Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Supporting Information for

Nine members of a family nine-membered cyclic coordination clusters; Fe_6Ln_3 wheels (Ln = Gd to Lu and Y)

Irina A. Kühne^{*a*}, Valeriu Mereacre^{*a*}, Christopher E. Anson^{*a*} and Annie K. Powell **a*,*b*

a: Institut für Anorganische Chemie, Karlsruhe Institut für Technologie (KIT), Engesserstr. 15,
D-76131 Karlsruhe, Germany
Email: annie.powell@kit.edu
Tel: +49 721 608 2135; Fax: +49 721 608 8142
b: Institut für Nanotechnologie, Karlsruhe Institut für Technologie (KIT), Postfach 3640, D-76021 Karlsruhe, Germany.

Table of Contents

Fig. S1: Structure of Fe_6Dy_3 (2) with polyhedra around the metal center.

Fig. S2: Packing arrangement of 1 along *a*-axis (left) and *c*-axis (right).

Scheme 1. Coordination modes of the deprotonated vanox²⁻ ligand, (left) and the benzoic acid (right).

Fig. S3: Temperature dependence of the χ plot at 1000 Oe for complexes Fe₆Y₃ (**8**) (blue triangles) and the $1/\chi$ plot with logarithmic *x*-axis (inset) (left) and χT plot of Fe₆Gd₃ (**9**) and the substituted χT plot (Fe₆Gd₃ - Fe₆Y₃) on a logarithmic temperature scale (right).

Fig. S4: Field dependence of Magnetization for Fe_6Dy_3 (**2**), Fe_6Y_3 (**8**) and Fe_6Gd_3 (**9**) at different temperatures; reduced magnetization (inset).

Fig. S5: In-phase (left) and out-of-phase susceptibility of Fe_6Dy_3 (2) at varying field.

Fig. S6: in-phase (left) and out-of-phase susceptibility (right) of Fe_6Dy_3 (**2**) under an applied field of 2000 Oe.

Fig. S7: Arrhenius fit Fe₆Dy₃ (2).

S2. Crystallography, tables of crystal data, selected bond lengths and angles for **2**.

S3. Chemicals and Instrumentation.

S4. Synthesis and characterization of **1-9**.

S5. Crystal data.

S6. PHI report for Fe₆Y₃**8**.

Fig. S1: Structure of Fe_6Dy_3 (2) with polyhedra around the metal center to emphasize the distorted bicapped trigonal-prismatic geometry of the Ln^{III} and the distorted octahedral environment of the Fe^{III} ions.

Fig. S2: Packing arrangement of 1 along *a*-axis (top) and *c*-axis (bottom).

Scheme 1. Coordination modes of the deprotonated vanox²⁻ ligand, $(\eta^1:\eta^2:\eta^1:\eta^1:\mu_3)$ (left) and the benzoic acid $(\eta^1:\eta^1:\mu_2)$ (right).

Fig. S3: Temperature dependence of the χ plot at 1000 Oe for complexes Fe₆Y₃ (**8**) (blue triangles) and the $1/\chi$ plot with logarithmic *x*-axis (inset) (left) and χT plot of Fe₆Gd₃ (**9**) and the substituted χT plot (Fe₆Gd₃ - Fe₆Y₃) on a logarithmic temperature scale (right).

Fig. S4: Field dependence of Magnetization for Fe_6Dy_3 (**2**) (left), Fe_6Y_3 (**8**) (right) and Fe_6Gd_3 (**9**) at different temperatures; reduced magnetization (inset).

Fig. S5: In-phase (left) and out-of-phase susceptibility of Fe_6Dy_3 (2) at varying field.

Fig. S6: In-phase (left) and out-of-phase susceptibility (right) of Fe₆Dy₃ (2) under an applied field of 2000 Oe.

Fig. S7: Arrhenius fit for Fe_6Dy_3 (2).

S3. Chemicals and Instrumentation.

Commercially available reagents were used without further purification unless otherwise stated.

o-Vanillinoxime (Hvanox) was prepared according to the procedures described in the literature.¹

A suspension of 3.31g (24.2 mmol) of *o*-vanillin in 11ml H_2O was stirred while heating to 45°C. A solution containing 1.80g (26.1 mmol) NH_2OH ·HCl and 1.78g (21.8 mmol) CH_3CO_2Na was added and the reaction was heated with stirring at 80°C for 2h. Upon cooling to room temperature the resulting white microcrystalline precipitate was filtered and washed with cold H_2O and recrystallized from EtOH. The resulting compound is light sensitive.

Elemental analysis (C, H and N) was performed by Vario EL (Elementar Analysen System GmbH) from Perkin Elmer. Fourier transform infrared spectra (FT-IR) were recorded as KBr pellets on a Perkin Elmer Spectrum GX in the range of 4000 to 400 cm⁻¹.

