\rm R}$ major – 14.4 min, minor – 25.9 min (>99% *ee*).

(3'*S*,5*S*,7*R*)-di-*tert*-Butyl 2'-oxo-7-(2-oxoethyl)-1-tosyl-1,2,3,4,5,7-hexahydrospiro[indole-6,3'-indoline]-1',5-dicarboxylate, 11d

Prepared by General Procedure **K** using catalyst (*S*)-**10** (3.2 μ L, 0.02 mmol, 0.2 equiv.), **3a** (21.8 mg, 0.075 mmol, 1.5 equiv.) and olefinic oxindole **9d** (17.2 mg, 0.05 mmol, 1.0 equiv.). Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave **11d** as a light yellow oil (22 mg, 0.034 mmol, 69%, *dr* 3.6:1); $\left[\alpha\right]_{D}^{25}$ -16.9 (*c* = 1, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2926, 1791, 1760, 1722, 1604, 1479, 1348, 1152, 1090, 815; ¹H NMR (400 MHz, CDCl₃) δ_{H} 9.69 (1H, s, H9), 7.96 (1H, t, *J* = 8.4 Hz, PhH), 7.36-7.25 (3H, m, TsH and PhH), 7.02 (2H, d, *J* = 8.0 Hz, TsH), 6.77 (1H, t, *J* = 7.5 Hz, PhH), 6.56 (1H, d, *J* = 7.5 Hz, PhH), 4.00-3.87 (1H, m, H2), 3.69-3.62 (2H, m, H2 and H7), 3.27-3.19 (2H, m, H5 and H8), 2.99 (1H, d, *J* = 17.9 Hz, H8), 2.69-2.56 (1H, m, H4), 2.50-2.34 (6H, m, H4, H3 and TsCH₃), 1.63 (9H, s, C(CH₃)₃), 1.09 (9H, s, C(CH₃)₃); ¹³**C** NMR (101 MHz, CDCl₃) δ_{C} 198.2, 176.0, 170.3, 149.2, 143.5, 139.6, 135.4, 133.8, 129.7, 129.7, 128.0, 127.5, 123.7, 123.0, 115.0, 83.9, 82.0, 54.5, 50.2, 49.1, 43.5, 41.6, 36.9, 30.9, 28.0, 27.3, 25.5, 21.5; **HRMS** (ES⁺) calc. for C₃₄H₄₀O₈N₂NaS [M+Na]⁺ 659.2397; found 659.2391.

Chiralpak IB (20 % IPA in hexane, flow rate = 1.3 mL/min, 254 nm) Minor diastereomer: $t_{\rm B}$ major – 7.3 min, minor – 11.2 min; Major diastereomer: $t_{\rm B}$ major – 9.4 min, minor – 16.2 min (>99% *ee*).

Prepared by General Procedure J using catalyst (*S*)-10 (6.5 μL, 0.020 mmol, 0.2 equiv.), **3a** (40 mg, 0.14 mmol, 1.4 equiv.) and trans-β-nitrostyrene **13a** (14.9 mg, 0.10 mmol, 1.0 equiv.). Purification via column chromatography (petroleum ether / EtOAc (2:1)) to give **14a** as colourless oil (36 mg, 0.071 mmol, 71%); $[\alpha]_{p}^{25}$ c-127.5 (*c* = 1.0, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2925, 1716, 1598, 1548, 1345, 1089; ¹H **NMR** (400 MHz, CDCl₃) δ_{H} 7.78 (2H, d, *J* = 8.3 Hz, TsH), 7.39 (2H, d, *J* = 8.0 Hz, TsH), 7.34 - 7.25 (3H, m, PhH), 7.18 (2H, d, *J* = 6.7 Hz, PhH), 6.76 (1H, ddd, *J* = 15.5, 9.3 and 6.1 Hz, H9), 6.02 (1H, d, *J* = 15.7 Hz, H10), 4.71 (1H, dd, *J* = 11.4 and 9.4 Hz, H6), 4.21 (2H, q, *J* = 7.1 Hz, OCH₂CH₃), 3.89 (1H, ddd, *J* = 12.9, 8.3 and 1.3 Hz, H2), 3.74-3.65 (2H, m, H2 and H7), 3.39-3.36 (2H, m, H5 and H8), 2.48 (3H, s, OCH₃), 2.46-2.32 (2H, m, H3 and H4), 2.09 (1H, dd, *J* = 18.3 and 5.3 Hz, H4), 1.84 (1H, dd, *J* = 15.9 and 9.5 Hz, H3), 1.68-1.57 (1H, m, H3), 1.24 (3H, t, *J* = 7.1 Hz, OCH₂CH₃); ¹³C **NMR** (101 MHz, CDCl₃) δ_{C} 166.3, 144.7, 142.7, 138.3, 134.5, 133.4, 131.4, 129.9, 129.1, 128.3, 127.9, 127.5, 126.0, 91.4, 60.5, 50.8, 45.3, 40.9, 31.6 (2C), 31.3, 21.8, 14.4; **HRMS** (ES⁺) calc. for C₂₇H₃₁O₆N₂S [M+H]⁺ 511.1897, found 511.1898.

Chiralpak IB (20% IPA in hexane, flow rate = 1.2 mL/min, 230 nm) $t_{\rm R}$ major - 7.4 min, minor - 13.4 min (>99% *ee*).

(*E*)-Ethyl 4-((5*S*,6*S*,7*R*)-5-(4-chlorophenyl)-6-nitro-1-tosyl-2,3,4,5,6,7-hexahydro-1H-indol-7-yl)but-2enoate, 14b

Prepared by General Procedure **J** using catalyst (*S*)-**10** (6.5 μ L, 0.020 mmol, 0.2 equiv.) and **3a** (40 mg, 0.14 mmol, 1.4 equiv.) and (*E*)-1-chloro-4-(2-nitrovinyl)benzene **13b** (14.9 mg, 0.10 mmol, 1.0 equiv.). Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave the cycloadduct **14b** as light yellow oil (38 mg, 0.070 mmol, 70%). Note: a small amount of the *Z*-alkene (*E*:*Z* = 20:1) was observed (*J* = 11.6 Hz), but no diastereomer from the cycloaddition could be detected. [α]²⁵_D -53.8 (*c* = 1.2, CHCl₃); **IR** (thin film, ν_{max} / cm⁻¹) 2981, 1714, 1655, 1547, 1319, 1161; ¹**H NMR** (400 MHz, CDCl₃) δ_{H} 7.76 (2H, d, *J* = 8.3 Hz, TsH), 7.38 (2H, d, *J* = 8.0 Hz, TsH), 7.29 (2H, d, *J* = 8.5 Hz, ArH), 7.12 (2H, d, *J* = 8.5 Hz, ArH), 6.80 (1H, ddd, *J* = 15.5, 9.4 and 6.0 Hz, H9), 6.02 (1H, dd, *J* = 15.6 Hz, H10), 4.65 (1H, dd, *J* = 11.5 and 9.5 Hz, H6), 4.20 (2H, q, *J* = 7.1 Hz, OCH₂CH₃), 3.95 (1H, ddd, *J* = 12.9, 8.3 and 1.3 Hz, H2), 3.76-3.63 (2H, m, H2 and H7), 3.39-3.26 (2H, m, H5 and H8), 2.48 (3H, s, TsCH₃), 2.44-2.26 (2H, m, H8 and H4), 2.14 (1H, dd, *J* = 18.0, 4.9 Hz, H4), 1.91 (1H, dd, *J* = 15.7, 9.1 Hz, H3), 1.68-1.64 (1H, m, H3), 1.31 (3H, t, *J* = 7.1 Hz, OCH₂CH₃). ¹³C NMR (101 MHz, CDCl₃) δ_{C} 166.2, 144.6, 142.4, 136.7, 134.5, 134.1, 133.3, 131.0, 129.8, 129.2, 128.8, 127.8, 126.0, 91.2, 60.5, 50.6, 44.6, 40.8, 31.4, 31.4, 31.2, 21.7, 14.2; HRMS (ES⁺) calc. for C₂₇H₃₀O₆N₂CIS [M+H]⁺ 545.1507; found 545.1507.

Chiralpak IB (15% IPA in hexane, flow rate = 1.3 mL/min, 230 nm) $t_{\rm R}$ major – 7.8 min, minor – 8.7 min (>99% *ee*).

(*E*)-Ethyl 4-((5*S*,6*S*,7*R*)-5-(4-bromophenyl)-6-nitro-1-tosyl-2,3,4,5,6,7-hexahydro-1H-indol-7-yl)but-2enoate, 14c

Prepared by General Procedure **J** using catalyst (*S*)-**10** (6.5 μ L, 0.02 mmol, 0.2 equiv.), **3a** (40 mg, 0.14 mmol, 1.4 eq.) and (*E*)-1-bromo-4-(2-nitrovinyl)benzene **13c** (22.6 mg, 0.10 mmol, 1.0 eq.). Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave **14c** as a red oil (49 mg, 0.083 mmol, 83%); Note: a small amount of the *Z*-alkene (*E:Z* ~ 20:1) was observed (*J* = 11.6 Hz), in addition to the 13.5:1 ratio of diastereomers from the cycloaddition. [α]_D²⁵ -56.5 (*c* = 1.5, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2924, 1714, 1551, 1316, 1160, 982; ¹H NMR (400 MHz, CDCl₃) δ_H 7.76 (2H, d, *J* = 8.2 Hz, TsH), 7.43 (2H, d, *J* = 8.3 Hz, TsH), 7.38 (2H, d, *J* = 8.1 Hz, ArH), 7.06 (2H, d, *J* = 8.4 Hz, ArH), 6.80 (1H, ddd, *J* = 15.5, 9.4 and 6.0 Hz, H9), 6.02 (1H, d, *J* = 15.6 Hz, H10), 4.65 (1H, dd, *J* = 11.5 and 9.5 Hz, H6), 4.20 (2H, q, *J* = 7.1 Hz, OCH₂CH₃), 3.95 (1H, dd, *J* = 13.1 and 7.2 Hz, H2), 3.72-3.64 (2H, m, H2 and H7), 3.32 (2H, td, *J* = 11.2 and 5.3 Hz, H5 and H8), 2.47 (3H, s, TsCH₃), 2.45-2.26 (2H, m, H8 and H4), 2.14 (1H, dd, *J* = 18.2 and 5.1 Hz, H4), 1.90 (1H, dd, *J* = 16.0 and 9.3 Hz, H3), 1.67-1.58 (1H, m, H3), 1.31 (3H, t, *J* = 7.1 Hz, OCH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ_C 166.1, 144.6, 142.3, 137.2, 134.5, 133.3, 132.1, 131.0, 129.8, 129.1, 127.7, 126.0, 122.1, 91.0, 60.4, 50.6, 44.6, 40.7, 31.4, 31.4, 21.7, 14.2; HRMS (ES⁺) calc. for C₂₇H₃₀O₆N₂BrS [M+H]⁺ 589.1002; found 589.0996, 591.0974. Chiralpak IB (7% IPA in hexane, flow rate = 1.3 mL/min, 230 nm) $t_{\rm R}$ major – 14.3 min, minor – 16.9 min (>99% *ee*).

(*E*)-Ethyl 4-((5*S*,6*S*,7*R*)-6-nitro-1-tosyl-5-(4-(trifluoromethyl)phenyl)-2,3,4,5,6,7-hexahydro-1H-indol-7-yl)but-2-enoate, 14d

Prepared by General Procedure J using catalyst (S)-10 (6.5 µL, 0.02 mmol, 0.20 equiv.), 3a (40 mg, 0.14 mmol, 1.4 equiv.) and (E)-1-(2-nitrovinyl)-4-(trifluoromethyl)benzene **13d** (21.7 mg, 0.10 mmol, 1.0 equiv.). Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave 14d as a colourless oil (39.5 mg, 0.068 mmol, 68%); Note: a small amount of the Z-alkene ($E:Z \sim 20:1$) was observed (J = 11.6 Hz), in addition to the 8:1 ratio of diastereomers from the cycloaddition. $[\alpha]_{D}^{25}$ -40.0 (c = 1.0, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2926, 1716, 1551, 1651, 1348, 1324, 1160; ¹H NMR (400 MHz, CDCl₃) δ_{H} 7.77 (2H, d, J = 8.3 Hz, TsH), 7.57 (2H, d, J = 8.1 Hz, TsH), 7.32 (2H, d, J = 8.1 Hz, ArH), 7.25 (2H, d, J = 8.1 Hz, ArH), 6.81 (1H, ddd, J = 15.5, 9.4 and 6.0 Hz, H9), 6.03 (1H, d, J = 15.9 Hz, H10), 4.72 (1H, dd, J = 11.6 and 9.5 Hz, H6), 4.21 (2H, q, J = 7.1 Hz, OCH₂CH₃), 3.96 (1H, dd, J = 12.4 and 7.8 Hz, H2), 3.74-3.65 (2H, m, H2 and H7), 3.43 (1H, td, J = 11.3 and 5.4 Hz, H5), 3.37-3.30 (1H, m, H8), 2.48 (3H, s, OCH₃), 2.54-2.27 (2H, m, H8 and H4), 2.17 (1H, dd, J = 18.2 and 5.1 Hz, H4), 1.92 (1H, dd, J = 15.9 and 9.2 Hz, H3), 1.69-1.63 (1H, m, H3), 1.31 (3H, t, J = 7.1 Hz, OCH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 166.1, 144.6, 142.2, 133.2, 130.8, 130.2 (q, J = 23.7 Hz), 130.0, 129.8, 127.8, 127.7, 126.1, 126.0, 126.0, 125.9, 125.9, 90.8, 60.4, 50.6, 44.9, 40.8, 31.4, 31.1, 21.7, 14.2; **HRMS** (ES⁺) calc. for $C_{28}H_{30}O_6N_2F_3S$ [M+H]⁺ 579.1771; found 579.1770. Chiralpak IA (7% IPA in hexane, flow rate = 1.3 mL/min, 254 nm) $t_{\rm B}$ major - 12.6 min, minor - 15.6 min (>99% ee).

(*E*)-Ethyl 4-((5S,6S,7R)-5-(4-methoxyphenyl)-6-nitro-1-tosyl-2,3,4,5,6,7-hexahydro-1H-indol-7-yl)but-2-enoate, 14e

Prepared by General Procedure J using catalyst (*S*)-10 (6.5 μ L, 0.02 mmol, 0.20 equiv.), **3a** (40 mg, 0.14 mmol, 1.4 equiv.) and (*E*)-1-methoxy-4-(2-nitrovinyl)benzene **13e** (17.9 mg, 0.10 mmol, 1.0 equiv.). Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave **14e** as a red oil (44 mg, 0.081 mmol, 81%); Note: a small amount of the *Z*-alkene (*E:Z* ~ 30:1) was observed (*J* = 11.6 Hz), but no diastereomer from the cycloaddition could be detected. $[\alpha]_{\rm D}^{25}$ -48.1 (*c* = 1.2, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2924, 1715, 1548, 1516, 1346, 1249, 1270, 1180, 1158; ¹**H NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 7.76 (2H, d, *J* = 8.3 Hz, TsH), 7.38 (2H, d, *J* = 8.0 Hz, TsH), 7.10 (2H, d, *J* = 8.7 Hz, ArH), 6.86 (2H, d, *J* = 8.8 Hz, ArH), 6.82 (1H, dd, *J* = 9.4 and 6.0 Hz, H9), 6.00 (1H, d, *J* = 15.7 Hz, H10), 4.64 (1H, dd, *J* = 11.4, 9.4 Hz, H6), 4.20 (2H, q, *J* = 7.1 Hz, OCH₂CH₃), 3.94 (1H, ddd, *J* = 16.0 and 9.4 Hz, H3), 1.65-1.56 (1H, m, H3), 1.30 (3H, t, *J* = 7.1 Hz, OCH₂CH₃); ¹³**C NMR** (126 MHz, CDCl₃) $\delta_{\rm C}$ 166.2, 159.2, 144.5, 142.6, 134.3, 133.2, 131.4, 130.0, 129.7, 128.4, 127.7, 125.8, 114.2, 91.6, 60.4, 55.2, 50.6, 44.4, 40.7, 31.4, 31.4, 31.1, 21.6, 14.2; **HRMS** (ES⁺) calc. for C₂₈H₃₃O₇N₂S [M+H]⁺ 541.2003; found 541.1998. Chiralpak IB (15% IPA in hexane, flow rate = 1.3 mL/min,254 nm) t_Rmajor – 10.0 min, minor – 11.1 min (>99% *ee*).

17

(*E*)-Ethyl 4-((5R,6R,7R)-5-(furan-2-yl)-6-nitro-1-tosyl-2,3,4,5,6,7-hexahydro-1H-indol-7-yl)but-2-enoate, 14f

Prepared by General Procedure **J** using catalyst (*S*)-**10** (6.5 μ L, 0.02 mmol, 0.20 equiv.), **3a** (40 mg, 0.14 mmol, 1.4 equiv.) and (*E*)-2-(2-nitrovinyl)furan **13f** (13.9 mg, 0.10 mmol, 1.0 equiv.). Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave the corresponding cycloadduct **14f** as a black oil (36 mg, 0.072 mmol, 72%); Note: a small amount of the *Z*-alkene (*E:Z* ~ 20:1) was observed (*J* = 11.6 Hz), in addition to the 9:1 ratio of diastereomers from the cycloaddition. [α]_D²⁵ –30.0 (*c* = 1.25, CHCl₃); **IR** (thin film, ν_{max} / cm⁻¹) 2926, 1717, 1554, 1357, 1160, 1158, 729; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.74 (2H, d, *J* = 8.3 Hz, TsH), 7.39 (2H, d, *J* = 8.3 Hz, TsH), 7.37 (1H, dd, *J* = 1.8 and 0.8 Hz, FurH), 6.79 (1H, ddd, *J* = 15.5, 8.9 and 6.4 Hz, H9), 6.28 (1H, dd, *J* = 3.2 and 1.9 Hz, Fur*H*), 6.13 (1H, d, *J* = 3.3 Hz, FurH), 5.97 (1H, dd, *J* = 15.6 Hz, H10), 4.69 (1H, dd, *J* = 10.6 and 8.8 Hz, H6), 4.19 (2H, q, *J* = 7.1 Hz, OCH₂CH₃), 3.92 (1H, ddd, *J* = 10.4 and 5.5 Hz, H5), 3.09-3.02 (1H, m, H7), 3.68 (1H, ddd, *J* = 12.9, 11.8 and 9.6 Hz, H2), 3.56 (1H, td, *J* = 10.4 and 5.0 Hz, H4), 1.94 (1H, dd, *J* = 16.0 and 9.4 Hz, H3), 1.70-1.61 (1H, m, H3), 1.29 (3H, t, *J* = 7.1 Hz, OCH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 166.1, 151.2, 144.5, 142.6, 142.5, 134.1, 133.2, 129.8, 127.7, 125.8, 110.4, 107.5, 89.3, 60.4, 50.4, 39.9, 37.9, 31.5, 31.1, 27.8, 21.6, 14.2; **HRMS** (ES⁺) calc. for C₂₅H₂₉₀C₇N₂S [M+H]⁺ 501.1690; found 501.1685.

Chiralpak IB (5% IPA in hexane, flow rate = 1.3 mL/min, 254 nm) $t_{\rm R}$ major – 17.0 min, minor – 24.3 min (91% *ee*).

Proof of stereochemistry for nitroalkene cycloadditions: Cycloadduct **14f** was used to assign the relative stereochemistry of the cycloaddition through ¹H NMR nOe experiments (1D nOe / 2D NOESY). On the beta face (as depicted below), enhancements were seen between H6 and H9, and H6 and one of H4, indicating these groups to be on the same face. On the alpha face, enhancements between H5 and H7, and between H5 and the second of the H4 atoms, are indicative of these groups to be on the same face.