Magnetic susceptibility measurements were obtained with a Quantum Design SQUID magnetometer MPMS-XL. The measurements were performed of a polycrystalline powder.

¹ I. J. Hewitt, Y. Lan, C. E. Anson, J. Luzon, R. Sessoli, and A. K. Powell, *Chem. Commun.*, 2009, **3**, 6765–7.

S4. Synthesis and characterization of **1-9**.

The syntheses have been optimised for the production of single crystals rather than bulk microcrysalline products.

(1) $[Fe_6Tb_3(\mu-OMe)_9(vanox)_6(benzoate)_6]$ -7MeOH·4H₂O: 0.066 g (0.4 mmol) H₂vanox, 0.054 g (1.0 mmol) NaOMe were solved in 10.0 ml MeOH and put to a solution of 0.040 g (0.2 mmol) FeCl₂·4H₂O, 0.114 g (0.25 mmol) Tb(NO₃)₃·6H₂O and 0.048 g (0.4 mmol) benzoic acid in 10.0 ml MeOH. The dark red almost black solution is stirred for 10 minutes at room temperature, and without any filtering left to stand for crystallisation. After one week complex **1** crystallises as dark red-black cubes suitable for single crytsal X-ray analysis.

The use of $FeCl_3 6H_2O$ instead of $FeCl_2 4H_2O$ leads to microcrystalline precipitate in much lower yield.

Yield: 0.048 g (19.6% related to Tb)

Elemental analysis for $C_{99}H_{113}Fe_6Tb_3N_6O_{46}$ (%): calculated: C: 40.51, H: 3.88; N: 2.86; found: C: 40.36; H: 4.01; N: 2.97.

IR (KBr): $\tilde{\nu}$ /cm⁻¹ = 3436 (m), 1598 (m), 1539 (s), 1492 (w), 1458 (m), 1438 (s), 1405 (s), 1268 (m), 1241 (m), 1220 (m), 1170 (w), 1095 (w), 1057 (s), 966 (m), 853 (m), 764 (w), 721 (m), 673 (m), 657 (m), 559 (w), 453 (m).

(2)-(8): The complexes were synthesized in a similar fashion to complex 1, but using the relevant lanthanide nitrate in place of $Tb(NO_3)_3$ ·6H₂O.

Yield [Fe₆Dy₃] (<u>2</u>): 0.037 g (15.1 % related to Dy)

Elemental analysis for $C_{99}H_{113}Fe_6Dy_3N_6O_{46}$ (%): calculated: C: 40.36, H: 3.86; N: 2.85; found: C: 40.52; H: 3.61; N: 2.89.

IR (KBr): $\tilde{\nu}$ /cm⁻¹ = 3429 (m), 3060 (w), 2932 (m), 2851 (w), 2822 (w), 1740 (w), 1591 (m), 1541 (s), 1452 (s), 1399 (s), 1268 (m), 1236 (m), 1215 (m), 1172 (w), 1055 (s), 966 (m), 846 (w), 718 (m), 658 (w), 562 (w), 448 (m).

Yield [Fe₆Ho₃] (**3**): 0.044 g (17.8 % related to Ho)

Elemental analysis for $C_{99}H_{115}Fe_6Ho_3N_6O_{47}$ (%): calculated: C: 40.02, H: 3.90; N: 2.82; found: C: 40.12; H: 3.83; N: 3.04.

IR (KBr): \tilde{v} /cm⁻¹ = 3431 (m), 3064 (w), 1596 (m), 1541 (s), 1491 (w), 1455 (s), 1399 (s), 1268 (m), 1238 (m), 1217 (m), 1172 (w), 1096 (m), 1057 (s), 966 (m), 849 (w), 723 (m), 664 (w), 589 (w), 449 (m).

Yield [Fe₆Er₃] (<u>4</u>): 0.029 g (11.8 % related to Er)

Elemental analysis for $C_{99}H_{109}Fe_6Er_3N_6O_{44}$ (%): calculated: C: 40.76, H: 3.76; N: 2.88; found: C: 40.58; H: 3.66; N: 2.84.

IR (KBr): $\tilde{\nu}$ /cm⁻¹ = 3439 (m), 1598 (s), 1540 (s), 1492 (w), 1459 (m), 1438 (w), 1407 (m), 1269 (m), 1242 (m), 1219 (w), 1173 (w), 1095 (m), 1059 (m), 965 (w), 855 (m), 766 (w), 725 (m), 687 (w), 675 (w), 643 (w), 452 (w).

Yield [Fe₆Tm₃] (<u>5</u>): 0.032 g (13.1 % related to Tm)

Elemental analysis for $C_{99}H_{109}Fe_6Tm_3N_6O_{44}$ (%): calculated: C: 40.59, H: 3.75; N: 2.86; found: C: 40.44; H: 3.68; N: 2.62.

IR (KBr): $\tilde{\nu}$ /cm⁻¹ = 3444 (m), 1597 (s), 1539 (s), 1492 (w), 1458 (m), 1438 (w), 1406 (m), 1268 (m), 1241 (m), 1221 (w), 1170 (w), 1094 (m), 1058 (m), 967 (w), 856 (m), 763 (w), 722 (m), 680 (w), 674 (w), 626 (w) 456 (w).

Yield [Fe₆Yb₃] (<u>6</u>): 0.038 g (15.1 % related to Yb)

Elemental analysis for $C_{102}H_{133}Fe_6Yb_3N_6O_{53}$ (%): calculated: C: 39.10, H: 4.27; N: 2.68; found: C: 39.32; H: 4.11; N: 2.56.

IR (KBr): $\tilde{\nu}$ /cm⁻¹ = 3455 (m), 2928 (w), 1598 (s), 1541 (s), 1491 (w), 1458 (m), 1437 (w), 1408 (m), 1268 (m), 1240 (m), 1221 (w), 1095 (m), 1059 (m), 968 (w), 858 (m), 762 (w), 724 (m), 689 (w), 672 (w), 631 (w), 457 (w).

Yield [Fe₆Lu₃] (<u>7</u>): 0.036 g (14.3 % related to Lu)

Elemental analysis for $C_{99}H_{117}Fe_6Lu_3N_6O_{48}$ (%): calculated: C: 39.38, H: 3.90; N: 2.78; found: C: 39.15; H: 4.01; N: 2.82.

IR (KBr): $\tilde{\nu}$ /cm⁻¹ = 3450 (m), 2931 (w), 1597 (m), 1540 (m), 1493 (w), 1459 (m), 1438 (w), 1409 (m), 1269 (m), 1242 (m), 1221 (m), 1175 (w), 1095 (w), 1060 (m), 966 (m), 853 (m), 764 (m), 721 (m), 689 (w), 674 (m), 657 (m), 577 (w), 456 (m).

Yield [Fe₆Y₃] (**8**): 0.073 g (39.4 % related to Y)

Elemental analysis for C₉₉H₁₁₇Fe₆Y₃N₆O₄₈ (%): calculated: C: 43.07, H: 4.27; N: 3.04; found: C: 42.95; H: 4.19; N: 3.07. IR (KBr): $\tilde{\nu}$ /cm⁻¹ = 3423 (m), 2911 (w), 1594 (s), 1536 (s), 1488 (w), 1457 (m), 1439 (w), 1409 (m), 1267 (m), 1242 (m), 1223 (m), 1176 (w), 1094 (w), 1062 (m), 967 (m), 854 (m), 765 (w), 720 (m), 674 (m), 643 (w), 436 (w).

(9) $[Fe_6Gd_3(\mu-OMe)_9(vanox)_6(4-Cl-benzoate)_6]$ ·9MeOH: 0.066 g (0.4 mmol) H₂vanox, 0.081 g (1.5 mmol) NaOMe were solved in 10.0 ml MeOH and put to a solution of 0.040 g (0.2 mmol) FeCl₂·4H₂O, 0.114 g (0.25 mmol) Gd(NO₃)₃·6H₂O and 0.063 g (0.4 mmol) 4-Chlorobenzoic acid in 10.0 ml MeOH. The dark red almost black solution is stirred for 10 minutes at room temperature, and without any filtering left to stand for crytalization. After 4 days complex **9** crystallizes as dark red-black cubes suitable for single crytsal X-ray analysis.

Yield (**<u>9</u>**): 0.025 g (10.7 % related to Gd)

Elemental analysis for C₁₀₂H₁₂₃Fe₆Gd₃N₆O₄₈Cl₆ (%): calculated: C: 37.85, H: 3.83; N: 2.59; found: C: 37.78; H: 3.64; N: 2.44.

IR (KBr): $\tilde{\nu}$ /cm⁻¹ = 3439 (m), 1600 (s), 1541 (s), 1501 (w), 1459 (s), 1438 (m), 1444 (s), 1358 (w), 1270 (m), 1240 (w), 1221 (m), 1167 (m), 1094 (w), 1056 (m), 1010 (w), 966 (m), 855 (m), 779 (w), 735 (w), 683 (w), 608 (w), 564 (w), 502 (w), 461 (m).

S5. Crystal data for 1-9.