(*E*)-Ethyl 4-((4'*R*,5*S*,7*R*)-5'-oxo-2',5-diphenyl-1-tosyl-1,2,3,4,5,7-hexahydro-5'H-spiro[indole-6,4'oxazol]-7-yl)but-2-enoate, 16a

Prepared by General Procedure **J** using catalyst (*S*)-**10** (6.5 μ L, 0.02 mmol, 0.2 equiv.), **3a** (40 mg, 0.14 mmol, 1.4 equiv.) and olefinic azlactone **15a** (24.9 mg, 0.1 mmol, 1.0 equiv.). Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave the corresponding cycloadduct **16a** as a yellow oil (30.6 mg, 0.050 mmol, 50%); $[\alpha]_{D}^{25}$ –161.3 (c = 0.6, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2924, 1810, 1712, 1652, 1552, 1347, 1159; ¹**H NMR** (400 MHz, CDCl₃) δ_{H} 7.96 (2H, d, J = 7.2 Hz, PhH), 7.83 (2H, d, J = 8.1 Hz, TsH), 7.62 (1H, t, J = 7.4 Hz, PhH), 7.52 (2H, t, J = 7.6 Hz, PhH), 7.33 (2H, d, J = 8.1 Hz, TsH), 7.62 (1H, t, J = 7.4 Hz, PhH), 7.52 (2H, t, J = 7.6 Hz, PhH), 7.33 (2H, d, J = 8.1 Hz, TsH), 7.23-7.12 (6H, m, H9 and PhH), 6.11 (1H, d, J = 15.6 Hz, H10), 4.21 (2H, q, J = 7.1 Hz, OCH₂CH₃), 3.80 (2H, dd, J = 9.8 and 6.7 Hz, H2), 3.55 (1H, br s, H7), 3.46 (1H, dd, J = 11.7 and 5.6 Hz, H5), 3.17-3.11 (1H, m, H8), 2.92-2.86 (1H, m, H8), 2.65 (1H, dd, J = 16.6 and 12.1 Hz, H4), 2.50 (3H, s, TsCH₃), 2.33 (1H, dd, J = 17.3 and 5.5 Hz, H4), 2.10-1.92 (2H, m, H3), 1.31 (3H, t, J = 7.1 Hz, OCH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 176.5, 166.5, 161.0, 145.7, 143.7, 137.5, 134.4, 133.9, 132.9, 129.5, 129.02, 128.8, 128.3, 128.1, 127.9, 127.8, 126.9, 125.8, 123.8, 75.3, 60.2, 49.8, 43.1, 42.5, 31.6, 30.8, 29.5, 21.7, 14.3; **HRMS** (ES⁺) calc. for C₃₅H₃₅O₆N₂S [M+H]⁺ 611.2210; found 611.2205.

Chiralpak IB (7% IPA in hexane, flow rate = 1.3 mL/min, 230 nm) $t_{\rm R}$ major - 13.4 min, minor - 11.8 min (>99% *ee*).

(E)-Ethyl 4-((4'R,5S,7R)-5-(4-bromophenyl)-5'-oxo-2'-phenyl-1-tosyl-1,2,3,4,5,7-hexahydro-5'H-spiro[indole-6,4'-oxazol]-7-yl)but-2-enoate, 16b

Prepared by General Procedure **J** using catalyst (*S*)-10 (6 μ L, 0.02 mmol, 0.2 equiv.), **3a** (40 mg, 0.14 mmol, 1.4 equiv.) and olefinic azlactone **15b** (32.6 mg, 0.1 mmol, 1.0 equiv.). Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave the corresponding cycloadduct **16b** as a yellow oil (27 mg, 0.039 mmol, 39%); $[\alpha]_{D}^{25}$ -106.2 (*c* = 1.2, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2925, 1810, 1712, 1651, 1494, 1346, 1158; ¹**H NMR** (400 MHz, CDCl₃) δ_{H} 7.90 (2H, d, *J* = 7.2 Hz, PhH), 7.81 (2H, d, *J* = 8.2 Hz, TsH), 7.63 (1H, t, *J* = 7.4 Hz, PhH), 7.54 (2H, t, *J* = 7.6 Hz, PhH), 7.32 (1H, d, *J* = 8.4 Hz, TsH), 7.00 (2H, d, *J* = 8.4 Hz, *p*-BrC₆H₄), 6.10 (2H, d, *J* = 15.6 Hz, H10), 4.21 (2H, q, *J* = 7.1 Hz, OC<u>H</u>₂CH₃), 3.80 (2H, dd, *J* = 9.9 and 6.7 Hz, H2), 3.47 (1H, br s, H7), 3.42 (1H, dd, *J* = 11.7 and 5.6 Hz, H5), 3.09-3.02 (1H, m, H8), 2.87 (1H, ddd, *J* = 15.0, 8.5 and 4.1 Hz, H8), 2.55-2.48 (1H, m, H4), 2.43 (3H, s, TsH), 2.30 (1H, dd, *J* = 17.3 and 5.6 Hz, H4), 2.02-1.87 (2H, m, H3), 1.31 (3H, t, *J* = 7.1 Hz, OCH₂CH₃); **1³C NMR** (101 MHz, CDCl₃) δ_{C} 176.4, 166.5, 161.2, 145.5, 143.8, 136.7, 134.4, 133.9, 133.1, 131.5, 130.7, 129.6, 128.9, 128.1, 127.9, 126.5, 125.6, 124.0, 122.0, 75.1, 60.3, 49.9, 42.6, 42.5, 31.6, 30.8, 29.5, 21.8, 14.3; **HRMS** (ES⁺) calc. for C₃₅H₃₃BrN₂O₆S [M]⁺ 688.1243; found 689.8211, 690.8067.

Chiralpak IA (10% IPA in hexane, flow rate = 1.0 mL/min, 230 nm) $t_{\rm B}$ major - 17.13 min, minor - 11.6 min (>99% *ee*).

Prepared by General Procedure **J** using catalyst (*S*)-**10** (6.5 μ L, 0.02 mmol, 0.2 equiv.), **3a** (40 mg, 0.14 mmol, 1.4 equiv.) and olefinic azlactone **15c** (27.9 mg, 0.1 mmol, 1.0 equiv.). Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave the corresponding cycloadduct **16c** as a brown oil (23 mg, 0.036 mmol, 36%, *dr* 17:1); $[\alpha]_{D}^{25}$ -107.1 (*c* = 0.75, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2924, 1801, 1719, 1652, 1349, 1160, 1039; ¹**H NMR** (500 MHz, CDCl₃) δ_{H} 7.96 (2H, d, *J* = 8.5 Hz, PhH), 7.83 (2H, d, *J* = 8.2 Hz, TsH), 7.61 (1H, t, *J* = 6.9 Hz, PhH), 7.52 (2H, t, *J* = 7.7 Hz, PhH), 7.32 (2H, d, *J* = 8.1 Hz, TsH), 7.20-7.15 (1H, m, H9), 7.04 (2H, d, *J* = 8.7 Hz, ArH), 6.66 (2H, d, *J* = 8.7 Hz, ArH), 6.10 (1H, d, *J* = 15.6 Hz, H10), 4.21 (2H, q, *J* = 7.1 Hz, OC<u>H</u>₂CH₃), 3.79 (2H, dd, *J* = 10.0 and 6.6 Hz, H2), 3.70 (3H, s, OCH₃), 3.54 (1H, brs, H7), 3.42 (1H, dd, *J* = 11.7 and 5.6 Hz, H5), 3.16 - 3.10 (1H, m, H8), 2.91 - 2.88 (1H, m, H8), 2.60 (1H, dd, *J* = 16.7 and 12.0 Hz, H4), 2.50 (3H, s, TSH), 2.29 (1H, dd, *J* = 17.3 and 5.6 Hz, H4), 2.07 - 1.93 (2H, m, H3), 1.31 (3H, t, *J* = 7.1 Hz, OCH₂CH₃); ¹³**C NMR** (126 MHz, CDCl₃) δ_{C} 176.6, 166.5, 160.9, 159.0, 145.8, 143.7, 134.4, 133.8, 132.8, 130.0, 129.49, 129.4, 128.8, 128.1, 127.8, 127.0, 125.8, 123.8, 113.6, 75.5, 60.2, 55.1, 49.8, 42.4, 42.3, 31.6, 30.8, 29.7, 21.7, 14.3. **HRMS** (ES⁺) calc. for C₃₆H₃₆O₇N₂NaS [M+Na]⁺ 663.2135; found 663.2133.

Chiralpak IA (10% IPA in hexane, flow rate = 1.0 mL/min, 230 nm) $t_{\rm R}$ major - 22.4 min, minor - 14.4 min (>99% *ee*).

Proof of stereochemistry for azlactone cycloadditions: Cycloadduct **16c** was used to assign the relative stereochemistry of the cycloaddition through ¹H NMR nOe experiments (1D nOe / 2D NOESY). On the alpha face (as depicted below), a strong enhancement was seen between H5 and H9, indicating these groups to be on the same face.

1.3.3 Synthesis of dienals 4a-d and 8a

Dienals 4a-d and 8a were synthesized according to the following scheme:

(E)-Methyl (6-((tert-butyldimethylsilyl)oxy)hex-3-en-1-yl)(tosyl)carbamate, S6

Prepared by General Procedure **A** using **S5** (1.20 g, 5.21 mmol). The resulting crude material was purified by flash chromatography (petroleum ether / Et₂O (9:1)) to give **S6** as a colourless oil (1.85 g, 4.19 mmol, 80%); **IR** (thin film, v_{max} / cm⁻¹) 2955, 2857, 1736, 1444, 1359, 1281, 1168, 1089, 835; ¹H NMR (400 MHz, CDCl₃) δ_{H} 7.83 (2H, d, *J* = 8.0 Hz, TsH), 7.30 (2H, d, *J* = 8.0 Hz, TsH), 5.47 (2H, m, H3 and H4), 3.86-3.82 (2H, m, H6), 3.68 (3H, s, CO₂Me), 3.60 (2H, t, *J* = 6.9 Hz, H1), 2.43 (3H, s, TsCH₃), 2.46-2.35 (2H, m, H5), 2.21 (2H, q, *J* = 6.6 Hz, H2), 0.89 (9H, s, SiC(CH₃)₃), 0.05 (6H, s, Si(CH₃)₂); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 152.8, 144.5, 136.6, 130.0, 129.3, 128.3, 127.4, 63.0, 53.7, 47.0, 36.2, 33.3, 25.9, 21.6, 18.3, -5.3; HRMS (ES⁺) calc. for C₂₁H₃₆O₅NSSi [M+H]⁺ 442.2078; found 442.2074.

Prepared by General Procedure **B** using carbamate **S6** (1.80 g, 4.08 mmol). The resulting crude material was purified by flash chromatography (petroleum ether / Et₂O (4:1)) to give **S7** as a colourless oil (1.49 g, 3.88 mmol, 95%); **IR** (thin film, v_{max} / cm⁻¹) 3284, 2954, 2929, 2857, 1599, 1325, 1219, 1159, 1094, 908; ¹H **NMR** (400 MHz, CDCl₃) δ_{H} 7.73 (2H, d, *J* = 8.3 Hz, TsH), 7.28 (2H, t, *J* = 8.7 Hz, TsH), 5.45-5.38 (1H, m, H4), 5.29-5.22 (1H, m, H3), 4.62 (1H, br s, NH), 3.57 (2H, t, *J* = 6.7 Hz, H6), 2.96 (2H, q, *J* = 6.6 Hz, H1), 2.42 (3H, s, TsCH₃), 2.23-2.06 (4H, m, H2 and H5), 0.87 (9H, s, SiC(CH₃)₃), 0.02 (6H, s, Si(CH₃)₂); ¹³C **NMR** (101 MHz, CDCl₃) δ_{C} 143.3, 136.9, 130.7, 129.6, 127.5, 127.1, 62.8, 42.5, 36.1, 32.5, 25.9, 21.5, 18.3, -5.3; **HRMS** (ES⁺) calc. for C₁₉H₃₄O₃NSSi [M+H]⁺ 384.2023; found 384.2021.

(*E*)-*N*-(6-((tert-Butyldimethylsilyl)oxy)hex-3-en-1-yl)-4-methyl-*N*-(oct-1-yn-1-yl)benzenesulfonamide, 5b

Prepared by General Procedure **C** using sulfonamide **S7** (1.50 g, 3.91 mmol, 1.0 equiv.) and 1-bromooct-1yne (940 mg, 4.80 mmol, 1.2 equiv.). The resulting crude material was purified by flash chromatography (petroleum ether / EtOAc (95:5)) to give **5b** as a colourless oil (1.45 g, 2.95 mmol, 75%); **IR** (thin film, v_{max} / cm⁻¹) 2929, 2857, 1739, 1463, 1366, 1254, 1170, 1093, 968, 836, 776; ¹H **NMR** (400 MHz, CDCl₃) δ_{H} 7.73 (2H, d, *J* = 8.3 Hz, TsH), 7.28 (2H, d, *J* = 8.1 Hz, TsH), 5.51-5.37 (1H, m, H3), 5.34-5.26 (1H, m, H4), 3.54 (2H, t, *J* = 6.8 Hz, H1), 3.25-3.21 (2H, m, H6), 2.40 (3H, s, TsCH₃), 2.30 (2H, dt, *J* = 7.5 and 7.0 Hz, H2), 2.25 (2H, t, *J* = 7.0 Hz, H9), 2.17 (2H, dt, *J* = 6.5 and 6.5 Hz, H5), 1.46-1.39 (2H, m, H10), 1.33-1.14 (6H, m, H11-H13), 0.86-0.83 (3H, m, H14), 0.84 (9H, s, SiC(CH₃)₃), 0.00 (6H, s, Si(CH₃)₂); ¹³C **NMR** (101 MHz, CDCl₃) δ_{C} 144.2, 134.7, 129.9, 129.6, 127.6, 127.2, 72.9, 70.5, 63.0, 51.2, 36.3, 31.3, 31.2, 28.9, 28.5, 25.9, 22.6, 21.6, 18.5, 18.4, 14.1, -5.2; **HRMS** (ES⁺) calc. for C₂₇H₄₆O₃NSSi [M+H]⁺ 492.2962; found 492.2958.

(Z)-3-((E)-3-((tert-butyldimethylsilyl)oxy)prop-1-en-1-yl)-2-heptylidene-1-tosylpyrrolidine, S8a

Prepared by General Procedure **F** using ynamide **5b** (1.29 g, 2.62 mmol). The crude material was purified by flash chromatography (petroleum ether / EtOAc (95:5)) to give **S8a** as a colourless oil (1.20 g, 2.44 mmol, 93%); **IR** (thin film, v_{max} / cm⁻¹) 2955, 2928, 1355, 1253, 1164, 1091, 835; ¹**H NMR** (400 MHz, CDCl₃) δ_H 7.63 (2H, d, *J* = 8.2 Hz, TsH), 7.23 (2H, d, *J* = 8.0 Hz, TsH), 5.34 (1H, dt, *J* = 15.3 and 4.8 Hz, H2), 5.24-5.16 (1H, m, H3), 4.95-4.91 (1H, m, H9), 4.03 (2H, d, *J* = 4.1 Hz, H1), 3.55-3.47 (1H, m, H6), 3.39-3.30 (1H, m, H6), 2.44-2.19 (3H, m, H4 and H10), 2.37 (3H, s, TsCH₃), 1.69-1.66 (1H, m, H5), 1.37-1.14 (9H, m, H5 and H11-H14), 0.84 (9H, s, SiC(CH₃)₃), 0.81 (3H, t, *J* = 6.7 Hz, H15), 0.00 (6H, s, Si(CH₃)₂); ¹³C NMR (101 MHz, CDCl₃) δ_C 143.7, 139.6, 134.8, 131.8, 129.4, 129.4, 127.8, 121.5, 63.3, 49.1, 45.0, 31.7, 29.8, 29.2, 29.0, 25.9, 25.9, 22.6, 21.5, 18.4, 14.1, -5.2; HRMS (ES⁺) calc. for C₂₇H₄₆O₃NSSi [M+H]⁺ 492.2962; found 492.2961.

(E)-3-((Z)-2-heptylidene-1-tosylpyrrolidin-3-yl)prop-2-en-1-ol, S9a

Prepared by General Procedure **G** using **S8a** (1.10 g, 2.24 mmol). The resulting crude material was purified by flash chromatography (petroleum ether / EtOAc (1:1)) to give **S9a** as a colourless oil (819 mg, 2.17 mmol, 97%); **IR** (thin film, v_{max} / cm⁻¹) 3457, 3016, 2970, 1436, 1366, 1217, 1164, 1092, 660; ¹H **NMR** (400 MHz, CDCl₃) δ_{H} 7.62 (2H, d, *J* = 8.2 Hz, TsH), 7.23 (2H, d, *J* = 8.2 Hz, TsH), 5.41 (1H, dt, *J* = 15.3 and 5.6 Hz, H2), 5.17 (1H, dd, *J* = 15.4 and 8.3 Hz, H3), 4.92 (1H, ddd, *J* = 8.0, 6.3 and 1.8 Hz, H9), 3.99 (2H, br s, H1), 3.50 (1H, ddd, *J* = 11.6, 8.7 and 3.1 Hz, H6), 3.34 (1H, dt, *J* = 11.4 and 8.3 Hz, H6), 2.37 (3H, s, TsCH₃), 2.34-2.24 (3H, m, H10 and H4), 1.70-1.62 (1H, m, H5), 1.40-1.17 (9H, m, H5 and H11 to H14), 0.81 (3H, t, *J* = 6.7 Hz, H15); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 143.8, 139.3, 134.8, 131.3, 131.2, 129.4, 127.8, 121.6, 63.1, 49.1, 45.2, 31.7, 29.7, 29.1, 29.0, 29.0, 22.6, 21.5, 14.1; HRMS (ES⁺) calc. for C₂₁H₃₂O₃NS [M+H]⁺ 378.2097; found 378.2097.

Prepared by General Procedure I using **S9A** (260 mg, 0.69 mmol). The resulting crude material was purified by column chromatography (petroleum ether \rightarrow petroleum ether / EtOAc (1:1)) to give **4a** as a light yellow oil (180 mg, 0.48 mmol, 69%); **IR** (thin film, v_{max} / cm⁻¹) 2925, 1720, 1689, 1355, 1165, 909, 815, 729, 659; ¹H **NMR** (400 MHz, CDCl₃) δ_H 9.31 (1H, d, *J* = 7.8 Hz, H1), 7.63 (2H, d, *J* = 6.8 Hz, TsH), 7.24 (2H, d, *J* = 6.8 Hz, TsH), 6.16 (1H, dd, *J* = 15.6 and 8.6 Hz, H3), 5.83 (1H, dd, *J* = 15.6 and 7.8 Hz, H2), 4.94 (1H, t, *J* = 7.1 Hz, H9), 3.65- 3.57 (1H, m, H6), 3.49-3.40 (1H, m, H6), 2.75-2.64 (1H, m, H4), 2.46-2.32 (2H, m, H10), 2.37 (3H, s, TsCH₃), 1.81-1.72 (1H, m, H5), 1.47-1.21 (9H, m, H5 and H11 to H14), 0.81 (3H, t, *J* = 6.2 Hz, H15); ¹³C **NMR** (101 MHz, CDCl₃) δ_C 193.1, 155.5, 144.2, 137.5, 134.7, 133.2, 129.6, 127.8, 123.6, 49.5, 45.5, 31.6, 29.6, 29.2, 29.0, 28.6, 22.6, 21.5, 14.0; **HRMS** (ES⁺) calc. for C₂₁H₃₀O₃NS [M+H]⁺ 376.1941; found 376.1940.

(E)-3-(2-heptyl-1-tosyl-4,5-dihydro-1H-pyrrol-3-yl)acrylaldehyde, 8a

Et₃N (1.36 mL, 9.80 mmol, 10.0 equiv.), DMSO (0.97 mL, 13.7 mmol, 14.0 equiv.) and SO₃•py (935 mg, 5.88 mmol, 6.0 equiv.) were added to a solution of alcohol **S9a** (37 mg, 0.98 mmol, 1.0 equiv.) in DCM (1 mL) at 0 °C. The solution was stirred for 2 h at rt before being quenched with pH 7 phosphate buffer (20 mL). The aqueous phase was extracted with EtOAc (3 x 20 mL), then the combined organic phases were washed with brine (2 x 20 mL), dried (MgSO₄) and concentrated. The resulting crude material was purified by flash chromatography (petroleum ether → petroleum ether / EtOAc (1:1)) to give **8a** as a light yellow oil (11.5 mg, 0.030 mmol, 30%); **IR** (thin film, v_{max} / cm⁻¹) 2925, 2856, 1671, 1601, 1454, 1377, 1233, 1163, 1112, 1088, 813; ¹**H NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 9.46 (1H, d, *J* = 7.9 Hz, H1), 7.62 (2H, d, *J* = 8.3 Hz, TsH), 7.26 (2H, d, *J* = 8.2 Hz, TsH), 7.20 (1H, d, *J* = 6.8 Hz, H3), 5.76 (1H, dd, *J* = 15.1 and 7.9 Hz, H2), 3.86-3.74 (2H, m, H6), 2.73-2.61 (2H, m, H10), 2.42 (2H, t, *J* = 9.2 Hz, H9), 2.37 (3H, s, TsCH₃), 1.57 (2H, dt, *J* = 15.1 and 7.6 Hz, H5), 1.36-1.09 (8H, m, H11 to H14), 0.82 (3H, t, *J* = 6.9 Hz, H14); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 192.9, 152.0, 144.5, 135.0, 130.0, 127.1, 126.3, 119.4, 49.4, 49.4, 31.7, 29.6, 29.5, 28.9, 26.8, 26.5, 22.6, 21.6, 14.1; **HRMS** (ES⁺) calc. for C₂₁H₂₉O₃NNAS [M+Na]⁺ 398.1765; found 398.1760.

(*E*)-*N*-(6-((*tert*-Butyldimethylsilyl)oxy)hex-3-en-1-yl)-*N*-(5-chloropent-1-yn-1-yl)-4-ethylbenzene sulfonamide, 5c

Prepared by General Procedure **C** using sulfonamide **S7** (760 mg, 1.98 mmol, 1.0 equiv.) and 1-bromo-5chloropent-1-yne (432 mg, 2.40 mmol, 1.2 equiv.). The resulting crude material was purified by column chromatography (petroleum ether / EtOAc (95:5)) to give **5c** as a colourless oil (680 mg, 1.40 mmol, 71%); **IR** (thin film, v_{max} / cm⁻¹) 2954, 2929, 1363, 1254, 1168, 1091, 834, 813, 775; ¹H NMR (400 MHz, CDCl₃) δ_{H} 7.76 (2H, d, *J* = 8.2 Hz, TsH), 7.33 (2H, d, *J* = 8.1 Hz, TsH), 5.53-5.42 (1H, m, H3), 5.39-5.26 (1H, m, H4), 3.62-3.55 (4H, m, H1 and H6), 3.28 (2H, t, *J* = 7.4 Hz, H11), 2.46 (2H, t, *J* = 6.8 Hz, H2), 2.44 (3H, s, TsCH₃), 2.29 (2H, q, *J* = 7.1 Hz, H9), 2.16 (2H, q, *J* = 6.8 Hz, H5), 1.92 (2H, quint, *J* = 6.5 Hz, H10), 0.88 (9H, s, SiC(CH₃)₃), 0.03 (6H, s, Si(CH₃)₂); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 144.4, 134.6, 130.0, 129.6, 127.5, 127.0, 74.0, 68.4, 62.9, 51.1, 43.5, 36.2, 31.5, 31.1, 25.9, 21.6, 18.3, 15.9, -5.3; HRMS (ES⁺) calc. for C₂₄H₃₉O₃NCISSi [M+H]⁺ 484.2103; found 484.2102.

(Z)-3-((E)-3-((tert-Butyldimethylsilyl)oxy)prop-1-en-1-yl)-2-(4-chlorobutylidene)-1-tosylpyrrolidine, S8b

Prepared by General Procedure **F** using ynamide **5c** (604 mg, 1.25 mmol). The crude material was purified by flash chromatography (petroleum ether / EtOAc (95:5)) to give **S8b** as a colourless oil (498 mg, 1.03 mmol, 82%); **IR** (thin film, v_{max} / cm⁻¹) 2954, 2929, 1598, 1471, 1329, 1253, 1091, 1067, 835, 776; ¹H **NMR** (400 MHz, CDCl₃) δ_{H} 7.62 (2H, d, *J* = 9.0 Hz, TsH), 7.24 (2H, d, *J* = 7.4 Hz, TsH), 5.35 (1H, d, *J* = 14.2 Hz, H2), 5.18 (1H, dd, *J* = 15.3 and 8.3 Hz, H3), 4.91 (1H, t, *J* = 7.2 Hz, H9), 4.04 (2H, d, *J* = 2.1 Hz, H1), 3.77- 3.68 (1H, m, H6), 3.52-3.45 (2H, m, H12), 3.36 (1H, dt, *J* = 18.5 and 7.5 Hz, H6), 2.62-2.49 (2H, m, H10), 2.38 (3H, s, TsCH₃), 2.25 (1H, dd, *J* = 16.9 and 8.4 Hz, H4), 1.99-1.63 (3H, m, H5 and H11), 1.67 (1H, dd, *J* = 18.4 and 9.2 Hz, H5), 0.84 (9H, s, SiC(CH₃)₃), 0.00 (3H, s, Si(CH₃)₂); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 143.9, 141.0, 134.6, 132.1, 129.5, 129.0, 127.8, 119.0, 76.7, 63.2, 49.1, 45.2, 44.6, 32.8, 29.1, 26.6, 25.9, 21.6, - 5.2; HRMS (ES⁺) calc. for C₂₄H₃₈O₃NCINaSSi [M+Na]⁺ 506.1922; found 506.1919.

Prepared by General Procedure **G** using **S8b** (521 mg, 1.08 mmol). The resulting crude material was purified by flash chromatography (petroleum ether / EtOAc (1:1)) to give **S9b** as a colourless oil (240 mg, 0.65 mmol, 60%); **IR** (thin film, v_{max} / cm⁻¹) 3450, 2925, 1449, 1348, 1160, 1120, 1015, 709; ¹H NMR (400 MHz, CDCl₃) δ_{H} 7.66 (2H, d, *J* = 7.8 Hz), 7.28 (2H, d, *J* = 7.8 Hz), 5.47 (1H, dt, *J* = 14.5 and 5.3 Hz, H2), 5.21 (1H, dd, *J* = 15.3 and 8.3 Hz, H3), 4.96 (1H, t, *J* = 7.2 Hz, H9), 4.03 (2H, d, *J* = 4.9 Hz, H1), 3.53 (3H, t, *J* = 6.5 Hz, H12 and H6), 3.38 (1H, dd, *J* = 18.5 and 9.4 Hz, H6), 2.54 (2H, dd, *J* = 15.1 and 7.9 Hz, H10), 2.41 (3H, s, TsCH₃), 2.32 (1H, q, *J* = 8.4 Hz, H4), 1.96-1.68 (3H, m, H5 and H11), 1.38-1.21 (1H, m, H5); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 144.0, 140.7, 134.5, 131.7, 130.5, 129.5, 127.7, 119.1, 62.8, 49.1, 45.2, 44.7, 32.6, 29.0, 26.6, 21.5; **HRMS** (ES⁺) calc. for C₁₈H₂₅O₃NCIS [M+H]⁺ 370.1238; found 370.1234.

(E)-3-((Z)-2-(4-chlorobutylidene)-1-tosylpyrrolidin-3-yl)acrylaldehyde, 4b

Prepared by General Procedure I using **S9b** (74 mg, 0.20 mmol). The resulting crude material was purified by flash chromatography (petroleum ether \rightarrow petroleum ether / EtOAc (1:1)) to give **4b** as a light yellow oil (53 mg, 0.144 mmol, 72%); **IR** (thin film, v_{max} / cm⁻¹) 2928, 1728, 1687, 1351, 1161, 1090, 840, 708; ¹**H NMR** (400 MHz, CDCl₃) δ_{H} 9.37 (1H, ddd, J = 7.8, 2.0 and 1.0 Hz, H1), 7.67 (2H, d, J = 8.1 Hz, TsH), 7.31 (2H, d, J = 7.4 Hz, TsH), 6.22 (1H, dd, J = 15.6 and 8.6 Hz, H2), 5.89 (1H, dd, J = 16.4 and 7.8 Hz, H3), 4.99 (1H, t, J = 7.2 Hz, H9), 3.67 (1H, br t, J = 10.1 Hz, H6), 3.57-3.46 (3H, m, H6 and 2 x H12), 2.77 (1H, app q, J = 8.3 Hz, H4), 2.58 (2H, app q, J = 7.5 Hz, H10), 2.42 (3H, s, TsCH₃), 1.97-1.80 (3H, m, H5 and 2 x H11), 1.54-1.43 (1H, m, H5); ¹³**C NMR** (101 MHz, CDCl₃) δ_{C} 193.0, 154.9, 144.4, 138.9, 134.6, 133.4, 129.7, 127.8, 121.1, 49.5, 45.6, 44.6, 32.4, 28.4, 26.9, 21.5; **HRMS** (ES⁺) calc. for C₁₈H₂₃O₃NCIS [M+H]⁺ 368.1081; found 368.1077.

(*E*)-*N*-(6-((*tert*-Butyldimethylsilyl)oxy)hex-3-en-1-yl)-4-methyl-*N*-(prop-1-yn-1-yl)benzenesulfonamide, 5d

Prepared by General Procedure **D** and **E** using sulfonamide **S7** (760 mg, 1.98 mmol). The resulting crude material was purified by flash chromatography (petroleum ether / EtOAc (95:5)) to give **5d** as a colorless oil (680 mg, 1.61 mmol, 81%); **IR** (thin film, v_{max} / cm⁻¹) 2954, 2857, 1362, 1253, 1168, 1092, 834, 812, 775; ¹H **NMR** (400 MHz, CDCl₃) δ_{H} 7.76 (2H, d, *J* = 8.3 Hz, TsH), 7.32 (2H, d, *J* = 8.3 Hz, TsH), 5.52-5.41 (1H, m, H3), 5.39-5.29 (1H, m, H4), 3.58 (2H, t, *J* = 6.8 Hz, H1), 3.25 (2H, t, *J* = 8 Hz, H6), 2.43 (3H, s, TsCH₃), 2.29 (2H, q, *J* = 7.1 Hz, H2), 2.16 (2H, q, *J* = 6.8 Hz, H3), 1.89 (3H, s, H9), 0.88 (9H, s, SiC(CH₃)₃), 0.03 (6H, s, Si(CH₃)₂); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 144.2, 134.8, 129.9, 129.6, 127.5, 127.2, 71.8, 70.6, 65.7, 62.9, 51.1, 36.2, 31.1, 25.9, 21.6, 3.3, -5.3; HRMS (ES⁺) calc. for C₂₂H₃₅O₃NNaS [M+Na]⁺ 444.1999; found 444.2000.

(Z)-3-((E)-3-((tert-Butyldimethylsilyl)oxy)prop-1-en-1-yl)-2-ethylidene-1-tosylpyrrolidine, S8c

Prepared by General Procedure **F** using ynamide **5d** (600 mg, 1.42 mmol). The crude material was purified by flash chromatography (petroleum ether / EtOAc (95:5)) to give **S8c** as colourless oil (532 mg, 1.26 mmol, 89%); **IR** (thin film, v_{max} / cm⁻¹) 2954, 2929, 1390, 1351, 1164, 1114, 1096, 1060, 954, 836, 770; ¹H **NMR** (400 MHz, CDCl₃) δ_{H} 7.64 (2H, d, *J* = 8.2 Hz, TsH), 7.24 (2H, d, *J* = 8.1 Hz, TsH), 5.34 (1H, dt, *J* = 15.3 and 5.0 Hz, H2), 5.19 (1H, dd, *J* = 15.3 and 8.3 Hz, H3), 5.07 (1H, qd, *J* = 7.0 and 1.9 Hz, H9), 4.03 (2H, d, *J* = 4.9 Hz, H1), 3.51 (1H, ddd, *J* = 17.1, 11.7 and 5.2 Hz, H6), 3.43-3.30 (1H, m, H6), 2.38 (3H, s, TsCH₃), 2.24 (1H, ddd, *J* = 10.0, 9.1 and 5.3 Hz, H4), 1.96 (3H, d, *J* = 3.9 Hz, H10), 1.86 (1H, dd, *J* = 7.1 and 2.1 Hz, H5), 1.66 (1H, ddt, *J* = 13.5, 8.7 and 4.3 Hz, H5), 0.84 (9H, s, SiC(CH₃)₃), -0.00 (6H, s, Si(CH₃)₂); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 143.7, 141.0, 134.7, 131.8, 129.4, 127.8, 115.5, 76.7, 63.4, 49.1, 45.1, 29.1, 25.9, 21.5, 18.4, 15.0, -5.2; HRMS (ES⁺) calc. for C₂₂H₃₆O₃NSSi [M+H]⁺ 422.2179; found 422.2178.

Prepared by General Procedure **G** using **S8c** (353 mg, 0.84 mmol). The resulting crude material was purified by flash chromatography (petroleum ether / EtOAc (1:1)) to give **S9c** as a colourless oil (155 mg, 0.50 mmol, 60%); **IR** (thin film, v_{max} / cm⁻¹) 3445, 2921, 1736, 1449, 1350, 1242, 1161, 1090, 813; ¹H **NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.62 (2H, d, *J* = 8.0 Hz, TsH), 7.23 (2H, d, *J* = 8.0 Hz, TsH), 5.41 (1H, dt, *J* = 15.3 and 5.6 Hz, H2), 5.18 (1H, dd, *J* = 15.4 and 8.3 Hz, H3), 5.06 (1H, qd, *J* = 7.0 and 1.8 Hz, H9), 3.97 (2H, d, *J* = 5.5 Hz, H1), 3.53-3.47 (1H, m, H6), 3.37-3.30 (1H, m, H6), 2.36 (3H, s, TsCH₃), 2.25 (1H, q, *J* = 8.3 Hz, H4), 1.83 (3H, d, *J* = 6.1 Hz, H10), 1.69-1.62 (1H, m, H5), 1.37-1.18 (1H, m, H5); ¹³C **NMR** (101 MHz, CDCl₃) $\delta_{\rm C}$ 143.8, 140.7, 134.6, 131.4, 130.8, 129.4, 127.7, 115.5, 62.9, 49.0, 45.1, 28.9, 21.5, 15.0; **HRMS** (ES⁺) calc. for C₁₆H₂₂O₃NS [M+H]⁺ 308.1314; found 308.1313.

(E)-3-((Z)-2-Ethylidene-1-tosylpyrrolidin-3-yl)acrylaldehyde, 4c

Prepared by General Procedure I using **S9c** (50 mg, 0.16 mmol). The resulting crude material was purified by column chromatography (petroleum ether \rightarrow petroleum ether / EtOAc (1:1)) to give **4c** as a light yellow oil (30 mg, 0.098 mmol, 60%); **IR** (thin film, v_{max} / cm⁻¹) 2923, 1796, 1724, 1687, 1551, 1401, 1350, 1191, 1158, 773; ¹H **NMR** (400 MHz, CDCl₃) δ_{H} 9.36 (1H, d, *J* = 7.8 Hz, H1), 7.69 (2H, d, *J* = 8.2 Hz, TsH), 7.30 (2H, d, *J* = 8.2 Hz, TsH), 6.23 (1H, dd, *J* = 15.6 and 8.6 Hz, H2), 5.89 (1H, dd, *J* = 15.6 and 7.8 Hz, H3), 5.18-5.10 (1H, m, H9), 3.67 (1H, ddd, *J* = 12.3, 8.5 and 4.0 Hz, H6), 3.51 (1H, dt, *J* = 11.7, 7.9 Hz, H6), 2.75 (1H, q, *J* = 8.4 Hz, H4), 2.43 (3H, s, TsCH₃), 1.93 (3H, d, *J* = 7.1 Hz, H10), 1.88-1.78 (1H, m, H5), 1.54-1.43 (1H, m, H5); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 193.1, 155.4, 144.3, 139.0, 134.7, 133.2, 129.7, 127.8, 117.6, 49.5, 45.5, 28.5, 21.5, 15.2; **HRMS** (ES⁺) calc. for C₁₆H₂₀O₃NS [M+H]⁺ 306.1158; found 306.1159.

(*E*)-*N*-(6-((*tert*-Butyldimethylsilyl)oxy)hex-3-en-1-yl)-4-methyl-*N*-(phenylethynyl)benzenesulfonamide, 5e

Prepared by General Procedure **C** using sulfonamide **S7** (760 mg, 1.98 mmol, 1.0 equiv.) and (bromoethynyl)benzene (432 mg, 2.40 mmol, 1.2 equiv.). The resulting crude material was purified by flash chromatography (petroleum ether / EtOAc (95:5)) to give **5e** as a colourless oil (660 mg, 1.36 mmol, 69%); **IR** (thin film, v_{max} / cm⁻¹) 2953, 2856, 2235, 1366, 1254, 1169, 1091, 733; ¹**H NMR** (400 MHz, CDCl₃) δ_{H} 7.76 (2H, d, *J* = 8.2 Hz, TsH), 7.34-7.30 (4H, m, PhH and TsH), 7.28-7.22 (3H, m, PhH), 5.51-5.44 (1H, m, H3), 5.38-5.31 (1H, m, H4), 3.55 (2H, t, *J* = 6.8 Hz, H1), 3.38 (2H, t, *J* = 7.5 Hz, H6), 2.41 (3H, s, TsCH₃), 2.35 (2H, dd, *J* = 14.4 and 7.2 Hz, H2), 2.14 (2H, q, *J* = 6.8 Hz, H5), 0.84 (9H, s, SiC(CH₃)₃), 0.0 (6H, s, Si(CH₃)₂); ¹³**C NMR** (101 MHz, CDCl₃) δ_{C} 144.5, 134.6, 131.3, 130.2, 129.7, 128.2, 127.7, 127.6, 127.0, 122.9, 82.2, 70.9, 67.9, 51.3, 36.2, 31.3, 25.9, 21.6, 18.3, -5.3; **HRMS** (ES⁺) calc. for C₂₇H₃₈O₃NSSi [M+H]⁺ 484.2336; found 484.2335.

(Z)-2-Benzylidene-3-((E)-3-((tert-butyldimethylsilyl)oxy)prop-1-en-1-yl)-1-tosylpyrrolidine, S8d

(5:1)

Prepared by General Procedure F using ynamide **5e** (650 mg, 1.34 mmol, 1.0 equiv.). The crude material was purified by flash chromatography (petroleum ether / EtOAc (95:5)) to give **S8d** as a yellow oil (580 mg, 1.20 mmol, 89%); **IR** (thin film, v_{max} / cm⁻¹) 2953, 1597, 1471, 1404, 1210, 1160, 1090, 834, 814, 731; ¹H **NMR** (400 MHz, CDCl₃) δ_{H} = 7.58 (2H, d, *J* = 8.2 Hz, TsH), 7.54 (2H, d, *J* = 7.4 Hz, PhH), 7.29-7.16 (3H, m, TsH and PhH), 7.15-7.07 (2H, m, PhH), 5.85 (1H, d, *J* = 2.1 Hz, H9), 5.44 (1H, dt, *J* = 15.3 and 4.9 Hz, H2), 5.32-5.19 (1H, m, H3), 4.06 (2H, dd, *J* = 4.9 and 1.4 Hz, H1), 3.62 (1H, ddd, *J* = 15.7, 9.4 and 5.1 Hz, H6), 3.45 (1H, ddd, *J* = 14.6, 10.4 and 7.5 Hz, H6), 2.49 (1H, q, *J* = 10.2 Hz, H4), 2.35 (3H, s, TsCH₃), 1.77-1.69 (1H, m, H5), 1.35 (1H, ddd, *J* = 19.5, 12.3 and 9.1 Hz, H5), 0.83 (9H, s, SiC(CH₃)₃), 0.00 (6H, s, Si(CH₃)₂); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 143.9, 140.6, 136.4, 134.5, 132.6, 129.4, 129.2, 128.8, 127.9, 127.7, 126.8, 118.8, 63.4, 49.1, 46.3, 28.8, 25.9, 25.9, 21.6, -5.2; HRMS (ES⁺) calc. for C₂₇H₃₈O₃NSSi [M+H]⁺ 484.2336; found 484.2334.

Prepared by General Procedure **G** using **S8d** (300 mg, 0.62 mmol). The resulting crude material was purified by flash chromatography (petroleum ether / EtOAc (1:1)) to give **S9d** as a yellow oil (140 mg, 0.38 mmol, 61%); **IR** (thin film, v_{max} / cm⁻¹) 3385, 2958, 2899, 1597, 1305, 1160, 1088, 911,756; ¹H **NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.61 (2H, d, J = 8.1 Hz, TsH), 7.57 (2H, d, J = 7.4 Hz, PhH), 7.24 (4H, m, TsH and PhH), 7.14 (1H, t, J = 7.4 Hz, PhH), 5.90 (1H, d, J = 1.8 Hz, H9), 5.54 (1H, dt, J = 14.6 and 5.2 Hz, H2), 5.31 (1H, dd, J = 15.3 and 8.4 Hz, H3), 4.04 (2H, br s, H1), 3.75-3.62 (1H, m, H6), 3.49 (1H, dd, J = 19.5 and 8.4 Hz, H6), 2.56 (1H, q, J = 8.6 Hz, H4), 2.38 (3H, s, TsCH₃), 1.95 (1H, br s, OH), 1.77 (1H, dd, J = 18.6 and 8.6 Hz, H5), 1.46 - 1.36 (1H, m, H5); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm C}$ 144.0, 140.4, 136.2, 134.3, 132.1, 130.4, 129.4, 128.7, 127.8, 127.6, 126.7, 118.8, 62.8, 49.1, 46.1, 28.6, 21.5; HRMS (ES⁺) calc. for C₂₁H₂₃O₃NNaS [M+Na]⁺ 392.1291; found 392.1289.

(E)-3-((Z)-2-benzylidene-1-tosylpyrrolidin-3-yl)acrylaldehyde, 4d

Prepared by General Procedure I using **S9d** (70 mg, 0.19 mmol, 1.0 equiv.). The resulting crude material was purified by flash chromatography (petroleum ether -> petroleum ether / EtOAc (1:1)) to give **4d** as a yellow oil (46 mg, 0.13 mmol, 66%); **IR** (thin film, v_{max} / cm⁻¹) 3016, 1728, 1685, 1598, 1353, 1158, 1089, 1030, 815; ¹H NMR (400 MHz, CDCl₃) δ_{H} 9.37 (1H, d, *J* = 7.8 Hz, H1), 7.57 (2H, d, *J* = 8.3 Hz, TsH), 7.51 (2H, d, *J* = 7.3 Hz, PhH), 7.21 (4H, m, TsH and PhH), 7.12 (1H, t, *J* = 7.3 Hz, PhH), 6.31 (1H, dd, *J* = 15.6 and 8.8 Hz, H2), 5.95 (1H, dd, *J* = 15.6 and 7.8 Hz, H3), 5.84 (1H, d, *J* = 1.7 Hz, H9), 3.74 (1H, ddd, *J* = 12.2, 8.4 and 4.0 Hz, H6), 3.56 (1H, dt, *J* = 11.9 and 7.9 Hz, H6), 2.96 (1H, q, *J* = 8.6 Hz, H4), 2.35 (3H, s, TsCH₃), 1.89-1.81 (1H, m, H5), 1.56-1.46 (1H, m, H5); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 193.0, 155.0, 144.4, 138.4, 135.6, 134.4, 133.7, 129.6, 128.8, 127.9, 127.8, 127.3, 120.6, 49.6, 46.4, 28.3, 21.5; HRMS (ES⁺) calc. for C₂₁H₂₂O₃NS [M+H]⁺ 368.1315; found 368.1318.

1.3.4 Cycloaddition reactions of dienals 4a-d

4a-d were reacted with the following dienophiles:

(3'S,4S,6S,7S)-1'-tert-Butyl

hexahydrospiro[indole-5,3'-indoline]-1',6-dicarboxylate, 12a

Prepared by General Procedure **K** using catalyst (*S*)-**10** (3.2μ L, 0.010 mmol, 0.2 equiv.), **4a** (28 mg, 0.075 mmol, 1.5 equiv.) and olefinic oxindole **9a** (15.8 mg, 0.050 mmol, 1.0 equiv.). Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave cycloadduct **12a** as a light yellow oil (27 mg, 0.039 mmol, 78%); $[\alpha]_D^{25}$ –94.3 (*c* = 1.0, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2128, 1750, 1730, 1605, 1464, 1353, 1304, 1253, 1162; ¹H NMR (400 MHz, CDCl₃) δ_H 9.67 (1H, s, H15), 7.94 (2H, d, *J* = 8.0 Hz, TsH), 7.81 (1H, d, *J* = 7.9 Hz, ArH), 7.40 (2H, d, *J* = 8.0 Hz, TsH), 7.21 (1H, td, *J* = 8.0 and 1.4 Hz, ArH), 6.63 (1H, t, *J* = 8.0 Hz, ArH), 6.55 (1H, d, *J* = 6.5 Hz, ArH), 1.4.03 (1H, ddd, *J* = 11.7, 8.0 and 6.4 Hz, H2), 3.83-3.78 (3H, m, H2 and OCH₂CH₃), 3.67 (1H, br s, H7), 3.33 (1H, dd, *J* = 18.6 and 8.9 Hz, H14), 3.27 (1H, d, *J* = 7.1 Hz, H6), 2.89 (1H, d, *J* = 8.6 Hz, H4), 2.51 (3H, s, TsCH₃), 2.28 (1H, dd, *J* = 18.7 and 3.0 Hz, H14), 2.24-2.19 (2H, m, H3), 2.00-1.93 (1H, m, H8), 1.81-1.93 (1H, m, H8), 1.60 (9H, s, C(CH₃)₃), 1.37-1.14 (8H, m, H9-H12), 0.89 (6H, t, *J* = 7.1 Hz, OCH₂CH₃ and H13); ¹³C NMR (101 MHz, CDCl₃) δ_C 198.9, 176.7, 171.0, 148.9, 144.0, 139.3, 138.8, 136.2, 130.5, 130.1, 128.4, 128.1, 123.8, 123.5, 123.3, 114.7, 84.14, 61.2, 51.6, 50.1, 47.7, 44.3, 37.4, 33.8, 33.5, 31.8, 30.3, 29.5, 27.9, 25.4, 22.7, 21.6, 14.1, 13.4; **HRMS** (ES⁺) calc. for C₃₈H₄₈O₈N₂NaS [M+Na]⁺ 715.3023; found 715.3018.

Chiralpak IB (25% IPA in hexane, flow rate = 1.0 mL/min, 230 nm) $t_{\rm R}$ major -6.1 min, minor - 7.3 min (94% *ee*).

(3'*S*,4*S*,6*S*,7*S*)-1'-*tert*-Butyl 6-ethyl 7-(3-chloropropyl)-2'-oxo-4-(2-oxoethyl)-1-tosyl-1,2,3,4,6,7hexahydrospiro[indole-5,3'-indoline]-1',6-dicarboxylate, 12b

Prepared by General Procedure **K** using catalyst (*S*)-**10** (3.2 μ L, 0.010 mmol, 0.2 equiv.), **4b** (27.5 mg, 0.075 mmol, 1.5 equiv.) and olefinic oxindole **9a** (15.8 mg, 0.05 mmol, 1.0 equiv.). Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave cycloadduct **12b** as a colourless oil (23 mg, 0.034 mmol, 67%); $[\alpha]_{D}^{25}$ -51.3 (c = 0.5, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2927, 2856, 1787, 1755, 1726, 1598, 1482, 1348, 1250; ¹**H NMR** (500 MHz, CDCl₃) δ_{H} = 9.67 (1H, s, H12), 7.93 (2H, d, J = 8.0 Hz, TsH), 7.82 (1H, d, J = 8.1 Hz, ArH), 7.41 (2H, d, J = 8.0 Hz, TsH), 7.22 (1H, dt, J = 15.1 and 4.1 Hz, ArH), 6.64 (1H, t, J = 7.9 Hz, ArH), 6.54 (1H, d, J = 7.0 Hz, ArH), 4.16-4.10 (1H, m, H2), 4.05-3.99 (1H, m, H2), 3.85-3.78 (2H, m, OCH₂CH₃), 3.74-3.70 (1H, m, H7), 3.62-3.53 (2H, m, H10), 3.30 (1H, dd, J = 18.6 and 8.7 Hz, H11), 3.23 (1H, d, J = 7.1 Hz, H6), 2.92 (1H, d, J = 6.5 Hz, H4), 2.52 (3H, s, TsCH₃), 2.29 (1H, dd, J = 18.7 and 3.1 Hz, H11), 2.23 (2H, td, J = 9.1 and 2.4 Hz, H3), 2.16-2.10 (1H, m, H8), 1.99-1.83 (2H, m, H9), 1.75-1.66 (1H, m, H8), 1.61 (9H, s, C(CH₃)₃), 0.90 (3H, t, J = 7.1 Hz, OCH₂CH₃); ¹³C NMR (126 MHz, CDCl₃) δ_{c} 198.7, 176.5, 170.9, 148.9, 144.3, 138.9, 138.6, 135.9, 130.3, 130.1, 128.6, 128.1, 124.3, 123.9, 123.2, 114.8, 84.3, 61.4, 51.6, 50.0, 47.7, 44.8, 44.2, 37.2, 33.1, 31.6, 30.3, 29.0, 28.0, 21.7, 13.4; **HRMS** (ES⁺) calc. for C₃₅H₄₂O₈N₂CIS [M+H]⁺ 685.2344; found 685.2338.

Chiralpak IB (20% IPA in hexane, flow rate = 1.0 mL/min, 254 nm) $t_{\rm R}$ major: 11.2 min, minor: 13.6 min (97% *ee*).

(3'S,4S,6S,7S)-1'-tert-Butyl

hexahydrospiro[indole-5,3'-indoline]-1',6-dicarboxylate, 12c

Prepared by General Procedure **K** using catalyst (*S*)-**10** (3.2μ L, 0.010 mmol, 0.2 equiv.), **4c** (22.8 mg, 0.075 mmol, 1.5 equiv.) and olefinic oxindole **9a** (15.8 mg, 0.05 mmol, 1.0 equiv.). Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave cycloadduct **12c** as a light yellow oil (23 mg, 0.036 mmol, 74%); $[\alpha]_{D}^{25}$ –57.1 (*c* = 0.8, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2922, 2850, 1764, 1722, 1602, 1475, 1348, 1306, 1156, 986, 739; ¹H NMR (500 MHz, CDCl₃) δ_{H} 9.67 (1H, s, H10), 7.92 (2H, d, *J* = 8.0 Hz, TsH), 7.80 (1H, d, *J* = 8.2 Hz, ArH), 7.41 (2H, d, *J* = 8.0 Hz, TsH), 7.25-7.21 (1H, m, ArH), 6.69 (1H, t, *J* = 8.0 Hz, ArH), 6.63 (1H, d, *J* = 8.5 Hz, ArH), 4.06 (1H, ddd, *J* = 11.9, 9.1 and 4.8 Hz, H2), 3.88-3.77 (3H, m, H2 and OC<u>H</u>₂CH₃), 3.53-3.50 (1H, m, H7), 3.32 (1H, dd, *J* = 18.6 and 8.9 Hz, H9), 3.09 (1H, d, *J* = 8.1 Hz, H6), 2.87 (1H, d, *J* = 7.0 Hz, H4), 2.51 (3H, s, TsCH₃), 2.31 (1H dd, *J* = 18.7 and 3.0 Hz, H9), 2.29-2.17 (2H, m, H3), 1.60 (9H, s, C(CH₃)₃), 1.50 (3H, d, *J* = 6.5 Hz, H8), 0.94 (3H, t, *J* = 7.1 Hz, OCH₂C<u>H</u>₃); ¹³C NMR (126 MHz, CDCl₃) δ_{C} 198.9, 176.6, 170.8, 148.8, 144.2, 140.4, 138.9, 136.2, 130.6, 130.1, 128.4, 128.0, 123.9, 123.1, 123.0, 114.8, 84.2, 61.2, 51.2, 51.0, 50.2, 44.1, 37.7, 30.3, 29.7, 28.0, 21.7, 21.7, 13.5; HRMS (ES⁺) calc. for C₃₃H₃₉O₈N₂S [M+H]⁺ 623.2421; found 623.2433.

Chiralpak IB (20% IPA in hexane, flow rate = 1.0 mL/min, 230 nm) $t_{\rm R}$ major: 12.2 min, minor: 18.9 min (98% *ee*).

Proof of stereochemistry for oxindole cycloadditions: Cycloadduct **12c** was used to assign the relative stereochemistry of the cycloaddition through ¹H NMR nOe experiments (1D nOe / 2D NOESY). On the alpha face (as depicted below), a strong enhancement was seen between H6 and H8 (side chain methyl), indicating these groups to be on the same face; on the beta face, a strong enhancement was seen between H4 and an aryl proton.

(3'*S*,4*S*,6*S*,7*R*)-1'-*tert*-Butyl 6-ethyl 2'-oxo-4-(2-oxoethyl)-7-phenyl-1-tosyl-1,2,3,4,6,7hexahydrospiro[indole-5,3'-indoline]-1',6-dicarboxylate, 12d

Prepared by General Procedure **K** using catalyst (*S*)-**10** (3.2 μ L, 0.01 mmol, 0.2 equiv.), **4d** (27.5 mg, 0.075 mmol, 1.5 equiv.) and olefinic oxindole **9a** (15.8 mg, 0.05 mmol, 1.0 equiv.). Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave cycloadduct **12d** as a yellow oil (24 mg, 0.035 mmol, 70% yield); $[\alpha]_{D}^{25}$ -57.4 (*c* = 1.1, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2928, 1789, 1757, 1726, 1602, 1478, 1251, 1150, 1022, 868; ¹**H NMR** (400 MHz, CDCl₃) δ_{H} 9.66 (1H, s, H9), 7.77 (1H, d, *J* = 8.3 Hz, ArH), 7.34-7.22 (3H, m, TsH and ArH), 7.23-6.91 (9H, m, TsH and ArH), 4.82-4.70 (1H, m, H2), 4.10-4.04 (1H, m, H2), 3.74-3.65 (2H, m, OCH₂CH₃), 3.63-3.52 (2H, m, H8 and H6), 3.27 (1H, d, *J* = 8.9 Hz, H7), 3.02 (1H, dd, *J* = 11.3 and 7.9 Hz, H8), 2.56-2.40 (2H, m, H4 and H5), 2.37-2.28 (1H, m, H5), 2.32 (3H, s, TsCH₃), 1.52 (9H, s, C(CH₃)₃), 0.76 (3H, t, *J* = 7.1 Hz, OCH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 198.9, 176.0, 170.3, 148.7, 143.5, 141.5, 138.8, 138.1, 136.6, 130.1, 129.5, 128.7, 128.4, 128.3, 127.5, 126.9, 125.5, 124.6, 123.6, 114.8, 84.2, 61.1, 52.2, 51.8, 49.6, 44.3, 40.8, 37.9, 31.0, 28.0, 21.5, 13.4; **HRMS** (ES⁺) calc. for C₃₈H₄₁O₈N₂S [M+H]⁺ 685.2578; found 685.2562. *HPLC data is on the next page.*
Chiralpak IA (20% IPA in hexane, flow rate = 1.0 mL/min, 230 nm) Minor diastereomer: $t_{\rm R}$ major – 11.7 min, minor – 5.2 min;Major diastereomer: $t_{\rm R}$ major – 10.1 min, minor – 22.2 min. (95% *ee*).

(3'*S*,4*S*,6*S*,7*S*)-1'-*tert*-Butyl 6-ethyl 5'-chloro-7-hexyl-2'-oxo-4-(2-oxoethyl)-1-tosyl-1,2,3,4,6,7-hexahydrospiro[indole-5,3'-indoline]-1',6-dicarboxylate, 12e

Prepared by General Procedure **K** using catalyst (*S*)-10 (3.2 μ L, 0.01 mmol, 0.2 equiv.), 4a (28 mg, 0.075 mmol, 1.5 equiv.) and olefinic oxindole 9b (17.5 mg, 0.050 mmol, 1.0 equiv.). Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave cycloadduct 12e as a light yellow oil (27 mg, 0.037 mmol, 75%); $[\alpha]_{D}^{25}$ –68.2 (*c*=0.7, CHCl₃); IR (thin film, v_{max} / cm⁻¹) 2957, 2856, 1790, 1760, 1728, 1598, 1471, 1394, 1250, 1152, 1090, 1023, 815; ¹H NMR (400 MHz, CDCl₃) δ_{H} 9.66 (1H, s, H15), 7.91 (2H, d, *J* = 8.1 Hz, TsH), 7.83 (1H, d, *J* = 8.7 Hz, ArH), 7.38 (2H, d, *J* = 8.1 Hz, TsH), 7.27 (1H, dd, *J* = 8.3 and 2.6 Hz, ArH), 7.16 (1H, d, *J* = 2.2 Hz, ArH), 3.93-3.84 (3H, m, H2 and OCH₂CH₃), 3.69-3.61 (2H, m, H2 and H7), 3.25 (2H, dt, *J* = 8.8 and 7.3 Hz, H6 and H14), 2.98 (1H, d, *J* = 7.7 Hz, H4), 2.44 (3H, s, TsCH₃), 2.33 (1H, dd, *J* = 18.8 and 2.9 Hz, H14), 2.25-2.13 (2H, m, H3), 1.94-1.86 (1H, m, H8), 1.82-1.70 (1H, m, H8), 1.60 (9H, s, C(CH₃)₃), 1.36-1.23 (8H, m, H9 to H12), 0.96 (3H, t, *J* = 7.1 Hz, OCH₂CH₃), 0.89 (3H, t, *J* = 6.8 Hz, H13); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 198.7, 176.1, 171.0, 148.7, 144.3, 139.8, 137.5, 135.5, 132.5, 130.1, 129.7, 128.6, 127.9, 124.5, 123.5, 116.0, 84.5, 61.3, 51.8, 49.8, 47.3, 44.2, 37.1, 34.2, 32.8, 31.7, 30.5, 29.4, 28.0, 24.9, 22.6, 21.6, 14.1, 13.5; HRMS (ES⁻) calc. for C₃₈H₄₆O₈N₂SCI [M-H]⁻ 725.2669; found 725.2682.

Chiralpak IB (20% IPA in hexane, flow rate = 1.0 mL/min, 230 nm) $t_{\rm R}$ major – 6.1 min, minor – 7.8 min (95% *ee*).

38

(3'*S*,4*S*,6*S*,7*S*)-1'-*tert*-Butyl 6-ethyl 7-hexyl-5'-methoxy-2'-oxo-4-(2-oxoethyl)-1-tosyl-1,2,3,4,6,7-hexahydrospiro[indole-5,3'-indoline]-1',6-dicarboxylate, 12f

Prepared by General Procedure **K** using catalyst (*S*)-**10** (3.2 μ L, 0.01 mmol, 0.2 equiv.), **4a** (28 mg, 0.075 mmol, 1.5 equiv.) and olefinic oxindole **9b** (17.3 mg, 0.05 mmol, 1.0 equiv.). Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave cycloadduct **12f** as a red oil (24 mg, 0.033 mmol, 67%); $[\alpha]_{D}^{25}$ -64.6 (*c* = 1.0, CHCl₃); **IR** (thin film, ν_{max} / cm⁻¹) 2928, 2856, 1787, 1754, 1724, 1598, 1486, 1471, 1249, 1152, 814; ¹H NMR (400 MHz, CDCl₃) δ_{H} 9.67 (1H, s, H15), 7.89 (2H, d, *J* = 8.2 Hz, TsH), 7.77 (1H, d, *J* = 8.9 Hz, ArH), 7.36 (2H, d, *J* = 8.1 Hz, TsH), 6.89 (1H, d, *J* = 2.6 Hz, ArH), 6.81 (1H, dd, *J* = 8.9 and 2.6 Hz, ArH), 3.96 (1H, ddd, *J* = 11.7, 9.0 and 2.9 Hz, H2), 3.91-3.83 (2H, m, H14), 3.80 (3H, s, OCH₃), 3.70 (1H, br s, H2), 3.54 (1H, app q, *J* = 10.7 Hz, H7), 3.30 (1H, dd, *J* = 18.6 and 8.8 Hz, H14), 3.22 (1H, d, *J* = 8.1 Hz, H6), 3.01 (1H, d, *J* = 7.6 Hz, H4), 2.45 (3H, s, TsCH₃), 2.40-2.30 (1H, m, H3), 2.32 (1H, dd, *J* = 18.6 and 3.0 Hz, H14), 2.15-2.09 (1H, m, H3), 1.81-1.76 (2H, m, H8), 1.60 (9H, s, C(CH₃)₃), 1.33-1.24 (8H, m, H9 to H12), 0.95 (3H, t, *J* = 7.1 Hz, H15), 0.88 (3H, t, *J* = 6.8 Hz, H13); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 198.9, 176.7, 171.1, 156.8, 149.0, 144.0, 139.4, 136.1, 132.1, 131.8, 129.9, 127.8, 125.8, 115.5, 113.3, 110.1, 83.8, 61.1, 56.0, 51.8, 49.9, 47.1, 44.3, 37.4, 34.2, 32.1, 31.7, 30.8, 29.5, 28.0, 24.6, 22.6, 21.6, 14.1, 13.5; **HRMS** (ES⁺) calc. for C₃₉H₅₀O₉N₂NaS [M+H]⁺ 745.3129; found 745.3130.

Chiralpak IB (20% IPA in hexane, flow rate = 1.0 mL/min, 210 nm) $t_{\rm R}$ major – 6.7 min, minor – 12.2 min (94% *ee*).

(3'*S*,4*S*,6*S*,7*S*)-di-*tert*-Butyl 7-methyl-2'-oxo-4-(2-oxoethyl)-1-tosyl-1,2,3,4,6,7-hexahydrospiro[indole-5,3'-indoline]-1',6-dicarboxylate, 12g

Prepared by General Procedure k using catalysts catalyst (*S*)-**10** (3 μ L, 0.010 mmol, 0.2 equiv.), **4c** (22.8 mg, 0.075 mmol, 1.5 equiv.) and olefinic oxindole **9d** (17.2 mg, 0.050 mmol, 1.0 equiv.). Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave cycloadduct **12g** as a light yellow oil (25 mg, 0.038 mmol, 76%); $[\alpha]_{D}^{25}$ –98.0 (*c* = 1.0, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2923, 1790, 1759, 1723, 1394, 1296, 1152; ¹**H NMR** (400 MHz, CDCl₃) δ_{H} 9.67 (1H, s, H10), 7.94 (2H, d, *J* = 8.0 Hz, TsH), 7.82 (1H, d, *J* = 7.9 Hz, ArH), 7.40 (2H, d, *J* = 8.0 Hz, TsH), 7.21 (1H, td, *J* = 8.2 and 1.3 Hz, ArH), 6.63 (1H, td, *J* = 7.6 and 0.9 Hz, ArH), 6.48 (1H, dd, *J* = 7.6 and 0.8 Hz, ArH), 4.03 (1H, dt, *J* = 11.7 and 7.3 Hz, H2), 3.89-3.79 (1H, m, H2), 3.63-3.55 (1H, m, H7), 3.34 (1H, dd, *J* = 18.6 and 9.0 Hz, H9), 3.00 (1H, d, *J* = 7.6 Hz, H6), 2.83 (1H, dd, *J* = 8.7 and 1.8 Hz, H4), 2.51 (3H, s, TsCH₃), 2.28 (1H, dd, *J* = 18.7 and 2.9 Hz, H9), 2.24-2.18 (2H, m, H3), 1.59 (9H, s, C(CH₃)₃), 1.46 (3H, d, *J* = 6.6 Hz, H8), 1.06 (9H, s, C(CH₃)₃); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 199.0, 176.5, 169.5, 148.9, 144.1, 140.7, 138.9, 136.2, 130.8, 130.1, 128.3, 128.1, 123.8, 123.1, 122.3, 114.7, 84.1, 81.9, 51.5, 51.3, 50.1, 44.2, 37.9, 30.2, 29.1, 28.0, 27.2, 21.9, 21.7; HRMS (ES⁺) calc. for C₃₅H₄₂O₈N₂NaS [M+Na]⁺ 673.2559; found 673.2553.

Chiralpak IA (15% IPA in hexane, flow rate = 1.3 mL/min, 254 nm) t_Bmajor: 8.4 min, minor: 6.6 min (89% ee).

(3*S*,4'*S*,6'*S*,7'*S*)- and (3*R*,4'*S*,6'*R*,7'*S*)-Ethyl 7'-methyl-2-oxo-4'-(2-oxoethyl)-1'-tosyl-1',2',3',4',6',7'hexahydro-2H-spiro[benzofuran-3,5'-indole]-6'-carboxylate, 18a and 18b

Prepared by General Procedure **K** using catalyst (*S*)-10 (3.2μ L, 0.010 mmol, 0.2 equiv.), 4c (22.8 mg, 0.075 mmol, 1.5 equiv.) and olefinic lactone 17 (10.9 mg, 0.05 mmol, 1.0 equiv.). Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave cycloadducts 18a and 18b (dr: 1:1) as a colourless oil (20 mg, 0.038 mmol, 77% yield); $[\alpha]_{D}^{25}$ –6.02 (c = 1.0, CHCl₃); IR (thin film, v_{max} / cm⁻¹) 2924, 1796, 1723, 1461, 1348, 1161; ¹H NMR (400 MHz, CDCl₃) δ_{H} 9.71 (1H, s, H10), 9.42 (1H, s, H10), 7.91 (2H, d, J = 8.2 Hz, TsH), 7.70 (1H, d, J = 8.2 Hz, TsH), 7.42-7.34 (5H, m, TsH and ArH), 7.27-7.18 (4H, m, TsH and ArH), 7.13-7.06 (2H, m, ArH), 6.75 (1H, t, J = 7.9 Hz, ArH), 6.66 (1H, d, J = 7.6 Hz, ArH), 4.16-4.06 (4H, m, OCH₂CH₃), 3.97-3.90 (4H, m, H2), 3.82-3.73 (2H, m, H7), 3.49-3.35 (3H, m, H9 and H4), 3.11-2.95 (3H, m, H4 and H6), 2.51 (3H, s), 2.50 (3H, s), 2.42 (2H, dd, J = 18.8 and 3.5 Hz, H9), 2.35-2.20 (2H, m, H3), 1.96-1.72 (2H, m, H3), 1.50 (3H, d, J = 6.5 Hz, H8), 1.33 (3H, d, J = 7.1 Hz, H8), 1.27-1.21 (3H, m, OCH₂CH₃), 1.01 (3H, t, J = 7.1 Hz, OCH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 198.8, 198.3, 179.2, 177.6, 170.5, 170.4, 154.4, 152.7, 144.5, 144.3, 140.6, 140.5, 136.3, 134.2, 130.1, 130.1, 129.8, 129.7, 129.2, 128.0, 127.2, 126.1, 125.8, 124.6, 124.0, 123.8, 123.6, 123.2, 111.2, 110.8, 61.6, 60.4, 52.9, 51.4, 51.0, 50.3, 50.2, 50.2, 44.2, 43.5, 38.1, 37.2, 30.7, 30.5, 30.4, 29.9, 21.7, 21.3, 14.6, 14.2, 14.0, 13.6; HRMS (ES⁺) calc. for C₂₈H₂₉O₇NNaS [M+Na]⁺ 546.1562; found 546.1562.

Chiralpak IA (10% IPA in hexane, flow rate = 1.3 mL/min, 230 nm) $t_{\rm R}$ major: 15.8 min, minor: 17.7 min, and $t_{\rm R}$ major: 19.7 min, minor: 29.6 min (93% *ee* & 89% *ee*).

1.3.5 Synthesis of dienals 3b and 4e

3b was synthesized according to the following scheme:

(S)-2-phenylbut-3-en-1-ol, S10

S10 was prepared according to the procedure of Tan *et al.*⁶ To a solution of (*R*)-phenyloxirane (1.00 g, 8.32 mmol, 1.0 equiv.) and Cu(COD)Cl (172 mg, 0.83 mmol, 0.1 equiv.) in THF (12 mL) at -78 °C was added vinylmagnesium bromide (10.0 mL, 10.0 mmol, 1.0 M solution in THF,). The reaction was allowed to warm to rt over 8 h, then it was quenched by the addition of NH₄Cl (30 mL, sat., aq.) and extracted with EtOAc (3 x 40 mL). The combined organics were dried (MgSO₄), and concentrated. The crude residue was purified by flash chromatography (petroleum ether / EtOAc (90:10)) to afford **S10** as a colourless oil (870 mg, 5.87 mmol, 71%); $[\alpha]_{D}^{25}$ +67.3 (*c* = 1.0, CHCl₃); *lit*: +67.5 (*c* = 0.545, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 3448, 3028, 1493, 1452, 1055, 1026, 992, 916, 756; ¹H NMR (400 MHz, CDCl₃) δ_{H} 7.25 (2H, t, *J* = 7.3 Hz, PhH), 7.18-7.14 (3H, m, PhH), 5.99-5.85 (1H, m, H3), 5.16-5.04 (2H, m, H4), 3.72 (2H, d, *J* = 7.1 Hz H1), 3.43 (1H, app q, *J* = 7.3 Hz, H2), 1.64 (1H, br s, OH); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 140.8, 138.3, 128.8, 128.0, 127.0, 117.1, 66.1, 52.6. Data identical to literature values.⁶

Prepared by General Procedure **A** using alcohol **S10** (1.00 g, 6.75 mmol, 1.0 equiv.). The resulting crude material was purified by flash chromatography (petroleum ether / Et₂O (9:1)) to give **S11** as a colourless oil (1.70 g, 4.73 mmol, 70%); $[\alpha]_D^{25}$ +9.56 (c = 1.0, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2957, 2923, 1728, 1597, 1551, 1350, 1290, 1163, 1088, 764; ¹H NMR (400 MHz, CDCl₃) δ_H 7.63 (2H, d, J = 8.4 Hz, TsH), 7.26 (3H, t, J = 6.2 Hz, TsH and PhH), 7.21-7.17 (4H, m, PhH), 6.00 (1H, ddd, J = 16.9, 10.4 and 8.6 Hz, H3), 5.12-5.01 (2H, m, H4), 4.06 (2H, dd, J = 14.6 and 7.8 Hz, H1), 3.77 (1H, d, J = 8.4 Hz, H2), 3.52 (3H, s, CO₂C<u>H₃), 2.34</u> (3H, s, TsCH₃); ¹³C NMR (101 MHz, CDCl₃) δ_C 153.1, 144.7, 140.9, 138.1, 136.7, 129.4, 128.8, 128.6, 128.2, 127.1, 117.5, 53.7, 51.8, 50.4, 21.8; HRMS (ES⁺) calc. for C₁₉H₂₁NNaO₄S [M+Na]⁺ 382.1080; found 382.1079.

(*S*)-4-methyl-*N*-(2-phenylbut-3-en-1-yl)benzenesulfonamide, S12, and (*S*)-*N*-(4-((*tert*-butyldimethylsilyl)oxy)but-1-yn-1-yl)-4-methyl-*N*-(2-phenylbut-3-en-1-yl)benzenesulfonamide, 5f

S12 was prepared by General Procedure **B** using (*S*)-methyl (2-phenylbut-3-en-1-yl)(tosyl)carbamate, **S11** (1.12 g, 3.12 mmol); the sulfonamide was obtained in quantitative yield. **S12** (750 mg, 2.49 mmol, 1.0 equiv.) was then converted to **5f** using General Procedure **C** and ((4-bromobut-3-yn-1-yl)oxy)(*tert*-butyl)dimethylsilane (979 mg, 3.74 mmol, 1.5 equiv.). The resulting crude material was purified by flash chromatography (petroleum ether / EtOAc (90:10)) to give **5f** as a colourless oil (740 mg, 1.53 mmol, 62%); **IR** (thin film, v_{max} / cm⁻¹); $[\alpha]_{p}^{25}$ +5.94 (*c* = 0.9, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2955, 2855, 1677, 1471, 1364, 1254, 1169, 1106, 1058, 916, 835; ¹H **NMR** (400 MHz, CDCl₃) δ_{H} 7.60 (2H, d, *J* = 8.2 Hz, TsH), 7.26-7.15 (5H, m, TsH and PhH), 7.12 (2H, d, *J* = 7.0 Hz, PhH), 5.92 (1H, ddd, *J* = 17.5, 10.4 and 7.5 Hz, H8), 5.06 (2H, dd, *J* = 13.7 and 8.2 Hz, H9), 3.69 (1H, app q, *J* = 7.6 Hz, H7), 3.61-3.53 (3H, m, H1 and H6), 3.40 (1H, dd, *J* = 12.5 and 7.2 Hz, H6), 2.41 (2H, t, *J* = 7.2 Hz, H2), 2.36 (3H, s, TsCH₃), 0.83 (10H, s, SiC(CH₃)₃), 0.00 (6H, s, Si(CH₃)₂); ¹³C **NMR** (101 MHz, CDCl₃) δ_{C} 144.4, 140.4, 137.8, 134.7, 129.7, 128.7, 128.2, 127.8, 127.1, 117.2, 74.0, 68.0, 62.3, 55.5, 48.1, 26.0, 23.1, 21.7, 18.4, -5.1; **HRMS** (ES⁺) calc. for C₂₇H₃₇O₃NNaSSi [M+Na]⁺ 506.2155; found 506.2149.

Prepared by General Procedure **F** using ynamide **5f** (300 mg, 0.62 mmol, 1.0 equiv.). The crude material was purified by flash chromatography (petroleum ether / EtOAc (90:10)) to give **S13** as a colourless oil (256 mg, 0.53 mmol, 85%); $[\alpha]_{D}^{25}$ +102.9 (c = 0.8, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2955, 1471, 1358, 1254, 1165, 1090, 834; ¹**H NMR** (400 MHz, CDCl₃) δ_{H} 7.75 (2H, d, J = 8.3 Hz, TsH), 7.31 (2H, d, J = 8.1 Hz, TsH), 7.28-7.17 (3H, m, PhH), 6.90 (2H, d, J = 6.4 Hz, PhH), 6.13-6.05 (1H, m, H3), 5.34 (1H, d, J = 3.2 Hz, H9), 4.35 (1H, d, J = 2.7 Hz, H9), 4.14-3.99 (1H, m, H7), 3.81 (2H, td, J = 6.0 and 2.0 Hz, H1), 3.26 (1H, dd, J = 12.8 and 10.9 Hz, H6), 2.93-2.73 (3H, m, H6 and H2), 2.47 (3H, s, TsCH₃), 0.93 (9H, s, SiC(CH₃)₃), 0.10 (6H, s, Si(CH₃)₂); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 148.3, 144.2, 140.6, 138.1, 136.0, 129.8, 128.7, 128.5, 128.0, 127.7, 127.2, 118.6, 106.0, 62.7, 56.9, 47.2, 33.5, 26.1, 21.8, -5.0; HRMS (ES⁺) calc. for C₂₇H₃₇O₃NNaSSi [M+Na]⁺ 506.2155; found 506.2150.

(R,Z)-3-(3-methylene-4-phenyl-1-tosylpyrrolidin-2-ylidene)propan-1-ol, S14

Prepared by General Procedure **G** using **S13** (240 mg, 0.496 mmol). The resulting crude material was purified by flash chromatography (petroleum ether / EtOAc (1:1)) to give **S14** as a colourless oil (178 mg, 0.482 mmol, 97%); $[\alpha]_{D}^{25}$ +164.1 (c = 0.7, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 3410, 2950, 1598, 1351, 1254, 1163, 1067, 1090, 814, 700; ¹H NMR (400 MHz, CDCl₃) δ_{H} 7.77 (2H, d, J = 8.2 Hz, TsH), 7.31 (2H, d, J = 8.2 Hz, TsH), 7.23-7.21 (3H, m, PhH), 6.90 (2H, d, J = 6.6 Hz, PhH), 6.04 (1H, t, J = 7.7 Hz, H3), 5.38 (1H, d, J = 2.7 Hz, H9), 4.38 (1H, d, J = 2.5 Hz, H9), 4.09 (1H, dd, J = 12.9 and 8.5 Hz, H7), 3.96-3.90 (1H, m, H1), 3.88-3.82 (1H, m, H1), 3.29 (1H, dd, J = 12.7 and 11.0 Hz, H6), 3.09-3.00 (1H, m, H2), 2.90-2.84 (1H, m, H6), 2.80-2.71 (1H, m, H2), 2.47 (3H, s, TsCH₃); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 148.06, 144.47, 140.36, 139.13, 135.72, 129.89, 129.70, 128.86, 128.76, 128.48, 128.35, 128.03, 127.69, 127.45, 127.32, 118.34, 106.66, 62.51, 57.01, 47.07, 33.08, 21.82, 21.75; HRMS (ES⁺) calc. for C₂₁H₂₃O₃NNaS [M+Na]⁺ 392.1290; found 392.1288.

Prepared by General Procedure **H** using **S14** (36 mg, 0.97 mmol). The resulting crude material was purified by flash chromatography (petroleum ether \rightarrow petroleum ether / EtOAc (1:1)) to give **3b** as a light yellow oil (14.2 mg, 0.39 mmol, 40%); **R**_f 0.18 (petroleum ether /EtOAc (2:1)); $[\alpha]_{D}^{25}$ +32.6 (*c* = 1.0, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2962, 2923, 1682, 1598, 1350, 1132, 1089, 1029, 732; ¹H NMR (400 MHz, CDCl₃) δ_{H} 9.74 (1H, d, *J* = 7.8 Hz, H1), 7.58 (2H, d, *J* = 8.3 Hz, TsH), 7.51 (1H, d, *J* = 16.1 Hz, H3), 7.32 (2H, d, *J* = 8.0 Hz, PhH), 7.21-7.12 (3H, m, PhH), 6.65 (2H, d, *J* = 8.1Hz, PhH), 6.42 (1H, dd, *J* = 16.1 and 7.8 Hz, H2), 4.46-3.95 (1H, m, H7), 3.68-3.40 (1H, m, H6), 2.49 (3H, s, TsCH₃), 1.58 (3H, s, H9); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 194.0, 144.5, 143.1, 140.7, 135.7, 134.3, 132.8, 132.7, 130.0, 129.0, 128.3, 127.8, 127.5, 56.8, 52.7, 21.8, 14.0; HRMS (ES⁺) calc. for C₂₁H₂₁O₃NNaS [M+Na]⁺ 390.1134; found 390.1135.

4e was synthesized according to the following scheme:

5-((tert-Butyldimethylsilyl)oxy)-1-phenylpent-1-yn-3-ol, S16

To a solution of phenylacetylene (2.46 mL 22.5 mmol, 1.5 equiv.) in THF (150 mL) at –78 °C was added *n*-BuLi (2.4 M in hexanes, 8.1 mL, 19.5 mmol, 1.3 equiv.). The reaction mixture was stirred for 15 min. A solution of aldehyde **S15**⁷ (2.80 g, 15.0 mmol, 1.0 equiv.) in THF (21 mL) and added by cannula. The reaction was allowed to warm to rt, and was stirred for 16 h. The reaction was queched via addition of NH₄Cl (50 mL, sat., aq.), and the aqueous layer was extracted with Et₂O. The combined organic extracts were dried (Na₂SO₄) and concentrated. Purification by flash chromatography (petroleum ether / EtOAc (9:1)) gave alcohol **S16** as a yellow oil (3.39 g, 11.7 mmol, 78%); **IR** (thin film, v_{max} / cm⁻¹) 3398, 2954, 2857, 1490, 1254, 1082, 833, 776; ¹H **NMR** (400 MHz, CDCl₃) $\delta_{\rm H}$ 7.45-7.41 (2H, m, PhH), 7.32-7.29 (3H, m, PhH), 4.85 (1H, dd, *J* = 10.1 and 5.6 Hz, H3), 4.12 (1H, ddd, *J* = 10.3, 8.0 and 3.8 Hz, H5), 3.89 (1H, ddd, *J* = 10.2, 6.0 and 4.3 Hz, H5), 3.58 (1H, d, *J* = 5.4 Hz, OH), 2.14-2.06 (1H, m, H4), 1.97 (1H, dtd, *J* = 14.2, 6.2 and 3.8 Hz, H4), 0.92 (9H, s, SiC(CH₃)₃), 0.11 (3H, s, Si(CH₃)₂), 0.10 (3H, s, Si(CH₃)₂); ¹³C **NMR** (101 MHz, CDCl₃) $\delta_{\rm C}$ 131.6, 128.1, 122.8, 89.6, 84.7, 61.9, 61.0, 38.8, 25.7, 18.1, –5.6; **HRMS** (ES⁺) calc. for C₁₇H₂₆O₂NaSi [M+Na]⁺ 313.1605; found 313.1598.

5-((tert-Butyldimethylsilyl)oxy)-1-phenylpent-1-yn-3-one, S17

Prepared by General Procedure I using **S16** (870 mg, 3.00 mmol, 1.0 equiv.). The resulting crude material was purified by flash chromatography (petroleum ether \rightarrow petroleum ether / EtOAc (9:1)) to give **S17** as a yellow oil (734 mg, 2.54 mmol, 85%); **IR** (thin film, v_{max} / cm⁻¹) 2954, 2857, 2200, 1668, 1490, 1280, 1089, 1032, 926, 833; ¹H **NMR** (400 MHz, CDCl₃) δ_{H} 7.58-7.56 (2H, m, PhH), 7.48-7.43 (1H, m, PhH), 7.40-7.36 (2H, m, PhH), 4.05 (2H, t, *J* = 6.2 Hz, H5), 2.87 (2H, t, *J* = 6.2 Hz, H4), 0.88 (9H, s, SiC(CH₃)₃), 0.07 (6H, s, Si(CH₃)₂); ¹³C **NMR** (101 MHz, CDCl₃) δ_{C} 186.3, 133.0, 130.7, 128.6, 120.0, 90.9, 87.9, 58.5, 48.5, 25.8, 18.2, -5.4; **HRMS** (ES⁺) calc. for C₁₇H₂₅O₂Si [M+H]⁺ 289.1629, found 289.1621.

(S,E)-5-((tert-butyldimethylsilyl)oxy)-1-phenylpent-1-en-3-ol, S18

To a solution of **S17** (576 mg, 2.00 mmol, 1.0 equiv.) in *i*-PrOH (20 mL) under Ar at rt was added dropwise a solution of RuCl(*p*-cymene)[(*S*,*S*)-Ts-DPEN] (63.6 mg, 0.10 mmol, 0.05 equiv.) in CH₂Cl₂ (2 mL). The reaction mixture was stirred for 1 h, and then concentrated. Purification by flash chromatography (petroleum ether / EtOAc (9:1)) gave (*S*)-propargyl alcohol **S16** (452 mg, 1.56 mmol, 78%); $[\alpha]_{D}^{25}$ –22.2 (c = 0.9, CHCl₃); other data for this compound were identical to **S16** above.

Chiralpak IB (15% IPA in hexane, flow rate = 1.0 mL/min, 230 nm) $t_{\rm B}$ major - 7.7 min, minor - 5.0 min.

To a solution of (*S*)-**S16** (840 mg, 2.90 mmol, 1.0 equiv.) in Et₂O at 0 °C was added Red AI (65% wt solution in toluene, 1.3 mL, 4.35 mmol, 1.5 equiv.) dropwise, and the reaction was stirred for 2 h at rt. The reaction was quenched by addition of 1N HCl, and extracted with Et₂O. The combined organic phases were washed with NaHCO₃ (sat., aq.), dried (MgSO₄) and concentrated. The crude residue was purified by flash chromatography (petroleum ether / EtOAc (9:1)) to give **S18** as a light yellow oil (490 mg, 1.68 mmol, 58%); $[\alpha]_p^{25}$ –1.83 (*c* = 1.0, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 3417, 2953, 2929, 1494, 1292, 1093, 965, 834 and 775; ¹H NMR (400 MHz, CDCl₃) δ_H 7.30-7.27 (2H, m, PhH), 7.23-7.18 (2H, m, PhH), 7.16-7.11 (1H, m, PhH), 6.54 (1H, dd, *J* = 15.9 and 3.4 Hz, H2), 6.14 (1H, d, *J* = 15.9 Hz, H1), 4.45 (1H, br s, H3), 3.83 (1H, td, *J* = 10.1 and 5.1 Hz, H5), 3.79-3.72 (1H, m, H5), 3.45 (1H, br s, OH), 1.78-1.71 (2H, m, H2), 0.82 (9H, m, SiC(CH₃)₃), 0.00 (3H, s, Si(CH₃)₂), -0.01 (3H, s, Si(CH₃)₂); ¹³C NMR (101 MHz, CDCl₃) δ_C 137.0, 132.1, 129.5, 128.5, 127.4, 126.4, 72.3, 62.0, 38.6, 25.9, 18.2, -5.5; HRMS (ES⁺) calc. for C₁₇H₂₈O₂NaSi [M+Na]⁺ 315.1761, found 315.1749.

(S,E)-5-((tert-Butyldimethylsilyl)oxy)-1-phenylpent-1-en-3-yl propionate, S19

Pyridine (49 mg, 0.625 mmol, 1.25 equiv.), propanoic anhydride (81mg, 0.625 mmol, 1.25 equiv.) and DMAP (0.6 mg, 0.005 mmol, 0.01 equiv.) were added to a solution of **S18** (145 mg, 0.50 mmol, 1.0 equiv.) in Et₂O (20 mL) at rt. The reaction mixture was stirred for 2 h, then it was diluted with toluene (10 mL) and concentrated. Purification by flash chromatography (petroleum ether / EtOAc (19:1)) gave **S19** as a colourless oil (160 mg, 0.46 mmol, 93%); $[\alpha]_{D}^{25}$ -1.2 (*c* = 1.0, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2954, 2859,

1737, 1604, 1471, 1254, 1180, 1095, 963, 834; ¹H NMR (400 MHz, CDCl₃) δ_{H} 7.33 (2H, d, *J* = 7.1 Hz, PhH), 7.26 (2H, t, *J* = 7.4 Hz, PhH), 7.20 (1H, m, PhH), 6.57 (1H, d, *J* = 15.9 Hz, H1), 6.11 (1H, dd, *J* = 15.9 and 7.3 Hz, H2), 5.53 (1H, dd, *J* = 13.6 and 6.8 Hz, H3), 3.65 (2H, t, *J* = 6.1 Hz, H5), 2.30 (2H, q, *J* = 7.6 Hz, H7), 1.98-1.71 (2H, m, H4), 1.11 (3H, t, *J* = 7.6 Hz, H8), 0.85 (9H, s, SiC(CH₃)₃), 0.00 (6H, s, Si(CH₃)₂); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 173.6, 136.4, 132.4, 128.6, 127.9, 127.7, 126.6, 71.7, 59.1, 37.6, 27.9, 25.9, 18.3, 9.2, -5.4; HRMS (ES⁺) calc. for C₂₀H₃₃O₃Si [M+H]⁺ 349.2193; found 349.2190.

(2R,3R,E)-7-((tert-Butyldimethylsilyl)oxy)-2-methyl-3-phenylhept-4-enoic acid, S20

A solution of **S19** (576 mg, 1.65 mmol, 1.0 equiv.) in toluene (16 mL) was added dropwise to a solution of LiHMDS (4.9 mL, 4.96 mmol, 3.0 equiv.) and Et₃N (6.9 mL, 4.96 mmol, 30 equiv.) in toluene (16 mL) at -78 °C. The reaction was stirred for 1 h at -78 °C, then it was allowed to warm to rt and stirred for 12 h. 1N NaOH was added to the reaction mixure, which was stirred for a further 1h and then extracted with ether. The aqueous layer was neutralized with 1N citric acid, then extracted with ether and concentrated to give acid **S20** as a colourless oil (430 mg, 1.23 mmol, 75%); $[\alpha]_p^{25}$ +30.8 (*c* = 1.4, CHCl₃); **IR** (thin film, v_{max} / cm^{-1}) 2954, 1820, 1713, 1462, 1288, 1150, 1092, 834, 755; ¹H NMR (400 MHz, CDCl₃) δ_H 10.69 (1H, s, CO₂H), 7.26-7.20 (2H, m, PhH), 7.16 (3H, d, *J* = 7.3 Hz, PhH), 5.59-5.48 (2H, m, H4 and H5), 3.59 (2H, t, *J* = 6.6 Hz, H7), 3.44 (1H, t, *J* = 8.7 Hz, H3), 2.79-2.70 (1H, m, H2), 2.20 (2H, q, *J* = 6.2 Hz, H6), 1.19 (3H, d, *J* = 6.9 Hz, H8), 0.86 (9H, s, SiC(CH₃)₃), 0.01 (6H, s, Si(CH₃)₂); ¹³C NMR (101 MHz, CDCl₃) δ_C 181.4, 142.5, 131.8, 129.5, 128.4, 127.6, 126.4, 62.8, 52.1, 45.0, 36.1, 25.9, 18.3, 15.5, -5.4; HRMS (ES⁺) calc. for C₂₀H₃₃O₃Si [M+H]⁺ 349.2199; found 349.2194.

N-((2*R*,3S,*E*)-7-((*tert*-Butyldimethylsilyl)oxy)-3-phenylhept-4-en-2-yl)-4-methylbenzenesulfonamide, S21

To a solution of carboxylic acid **S20** (170 mg, 0.48 mmol, 1.0 equiv.) in toluene (5 mL) were added Et_3N (0.25 mL, 1.79 mmol, 3.0 equiv.) and diphenylphosphoryl azide (DPPA) (0.25 mL, 1.16 mmol, 2.0 equiv.). The mixture was stirred at rt for 30 min, then stirred at 80 °C for 4 h. The reaction mixture was concentrated and re-dissolved in THF (5 mL). 4N LiOH (2.8 mL) was added, and the mixture was stirred for 4 h at rt, then it was diluted with water and extracted with EtOAc. The organic layer was dried (Na₂SO₄) and concentrated to give the crude amine as an oil, which was used without further purification.

To a stirred solution of the crude amine (assumed 0.48 mmol, 1.0 equiv.) and TsCl (91 mg, 0.48 mmol, 1.0 equiv.) in CH₂Cl₂ (5 mL) was added Et₃N (0.75 mL, 5.36 mmol) dropwise. The mixture was stirred for 2 h, then it was concentrated and purified by flash chromatography (petroleum ether / EtOAc (9:1)) to give **S21** (150 mg, 0.317 mmol, 65%) as a colorless oil; $[\alpha]_D^{25}$ +13.0 (c = 0.8, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 3280, 2954, 2928, 1599, 1304, 1253, 1158, 1093, 835; ¹**H NMR** (400 MHz, CDCl₃) δ_H 7.68 (2H, d, J = 8.2 Hz, TsH),

7.32-7.28 (3H, m, 2 x TsH and PhH), 7.23 (2H, d, J = 7.9 Hz, PhH), 7.05 (2H, d, J = 6.4 Hz, PhH), 5.67 (1H, d, J = 15.2 and 9.4 Hz, H4), 5.55-5.46 (1H, m, H5), 4.42 (1H, d, J = 7.8 Hz, NHTs), 3.65 (2H, t, J = 6.5 Hz, H7), 3.58 (1H, dt, J = 13.2 and 6.6 Hz, H2), 3.22 (1H, dd, J = 9.3 and 6.3 Hz, H3), 2.47 (3H, s, TsCH₃), 2.26 (2H, q, J = 6.5 Hz, H6), 1.11 (3H, d, J = 6.6 Hz, H8), 0.91 (9H, s, SiC(CH₃)₃), 0.07 (3H, s, Si(CH₃)₂), 0.07 (3H, s, Si(CH₃)₂); ¹³C NMR (101 MHz, CDCl₃) $\delta_{\rm H}$ 143.1, 140.6, 137.8, 131.6, 129.6, 129.2, 128.6, 127.8, 127.1, 126.8, 62.6, 54.4, 53.5, 36.3, 25.9, 21.5, 18.6, 18.3, -5.3; HRMS (ES⁺) calc. for C₂₆H₃₉O₃NNaSSi [M+Na]⁺ 496.2317; found 496.2308.

N-((2*R*,3*S*,*E*)-7-((*tert*-Butyldimethylsilyl)oxy)-3-phenylhept-4-en-2-yl)-4-methyl-*N*-(prop-1-yn-1-yl)benzenesulfonamide, 5g

Prepared by General Procedures **D** and **E** using sulfonamide **S21** (230 mg, 0.49 mmol). The resulting crude material was purified by flash chromatography (petroleum ether / EtOAc (95:5)) to give **5g** as a colourless oil (217 mg, 0.42 mmol, 87%); $[\alpha]_{D}^{25}$ +28.3 (c = 0.7, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2955, 2855, 1714, 1551, 1479, 1349, 1162, 1089, 815, 756; ¹H NMR (400 MHz, CDCl₃) δ_{H} 7.31 (2H, d, J = 8.2 Hz, TsH), 7.22-7.17 (5H, m, TsH and PhH), 7.11 (2H, d, J = 8.1 Hz, PhH), 5.63 (1H, dd, J = 15.2 and 9.1 Hz, H4), 5.55-5.48 (1H, m, H5), 4.31 (1H, dq, J = 10.4 and 6.5 Hz, H2), 3.59 (2H, t, J = 6.7 Hz, H7), 3.38 (1H, t, J = 9.7 Hz, H3), 2.38 (3H, s, Me), 2.21 (2H, q, J = 6.6 Hz, H6), 1.93 (3H, s, TsCH₃), 1.22 (3H, d, J = 6.5 Hz, H8), 0.86 (9H, s, SiC(CH₃)₃), 0.00 (3H, s, Si(CH₃)₂), 0.00 (3H, s, Si(CH₃)₂); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 143.6, 142.0, 135.6, 131.6, 129.9, 129.2, 128.4, 127.8, 127.4, 126.4, 68.8, 68.2, 62.7, 59.2, 54.3, 36.2, 25.8, 21.5, 18.3, 17.6, 3.5, -5.4; **HRMS** (ES⁺) calc. for C₂₉H₄₁O₃NNaSSi [M+Na]⁺ 534.2474; found 534.2464.

(3*R*,4*S*,5*R*,*Z*)-3-((*E*)-3-((*tert*-butyldimethylsilyl)oxy)prop-1-en-1-yl)-2-ethylidene-5-methyl-4-phenyl-1-tosylpyrrolidine, S22

Prepared by General Procedure **F** using ynamide **5g** (100 mg, 0.195 mmol). The crude material was purified by column chromatography (petroleum ether / EtOAc (95:5)) to give **S22** as colorless oil (95 mg, 0.185 mmol, 95%); $[\alpha]_{D}^{25}$ +68.2 (c = 0.7, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2954, 2856, 1471, 1354, 1353, 1197, 1072, 835, 776; ¹H **NMR** (500 MHz, CDCl₃) δ_{H} 7.81 (2H, d, J = 8.3 Hz, TsH), 7.35 (2H, d, J = 8.0 Hz, TsH), 7.24-7.20 (2H, m, PhH), 7.16 (1H, t, J = 6.7 Hz, PhH), 6.94 (2H, d, J = 7.3 Hz, PhH), 5.49 (1H, dt, J = 15.1 and 5.3 Hz, H2), 5.39 (1H, qd, J = 7.1 and 1.6 Hz, H9), 4.98 (1H, dd, J = 15.1 and 8.8 Hz, H3), 4.28 (1H, d, J = 6.8 Hz, H6), 3.99 (2H, dd, J = 5.2 and 1.5 Hz, H1), 3.53 (1H, t, J = 10.0 Hz, H4), 2.44 (3H, s, TsCH₃), 2.31 (1H, dt, J = 13.1 and 9.8 Hz, H5), 1.98 (3H, dd, J = 7.2 and 1.9 Hz, H10), 0.86 (3H, d, J = 6.8 Hz, H11), 0.84 (9H, s, SiC(CH₃)₃) -0.02 (3H, s, Si(CH₃)₂), -0.04 (3H, s, Si(CH₃)₂); ¹³C NMR (126 MHz, CDCl₃) δ_{C} 143.9, 138.5,

137.1, 136.4, 131.7, 130.6, 129.6, 128.4, 128.2, 127.8, 126.8, 118.4, 63.4, 61.9, 50.6, 48.3, 25.9, 21.6, 18.3, 15.9, -5.2; **HRMS** (ES⁺) calc. for C₂₉H₄₁O₃NNaSSi [M+Na]⁺ 534.2474; found 534.2468.

(E)-3-((3R,4S,5R,Z)-2-ethylidene-5-methyl-4-phenyl-1-tosylpyrrolidin-3-yl)prop-2-en-1-ol, S23

Prepared by General Procedure **G** using **S22** (80 mg, 0.156 mmol). The resulting crude material was purified by flash chromatography (petroleum ether / EtOAc (1:1)) to give **S23** as a colourless oil (58 mg, 0.146 mmol, 93%); $[\alpha]_{D}^{25}$ +145.7 (c = 0.7, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 3378, 3028, 2919, 1677, 1452, 1304, 1164, 1053, 977, 814; ¹H NMR (500 MHz, CDCl₃) δ_{H} 7.82 (2H, d, J = 8.3 Hz, TsH), 7.36 (2H, d, J = 8.0 Hz, TsH), 7.27-7.21 (2H, m, PhH), 7.18 (1H, t, J = 6.2 Hz, PhH), 6.97 (2H, d, J = 7.3 Hz, PhH), 5.59 (1H, dt, J = 11.3 and 5.5 Hz, H2), 5.46-5.35 (1H, m, H9), 5.01 (1H, dd, J = 14.6 and 9.3 Hz, H3), 4.31 (1H, quint, J = 6.9 Hz, H6), 3.97 (2H, d, J = 4.5 Hz, H1), 3.55 (1H, t, J = 9.6 Hz, H4), 2.48-2.42 (1H, m, H5), 2.45 (3H, s, TsCH₃), 1.97 (3H, dd, J = 7.1 and 1.8 Hz, H10), 0.85 (3H, d, J = 6.8 Hz, H11); ¹³C NMR (126 MHz, CDCl₃) δ_{C} 144.1, 138.4, 137.0, 136.4, 132.4, 131.0, 129.6, 128.5, 128.2, 127.9, 126.9, 118.8, 63.2, 62.0, 50.7, 48.2, 21.6, 15.9, 15.8; **HRMS** (ES⁺) calc. for C₂₃H₂₇O₃NNaS [M+Na]⁺ 420.1609; found 420.1599.

(E)-3-((3R,4S,5R,Z)-2-ethylidene-5-methyl-4-phenyl-1-tosylpyrrolidin-3-yl)acrylaldehyde, 4e

Prepared by General Procedure I using S23 (46 mg, 0.115 mmol, 1.0 equiv.). The resulting crude material was purified by flash chromatography (petroleum ether \rightarrow petroleum ether / EtOAc (1:1)) to give 4e as a light yellow oil (30 mg, 0.076 mmol, 66%); $[\alpha]_{D}^{25}$ +136.8 (c = 0.7, CHCl₃); IR (thin film, v_{max} / cm⁻¹) 3030, 2919, 1686, 1632, 1453, 1165, 1053, 978, 815; ¹H NMR (400 MHz, CDCl₃) δ_{H} 9.22 (1H, d, J = 7.7 Hz, H1), 7.76 (2H, d, J = 8.3 Hz, TsH), 7.30 (2H, d, J = 8.0 Hz, TsH), 7.22-7.12 (3H, m, PhH), 6.92 (2H, d, J = 8.5 Hz, PhH), 6.01 (1H, dd, J = 15.5 and 8.5 Hz, H3), 5.86 (1H, dd, J = 15.8 and 7.7 Hz, H2), 5.36 (1H, qd, J = 7.0 and 1.4 Hz, H9), 4.33 (1H, qt, J = 6.8 Hz, H6), 3.75 (1H, t, J = 9.5 Hz, H4), 2.63 (1H, dd, J = 10.6 and 7.1 Hz, H5), 2.38 (3H, s, TsCH₃), 1.92 (3H, dd, J = 7.1 and 1.8 Hz, H10), 0.82 (3H, d, J = 6.8 Hz, H11); ¹³C NMR (101 MHz, CDCl₃) δ_{C} 193.1, 156.4, 144.5, 136.6, 136.1, 135.9, 132.7, 129.8, 128.7, 127.9, 127.9, 127.4, 121.1, 62.2, 50.9, 48.7, 21.6, 16.0, 15.9; HRMS (ES⁺) calc. for C₂₃H₂₅O₃NNaS [M+Na]⁺ 418.1452; found 418.1436.

2-((3R,5S,6S,7R)-6-nitro-3,5-diphenyl-1-tosyl-2,3,4,5,6,7-hexahydro-1H-indol-7-yl)acetaldehyde, 19a

Prepared by General Procedure **J** using catalyst (*S*)-**10** (1.9 μL, 0.006 mmol, 0.2 equiv.), **3b** (11 mg, 0.030 mmol, 1.0 equiv.) and trans-β-nitrostyrene **13a** (13.4 mg, 0.09 mmol, 3.0 equiv.) under Ar. Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave cycloadduct **19a** as a colourless oil (9.0 mg, 0.017 mmol, 58%, 8:1 dr); $[\alpha]_{\rm D}^{25}$ +9.35 (*c* = 0.6, CHCl₃); **IR** (thin film, $v_{\rm max}$ / cm⁻¹) 2926, 1716, 1651, 1553, 1348, 1324, 1160; ¹H **NMR** (500 MHz, CDCl₃) $\delta_{\rm H}$ 9.77 (1H, s), 7.66 (2H, d, *J* = 8.3 Hz, TsH), 7.34 (2H, d, *J* = 8.0 Hz, TsH), 7.30-7.23 (3H, m, PhH), 7.18 (2H, d, *J* = 7.0 Hz, PhH), 7.07 (1H, t, *J* = 7.4 Hz, PhH), 6.96 (2H, t, *J* = 6.8 Hz, PhH), 6.24 (2H, d, *J* = 7.1 Hz, PhH), 5.14 (1H, dd, *J* = 10.2 and 7.3 Hz, H6), 4.23 (1H, dd, *J* = 12.3 and 11.7 Hz, H2), 3.98 (1H, br s, H7), 3.78 (1H, br d, *J* = 10.4 Hz, H3), 3.51 (1H, dd, *J* = 12.4 and 4.8 Hz, H2), 3.45 (1H, td, *J* = 9.9 and 5.1 Hz, H5), 3.35 (1H, dd, *J* = 19.4 and 6.1 Hz, H8), 3.04 (1H, dd, *J* = 19.4 and 4.9 Hz, H4); ¹³**C NMR** (126 MHz, CDCl₃) $\delta_{\rm C}$ 199.8, 144.7, 140.9, 138.6, 134.8, 132.1, 130.3, 129.1, 128.7, 128.6, 128.2, 127.7, 127.5, 127.1, 126.8, 92.5, 57.4, 48.9, 44.6, 43.6, 36.4, 28.9, 21.8; **HRMS** (ES⁺) calc. for C₂₉H₂₈O₅N₂NaS [M+Na]⁺ 539.1611; found 539.1610.

Assignment of stereochemistry: The stereochemistry of cycloadduct **19a** was assigned by ¹H NMR nOe experiments (2D NOESY). On the alpha face (as depicted below), enhancements were seen between H7 and H5, and between H5 and H4 α , indicating these protons to be on the same face. On the beta face, enhancements was seen between H3 and H4 β , between H4 β and H6, and between H6 and H8 (sidechain), indicating these protons to be on the opposite face. This analysis is consistent with a top face attack of nitrostyrene, with the nitro group oriented *exo* and the phenyl ring oriented *endo*. This is consistent with the acyclic trienamine catalysis reported by Chen.⁸ As such, the facial and diastereoselectivity of the reaction is under catalyst stereocontrol.

Prepared by General Procedure J using catalyst (*R*)-10 (i.e. *ent*-10) (1.9 μL, 0.006 mmol, 0.2 equiv.), **3b** (11 mg, 0.030 mmol, 1.0 equiv.) and trans-β-nitrostyrene **13a** (13.4 mg, 0.09 mmol, 3.0 equiv.) under Ar. Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave cycloadduct **19b** as a colourless oil (8.2 mg, 0.016 mmol, 53%, 20:1 dr); $[\alpha]_{D}^{25}$ -46.0 (*c* = 0.5, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2961, 2923, 1723, 1598, 1379, 1100, 1088, 728; ¹**H NMR** (500 MHz, CDCl₃) δ_{H} 9.77 (1H, s, H9), 7.76 (2H, d, *J* = 8.3 Hz, TsH), 7.44 (2H, d, *J* = 8.0 Hz, TsH), 7.32 (2H, t, *J* = 7.4 Hz, PhH), 7.28-7.25 (3H, m), 7.22 (1H, d, *J* = 7.2 Hz, PhH), 7.12 (2H, d, *J* = 7.0 Hz, PhH), 7.07 (2H, d, *J* = 7.0 Hz, PhH), 5.19 (1H, dd, *J* = 10.8 and 5.4 Hz, H6), 4.47-4.42 (1H, m, H7), 4.12 (1H, dd, *J* = 12.0 and 9.7 Hz, H2), 3.83 (1H, dd, *J* = 12.0 and 7.7 Hz, H2), 3.54 (1H, br t, *J* = 8.5 Hz, H3), 3.37 (1H, td, *J* = 9.7 and 6.5 Hz, H5), 3.27 (1H, dd, *J* = 18.5 and 2.2 Hz, H8), 3.09 (1H, dd, *J* = 18.3 and 8.3 Hz, H8), 2.53 (3H, s, TsCH₃), 2.15 (1H, dd, *J* = 18.2 and 6.5 Hz, H4), 2.00 (1H, ddt, *J* = 18.3, 9.4 and 1.8 Hz, H4); ¹³**C NMR** (126 MHz, CDCl₃) δ_{C} 198.1, 144.8, 140.8, 139.2, 135.3, 133.9, 130.3, 129.3, 129.1, 128.0, 127.9, 127.8, 127.6, 127.4, 127.1, 89.0, 58.6, 49.0, 43.4, 39.9, 32.2, 29.8, 21.9; **HRMS** (ES⁺) calc. for C₂₉H₂₈O₅N₂NaS [M+Na]⁺ 539.1611; found 539.1610.

Assignment of stereochemistry: The stereochemistry of cycloadduct **19b** was assigned through ¹H NMR nOe experiments (2D NOESY). On the alpha face (as depicted below), enhancements were seen between H5 and H4 α , and between H5 and H8 (sidechain), indicating these protons to be on the same face. On the beta face, enhancements was seen between H3 and H4 β , between H4 β and H6, and between H6 and H7, indicating these protons to be on the opposite face. This analysis is consistent with a bottom face attack of nitrostyrene, with the nitro group oriented *endo* and the phenyl ring oriented *exo*. This *reverses* the diastereoselectivity of trienamine catalysis observed by Chen,⁸ and likely arises from an avoidance of steric interactions between the C3-phenyl group, and the phenyl ring of nitrostyrene, in the Diels-Alder transition state. As such, the facial selectivity of the reaction is under catalyst stereocontrol, but the diastereoselectivity is under substrate control.

(3*R*,3'*S*,5*S*,7*R*)-1'-*tert*-butyl

hexahydrospiro[indole-6,3'-indoline]-1',5-dicarboxylate, 11e

Prepared by General Procedure **K** using catalyst (*S*)-**10** (1.9 μ L, 0.011 mmol, 0.2 equiv.), **3b** (11 mg, 0.030 mmol, 1.0 equiv.) and olefinic oxindole **9a** (28 mg, 0.090 mmol, 3.0 equiv.) under Ar. Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave **11e** as a colourless oil (13 mg, 0.019 mmol, 63%, 7:1 dr); $[\alpha]_{D}^{25}$ -67.8 (*c* = 0.8, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2930, 1787, 1756, 1722, 1597, 1484, 1278, 1155, 771; ¹**H NMR** (500 MHz, CDCl₃) δ_{H} 9.74 (1H, s, H9), 8.02 (1H, d, *J* = 8.1 Hz, oxindole H7), 7.37 (1H, t, *J* = 8.8 Hz, oxindole H6'), 7.33 (2H, d, *J* = 8.3 Hz, TsH), 7.20 (1H, t, *J* = 7.9 Hz, PhH), 7.15-7.11 (4H, m, TsH and PhH), 6.81 (1H, t, *J* = 7.1 Hz, oxindole H5'), 6.58 (1H, d, *J* = 6.9 Hz, oxindole H4'), 6.51 (2H, d, *J* = 8.3 Hz, PhH), 4.36 (1H, t, *J* = 11.6 Hz, H2), 3.89-3.81 (3H, m, OCH₂CH₃, H3 and H7), 3.77 (1H, dq, *J* = 10.9 and 7.1 Hz, OCH₂CH₃), 3.58 (1H, dd, *J* = 11.9 and 6.3 Hz, H2), 3.35-3.27 (2H, m, H5 and H8), 3.15 (1H, d, *J* = 17.8 Hz, H8), 2.52 (3H, TsCH₃), 2.58-2.48 (1H, m, H4), 2.03 (1H, dd, *J* = 18.4 and 11.8 Hz, H4), 1.65 (9H, s, C(CH₃)₃), 0.95 (3H, t, *J* = 7.1 Hz, OCH₂CH₃); ¹³**C NMR** (126 MHz, CDCl₃) δ_{C} 198.1, 176.5, 171.3, 149.2, 144.1, 141.0, 140.0, 136.2, 133.1, 130.8, 130.2, 128.8, 128.4, 128.4, 127.6, 127.3, 123.6, 123.4, 122.5, 115.5, 84.2, 61.3, 56.8, 50.1, 49.9, 43.8, 41.3, 37.5, 28.2, 24.5, 21.8, 13.7; **HRMS** (ES⁺) calc. for C₃₈H₄₀O₈N₂NaS [M+Na]⁺ 707.2397; found 707.2391.

Assignment of stereochemistry: The stereochemistry of cycloadduct **11e** was assigned through ¹H NMR nOe experiments (2D NOESY). Several key protons are overlapping, but assignment can be made on the following basis: On the alpha face (as depicted below), a key enhancement was seen between oxindole H4' and H4 α , indicating these protons to be on the same face. H4 α did not show enhancements to any aliphatic protons aside from H4 β . On the beta face, enhancements was seen between H4 β and the overlapped H3/H7 peak (this must be an enhancement with H3 based on other compounds), and between H4 β and H5, indicating these protons all to be on the opposite face. This analysis is consistent with a top face attack of the oxindole, with the oxindole carbonyl oriented *endo* and the ester group oriented *exo*. These observations are consistent with the model proposed by Jørgensen and Chen for acyclic trienamine reactions with oxindole alkene dienophiles.⁸

hexahydrospiro[indole-6,3'-indoline]-1',5-dicarboxylate, 11f

Prepared by General Procedure K using catalyst (R)-10 (i.e. ent-10) (1.9 µL, 0.011 mmol, 0.2 equiv.), 3b (11 mg, 0.030 mmol, 1.0 equiv.) and olefinic oxindole 9a (28 mg, 0.090 mmol, 3.0 equiv.) under Ar. Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave cycloadducts **11f** as a light yellow oil (11 mg, 0.016 mmol, 53%, 1:1 dr); $[\alpha]_{p}^{25}$ -6.2 (c = 1.0, CHCl₃); **IR** (thin film, v_{max} / cm⁻¹) 2985, 2929, 1792, 1759, 1723, 1479, 1395, 1350, 1164, 1108, 775; ¹H NMR (500 MHz, CDCl₃) δ_H 9.74 (1H, s, H9A), 9.38 (1H, s, H9B), 7.98 (1H, d, J = 8.1 Hz, PhH), 7.93 (1H, d, J = 7.9 Hz, PhH), 7.84 (2H, d, J = 8.3 Hz, TsH), 7.44 (2H, d, J = 8.0 Hz, TsH), 7.41-7.29 (10H, m, TsH and PhH), 7.19 (2H, d, J = 6.9 Hz, PhH), 7.10 (2H, d, J = 7.1 Hz, PhH), 7.05 (3H, d, J = 8.0 Hz, PhH), 6.89 (1H, d, J = 7.5 Hz, PhH), 6.76 (1H, t, J = 7.6 Hz, oxindole H4'B), 6.63 (1H, d, J = 7.6 Hz, oxindole H4'A), 4.28 (1H, dd, J = 13.4 and 8.3 Hz, H2), 4.04-3.91 (3H, m, H2), 3.87-3.72 (6H, m, OCH₂CH₃ and H3), 3.38-3.24 (1H, m, H7 and H8A), 3.25-3.12 (3H, m, H5, H7, and H8A), 2.76 (1H, dt, J = 17.7 and 2.3 Hz, H8B), 2.53 (3H, s, TsCH₃), 2.53-2.50 (1H, m, H8B), 2.50-2.46 (1H, m, H4A/B), 2.42 (3H, s), 2.45-2.37 (1H, m, H4), 2.35-2.20 (2H, m, H4A and H4B), 2.19-2.11 (1H, m, H4A/B), 1.67 (9H, s, C(CH₃)₃), 1.65 (9H, s, C(CH₃)₃), 0.96-0.90 (6H, m, OCH₂CH₃); ¹³C NMR (126 MHz, CDCl₃) δ_C 199.2, 198.1, 177.3, 176.3, 171.3, 170.2, 149.2, 149.1, 145.0, 143.9, 141.9, 141.0, 139.9, 139.2, 137.3, 136.9, 133.5, 133.2, 132.1, 130.6, 130.1, 130.0, 129.7, 129.4, 129.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.8, 127.4, 126.1, 124.6, 124.2, 123.9, 123.6, 123.0, 115.7, 115.34, 84.7, 84.3, 61.5, 61.2, 58.6, 57.7, 52.8, 50.7, 50.0, 48.5, 46.5, 43.9, 41.9, 41.5, 41.0, 37.0, 28.3, 28.2, 26.0, 23.9, 23.7, 21.9, 21.8, 13.7, 13.6; **HRMS** (ES⁺) calc. for C₃₈H₄₀O₈N₂NaS [M+Na]⁺ 707.2397; found 707.2391.

Assignment of stereochemistry: The two diastereomers produced in this reaction are <u>different</u> to those prepared in the matched reaction (to give **11e**) assigned above. This supports an opposite (catalyst controlled) facial selectivity, and a 1:1 mixture of *endo* and *exo* adducts, which would be consistent with a steric effect imposed by the C3-phenyl affecting the mismatched catalyst-imposed diastereoselectivity. Additional evidence for the stereochemistry of these diastereomers is as follows: For isomer **11fA**, an enhancement was seen between the oxindole H4' and H4(β), but no enhancement was seen from oxindole H4' to H8. For isomer **11fB**, enhancements were seen between oxindole H4'B and H4(α), as well as between oxindole H4'B and H8, implying these protons to be on the same face.

(2*R*,3*R*,3'*R*,4*R*,6*R*,7*R*)-1'-*tert*-Butyl 6-ethyl 2,7-dimethyl-2'-oxo-4-(2-oxoethyl)-3-phenyl-1-tosyl-1,2,3,4,6,7-hexahydrospiro[indole-5,3'-indoline]-1',6-dicarboxylate, 12h

Prepared by General Procedure **K** using catalyst (*R*)-**10** (i.e. *ent*-**12a**) (3.56 μ L, 0.011 mmol, 0.2 equiv.), **4e** (21 mg, 0.055 mmol, 1.0 equiv.) and olefinic oxindole **9a** (52 mg, 0.165 mmol, 3.0 equiv.) under Ar. Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave cycloadduct **12h** as a colourless oil (24 mg, 0.033 mmol, 60% yield, 20:1 dr); $[\alpha]_{p}^{25}$ -10.38 (*c* = 1.1, CHCl₃); **IR** (thin film, ν_{max} / cm⁻¹) 2980, 2931, 1789, 1758, 1726, 1291, 1252, 1150; ¹**H NMR** (400 MHz, CDCl₃) δ_{H} 9.50 (s, 1H, H10), 7.85-7.81 (3H, m, TsH and PhH), 7.38-7.26 (5H, m, TsH and PhH), 7.11-7.04 (2H, m, PhH), 6.95 (2H, t, *J* = 7.6 Hz, PhH), 6.58 (2H, d, *J* = 7.2 Hz, PhH), 4.54 (1H, dq, *J* = 13.9 and 6.9 Hz, H2), 3.91-3.80 (4H, m, OC<u>H</u>₂CH₃, H7 and H3), 3.22 (1H, d, *J* = 7.3 Hz, H6), 3.20 (1H, dd, *J* = 16.6 and 7.4 Hz, H9), 2.78 (1H, dd, *J* = 7.3 and 4.9 Hz, H4), 2.47 (3H, s, TsCH₃), 2.38 (1H, ddd, *J* = 17.5, 4.8 and 1.5 Hz, H9), 1.59 (9H, s, *t*-Bu), 1.51 (1H, d, *J* = 6.5 Hz, H8), 1.09 (1H, d, *J* = 6.9 Hz, H12), 0.91 (1H, t, *J* = 7.1 Hz, OCH₂CH₃); ¹³C NMR (126 MHz, CDCl₃) δ_{C} 199.4, 176.6, 171.0, 149.1, 143.7, 142.9, 139.5, 139.3, 135.1, 130.4, 130.0, 129.7, 129.0, 128.3, 127.4, 127.0, 124.6, 123.6, 122.3, 115.1, 84.4, 64.7, 61.4, 52.8, 52.0, 51.3, 44.9, 36.3, 30.5, 28.2, 23.7, 21.7, 17.2, 13.6; **HRMS** (ES⁺) calc. for C₄₀H₄₄O₈N₂NaS [M+Na]⁺ 735.2716; found 735.2711.

Assignment of stereochemistry: The stereochemistry of cycloadduct **12h** was assigned through ¹H NMR nOe experiments (1D nOe / 2D NOESY). On the beta face (as depicted below), an enhancement was seen between H6 and H8 (side chain methyl), indicating these groups to be on the same face; on the alpha face, an enhancement was seen between H4 and oxindole H4', indicating this arene to positioned on the top face of the molecule and oriented into / over the indoline ring system.

(2*R*,3*R*,3'*S*,4*S*,6*S*,7*S*)-1'-*tert*-Butyl 6-ethyl 2,7-dimethyl-2'-oxo-4-(2-oxoethyl)-3-phenyl-1-tosyl-1,2,3,4,6,7-hexahydrospiro[indole-5,3'-indoline]-1',6-dicarboxylate, 12i

Prepared by General Procedure **K** using catalyst (*S*)-**10** (1.6 μ L, 0.005 mmol, 0.2 equiv.), **4e** (10 mg, 0.025 mmol, 1.0 equiv.) and olefinic oxindole **9a** (23.7 mg, 0.075 mmol, 3.0 equiv.) under Ar. Purification via flash chromatography (petroleum ether / EtOAc (2:1)) gave cycloadduct **12i** as a colourless oil (8 mg, 0.011 mmol, 45% yield, 7:1 dr); $[\alpha]_{D}^{25}$ –117.6 (*c* = 0.6, CHCl₃); **IR** (thin film, ν_{max} / cm⁻¹); 2980, 2931, 1789, 1758, 1726, 1291, 1252, 1150; ¹H NMR (400 MHz, CDCl₃) δ_{H} 9.12 (1H, s, H10), 7.98 (2H, d, *J* = 8.0 Hz, TsH), 7.78 (1H, d, *J* = 7.9 Hz, PhH), 7.42 (2H, d, *J* = 8.0 Hz, TsH), 7.27-7.22 (5H, m, PhH), 7.20-7.14 (1H, m, PhH), 7.03 (2H, dd, *J* = 7.6 and 1.7 Hz, PhH), 6.41 (1H, td, *J* = 7.6 and 0.9 Hz, PhH), 6.31 (1H, d, *J* = 7.6 Hz, PhH), 4.39-4.33 (1H, m, H2), 3.98-3.93 (1H, m, H7), 3.86-3.78 (2H, m, OCH₂CH₃), 3.48 (1H, dd, *J* = 9.5 and 2.3 Hz, H3), 3.26 (1H, d, *J* = 6.0 Hz, H6), 3.00 - 2.91 (2H, m, H9 and H4), 2.53 (3H, s, TsCH₃), 1.67-1.60 (4H, m, H9 and H12), 1.56 (9H, s), 1.27 (3H, d, *J* = 6.6 Hz, H8), 0.86 (3H, t, *J* = 7.1 Hz, OCH₂CH₃); ¹³C NMR (126 MHz, CDCl₃) δ_{C} 198.2, 176.6, 171.0, 148.9, 144.3, 143.7, 139.1, 137.8, 135.3, 130.7, 130.1, 129.5, 128.6, 128.5, 128.2, 127.8, 123.5, 122.9, 121.9, 114.7, 84.1, 62.4, 61.2, 55.5, 52.0, 51.2, 44.0, 37.5, 29.1, 27.9, 24.2, 21.7, 18.3, 13.3; **HRMS** (ES⁺) calc. for C₄₀H₄₄O₈N₂NaS [M+Na]⁺ 735.2710; found 735.2709.

Assignment of stereochemistry: The stereochemistry of cycloadduct **12i** was assigned through ¹H NMR nOe experiments (1D nOe / 2D NOESY). On the alpha face (as depicted below), a strong enhancement was seen between H6 and H8 (side chain methyl), indicating these groups to be on the same face; on the beta face, a strong enhancement was seen between H4 and oxindole H4', and also between H2 and H3, and H2 and oxindole H4', indicating this arene to positioned on the top face of the molecule and oriented into / over the indoline ring system.

Notably, the minor diastereomers produced in the above two reactions were also different – the matched and mismatched cycloadditions thus giving two different sets of diastereoisomers, each corresponding to endo and exo isomers from the opposite sense of facial selectivity – i.e. the facial selectivity of cycloaddition in each case is very high, as observed for the equivalent oxindole cycloadditions with **3b**.

2. REFERENCES

- 1. X. Zhang, Y. Zhang, J. Huang, R. P. Hsung, K. C. M. Kurtz, J. Oppenheimer, M. E. Petersen, I. K. Sagamanova, L. Shen and M. R. Tracey, *J. Org. Chem.*, 2006, **71**, 4170-4177.
- 2. S. J. Mansfield, C. D. Campbell, M. W. Jones and E. A. Anderson, *Chem. Commun.*, 2015, **51**, 3316-3319.
- 3. B. M. Trost, G. J. Tanoury, M. Lautens, C. Chan and D. T. Macpherson, *J. Am. Chem. Soc.*, 1994, **116**, 4255-4267.
- 4. P. R. Walker, C. D. Campbell, A. Suleman, G. Carr and E. A. Anderson, *Angew. Chem. Int. Ed.*, 2013, **52**, 9139-9143.
- 5. J. F. Teichert, S. Zhang, A. W. v. Zijl, J. W. Slaa, A. J. Minnaard and B. L. Feringa, *Org. Lett.*, 2010, **12**, 4658-4660.
- 6. C. L. Joe, T. P. Blaisdell, A. F. Geoghan and K. L. Tan, *J. Am. Chem. Soc.*, 2014, **136**, 8556-8559.
- 7. M. S. Mortensen, J. M. Osbourn and G. A. O'Doherty, *Org. Lett.*, 2007, **9**, 3105-3108.
- 8. Z.-J. Jia, Q. Zhou, Q.-Q. Zhou, P.-Q. Chen and Y.-C. Chen, *Angew. Chem. Int. Ed.*, 2011, **50**, 8638-8641.

3.NMR SPECTRA

3.1 Intermediates in the synthesis of dienal 3a

Methyl but-3-en-1-yl(tosyl)carbamate, S1

¹H NMR (400 MHz, CDCl₃)

N-(But-3-en-1-yl)-*N*-(4-((*tert*-butyldimethylsilyl)oxy)but-1-yn-1-yl)-4-methylbenzenesulfonamide, 5a ¹H NMR (400 MHz, CDCl₃)

(*Z*)-2-(3-((*tert*-Butyldimethylsilyl)oxy)propylidene)-3-methylene-1-tosylpyrrolidine, S3 ¹H NMR (400 MHz, CDCl₃)

(Z)-3-(3-Methylene-1-tosylpyrrolidin-2-ylidene)propan-1-ol, S4

¹H NMR (400 MHz, CDCl₃)

Note: EtOAc contamination.

(E)-3-(3-Methyl-1-tosyl-4,5-dihydro-1H-pyrrol-2-yl)acrylaldehyde, 3a

3.2 Cycloaddition products of dienal **3a**

(3'*S*,5*S*,7*R*)-1'-*tert*-Butyl 5-ethyl 2'-oxo-7-(2-oxoethyl)-1-tosyl-1,2,3,4,5,7-hexahydrospiro[indole-6,3'-indoline]-1',5-dicarboxylate, 11a ¹H NMR (400 MHz, CDCl₃)

(3'*S*,5*S*,7*R*)-1'-*tert*-Butyl 5-ethyl 5'-chloro-2'-oxo-7-(2-oxoethyl)-1-tosyl-1,2,3,4,5,7-hexahydrospiro[indole-6,3'-indoline]-1',5-dicarboxylate, 11b ¹H NMR (500 MHz, CDCl₃)

(3'*S*,5*S*,7*R*)-1'-*tert*-Butyl 5-ethyl 5'-methoxy-2'-oxo-7-(2-oxoethyl)-1-tosyl-1,2,3,4,5,7-hexahydrospiro[indole-6,3'-indoline]-1',5-dicarboxylate, 11c ¹H NMR (400 MHz, CDCl₃)

(3'*S*,5*S*,7*R*)-di-*tert*-Butyl 2'-oxo-7-(2-oxoethyl)-1-tosyl-1,2,3,4,5,7-hexahydrospiro[indole-6,3'-indoline]-1',5-dicarboxylate, 11d ¹H NMR (400 MHz, CDCl₃)

(*E*)-Ethyl 4-((5*S*,6*S*,7*R*)-5-phenyl-6-nitro-1-tosyl-2,3,4,5,6,7-hexahydro-1H-indol-7-yl)but-2-enoate, 14a ¹H NMR (400 MHz, CDCl₃)

(E)-Ethyl 4-((5S,6S,7R)-5-(4-chlorophenyl)-6-nitro-1-tosyl-2,3,4,5,6,7-hexahydro-1H-indol-7-yl)but-2-enoate, 14b

Note: a small amount of the Z-alkene (E:Z = 20:1) is observed (J = 11.6 Hz), but no diastereomer from the cycloaddition could be detected. ¹H NMR (400 MHz, CDCl₃)

(E)-Ethyl 4-((5S,6S,7R)-5-(4-bromophenyl)-6-nitro-1-tosyl-2,3,4,5,6,7-hexahydro-1H-indol-7-yl)but-2-enoate, 14c

Note: a small amount of the Z-alkene (E: $Z \sim 20:1$) is observed (J = 11.6 Hz), in addition to the 13.5:1 ratio of diastereomers from the cycloaddition. ¹H NMR (400 MHz, CDCl₃)

(E)-Ethyl 4-((5S,6S,7R)-6-nitro-1-tosyl-5-(4-(trifluoromethyl)phenyl)-2,3,4,5,6,7-hexahydro-1H-indol-7-yl)but-2-enoate, 14d

Note: a small amount of the Z-alkene (E:Z ~ 20:1) is observed (J = 11.6 Hz), in addition to the 8:1 ratio of diastereomers from the cycloaddition. ¹H NMR (400 MHz, CDCl₃)

(E)-Ethyl 4-((5S,6S,7R)-5-(4-methoxyphenyl)-6-nitro-1-tosyl-2,3,4,5,6,7-hexahydro-1H-indol-7-yl)but-2-enoate, 14e

Note: a small amount of the Z-alkene (E:Z ~ 30:1) is observed (J = 11.6 Hz), but no diastereomer from the cycloaddition could be detected. ¹H NMR (400 MHz, CDCl₃)

(E)-Ethyl 4-((5R,6R,7R)-5-(furan-2-yl)-6-nitro-1-tosyl-2,3,4,5,6,7-hexahydro-1H-indol-7-yl)but-2-enoate, 14f

Note: a small amount of the Z-alkene (E:Z ~ 20:1) is observed (J = 11.6 Hz), in addition to the 9:1 ratio of diastereomers from the cycloaddition. ¹H NMR (400 MHz, CDCl₃)

(E)-Ethyl 4-((4'R,5S,7R)-5'-oxo-2',5-diphenyl-1-tosyl-1,2,3,4,5,7-hexahydro-5'H-spiro[indole-6,4'-oxazol]-7-yl)but-2-enoate, 16a

(*E*)-Ethyl 4-((4'R,5S,7R)-5-(4-bromophenyl)-5'-oxo-2'-phenyl-1-tosyl-1,2,3,4,5,7-hexahydro-5'H-spiro[indole-6,4'-oxazol]-7-yl)but-2-enoate, 16b ¹H NMR (400 MHz, CDCl₃)

(*E*)-Ethyl 4-((4'*R*,5*S*,7*R*)-5-(4-methoxyphenyl)-5'-oxo-2'-phenyl-1-tosyl-1,2,3,4,5,7-hexahydro-5'H-spiro[indole-6,4'-oxazol]-7-yl)but-2-enoate, 16c ¹H NMR (400 MHz, CDCl₃)

3.3 Intermediates in the synthesis of dienals 4a-d and 8a

(E)-Methyl (6-((tert-butyldimethylsilyl)oxy)hex-3-en-1-yl)(tosyl)carbamate, S6

(E)-N-(6-((tert-butyldimethylsilyl)oxy) hex-3-en-1-yl)-4-methylbenzenesulfonamide, S7

¹H NMR (400 MHz, CDCl₃)

(*E*)-*N*-(6-((tert-Butyldimethylsilyl)oxy)hex-3-en-1-yl)-4-methyl-*N*-(oct-1-yn-1-yl)benzenesulfonamide, 5b ¹H NMR (400 MHz, CDCl₃)

(*Z*)-3-((*E*)-3-((*tert*-butyldimethylsilyl)oxy)prop-1-en-1-yl)-2-heptylidene-1-tosylpyrrolidine, S8a ¹H NMR (400 MHz, CDCl₃)

(E)-3-((Z)-2-heptylidene-1-tosylpyrrolidin-3-yl)prop-2-en-1-ol, S9a

(*E*)-3-((*Z*)-2-heptylidene-1-tosylpyrrolidin-3-yl)acrylaldehyde, 4a

(*E*)-3-(2-heptyl-1-tosyl-4,5-dihydro-1H-pyrrol-3-yl)acrylaldehyde, 8a ¹H NMR (400 MHz, CDCl₃)

(*E*)-*N*-(6-((*tert*-Butyldimethylsilyl)oxy)hex-3-en-1-yl)-*N*-(5-chloropent-1-yn-1-yl)-4-ethylbenzenesulfonamide, 5c ¹H NMR (400 MHz, CDCl₃)

(*Z*)-3-((*E*)-3-((*tert*-Butyldimethylsilyl)oxy)prop-1-en-1-yl)-2-(4-chlorobutylidene)-1-tosylpyrrolidine, S8b ¹H NMR (400 MHz, CDCl₃)

(E)-3-((Z)-2-(4-Chlorobutylidene)-1-tosylpyrrolidin-3-yl)prop-2-en-1-ol, S9b

(*E*)-3-((*Z*)-2-(4-chlorobutylidene)-1-tosylpyrrolidin-3-yl)acrylaldehyde, 4b ¹H NMR (400 MHz, CDCl₃)

(*E*)-*N*-(6-((*tert*-Butyldimethylsilyl)oxy)hex-3-en-1-yl)-4-methyl-*N*-(prop-1-yn-1-yl)benzenesulfonamide, 5d ¹H NMR (400 MHz, CDCl₃)

(*Z*)-3-((*E*)-3-((*tert*-Butyldimethylsilyl)oxy)prop-1-en-1-yl)-2-ethylidene-1-tosylpyrrolidine, S8c ¹H NMR (400 MHz, CDCl₃)

(E)-3-((Z)-2-Ethylidene-1-tosylpyrrolidin-3-yl)prop-2-en-1-ol, S9c

(E)-3-((Z)-2-Ethylidene-1-tosylpyrrolidin-3-yl)acrylaldehyde, 4c

(E)-N-(6-((tert-Butyldimethylsilyl)oxy) hex-3-en-1-yl)-4-methyl-N-(phenylethynyl) benzene sulfon a mide, 5e-sulfon a mide, 5

(Z)-2-Benzylidene-3-((E)-3-((tert-butyldimethylsilyl)oxy)prop-1-en-1-yl)-1-tosylpyrrolidine, S8d

¹H NMR (400 MHz, CDCl₃)

(*E*)-3-((*Z*)-2-Benzylidene-1-tosylpyrrolidin-3-yl)prop-2-en-1-ol, S9d ¹H NMR (400 MHz, CDCl₃)

(*E*)-3-((*Z*)-2-benzylidene-1-tosylpyrrolidin-3-yl)acrylaldehyde, 4d

1.3.4 Cycloaddition reactions of dienals 4a-d

(3'*S*,4*S*,6*S*,7*S*)-1'-*tert*-Butyl 6-ethyl 7-hexyl-2'-oxo-4-(2-oxoethyl)-1-tosyl-1,2,3,4,6,7-hexahydrospiro[indole-5,3'-indoline]-1',6-dicarboxylate, 12a ¹H NMR (400 MHz, CDCl₃)

(3'*S*,4*S*,6*S*,7*S*)-1'-*tert*-Butyl 6-ethyl 7-(3-chloropropyl)-2'-oxo-4-(2-oxoethyl)-1-tosyl-1,2,3,4,6,7-hexahydrospiro[indole-5,3'-indoline]-1',6-dicarboxylate, 12b ¹H NMR (500 MHz, CDCl₃)

(3'*S*,4*S*,6*S*,7*S*)-1'-*tert*-Butyl 6-ethyl 7-methyl-2'-oxo-4-(2-oxoethyl)-1-tosyl-1,2,3,4,6,7-hexahydrospiro[indole-5,3'-indoline]-1',6-dicarboxylate, 12c ¹H NMR (500 MHz, CDCl₃)

(3'*S*,4*S*,6*S*,7*R*)-1'-*tert*-Butyl 6-ethyl 2'-oxo-4-(2-oxoethyl)-7-phenyl-1-tosyl-1,2,3,4,6,7-hexahydrospiro[indole-5,3'-indoline]-1',6-dicarboxylate, 12d ¹H NMR (400 MHz, CDCl₃)

(3'S,4S,6S,7S)-1'-*tert*-Butyl 6-ethyl 5'-chloro-7-hexyl-2'-oxo-4-(2-oxoethyl)-1-tosyl-1,2,3,4,6,7-hexahydrospiro[indole-5,3'-indoline]-1',6-dicarboxylate, 12e ¹H NMR (400 MHz, CDCl₃)

(3'*S*,4*S*,6*S*,7*S*)-1'-*tert*-Butyl 6-ethyl 7-hexyl-5'-methoxy-2'-oxo-4-(2-oxoethyl)-1-tosyl-1,2,3,4,6,7-hexahydrospiro[indole-5,3'-indoline]-1',6-dicarboxylate, 12f ¹H NMR (400 MHz, CDCl₃)

(3'*S*,4*S*,6*S*,7*S*)-di-*tert*-Butyl 7-methyl-2'-oxo-4-(2-oxoethyl)-1-tosyl-1,2,3,4,6,7-hexahydrospiro[indole-5,3'-indoline]-1',6-dicarboxylate, 12g ¹H NMR (400 MHz, CDCl₃)

(3*S*,4'*S*,6'*S*,7'*S*)and

(3*R*,4'S,6'*R*,7'S)-Ethyl

carboxylate, 18a and 18b

3.5 Synthesis of dienals **3b** and **4e**

(S)-2-phenylbut-3-en-1-ol, S10

(S)-methyl (2-phenylbut-3-en-1-yl)(tosyl)carbamate, S11

(*S*)-*N*-(4-((*tert*-butyldimethylsilyl)oxy)but-1-yn-1-yl)-4-methyl-*N*-(2-phenylbut-3-en-1-yl)benzenesulfonamide, 5f ¹H NMR (400 MHz, CDCl₃)

(*R*,*Z*)-2-(3-((*tert*-butyldimethylsilyl)oxy)propylidene)-3-methylene-4-phenyl-1-tosylpyrrolidine, S13 ¹H NMR (400 MHz, CDCl₃)

(*R*,*Z*)-3-(3-methylene-4-phenyl-1-tosylpyrrolidin-2-ylidene)propan-1-ol, S14 ¹H NMR (400 MHz, CDCl₃)

(*R*,*E*)-3-(3-methyl-4-phenyl-1-tosyl-4,5-dihydro-1*H*-pyrrol-2-yl)acrylaldehyde, 3b ¹H NMR (400 MHz, CDCl₃)

5-((*tert*-Butyldimethylsilyl)oxy)-1-phenylpent-1-yn-3-ol, S16

¹H NMR (400 MHz, CDCl₃)

5-((*tert*-Butyldimethylsilyl)oxy)-1-phenylpent-1-yn-3-one, S17

(S,E)-5-((tert-butyldimethylsilyl)oxy)-1-phenylpent-1-en-3-ol, S18

¹**H NMR** (400 MHz, CDCl₃)

(*S*,*E*)-5-((*tert*-Butyldimethylsilyl)oxy)-1-phenylpent-1-en-3-yl propionate, S19 ¹H NMR (400 MHz, CDCl₃)

(2*R*,3*R*,*E*)-7-((*tert*-Butyldimethylsilyl)oxy)-2-methyl-3-phenylhept-4-enoic acid, S20

¹**H NMR** (400 MHz, CDCl₃)

N-((2*R*,3S,*E*)-7-((*tert*-Butyldimethylsilyl)oxy)-3-phenylhept-4-en-2-yl)-4-methylbenzenesulfonamide, S21 ¹H NMR (400 MHz, CDCl₃)

N-((2*R*,3*S*,*E*)-7-((*tert*-Butyldimethylsilyl)oxy)-3-phenylhept-4-en-2-yl)-4-methyl-*N*-(prop-1-yn-1-yl)benzenesulfonamide, 5g ¹H NMR (400 MHz, CDCl₃)

(3*R*,4*S*,5*R*,*Z*)-3-((*E*)-3-((*tert*-butyldimethylsilyl)oxy)prop-1-en-1-yl)-2-ethylidene-5-methyl-4-phenyl-1-tosylpyrrolidine, S22 ¹H NMR (500 MHz, CDCl₃)

(E)-3-((4S,5R,Z)-2-ethylidene-5-methyl-4-phenyl-1-tosylpyrrolidin-3-yl)prop-2-en-1-ol, S23

¹H NMR (500 MHz, CDCl₃)

(*E*)-3-((4*S*,5*R*,*Z*)-2-ethylidene-5-methyl-4-phenyl-1-tosylpyrrolidin-3-yl)acrylaldehyde, 4e

¹**H NMR** (400 MHz, CDCl₃)

3.6 Double stereodifferentiating cycloaddition reactions of dienals 3b and 4e

2-(((3R,5S,6S,7R)-6-nitro-3,5-diphenyl-1-tosyl-2,3,4,5,6,7-hexahydro-1H-indol-7-yl)acetaldehyde, 19a

Ph, H, H, H, Ph 3, 4, 5, ...,H N, 7, 6, ...,NO₂ TS, H^V, H, OHC, 8, H,

2-((3*R*,5*R*,6*R*,7*S*)-6-nitro-3,5-diphenyl-1-tosyl-2,3,4,5,6,7-hexahydro-1*H*-indol-7-yl)acetaldehyde, 19b

¹H NMR (500 MHz, CDCl₃)

(3*R*,3'*S*,5*S*,7*R*)-1'-*tert*-butyl 5-ethyl 2'-oxo-7-(2-oxoethyl)-3-phenyl-1-tosyl-1,2,3,4,5,7-hexahydrospiro[indole-6,3'-indoline]-1',5-dicarboxylate, 11e

(3*R*,3'*R*,5*R*,7*S*)-1'-*tert*-butyl 5-ethyl 2'-oxo-7-(2-oxoethyl)-3-phenyl-1-tosyl-1,2,3,4,5,7-hexahydrospiro[indole-6,3'-indoline]-1',5-dicarboxylate, 11f ¹H NMR (500 MHz, CDCl₃)

(2*R*,3*R*,3'*S*,4*S*,6*S*,7*S*)-1'-*tert*-Butyl

6-ethyl

2,7-dimethyl-2'-oxo-4-(2-oxoethyl)-3-phenyl-1-tosyl-1,2,3,4,6,7-hexahydrospiro[indole-5,3'-indoline]-1',6-

dicarboxylate, 12h

¹**H NMR** (500 MHz, CDCl₃)

OHC

`N⁻ Ts NBoc

H CO₂Et