Compound	Fe_6Tb_3 1	Fe ₆ Ho ₃ 3	Fe_6Er_3 4
Empirical formula	$C_{106}H_{135}Fe_6N_6O_{50}Tb_3$	C107H135Fe6H03N6O49	
Formula weight	3105.05	3119.09	
Crystal system	monoclinic	monoclinic	
Space group	C2/c	C2/c	
Crystal size (nm)	0.280 x 0.090 x 0.070	0.370 x 0.110 x 0.090	
<i>a</i> (Å)	29.189(3)	29.211(2)	
<i>b</i> (Å)	26.117(3)	25.894(2)	
<i>c</i> (Å)	20.479(2)	20.7929(16)	
α (°)	90	90	
$\beta(^{\circ})$	124.572(2)	124.970(5)	
γ(°)	90	90	
V (Å ³)	12854(2)	12888.1(19)	
Ζ	4	4	
d _{calc} (g cm ⁻³)	1.604	1.607	
<i>T</i> (K)	100(2)	150(2)	
μ (mm ⁻¹)	2.371	2.559	
F(000)	6256	6272	
Limiting indices	$h = \pm 38, k = \pm 33, l = \pm 27$	$h = \pm 36, k = \pm 32, l = \pm 26$	$h = \pm 12, k = \pm 14, l = \pm 15$
Reflections collected / unique	30941 / 14288	41101 / 13580	4842 / 4842
R(int)	0.00426	0.1006	
Completeness to Θ (%)	99.7	99.4	88.8
Data / restraints / parameters	14288 / 32 / 770	13580 / 25 / 703	4440 / 0 / 291
GooF on F ²	1.035	1.009	1.016
Final R indices $[I > 2\sigma(I)]^a$	$R_1 = 0.0476; wR_2 = 0.1259$	$R_1 = 0.0661; wR_2 = 0.1604$	$R_1 = 0.0715; wR_2 = 0.1572$
R indices (all data)	$R_1 = 0.0679; wR_2 = 0.1373$	$R_1 = 0.0952; wR_2 = 0.1719$	$R_1 = 0.1191; wR_2 = 0.1810$
Largest diff. peak/hole (e [.] Å ⁻³)	2.875 / -1.523	0.942 / -3.548	1.294 / -1.437
CCDC no.			

Compound	Fe ₆ Tm ₃ 5	Fe ₆ Yb ₃ 6	Fe ₆ Lu ₃ 7
Empirical formula	$C_{108}H_{139}Fe_6N_6O_{50}Tm_3$		$C_{108}H_{139}Fe_6Lu_3N_6O_{50}$
Formula weight	3163.14		3181.25
Crystal system	monoclinic		monoclinic
Space group	C2/c		C2/c
Crystal size (nm)	0.48 x 0.04 x. 0.03		0.42 x 0.07 x 0.04
a (Å)	29.069(4)		29.1226(16)
<i>b</i> (Å)	25.935(4)		25.811(2)
<i>c</i> (Å)	20.683(3)		20.8572(12)
α (°)	90		90
$\beta(^{\circ})$	124.822(2)		125.126(4)
γ(°)	90		90
V (Å ³)	12801(3)		12823.0(15)
Z	4		4
d_{calc} (g cm ⁻³)	1.641		1.648
<i>T</i> (K)	100(2)		150(2)
μ (mm ⁻¹)	2.803		3.032
F(000)	6368		6392
Limiting indices	$h = \pm 35, k = \pm 32, \pm 25$	l= ±	$h = \pm 36, k = \pm 32, l = \pm 26$
Reflections collected / unique	29204 / 12537		41722 / 13630
R(int)	0.0707		0.0869
Completeness to Θ (%)			99.9
Data / restraints / parameters	12537 / 29 / 747		13630 / 49 / 698
GooF on F ²	1.036		1.047
Final R indices $[I > 2\sigma(I)]^a$	$R_1 = 0.0626; wR_2 = 0.1$	1426	$R_1 = 0.0654; wR_2 = 0.1600$
R indices (all data)	$R_1 = 0.0992; wR_2 = 0.1$	1594	$R_1 = 0.0866; wR_2 = 0.1694$
Largest diff. peak/hole (e·Å-3)	2.981 / -1.900		0878 / -3.134
CCDC no.			

S5. PHI report for Fe_6Y_3 **8**.

PHI Report generated on 28/07/2015 at 16:16:13

Job: FeY1

Name:

Input:

```
****ion fe(iii)oh(w)
fe(iii)oh(w)
****gfactors
1 2.0
2 2.0
****exchange
1 2 -10
****fit
simplex
10
ex 1 2 4
____
1.9 2.0 2.1
gf 1 4 0
gf 2 4 0
____
****sus
bsus 0.1
****params
opmode fit s
imp 1 0
****end
```

Output:

Finished Simplex with 247 iterations

-16.504536635286755 EX 1 2 4 ------1.9508748984356066 GF 1 4 0 GF 2 4 0 -----Residual: 0.04210139550604808 Residual reduced by: 0.53585383680019504E+004 or: 99.999214318124984%

Susceptibility:

