Supporting Information

A new cascade halosulfonylation of 1,7-enynes toward 3,4dihydroquinolin-2(1*H*)-ones *via* sulfonyl radical-triggered addition/6-*exo-dig* cyclization

Yi-Long Zhu,^{a,b} Bo Jiang,^{*,a,c} Wen-Juan Hao,^a Ai-Fang Wang,^a Jiang-Kai Qiu,^{a,b} Ping Wei,^{*,b} De-Cai Wang,^b Guigen Li,^{c,d} and Shu-Jiang Tu^{*,a}

^a School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 211116, P. R. China; E-mail: jiangchem@jsnu.edu.cn (B. Jiang); laotu@jsnu.edu.cn (S.-J. Tu); Tel./fax: +86 516 83500065 ;

^b Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 210009, Jiangsu, P. R. China, E-mail: weiping@njtech.edu.cn;

^c Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA;

^d Institute of Chemistry & BioMedical Sciences, Nanjing University, Nanjing 210093, P. R. China;

Table of Contents

X-Ray Structures of product 3 y	-S2
General Information	-S3
General Procedure for the Synthesis of Compounds 3	S3
Characterization Data of Compounds 3a-x	S3-S12
General Procedure for the Synthesis of Compounds 4	S12
Characterization Data of Compounds 4a-d	S12-S14
Copies of ¹ H and ¹³ C NMR Spectra for Compounds 3 and 4	-S15-S43
Crystal Data of products 3 y	-S44-S57

Figure 1. X-Ray Structure of Product 3y

General Information

All one-pot reactions were carried out in a 10-mL Schlenk tube equipped with a magnetic stir bar under air. All melting points are uncorrected. The NMR spectra were recorded in CDCl₃ or DMSO- d_6 on a 400 MHz instrument with TMS as internal standard. Chemical shifts (δ) were reported in ppm with respect to TMS. Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiples), coupling constant (J, Hz) and integration. HRMS analyses were carried out using a TOF-MS instrument with an ESI source. X-Ray crystallographic analysis was performed with a SMART CCD and a P4 diffractometer.

Typical Experimental Procedure

General Procedure for the Synthesis of Products 3

A mixture of 1,7-Enynes (1, 1.0 equiv., 0.5 mmol), arylsulfonyl hydrazid (2, 2.0 equiv., 1.0 mmol), NIS (1.2 equiv., 0.6 mmol) and anhydrous TBHP (2.0 equiv. 1.0 mmol, 5.5 M in decane) in acetonitrile (2.0 mL) was heated at 60 °C for 8 hours. After completion of the reaction as indicated by TLC, the mixture was evaporated under vacuum and washed by methanol to afford the desired product **3** as a white solid.

4-(Iodo(phenyl)methylene)-3-methyl-1-(phenylsulfonyl)-3-(tosylmethyl)-3,4-dihydroquinolin-2(1*H*)-one (3a)

white solid, mp 267-269 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.11-8.05 (m, 1H), 8.04-7.99 (m, 2H), 7.82-7.75 (m, 1H), 7.72-7.64 (m, 3H), 7.61 (d, *J* =7.6 Hz, 1H), 7.57-7.48 (m, 2H), 7.41 (d, *J* =8.4 Hz, 2H), 7.37-7.30 (m, 1H), 7.28-7.11 (m, 4H), 6.45 (d, *J* =7.6 Hz, 1H), 2.79 (s, 2H), 2.41 (s, 3H), 0.98 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.8, 145.0, 144.9, 138.5, 137.7, 136.4, 135.5, 134.1, 132.9, 132.4, 129.9, 129.3, 128.9, 128.4, 128.0, 127.8, 127.3, 127.0, 126.7, 124.5, 103.4, 60.7, 53.0, 21.6, 21.4. IR (film, v, cm⁻¹) 3058, 2938, 1713, 1596, 1480, 1389, 1267, 1197, 1174, 1085, 963, 779. HR-MS (ESI) m/z calcd for C₃₁H₂₆INO₅S₂ [M+Na]⁺ 706.5661, found 706.5654.

4-(Iodo(phenyl)methylene)-3-methyl-1-tosyl-3-(tosylmethyl)-3,4-dihydroquinolin-2(1*H*)-one (3b)

white solid, mp 281-283 °C; ¹H NMR (400 MHz, CDCl₃; *δ*, ppm) 8.12-8.02 (m, 1H), 7.90 (d, *J* = 8.4 Hz, 2H), 7.71-7.64 (m, 1H), 7.61 (d, *J* = 7.6 Hz, 1H), 7.55-7.49 (m, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.37-7.31 (m, 1H), 7.27-7.18 (m, 3H), 7.18-7.10 (m, 1H), 6.43 (d, *J* = 7.6 Hz, 1H), 2.78 (s, 2H), 2.55 (s, 3H), 2.41 (s, 3H), 0.99 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; *δ*, ppm) 167.9, 145.4, 145.0, 137.7, 136.5, 135.6, 133.0, 132.3, 129.9, 129.5, 129.3, 129.1, 128.3, 128.1, 128.0, 127.7, 127.3, 126.9, 126.6, 124.6, 103.3, 60.7, 53.0, 21.7, 21.6, 21.4. IR (film, v, cm⁻) ¹) 3058, 3011 1723, 1596, 1489, 1371, 1267, 1198, 1085, 1042, 963, 813. HR-MS (ESI) m/z calcd for $C_{32}H_{28}INO_5S_2$ [M+Na]⁺ 720.0352, found 720.0356.

6-Chloro-4-(iodo(phenyl)methylene)-3-methyl-1-(phenylsulfonyl)-3-(tosylmethyl)-3,4-dihydroquinolin-2(1*H*)-one (3c)

white solid, mp 270-272 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.09-7.97 (m, 3H), 7.85-7.77 (m, 1H), 7.73-7.66 (m, 2H), 7.65-7.56 (m, 2H), 7.52-7.42 (m, 3H), 7.38-7.29 (m, 3H), 7.26-7.19 (m, 1H), 7.18-7.11 (m, 1H), 6.36 (d, *J* = 7.6 Hz, 1H), 2.83 (d, J = 14.0 Hz, 1H), 2.72 (d, *J* = 13.6 Hz, 1H), 2.43 (s, 3H), 1.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.5, 145.2, 144.5, 138.2, 137.7, 137.2, 135.4, 134.3, 132.6, 132.0, 131.4, 130.1, 129.3, 129.0, 128.5, 128.1, 127.8, 127.3, 126.8, 126.0, 104.4, 60.8, 52.9, 21.6, 21.2. IR (film, v, cm⁻¹) 3078, 3065, 1722, 1596, 1470, 1447, 1377, 1287, 1222, 1174, 1083, 891, 835. HR-MS (ESI) m/z calcd for C₃₁H₂₅ClINO₅S₂ [M+Na]⁺ 739.9805, found 739.9803.

4-(Iodo(phenyl)methylene)-3,6-dimethyl-1-(phenylsulfonyl)-3-(tosylmethyl)-3,4-dihydroquinolin-2(1*H*)-one (3d)

white solid, mp 261-263 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.06-7.97 (m, 2H), 7.85 (d, J = 1.2 Hz, 1H), 7.82-7.75 (m, 1H), 7.72-7.64 (m, 2H), 7.59 (d, J = 7.6 Hz, 1H), 7.55 (d, J = 8.4 Hz, 1H), 7.41 (d, J = 8.4 Hz, 2H), 7.36-7.29 (m, 2H), 7.25 (d, J = 8.0 Hz, 2H), 7.23-7.18 (m, 1H), 7.16-7.10 (m, 1H), 6.38 (d, J = 7.6 Hz, 1H), 2.82 (d, J = 14.0 Hz, 1H), 2.78 (d, J = 14.0 Hz, 1H), 2.58 (s, 3H), 2.42 (s, 3H), 0.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.8, 145.0, 144.9 138.5, 137.8, 136.9, 136.5, 135.5, 134.0, 132.4, 130.5, 129.9, 128.9, 128.3, 128.0, 127.9, 127.8, 127.3, 127.0, 124.6, 103.1, 60.9, 53.0, 21.6, 21.3, 21.2. IR (film, v, cm⁻¹) 3056, 3028, 1712, 1594, 1489, 1382, 1288, 1197, 1084, 963, 850. HR-MS (ESI) m/z calcd for C₃₂H₂₈INO₅S₂ [M+Na]⁺ 720.0352, found 720.0348.

4-(Iodo(p-tolyl)methylene)-3-methyl-1-(phenylsulfonyl)-3-(tosylmethyl)-3,4-dihydroquinolin-2(1*H*)-one (3e)

white solid, mp 275-277 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.10-7.98 (m, 3H), 7.82-7.74 (m, 1H), 7.73-7.63 (m, 3H), 7.57-7.46 (m, 3H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 7.2 Hz, 1H), 6.97 (d, *J* = 7.6 Hz, 1H), 6.34 (d, *J* = 6.4 Hz, 1H), 2.78 (s, 2H), 2.41 (s, 3H), 2.33 (s, 3H), 1.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.9, 145.0, 142.2, 138.6, 138.4, 137.7, 136.2, 134.0, 132.9, 132.5, 129.9, 129.3, 129.0, 128.9, 128.6, 128.5, 127.9, 127.3, 126.9, 126.7, 124.5, 104.0, 60.7, 52.9, 21.6, 21.4, 21.3. IR (film, v, cm⁻¹) 3063, 3001, 716, 1596, 1506, 1478, 1369, 1191, 1085, 817, 784. HR-MS (ESI) m/z calcd for C₃₂H₂₈INO₅S₂ [M+Na]⁺ 720.0352, found 720.0348.

6-Chloro-4-(iodo(p-tolyl)methylene)-3-methyl-1-(phenylsulfonyl)-3-(tosylmethyl)-3,4-dihydroquinolin-2(1*H*)-one (3f)

white solid, mp 276-278 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.06-7.97 (m, 3H), 7.84-7.75 (m, 1H), 7.73-7.65 (m, 2H), 7.61 (d, J = 8.8 Hz, 1H), 7.52-7.42 (m, 4H), 7.30 (s, 2H), 7.14 (d, J = 7.6 Hz, 1H), 6.96 (d, J = 8.0 Hz, 1H), 6.26 (d, J = 8.0 Hz, 1H), 2.82 (d, J = 14.0 Hz, 1H), 2.71 (d, J = 13.6 Hz, 1H), 2.43 (s, 3H), 2.33 (s, 3H), 1.02 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.5, 145.2, 141.7, 138.6, 138.2, 137.7, 137.3, 135.2, 134.2, 132.5, 132.0, 131.4, 130.1, 129.2, 129.0, 128.7, 128.6, 127.7, 127.3, 126.7, 126.0, 105.0, 60.8, 52.9, 21.6, 21.3. IR (film, v, cm⁻¹) 3108, 3053, 1723, 1595, 1468, 1368, 1192, 1083, 961, 892, 833, 815. HR-MS (ESI) m/z calcd for C₃₂H₂₇ClINO₅S₂ [M+Na]⁺ 753.9962, found 753.9966.

6-Chloro-4-(iodo(p-tolyl)methylene)-3-methyl-1-tosyl-3-(tosylmethyl)-3,4-dihydroquinolin-2(1H)-one (3g)

white solid, mp 265-267 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.01 (d, J = 2.4 Hz, 1H), 7.88 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.8 Hz, 1H), 7.52-7.41 (m, 6H), 7.30 (s, 1H), 7.26 (s, 1H), 7.15 (d, J = 7.6 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H), 6.29-6.21 (m, 1H), 2.81 (d, J = 13.6 Hz, 1H), 2.70 (d, J = 13.6 Hz, 1H), 2.56 (s, 3H), 2.43 (s, 3H), 2.34 (s, 3H), 1.02 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.5, 145.6, 145.2, 141.8, 138.5, 137.7, 137.3, 135.2, 132.4, 131.9, 131.4, 130.0, 129.5, 129.1, 128.8, 128.5, 127.7, 127.3, 126.6, 126.0, 104.8, 60.9, 52.9, 21.8, 21.6, 21.3, 21.2. IR (film, v, cm⁻¹) 3027, 2998, 1720, 1596, 1505, 1470, 1368, 1272, 1193, 1083, 961, 829. HR-MS (ESI) m/z calcd for C₃₃H₂₉CIINO₅S₂ [M+Na]⁺ 768.0118, found 768.0115.

1-((4-Chlorophenyl)sulfonyl)-4-(iodo(p-tolyl)methylene)-3,6-dimethyl-3-(tosylmethyl)-3,4-dihydroquinolin-2(1*H*)-one (3h)

white solid, mp 239-241 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 7.99-7.90 (m, 2H), 7.83 (d, J = 1.2 Hz, 1H), 7.70-7.61 (m, 2H), 7.54-7.45 (m, 2H), 7.41 (d, J = 8.0 Hz, 2H), 7.32-7.29 (m, 1H), 7.25 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 6.36-6.28 (m, 1H), 2.81 (d, J = 14.0 Hz, 1H), 2.76 (d, J = 14.0 Hz, 1H), 2.57 (s, 3H), 2.42 (s, 3H), 2.34 (s, 3H), 1.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 168.0, 145.1, 142.0, 140.9, 138.5, 137.8, 137.1, 136.7, 136.2, 135.7, 132.4, 130.5, 130.2, 123.0, 129.9, 129.1, 128.7, 127.8, 127.3, 126.8, 124.7, 104.0, 60.9, 53.0, 21.6, 21.4, 21.3, 21.2. IR (film, v, cm⁻¹) 3094, 2922, 1717, 1583, 1505, 1489, 1374, 1321, 11171, 1014, 965, 824. HR-MS (ESI) m/z calcd for C₃₃H₂₉ClINO₅S₂ [M+Na]⁺ 768.0118, found 768.0117.

6-Fluoro-4-(iodo(p-tolyl)methylene)-3-methyl-1-(phenylsulfonyl)-3-(tosylmethyl)-3,4-dihydroquinolin-2(1*H*)-one (3i)

white solid, mp 274-276 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.05-7.96 (m, 2H), 7.83-7.72 (m, 2H), 7.72-7.62 (m, 3H), 7.46 (d, J = 8.0 Hz, 3H), 7.29 (s, 1H), 7.27 (s, 1H), 7.24-7.17 (m, 1H), 7.14 (d, J = 7.6 Hz, 1H), 6.96 (d, J = 8.0 Hz, 1H), 6.27 (d, J = 6.4, 1H), 2.81 (d, J = 14.0 Hz, 1H), 2.74 (d, J = 14.0, 1H), 2.43 (s, 3H), 2.33 (s, 3H), 1.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.6, 160.6 ($J_{CF} = 247.4$ Hz), 145.2, 141.8, 138.6, 138.3, 137.6, 135.4, 134.2, 130.0, 129.0 ($J_{CF} = 4.9$ Hz), 128.7, 128.6 ($J_{CF} = 13.3$ Hz), 127.7, 127.3, 126.7, 126.52 ($J_{CF} = 8.6$ Hz), 119.1 ($J_{CF} = 24.1$ Hz), 116.3 ($J_{CF} = 22.8$ Hz), 105.0, 60.8, 53.0, 21.6, 21.4, 21.3. IR (film, v, cm⁻¹) 3089, 3026, 1725, 1594, 1481, 1449, 1320, 1260, 1196, 1084, 888. HR-MS (ESI) m/z calcd for C₃₂H₂₇FINO₅S₂ [M+Na]⁺ 738.0257, found 738.0251.

1-((4-Bromophenyl)sulfonyl)-6-fluoro-4-(iodo(p-tolyl)methylene)-3-methyl-3-(tosylmethyl)-3,4dihydroquinolin-2(1H)-one (3j)

white solid, mp 273-275 °C; ¹H NMR (400 MHz, CDCl₃; δ, ppm) 7.90-7.79 (m, 4H), 7.78-7.70 (m, 1H), 7.61 (dd, *J* = 9.2 Hz, 4.8 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 3H), 7.29 (s, 1H), 7.27 (s, 1H), 7.24-7.12 (m, 2H), 7.05 (d, *J* = 8.0 Hz, 1H),

6.34-6.27 (m, 1H), 2.81 (d, J = 14.0 Hz, 1H), 2.72 (d, J = 13.6 Hz, 1H), 2.43 (s, 3H), 2.35 (s, 3H), 1.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.7, 160.7 ($J_{CF} = 247.8$ Hz), 145.3, 141.7, 138.8, 137.8, 137.7, 137.6, 136.9, 135.3, 132.2, 130.6, 130.0, 129.8, 128.8 ($J_{CF} = 10.4$ Hz), 128.7 ($J_{CF} = 3.0$ Hz), 127.3, 126.6 ($J_{CF} = 8.2$ Hz), 119.2 ($J_{CF} = 23.9$ Hz), 116.4 ($J_{CF} = 23.0$ Hz), 105.4, 60.7, 53.0, 21.6, 21.5, 21.3. IR (film, v, cm⁻¹) 3102, 3031, 1725, 1593, 1573, 1482, 1447, 1393, 1262, 1192, 1084, 1013, 827. HR-MS (ESI) m/z calcd for C₃₂H₂₆BrFINO₅S₂ [M+Na]⁺ 815.9362, found 815.9363.

1-((4-(*tert*-Butyl)phenyl)sulfonyl)-6-fluoro-4-(iodo(p-tolyl)methylene)-3-methyl-3-(tosylmethyl)-3,4-dihydroquinolin-2(1*H*)-one (3k)

white solid, mp 275-277 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 7.91 (d, J = 8.4 Hz, 2H), 7.78-7.61 (m, 4H), 7.46 (d, J = 8.0 Hz, 3H), 7.29 (s, 1H), 7.27 (s, 1H), 7.24-7.10 (m, 2H), 6.89 (d, J = 8.0 Hz, 1H), 6.26 (d, J = 7.2 Hz, 1H), 2.81 (d, J = 14.0 Hz, 1H), 2.74 (d, J = 13.6 Hz, 1H), 2.43 (s, 3H), 2.33 (s, 3H), 1.44 (s, 9H), 1.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.6, 160.6 (J_{CF} =247.5 Hz), 158.4, 145.2, 141.9, 138.5, 137.7 (J_{CF} =4.2 Hz), 137.6, 135.5, 135.1, 130.0, 129.1 (J_{CF} =2.9 Hz), 128.9, 128.7, 128.3, 127.8, 127.3, 126.7, 126.6 (J_{CF} =2.6 Hz), 126.0, 119.0 (J_{CF} =24.1 Hz), 116.3 (J_{CF} = 22.8 Hz), 104.7, 60.8, 53.0, 35.5, 31.1, 21.6, 21.4, 21.3. IR (film, v, cm⁻¹) 3026, 3009, 2959, 1717, 1595, 1505, 1485, 1370, 1299, 1195, 1172, 1086, 822. HR-MS (ESI) m/z calcd for C₃₆H₃₅FINO₅S₂ [M+Na]⁺ 794.0883, found 794.0876.

4-((4-Chlorophenyl)iodomethylene)-3-methyl-1-tosyl-3-(tosylmethyl)-3,4-dihydroquinolin-2(1H)-one (3l)

white solid, mp 272-274 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.08-8.02 (m, 1H), 7.89 (d, J = 8.4 Hz, 2H), 7.70-7.63(m, 1H), 7.58 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 7.55-7.48 (m, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 7.33 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 7.15 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 6.40 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 2.79 (d, J = 14.0 Hz, 1H), 2.75 (d, J = 14.0 Hz, 1H), 2.55 (s, 3H), 2.41 (s, 3H), 1.02 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.7, 145.4, 145.1, 143.5, 137.7, 137.4, 135.5, 135.3, 134.3, 132.9, 132.2, 129.9, 129.5, 129.1, 128.4, 128.3, 128.1, 127.3, 126.6, 124.6, 101.3, 60.6, 53.1, 21.7, 21.6. IR (film, v, cm⁻¹) 3058, 2958, 1723, 1595, 1486, 1393, 1299, 1193, 1086, 963, 828. HR-MS (ESI) m/z calcd for C₃₂H₂₇CIINO₅S₂ [M+Na]⁺ 754.0378, found 754.0372.

4-((4-Chlorophenyl)iodomethylene)-3-methyl-1-(phenylsulfonyl)-3-(tosylmethyl)-3,4-dihydroquinolin-2(1*H*)-one (3m)

white solid, mp 275-277 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.13-7.95 (m, 3H), 7.82-7.74 (m, 1H), 7.72-7.63 (m, 3H), 7.62-7.48 (m, 3H), 7.40 (d, J = 8.4 Hz, 2H), 7.36-7.30 (m, 1H), 7.25 (d, J = 8.0 Hz, 2H), 7.19-7.12 (m, 1H), 6.40 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 2.80 (d, J = 14.0 Hz, 1H), 2.76 (d, J = 14.0 Hz, 1H), 2.41 (s, 3H), 1.02 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.7, 145.1, 143.4, 138.5, 137.6, 137.3, 135.3, 134.3, 134.1, 132.9, 132.4, 129.9, 129.5, 129.0, 128.9, 128.5, 128.3, 127.3, 126.8, 124.5, 101.5, 60.6, 53.1, 21.7, 21.6. IR (film, v, cm⁻¹) 3097, 3030, 1719, 1596, 1583, 1485, 1367, 1262, 1191, 1084, 1015, 962, 886, 835. HR-MS (ESI) m/z calcd for C₃₁H₂₅ClINO₅S₂ [M+Na]⁺ 739.9805, found 739.9808.

4-((4-Fluorophenyl)iodomethylene)-3-methyl-1-(phenylsulfonyl)-3-(tosylmethyl)-3,4-dihydroquinolin-2(1*H*)-one (3n)

white solid, mp 268-270 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.10-8.04 (m, 1H), 8.04-7.98 (m, 2H), 7.81-7.74 (m, 1H), 7.72-7.59 (m, 4H), 7.56-7.49 (m, 2H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.06-6.98 (m, 1H), 6.92-6.83 (m, 1H), 6.49-6.43 (m, 1H), 2.80 (d, *J* = 14.0 Hz, 1H), 2.76 (d, *J* = 14.0 Hz, 1H), 2.40 (s, 3H), 1.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.7, 162.3 (*J*_{CF} = 248.0 Hz), 145.1, 141.0 (*J*_{CF} = 3.0 Hz), 138.5, 137.7, 137.2, 135.4, 134.1, 132.9, 132.4, 130.1 (*J*_{CF} = 8.2 Hz), 129.9, 129.5, 129.0, 128.9, 127.3, 126.8, 124.5, 115.2 (*J*_{CF} = 13.4 Hz), 102.0, 60.6, 53.0, 21.6. IR (film, v, cm⁻¹) 3066, 3031, 1712, 1596, 1481, 1378, 1266, 1197, 1084, 1040, 963, 832, 810. HR-MS (ESI) m/z calcd for C₃₁H₂₅FINO₅S₂ [M+Na]⁺ 724.0101, found 724.0109.

4-((4-Ethylphenyl)iodomethylene)-3-methyl-1-(phenylsulfonyl)-3-(tosylmethyl)-3,4-dihydroquinolin-2(1*H*)-one (30)

white solid, mp 276-278 °C; ¹H NMR (400 MHz, CDCl₃; *δ*, ppm) 8.09-7.99 (m, 3H), 7.81-7.74 (m, 1H), 7.71-7.64 (m, 3H), 7.55-7.47 (m, 3H), 7.44-7.38 (m, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 1H), 7.01-6.96 (m, 1H), 6.36 (dd, *J* = 8.0, 1.6 Hz, 1H), 2.78 (s, 2H), 2.64 (d, *J* = 7.6 Hz, 1H), 2.61 (d, *J* = 7.2 Hz, 1H), 2.41 (s, 3H), 1.23 (t, *J* = 7.6 Hz, 3H), 1.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; *δ*, ppm) 167.9, 145.0, 144.7, 142.3, 138.6, 137.7, 136.1, 135.7,

134.0, 132.9, 132.5, 129.9, 129.3, 129.0, 128.9, 127.9, 127.3, 127.0, 126.7, 124.5, 104.1, 60.7, 52.9, 28.6, 21.6, 21.4, 15.2. IR (film, v, cm⁻¹) 3057, 3027, 1719, 1596, 1447, 1367, 1264, 1191, 1084, 962, 829, 815. HR-MS (ESI) m/z calcd for C₃₃H₃₀INO₅S₂ [M+Na]⁺ 734.0508, found 734.0506.

1-((4-Chlorophenyl)sulfonyl)-4-(iodo(thiophen-3-yl)methylene)-3-methyl-3-(tosylmethyl)-3,4dihydroquinolin-2(1*H*)-one (3p)

white solid, mp 258-260 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.09-8.01 (m, 1H), 7.93 (d, J = 8.4 Hz, 2H), 7.68-7.60 (m, 4H), 7.56-7.48 (m, 2H), 7.41 (d, J = 8.4 Hz, 2H), 7.28-7.22 (m, 3H), 6.50 (d, J = 4.4 Hz, 1H), 2.83 (d, J = 13.6 Hz, 1H), 2.77 (d, J = 13.2 Hz, 1H), 2.41 (s, 3H), 1.12 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.8, 145.1, 143.5, 140.9, 137.8, 137.7, 136.8, 135.2, 132.9, 132.5, 130.4, 129.9, 129.5, 129.1, 127.3, 126.9, 125.7, 125.0, 124.4, 97.8, 60.3, 53.2, 21.6, 20.7. IR (film, v, cm⁻¹) 3026, 2992, 1709, 1595, 1477, 1392, 1267, 1195, 1143, 1082, 1041, 1015, 961, 830. HR-MS (ESI) m/z calcd for C₂₉H₂₃ClINO₅S₃ [M+Na]⁺] 745.9370, found 745.9366.

4-((4-(*tert*-Butyl)phenyl)iodomethylene)-3-methyl-1-(phenylsulfonyl)-3-(tosylmethyl)-3,4-dihydroquinolin-2(1*H*)-one (3q)

white solid, mp 250-252 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.10-7.98 (m, 3H), 7.84-7.76 (m, 1H), 7.73-7.64 (m, 3H), 7.56-7.47 (m, 3H), 7.41 (d, *J* = 8.4 Hz, 2H), 7.36-7.30 (m, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.18-7.12 (m, 1H), 6.42-6.33 (m, 1H), 2.78 (s, 2H), 2.41 (s, 3H), 1.30 (s, 9H), 0.99 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.9, 151.6, 145.0, 141.9, 138.6, 137.7, 136.1, 135.7, 134.1, 132.9, 132.5, 129.9, 129.2, 128.9, 127.6, 127.3, 126.7, 124.8, 124.8, 124.6, 104.1, 60.7, 52.9, 34.7, 31.2, 21.6, 21.3. IR (film, v, cm⁻¹) 3063, 3029, 1723, 1597, 1500, 1480, 1379, 1266, 1191, 1084, 961, 827. HR-MS (ESI) m/z calcd for C₃₅H₃₄INO₅S₂ [M+Na]⁺ 762.0821, found 762.0816.

3-(((4-Chlorophenyl)sulfonyl)methyl)-4-(iodo(phenyl)methylene)-3-methyl-1-tosyl-3,4-dihydroquinolin-2(1*H*)-one (3r)

=0

white solid, mp 260-262 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.09-8.00 (m, 1H), 7.94-7.87 (m, 2H), 7.71-7.64 (m, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.55-7.40 (m, 8H), 7.37-7.30 (m, 1H), 7.26-7.19 (m, 1H), 7.18-7.12 (m, 1H), 6.42 (d, J = 7.6 Hz, 1H), 2.81 (d, J = 14.0 Hz, 1H), 2.77 (d, J = 14.0 Hz, 1H), 2.56 (s, 3H), 0.99 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.6, 145.4, 144.9, 140.8, 139.0, 135.4, 133.0, 132.2, 129.7, 129.5, 129.4, 129.1, 128.8, 128.4, 128.1, 127.9, 127.8, 126.9, 126.6, 124.7, 103.5, 60.9, 52.9, 21.7, 21.5. IR (film, v, cm⁻¹) 3059, 3032, 1723, 1595, 1476, 1371, 1199, 1090, 1016, 963, 832. HR-MS (ESI) m/z calcd for C₃₁H₂₅CIINO₅S₂ [M+Na]⁺ 739.9805, found 739.9801.

3-(((4-Bromophenyl)sulfonyl)methyl)-4-(iodo(phenyl)methylene)-3-methyl-1-tosyl-3,4-dihydroquinolin-2(1*H*)-one (3s)

white solid, mp 256-258 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.08-8.01 (m, 1H), 7.93-7.87 (m, 2H), 7.73-7.65 (m, 1H), 7.65-7.55 (m, 3H), 7.54-7.43 (m, 4H), 7.43-7.37 (m, 2H), 7.36-7.30 (m, 1H), 7.22 (t, J = 7.6 Hz, 1H), 7.18-7.11 (m, 1H), 6.42 (d, J = 7.6 Hz, 1H), 2.81 (d, J = 13.6 Hz, 1H), 2.77 (d, J = 14.0 Hz, 1H), 2.56 (s, 3H), 0.99 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.6, 145.4, 144.9, 136.2, 135.4, 133.0, 132.7, 132.2, 129.5, 129.4, 129.4, 129.1, 128.9, 128.4, 128.1, 127.9, 127.8, 126.9, 126.6, 124.7, 103.5, 60.8, 52.9, 21.7, 21.5. IR (film, v, cm⁻¹) 3060, 3012, 1723, 1596, 1575, 1454, 1384, 1172, 1083, 1067, 1012, 763. HR-MS (ESI) m/z calcd for C₃₁H₂₅BrINO₅S₂ [M+Na]⁺783.9300, found 783.9306.

3-(((3-Bromophenyl)sulfonyl)methyl)-4-(iodo(phenyl)methylene)-3-methyl-1-tosyl-3,4-dihydroquinolin-2(1*H*)-one (3t)

white solid, mp 261-263 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.09-8.01 (m, 1H), 7.93-7.87 (m, 2H), 7.75-7.65 (m, 2H), 7.65-7.61 (m, 1H), 7.60-7.44 (m, 6H), 7.39-7.31 (m, 2H), 7.25-7.19 (m, 1H), 7.15 (t, J = 7.2 Hz, 1H), 6.40 (d, J = 7.6 Hz, 1H), 2.83 (d, J = 14.0 Hz, 1H), 2.79 (d, J = 14.4 Hz, 1H), 2.56 (s, 3H), 0.99 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.5, 145.4, 144.9, 142.2, 137.0, 136.1, 135.4, 133.0, 132.1, 130.8, 130.3, 129.5, 129.1, 128.4, 128.1, 127.9, 127.8, 126.9, 126.8, 125.9, 124.8, 123.3, 103.5, 60.9, 52.9, 21.7, 21.4. IR (film, v, cm⁻¹) 3054, 2927, 1722, 1595, 1453, 1372, 1295, 1197, 1085, 1041, 962, 813. HR-MS (ESI) m/z calcd for C₃₁H₂₅BrINO₅S₂ [M+Na]⁺ 783.9300, found 783.9306.

3-(((2-Chlorophenyl)sulfonyl)methyl)-4-(iodo(phenyl)methylene)-3-methyl-1-tosyl-3,4-dihydroquinolin-2(1*H*)-one (3u)

white solid, mp 259-261 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 7.99-7.92 (m, 2H), 7.92-7.87 (m, 2H), 7.70-7.65 (m, 1H), 7.59-7.53 (m, 1H), 7.53-7.37 (m, 7H), 7.36-7.30 (m, 1H), 7.24-7.18 (m, 1H), 7.17-7.12 (m, 1H), 6.47 (d, *J* = 7.6 Hz, 1H), 3.18 (s, 2H), 2.55 (s, 3H), 0.94 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.9, 145.4, 145.1, 138.1, 136.5, 135.5, 135.0, 132.8, 132.6, 132.4, 131.9, 130.8, 129.5, 129.4, 129.1, 128.4, 128.0, 127.8, 127.5, 127.0, 126.7, 124.5, 103.8, 59.1, 53.0, 21.9, 21.7. IR (film, v, cm⁻¹) 3053, 3006, 1719, 1596, 1488, 1373, 1298, 1195, 1086, 962, 780. HR-MS (ESI) m/z calcd for C₃₁H₂₅CIINO₅S₂ [M+Na]⁺ 739.9805, found 739.9806.

3-(((4-(*tert*-Butyl)phenyl)sulfonyl)methyl)-4-(iodo(phenyl)methylene)-3-methyl-1-tosyl-3,4dihydroquinolin-2(1*H*)-one (3v)

white solid, mp 262-263 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.09-8.00 (m, 1H), 7.90 (d, J = 8.4 Hz, 2H), 7.70-7.64 (m, 1H), 7.60 (d, J = 7.6 Hz, 1H), 7.55-7.49 (m, 2H), 7.49-7.41 (m, 6H), 7.38-7.31 (m, 1H), 7.25-7.19 (m, 1H), 7.18-7.11 (m, 1H), 6.43 (d, J = 7.6 Hz, 1H), 2.82 (d, J = 14.0 Hz, 1H), 2.77 (d, J = 14.0 Hz, 1H), 2.55 (s, 3H), 1.33 (s, 9H), 1.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.9, 158.0, 145.3, 145.0, 137.5, 136.5, 135.5, 133.0, 132.4, 129.5, 129.3, 129.1, 128.3, 128.1, 128.0, 127.7, 127.2, 127.0, 126.6, 126.3, 124.6, 103.3, 60.7, 53.0, 43.5, 35.3, 31.0, 21.7, 21.5. IR (film, v, cm⁻¹) 3052, 1715, 1593, 1477, 1368, 1296, 1192, 1082, 962, 735. HR-MS (ESI) m/z calcd for C₃₅H₃₄INO₅S₂ [M+Na]⁺ 762.0821, found 762.0818.

4-(Iodo(phenyl)methylene)-3-methyl-3-((naphthalen-2-ylsulfonyl)methyl)-1-tosyl-3,4-dihydroquinolin-2(1*H*)-one (3w)

white solid, mp 255-257 °C; ¹H NMR (400 MHz, CDCl₃; *δ*, ppm) 8.17 (d, *J* = 1.2 Hz, 1H), 8.12 (dd, *J* = 7.6 Hz, 1.2 Hz, 1H), 7.95-7.84 (m, 5H), 7.72-7.61 (m, 4H), 7.59-7.54 (m, 1H), 7.53-7.41 (m, 4H), 7.40-7.33 (m, 1H), 7.27-7.20 (m, 1H), 7.19-7.12 (m, 1H), 6.44 (d, *J* = 7.6 Hz, 1H), 2.89 (s, 2H), 2.55 (s, 3H), 1.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; *δ*, ppm) 167.8, 145.4, 145.0, 137.4, 136.4, 135.6, 135.5, 135.2, 133.0, 132.3, 132.0, 129.7, 129.5, 129.4, 129.3, 129.1,

 $128.4, 128.1, 128.0, 127.9, 127.7, 127.0, 126.6, 124.7, 121.8, 103.4, 60.8, 53.1, 21.8, 21.5. \ IR(film, v, cm^{-1}) \ 3056, 1719, 1625, 1595, 1487, 1369, 1265, 1196, 1130, 1087, 1071, 963, 817. \ HR-MS \ (ESI) \ m/z \ calcd \ for \ C_{35}H_{28}INO_5S_2 \ [M+Na]^+ 756.0352, found \ 756.0356.$

4-(Iodo(phenyl)methylene)-3-methyl-3-((phenylsulfonyl)methyl)-1-tosyl-3,4-dihydroquinolin-2(1*H*)-one (3x)

white solid, mp 264-266 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.09-8.02 (m, 1H), 7.94-7.87 (m, 2H), 7.70-7.64 (m, 1H), 7.63-7.56 (m, 2H), 7.56-7.49 (m, 4H), 7.49-7.43 (m, 4H), 7.38-7.31 (m, 1H), 7.25-7.19 (m, 1H), 7.19-7.11 (m, 1H), 6.43 (d, J = 7.6 Hz, 1H), 2.80 (s, 2H), 2.55 (s, 3H), 1.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.8, 145.4, 145.0, 140.6, 136.4, 135.5, 133.9, 133.0, 132.3, 129.5, 129.3, 129.1, 128.4, 128.1, 128.0, 127.7, 127.3, 126.9, 126.6, 124.6, 103.4, 60.7, 53.0, 21.7, 21.5. IR (film, v, cm⁻¹) 3058, 3010, 1723, 1595, 1488, 1372, 1298, 1173, 1085, 1041, 962, 813. HR-MS (ESI) m/z calcd for C₃₁H₂₆INO₅S₂ [M+Na]⁺ 706.0195, found 706.0198.

3-(((4-Bromophenyl)sulfonyl)methyl)-6-chloro-1-((4-chlorophenyl)sulfonyl)-4-(iodo(*p*-tolyl)methylene)-3-methyl-3,4-dihydroquinolin-2(1*H*)-one (3y)

white solid, mp 274-276 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.01 (d, J = 2.0 Hz, 1H), 7.97-7.91 (m, 2H), 7.70-7.63 (m, 4H), 7.59 (d, J = 8.8 Hz, 1H), 7.50-7.41 (m, 4H), 7.15 (d, J = 7.6 Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H), 6.30 (d, J = 7.2 Hz, 1H), 2.84 (d, J = 14.0 Hz, 1H), 2.69 (d, J = 13.6 Hz, 1H), 2.35 (s, 3H), 1.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.3, 141.5, 141.3, 139.4, 138.9, 137.3, 136.3, 134.8, 132.8, 131.9, 131.1, 130.6, 129.6, 129.4, 129.3, 128.9, 128.8, 127.6, 126.6, 126.1, 105.5, 60.8, 52.8, 21.4, 21.3. IR (film, v, cm⁻¹) 3102, 2930, 1722, 1572, 1474, 1375, 1286, 1176, 1091, 962, 896, 830. HR-MS (ESI) m/z calcd for C₃₁H₂₃BrCl₂INO₅S₂ [M+Na]⁺ 851.8521, found 851.8518.

(b) General Procedure for the Synthesis of Products 4

A mixture of 1,7-enynes (1, 1.0 equiv., 0.5 mmol), sulfonyl hydrazid (2, 2.0 equiv., 1.0 mmol), NBS (1.2 equiv., 0.6 mmol) and anhydrous TBHP (2.0 equiv. 1.0 mmol, 5.5 M in decane) in acetonitrile (2.0 mL) was heated at 60 °C for 6 hours. After completion of the reaction as indicated by TLC, the mixture was evaporated under vacuum and washed with methanol to afford the desired product 4 as a white solid.

4-(Bromo(4-chlorophenyl)methylene)-3-methyl-1-tosyl-3-(tosylmethyl)-3,4-dihydroquinolin-2(1H)-one (4a)

white solid, mp 272-274 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.10-8.03 (m, 1H), 7.86 (d, J = 8.4 Hz, 2H), 7.71-7.61 (m, 2H), 7.55-7.47 (m, 2H), 7.46-7.34 (m, 5H), 7.24 (d, J = 8.4 Hz, 2H), 7.21-7.16 (m, 1H), 6.48 (d, J = 7.6 Hz, 1H), 2.77 (s, 2H), 2.54 (s, 3H), 2.41 (s, 3H), 1.02 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.9, 145.4, 145.1, 139.3, 137.7, 135.6, 134.9, 133.0, 132.1, 131.9, 130.5, 129.9, 129.4, 129.3, 128.9, 128.5, 128.3, 127.3, 126.7, 124.6, 122.9, 60.0, 53.1, 21.7, 21.6, 21.6. IR (film, v, cm⁻¹) 3059, 2987, 1723, 1596, 1488, 1321, 1288, 1193, 1086, 1039, 1016, 964, 830. HR-MS (ESI) m/z calcd for C₃₂H₂₇BrClNO₅S₂ [M+Na]⁺ 706.0101, found 706.0109.

4-(Bromo(4-chlorophenyl)methylene)-1-((4-chlorophenyl)sulfonyl)-3-methyl-3-(tosylmethyl)-3,4dihydroquinolin-2(1*H*)-one (4b)

white solid, mp 238-240 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.09-8.04 (m, 1H), 7.94-7.88 (m, 2H), 7.68-7.59 (m, 4H), 7.56-7.48 (m, 2H), 7.42-7.34 (m, 3H), 7.28-7.22 (m, 3H), 6.52 (d, J = 6.8 Hz, 1H), 2.77 (s, 2H), 2.41 (s, 3H), 1.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 168.0, 145.2, 141.0, 139.1, 137.6, 136.7, 135.1, 132.7, 132.4, 132.1, 130.5, 130.4, 130.0, 129.4, 129.1, 128.6, 128.5, 127.3, 127.0, 124.6, 123.3, 59.8, 53.2, 21.6, 21.6. IR (film, v, cm⁻¹) 3094, 2998, 1723, 1597, 1583, 1478, 1377, 1192, 1089, 964, 842. HR-MS (ESI) m/z calcd for C₃₁H₂₄BrCl₂NO₅S₂ [M+Na]⁺ 725.9554, found 725.9558.

4-(Bromo(phenyl)methylene)-6-chloro-3-methyl-1-(phenylsulfonyl)-3-(tosylmethyl)-3,4-dihydroquinolin-2(1*H*)-one (4c)

white solid, mp 285-287 °C; ¹H NMR (400 MHz, CDCl₃; δ, ppm) 8.05 (d, *J* = 2.4 Hz, 1H), 8.00-7.94 (m, 2H), 7.82-7.75 (m, 1H), 7.71-7.59 (m, 4H), 7.51-7.44 (m, 3H), 7.42-7.34 (m, 1H), 7.33-7.29 (m, 2H), 7.23-7.15 (m, 1H), 6.44 (d, *J* = 7.6 Hz, 1H), 2.82 (d, *J* = 14.0 Hz, 1H), 2.74 (d, *J* = 14.0 Hz, 1H), 2.43 (s, 3H), 1.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ, ppm) 167.7, 145.3, 140.4, 138.3, 137.7, 134.3, 133.9, 132.7, 131.6, 130.6, 130.1, 129.1, 129.0, 128.9, 128.8,

128.3, 128.0, 127.6, 127.3, 126.0, 125.6, 60.2, 52.9, 21.6, 21.1. IR (film, v, cm⁻¹) 3080, 2938 1724, 1595, 1471, 1375, 1289, 1173, 1085, 960, 893, 841. HR-MS (ESI) m/z calcd for $C_{31}H_{25}BrClNO_5S_2[M+Na]^+$ 691.9944, found 691.9948.

4-(Bromo(*p*-tolyl)methylene)-1-((4-bromophenyl)sulfonyl)-6-chloro-3-methyl-3-(tosylmethyl)-3,4dihydroquinolin-2(1*H*)-one (4d)

white solid, mp 278-280 °C; ¹H NMR (400 MHz, CDCl₃; δ , ppm) 8.03 (d, J = 2.4 Hz, 1H), 7.85-7.76 (m, 4H), 7.61-7.51 (m, 2H), 7.50-7.42 (m, 3H), 7.29 (d, J = 6.0 Hz, 2H), 7.19 (d, J = 7.6 Hz, 1H), 7.09 (d, J = 8.0 Hz, 1H), 6.37 (d, J = 7.6 Hz, 1H), 2.81 (d, J = 13.6, 1H), 2.72 (d, J = 14.0, 1H), 2.43 (s, 3H), 2.37 (s, 3H), 1.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃; δ , ppm) 167.8, 145.3, 139.3, 137.6, 137.3, 137.0, 134.2, 132.9, 132.2, 131.6, 131.2, 130.3, 130.1, 129.8, 129.1, 128.9, 128.8, 127.4, 127.3, 126.3, 126.0, 60.1, 53.0, 21.6, 21.4, 21.3. IR (film) v (cm⁻¹) 3097, 2934, 1723, 1595, 1470, 1393, 1289, 1191, 1171, 1083, 962, 892, 830. HR-MS (ESI) m/z calcd for C₃₂H₂₆Br₂CINO₅S₂ [M+Na]⁺ 783.9206, found 783.9208.

Copies of ¹H and ¹³C NMR Spectra of Products

¹³C NMR Spectrum of Compound 3c

¹³C NMR Spectrum of Compound 3d

¹³C NMR Spectrum of Compound 3f

¹³C NMR Spectrum of Compound 3h

¹³C NMR Spectrum of Compound 3r

¹³C NMR Spectrum of Compound 3t

¹³C NMR Spectrum of Compound 3w

¹³C NMR Spectrum of Compound 3x

¹³C NMR Spectrum of Compound 4a

¹³C NMR Spectrum of Compound 4b

_audit_creation_method	SHELXL-97
_chemical_name_systemat	ic
;	
?	
;	
_chemical_name_common	?
_chemical_melting_point	?
_chemical_formula_moiety	?
_chemical_formula_sum	
'C31 H23 Br Cl2 I N O5 S	2'
_chemical_formula_weight	831.33

loop_

_atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' '0' '0' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'S' 'S' 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Cl' 'Cl' 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Br' 'Br' -0.2901 2.4595 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'I' 'I' -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M Pc

> loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2'

_cell_length_a	11.1901(9)
_cell_length_b	36.490(3)
_cell_length_c	8.1940(7)
_cell_angle_alpha	90.00
_cell_angle_beta	96.076(2)
_cell_angle_gamma	90.00
_cell_volume	3327.1(5)
_cell_formula_units_Z	4
_cell_measurement_temperature	298(2)
_cell_measurement_refIns_used	3004
_cell_measurement_theta_min	2.484
_cell_measurement_theta_max	26.016
_exptl_crystal_description	?
_exptl_crystal_colour	?
_exptl_crystal_size_max	0.23
_exptl_crystal_size_mid	0.11
_exptl_crystal_size_min	0.05
_exptl_crystal_density_meas	0
_exptl_crystal_density_diffrn	1.660
_exptl_crystal_density_method	'not measured'
_exptl_crystal_F_000	1640
_exptl_absorpt_coefficient_mu	2.489
_exptl_absorpt_correction_type	multi-scan
_exptl_absorpt_correction_T_min	0.5983
_exptl_absorpt_correction_T_max	0.8857
_exptl_absorpt_process_details	sadabs
_expti_special_details	
,	
1	
,	
diffrn ambient temperature	298(2)
diffrn radiation wavelength	0.71073
diffrn radiation type	MoK∖a
diffrn radiation source 'fine	-focus sealed tube'
diffrn radiation monochromator	graphite
diffrn measurement device type 'C	CD area detector'
diffrn measurement method 'ph	ni and omega scans'
diffrn detector area resol m	iean ?
diffrn standards number	?
diffrn standards interval co	unt ?
	ne ?
	?
· _	

_diffrn_reflns_number	5863
_diffrn_reflns_av_R_equivalents	0.0000
_diffrn_reflns_av_sigmaI/netI	0.1550
_diffrn_reflns_limit_h_min	-13
_diffrn_reflns_limit_h_max	13
_diffrn_reflns_limit_k_min	0
_diffrn_reflns_limit_k_max	43
_diffrn_reflns_limit_l_min	0
_diffrn_reflns_limit_l_max	9
_diffrn_reflns_theta_min	2.23
_diffrn_reflns_theta_max	25.02
_reflns_number_total	5863
_reflns_number_gt	3152
_reflns_threshold_expression	>2sigma(I)

_computing_data_collection	'Bruker SMART'
_computing_cell_refinement	'Bruker SMART'
_computing_data_reduction	'Bruker SAINT'
_computing_structure_solution	'SHELXS-97 (Sheldrick, 1990)'
_computing_structure_refinement	'SHELXL-97 (Sheldrick, 1997)'
_computing_molecular_graphic	es 'Bruker SHELXTL'
_computing_publication_mate	rial 'Bruker SHELXTL'

_refine_special_details ;

Refinement of $F^{2^{}}$ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on $F^{2^{}}$, conventional R-factors R are based on F, with F set to zero for negative $F^{2^{}}$. The threshold expression of $F^{2^{}} > 2sigma(F^{2^{}})$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on $F^{2^{}}$ are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger.

;

_refine_ls_structure_factor_coef	Fsqd
_refine_ls_matrix_type	full
_refine_ls_weighting_scheme	calc
_refine_ls_weighting_details	l i i i i i i i i i i i i i i i i i i i
calc w=1/[$s^2^{(Fo^2^)+(0.1617P)^2^+3.9708P}$] wh	ere P=(Fo^2^+2Fc^2^)/3'
_atom_sites_solution_primary	direct
_atom_sites_solution_secondary	difmap
_atom_sites_solution_hydrogens	geom
_refine_ls_hydrogen_treatment	mixed
_refine_ls_extinction_method	none
_refine_ls_extinction_coef	?
_refine_ls_number_reflns	5863

391
0
0.1942
0.1250
0.3308
0.3016
1.062
1.062
0.010
0.000

loop_

_atom_site_label atom site type symbol atom site fract x _atom_site_fract_y atom site fract z _atom_site_U_iso_or_equiv atom site adp type atom site occupancy _atom_site_symmetry_multiplicity atom site calc flag atom site refinement flags atom site disorder assembly _atom_site_disorder_group I1 I 0.56895(11) 0.09618(3) 0.27464(12) 0.0620(5) Uani 1 1 d ... Br1 Br 0.9411(3) 0.18586(9) 1.4806(4) 0.1343(12) Uani 1 1 d . . . Cl1 Cl 0.9394(4) 0.09821(14) 0.7612(7) 0.0800(14) Uani 1 1 d . . . Cl2 Cl 0.0354(7) 0.0447(3) 0.1250(8) 0.151(3) Uani 1 1 d ... N1 N 0.4206(11) 0.0710(3) 0.7957(13) 0.041(3) Uani 1 1 d . . . O1 O 0.2383(10) 0.0985(3) 0.7965(13) 0.053(3) Uani 1 1 d . . . O2 O 0.4529(9) 0.0030(3) 0.7651(13) 0.058(3) Uani 1 1 d . . . O3 O 0.2870(10) 0.0237(3) 0.9187(12) 0.057(3) Uani 1 1 d . . . O4 O 0.6163(11) 0.1911(3) 0.6970(13) 0.063(3) Uani 1 1 d . . . O5 O 0.4807(11) 0.2259(3) 0.8588(13) 0.060(3) Uani 1 1 d . . . S1 S 0.3566(4) 0.02798(9) 0.7844(4) 0.0458(9) Uani 1 1 d . . . S2 S 0.5574(4) 0.19469(9) 0.8437(5) 0.0490(10) Uani 1 1 d . . . C1 C 0.3444(14) 0.1015(4) 0.7772(17) 0.044(3) Uani 1 1 d . . . C2 C 0.4004(13) 0.1371(3) 0.7198(15) 0.039(3) Uani 1 1 d . . . C3 C 0.4841(13) 0.1239(4) 0.5877(16) 0.042(3) Uani 1 1 d . . . C4 C 0.5796(13) 0.1008(3) 0.6727(15) 0.037(3) Uani 1 1 d . . . C5 C 0.5454(13) 0.0747(4) 0.7751(16) 0.041(3) Uani 1 1 d . . . C6 C 0.6331(14) 0.0545(4) 0.8768(17) 0.045(4) Uani 1 1 d . . . H6 H 0.6091 0.0369 0.9485 0.054 Uiso 1 1 calc R ... C7 C 0.7540(15) 0.0612(4) 0.8687(18) 0.051(4) Uani 1 1 d ... H7 H 0.8121 0.0475 0.9309 0.061 Uiso 1 1 calc R ...

C8 C 0.7865(14) 0.0885(4) 0.7675(19) 0.052(4) Uani 1 1 d . . . C9 C 0.7026(14) 0.1085(4) 0.6662(17) 0.044(3) Uani 1 1 d . . . H9 H 0.7269 0.1265 0.5964 0.052 Uiso 1 1 calc R ... C10 C 0.2612(14) 0.0301(4) 0.6004(18) 0.048(4) Uani 1 1 d . . . C11 C 0.3134(16) 0.0270(4) 0.4554(18) 0.056(4) Uani 1 1 d . . . H11 H 0.3956 0.0227 0.4583 0.067 Uiso 1 1 calc R ... C12 C 0.2442(17) 0.0303(5) 0.306(2) 0.066(5) Uani 1 1 d . . . H12 H 0.2777 0.0279 0.2077 0.079 Uiso 1 1 calc R ... C13 C 0.1228(18) 0.0374(5) 0.309(2) 0.071(5) Uani 1 1 d . . . C14 C 0.0671(18) 0.0395(5) 0.455(2) 0.076(5) Uani 1 1 d . . . H14 H -0.0153 0.0431 0.4528 0.091 Uiso 1 1 calc R ... C15 C 0.1397(15) 0.0361(4) 0.605(2) 0.058(4) Uani 1 1 d . . . H15 H 0.1070 0.0378 0.7046 0.070 Uiso 1 1 calc R . . C16 C 0.4745(13) 0.1530(3) 0.8771(16) 0.043(3) Uani 1 1 d ... H16A H 0.5309 0.1344 0.9216 0.051 Uiso 1 1 calc R ... H16B H 0.4198 0.1579 0.9589 0.051 Uiso 1 1 calc R ... C17 C 0.6668(15) 0.1939(4) 1.0153(19) 0.055(4) Uani 1 1 d . . . C18 C 0.6451(17) 0.2120(5) 1.156(2) 0.064(5) Uani 1 1 d ... H18 H 0.5753 0.2257 1.1584 0.077 Uiso 1 1 calc R ... C19 C 0.729(2) 0.2097(5) 1.297(2) 0.080(6) Uani 1 1 d ... H19 H 0.7149 0.2218 1.3934 0.096 Uiso 1 1 calc R ... C20 C 0.8301(19) 0.1899(5) 1.292(2) 0.073(5) Uani 1 1 d . . . C21 C 0.8476(18) 0.1700(5) 1.151(2) 0.074(5) Uani 1 1 d . . . H21 H 0.9138 0.1546 1.1518 0.089 Uiso 1 1 calc R ... C22 C 0.7698(17) 0.1726(5) 1.011(2) 0.066(5) Uani 1 1 d ... H22 H 0.7851 0.1605 0.9154 0.079 Uiso 1 1 calc R ... C23 C 0.2966(13) 0.1637(4) 0.6608(17) 0.047(4) Uani 1 1 d . . . H23A H 0.2487 0.1531 0.5686 0.071 Uiso 1 1 calc R ... H23B H 0.3294 0.1866 0.6290 0.071 Uiso 1 1 calc R . . H23C H 0.2475 0.1677 0.7483 0.071 Uiso 1 1 calc R ... C24 C 0.4607(13) 0.1282(4) 0.4251(16) 0.042(3) Uani 1 1 d ... C25 C 0.3734(13) 0.1499(4) 0.3224(15) 0.041(3) Uani 1 1 d ... C26 C 0.3869(14) 0.1881(4) 0.3173(17) 0.046(4) Uani 1 1 d . . . H26 H 0.4500 0.1995 0.3809 0.055 Uiso 1 1 calc R . . C27 C 0.3043(14) 0.2089(4) 0.2151(17) 0.048(4) Uani 1 1 d . . . H27 H 0.3130 0.2342 0.2149 0.058 Uiso 1 1 calc R ... C28 C 0.2104(14) 0.1934(4) 0.1144(18) 0.052(4) Uani 1 1 d . . . C29 C 0.1997(14) 0.1549(4) 0.1212(18) 0.052(4) Uani 1 1 d . . . H29 H 0.1370 0.1435 0.0569 0.062 Uiso 1 1 calc R ... C30 C 0.2798(14) 0.1336(4) 0.2209(17) 0.049(4) Uani 1 1 d . . . H30 H 0.2713 0.1082 0.2203 0.059 Uiso 1 1 calc R ... C31 C 0.1227(18) 0.2162(5) 0.005(2) 0.078(6) Uani 1 1 d . . . H31A H 0.0811 0.2326 0.0716 0.117 Uiso 1 1 calc R ... H31B H 0.0658 0.2004 -0.0557 0.117 Uiso 1 1 calc R H31C H 0.1654 0.2301 -0.0692 0.117 Uiso 1 1 calc R ...

loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U 22 atom site aniso U 33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 atom site aniso U 12 I1 0.0868(9) 0.0666(7) 0.0341(6) 0.0003(5) 0.0138(5) 0.0329(6) Br1 0.115(2) 0.161(3) 0.115(2) 0.0230(19) -0.0435(18) -0.0309(19) Cl1 0.052(3) 0.099(4) 0.089(4) 0.013(3) 0.010(2) 0.013(2) Cl2 0.121(6) 0.249(10) 0.072(4) -0.004(5) -0.049(4) 0.008(6) N1 0.051(8) 0.040(6) 0.033(6) 0.002(5) 0.003(5) 0.003(5) O1 0.050(7) 0.055(6) 0.055(6) 0.000(5) 0.011(5) -0.001(5) O2 0.070(7) 0.034(5) 0.067(7) -0.009(5) -0.004(6) 0.014(5) O3 0.075(7) 0.053(6) 0.047(6) 0.014(5) 0.017(5) -0.014(5) O4 0.092(9) 0.054(6) 0.047(6) 0.006(5) 0.028(6) -0.005(6) O5 0.084(8) 0.038(5) 0.060(7) -0.005(5) 0.011(6) 0.008(5) S1 0.061(2) 0.0355(19) 0.040(2) 0.0071(16) 0.0029(17) 0.0010(17) S2 0.072(3) 0.0322(18) 0.045(2) 0.0010(16) 0.0137(19) -0.0017(17) C1 0.051(10) 0.042(8) 0.037(8) -0.001(6) 0.005(7) 0.002(7) C2 0.058(9) 0.031(7) 0.028(7) 0.004(6) 0.007(6) 0.002(6) C3 0.057(9) 0.033(7) 0.035(8) 0.006(6) 0.009(7) 0.006(6) C4 0.051(9) 0.028(7) 0.031(7) 0.000(6) 0.007(6) 0.009(6) C5 0.052(10) 0.037(7) 0.033(7) 0.005(6) 0.003(6) 0.006(6) C6 0.058(10) 0.040(8) 0.036(8) 0.006(6) 0.001(7) 0.007(7) C7 0.054(10) 0.049(9) 0.048(9) 0.000(7) -0.003(7) 0.013(7) C8 0.055(10) 0.051(9) 0.048(9) 0.005(7) 0.002(7) 0.009(7) C9 0.058(10) 0.039(7) 0.034(7) 0.003(6) 0.007(7) 0.007(7) C10 0.055(10) 0.048(9) 0.040(8) -0.002(7) 0.001(7) 0.000(7) C11 0.065(11) 0.055(9) 0.047(9) -0.001(8) -0.003(8) 0.000(8) C12 0.073(13) 0.071(11) 0.051(10) -0.011(9) -0.003(9) -0.002(10) C13 0.079(14) 0.080(13) 0.049(10) -0.007(9) -0.013(9) -0.001(10) C14 0.071(13) 0.089(14) 0.065(12) -0.004(10) -0.001(10) -0.001(10) C15 0.061(11) 0.061(10) 0.051(10) 0.000(8) 0.004(8) -0.004(8) C16 0.060(10) 0.032(7) 0.036(8) 0.001(6) 0.007(7) 0.001(7) C17 0.067(11) 0.044(8) 0.055(10) -0.005(7) 0.012(8) -0.002(8) C18 0.078(13) 0.057(10) 0.056(10) -0.008(8) 0.004(9) 0.005(9) C19 0.093(16) 0.074(12) 0.072(13) -0.010(11) 0.001(11) 0.002(12) C20 0.083(14) 0.066(11) 0.068(12) -0.003(10) 0.001(10) -0.008(10) C21 0.075(13) 0.072(12) 0.076(13) -0.006(10) 0.001(11) 0.001(10) C22 0.075(13) 0.061(10) 0.061(11) -0.007(9) 0.007(10) 0.000(9) C23 0.056(9) 0.044(8) 0.042(8) 0.001(7) 0.004(7) 0.020(7) C24 0.057(9) 0.038(7) 0.034(7) 0.001(6) 0.007(6) 0.006(6) C25 0.057(9) 0.040(7) 0.025(7) 0.002(6) 0.002(6) 0.010(7) C26 0.059(10) 0.038(8) 0.040(8) 0.004(6) 0.002(7) 0.004(7)

C27 0.061(10) 0.038(7) 0.046(8) 0.005(7) 0.005(8) 0.011(7) C28 0.061(10) 0.052(9) 0.041(8) 0.010(7) 0.002(7) 0.013(8) C29 0.057(10) 0.057(10) 0.041(8) 0.000(7) 0.006(7) 0.000(8) C30 0.060(10) 0.047(8) 0.040(8) 0.000(7) 0.007(7) 0.006(7) C31 0.074(14) 0.077(13) 0.083(13) 0.016(11) 0.002(10) 0.022(10)

_geom_special_details

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

loop

;

_geom_bond_atom_site_label_1 geom bond atom site label 2 _geom_bond_distance _geom_bond_site_symmetry_2 geom bond publ flag I1 C24 2.161(14) . ? Br1 C20 1.886(19) . ? Cl1 C8 1.754(17) . ? Cl2 C13 1.731(17) . ? N1 C1 1.401(17).? N1 C5 1.432(18) . ? N1 S1 1.723(11) . ? O1 C1 1.219(17).? O2 S1 1.433(10) . ? O3 S1 1.423(11) . ? O4 S2 1.437(11) . ? O5 S2 1.439(10) . ? S1 C10 1.754(15) . ? S2 C17 1.764(17) . ? S2 C16 1.819(13) . ? C1 C2 1.538(19) . ? C2 C23 1.549(18) . ? C2 C16 1.567(18) . ? C2 C3 1.581(19).? C3 C24 1.339(18) . ? C3 C4 1.477(18) . ? C4 C5 1.349(18).? C4 C9 1.41(2).? C5 C6 1.423(19).?

C6 C7 1.38(2).? C6 H6 0.9300 . ? C7 C8 1.37(2).? C7 H7 0.9300 . ? C8 C9 1.39(2).? C9 H9 0.9300 . ? C10 C15 1.38(2).? C10 C11 1.38(2) . ? C11 C12 1.38(2) . ? C11 H11 0.9300 . ? C12 C13 1.39(3).? C12 H12 0.9300 . ? C13 C14 1.41(3).? C14 C15 1.40(2).? C14 H14 0.9300 . ? C15 H15 0.9300 . ? C16 H16A 0.9700 . ? C16 H16B 0.9700 . ? C17 C18 1.37(2).? C17 C22 1.39(2).? C18 C19 1.42(3) . ? C18 H18 0.9300 . ? C19 C20 1.35(3) . ? C19 H19 0.9300 . ? C20 C21 1.40(3).? C21 C22 1.37(2).? C21 H21 0.9300 . ? C22 H22 0.9300 . ? C23 H23A 0.9600 . ? C23 H23B 0.9600 . ? C23 H23C 0.9600 . ? C24 C25 1.454(18) . ? C25 C30 1.40(2) . ? C25 C26 1.404(18).? C26 C27 1.402(19) . ? C26 H26 0.9300 . ? C27 C28 1.39(2).? C27 H27 0.9300 . ? C28 C29 1.41(2) . ? C28 C31 1.51(2) . ? C29 C30 1.39(2).? C29 H29 0.9300 . ? C30 H30 0.9300 . ? C31 H31A 0.9600 . ? C31 H31B 0.9600 . ? C31 H31C 0.9600 . ?

loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C1 N1 C5 120.1(11) . . ? C1 N1 S1 118.3(10) . . ? C5 N1 S1 119.0(9) . . ? O3 S1 O2 119.6(7) . . ? O3 S1 N1 108.5(6) . . ? O2 S1 N1 105.9(6) . . ? O3 S1 C10 109.7(7) . . ? O2 S1 C10 109.2(7) . . ? N1 S1 C10 102.6(6) . . ? O4 S2 O5 118.4(7) . . ? O4 S2 C17 108.9(8) . . ? O5 S2 C17 108.3(7) . . ? O4 S2 C16 109.6(6) . . ? O5 S2 C16 109.3(7) . . ? C17 S2 C16 100.9(7) . . ? O1 C1 N1 120.1(13) . . ? O1 C1 C2 123.5(13) . . ? N1 C1 C2 116.3(13) . . ? C1 C2 C23 107.9(12) . . ? C1 C2 C16 104.9(10) . . ? C23 C2 C16 109.9(11) . . ? C1 C2 C3 104.0(10) . . ? C23 C2 C3 117.1(11) . . ? C16 C2 C3 112.1(12) . . ? C24 C3 C4 126.2(13) . . ? C24 C3 C2 125.3(13) ...? C4 C3 C2 107.6(10) . . ? C5 C4 C9 120.4(12) . . ? C5 C4 C3 117.2(13) . . ? C9 C4 C3 121.7(12) . . ? C4 C5 C6 120.4(14) . . ? C4 C5 N1 119.0(12) ...? C6 C5 N1 120.2(12) . . ? C7 C6 C5 119.8(14) . . ? C7 C6 H6 120.1 . . ? C5 C6 H6 120.1 . . ? C8 C7 C6 118.8(14) . . ?

C8 C7 H7 120.6 . . ? C6 C7 H7 120.6 . . ? C7 C8 C9 122.5(15) . . ? C7 C8 Cl1 119.2(12) . . ? C9 C8 Cl1 118.2(12) . . ? C8 C9 C4 118.0(13) . . ? C8 C9 H9 121.0 . . ? C4 C9 H9 121.0 . . ? C15 C10 C11 122.9(15) ...? C15 C10 S1 119.6(12) . . ? C11 C10 S1 117.4(12) . . ? C12 C11 C10 120.3(16) ...? C12 C11 H11 119.9 . . ? C10 C11 H11 119.9 . . ? C11 C12 C13 117.4(17) . . ? C11 C12 H12 121.3 . . ? C13 C12 H12 121.3 . . ? C12 C13 C14 123.2(16) . . ? C12 C13 Cl2 118.5(15) . . ? C14 C13 Cl2 118.2(16) . . ? C15 C14 C13 118.1(18) . . ? C15 C14 H14 120.9 . . ? C13 C14 H14 120.9 . . ? C10 C15 C14 118.0(16) . . ? C10 C15 H15 121.0 . . ? C14 C15 H15 121.0 . . ? C2 C16 S2 114.7(9) . . ? C2 C16 H16A 108.6 . . ? S2 C16 H16A 108.6 . . ? C2 C16 H16B 108.6 . . ? S2 C16 H16B 108.6 . . ? H16A C16 H16B 107.6 . . ? C18 C17 C22 120.7(16) ...? C18 C17 S2 119.5(13) . . ? C22 C17 S2 119.6(13) . . ? C17 C18 C19 119.9(18) . . ? C17 C18 H18 120.1 . . ? C19 C18 H18 120.1 . . ? C20 C19 C18 119.3(19) . . ? C20 C19 H19 120.3 . . ? C18 C19 H19 120.3 . . ? C19 C20 C21 120.1(19) . . ? C19 C20 Br1 119.7(16) ...? C21 C20 Br1 120.1(16) ...? C22 C21 C20 121.6(19) . . ? C22 C21 H21 119.2 . . ?

C20 C21 H21 119.2 . . ? C21 C22 C17 118.2(17) . . ? C21 C22 H22 120.9 . . ? C17 C22 H22 120.9 . . ? C2 C23 H23A 109.5 ...? C2 C23 H23B 109.5 . . ? H23A C23 H23B 109.5 . . ? C2 C23 H23C 109.5 . . ? H23A C23 H23C 109.5 . . ? H23B C23 H23C 109.5 . . ? C3 C24 C25 133.4(13) . . ? C3 C24 I1 116.2(10) . . ? C25 C24 I1 110.3(9) . . ? C30 C25 C26 118.8(12) . . ? C30 C25 C24 121.8(12) . . ? C26 C25 C24 119.3(13) . . ? C27 C26 C25 119.2(14) . . ? C27 C26 H26 120.4 . . ? C25 C26 H26 120.4 . . ? C28 C27 C26 123.1(14) . . ? C28 C27 H27 118.5 . . ? C26 C27 H27 118.5 . . ? C27 C28 C29 116.4(13) . . ? C27 C28 C31 122.3(15) . . ? C29 C28 C31 121.4(15) . . ? C30 C29 C28 122.1(14) ...? C30 C29 H29 119.0 . . ? C28 C29 H29 119.0 . . ? C29 C30 C25 120.5(14) . . ? C29 C30 H30 119.8 . . ? C25 C30 H30 119.8 . . ? C28 C31 H31A 109.5 . . ? C28 C31 H31B 109.5 . . ? H31A C31 H31B 109.5 . . ? C28 C31 H31C 109.5 . . ? H31A C31 H31C 109.5 . . ? H31B C31 H31C 109.5 . . ?

loop_

_geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 __geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2

_geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry 4 _geom_torsion_publ_flag C1 N1 S1 O3 -64.8(11) ? C5 N1 S1 O3 133.3(10)? C1 N1 S1 O2 165.6(10)? C5 N1 S1 O2 3.7(11)? C1 N1 S1 C10 51.2(12)? C5 N1 S1 C10 -110.7(10)? C5 N1 C1 O1 -179.2(13)? S1 N1 C1 O1 19.2(18)? C5 N1 C1 C2 5.2(17)? S1 N1 C1 C2 -156.4(9) ? O1 C1 C2 C23 -11.1(18)? N1 C1 C2 C23 164.4(11)? O1 C1 C2 C16 106.0(15)? N1 C1 C2 C16 -78.5(14)? O1 C1 C2 C3 -136.1(14)? N1 C1 C2 C3 39.3(15)? C1 C2 C3 C24 106.1(15)? C23 C2 C3 C24 -13(2)? C16 C2 C3 C24 -141.1(14)? $C1 C2 C3 C4 - 64.2(13) \dots ?$ C23 C2 C3 C4 176.9(12)? C16 C2 C3 C4 48.6(14)? C24 C3 C4 C5 -123.1(16)? C2 C3 C4 C5 47.1(15)? C24 C3 C4 C9 66(2) ? C2 C3 C4 C9 -124.2(13)? $C9 C4 C5 C6 -1(2) \dots ?$ C3 C4 C5 C6 -172.0(12)? C9 C4 C5 N1 171.4(12)? C3 C4 C5 N1 0.0(18)? C1 N1 C5 C4 -29.1(18)? S1 N1 C5 C4 132.4(11)? C1 N1 C5 C6 142.9(13)? S1 N1 C5 C6 -55.6(16) ? $C4 C5 C6 C7 - 1(2) \dots ?$ N1 C5 C6 C7 -172.9(13)? C5 C6 C7 C8 3(2)? $C6 C7 C8 C9 - 3(2) \dots ?$ C6 C7 C8 Cl1 177.9(11)? C7 C8 C9 C4 2(2) ? Cl1 C8 C9 C4 -179.6(10) ? C5 C4 C9 C8 0(2)? C3 C4 C9 C8 171.4(13)?

O3 S1 C10 C15 15.0(14)? O2 S1 C10 C15 147.8(12)? N1 S1 C10 C15 -100.2(13)? O3 S1 C10 C11 -167.7(12)? O2 S1 C10 C11 - 34.8(14) . . . ? N1 S1 C10 C11 77.2(13)? C15 C10 C11 C12 1(2)? S1 C10 C11 C12 -176.7(12)? C10 C11 C12 C13 1(2)? C11 C12 C13 C14 -3(3) ? C11 C12 C13 Cl2 175.7(13)? C12 C13 C14 C15 3(3) ? Cl2 Cl3 Cl4 Cl5 -175.6(13) . . . ? C11 C10 C15 C14 -1(2) . . . ? S1 C10 C15 C14 176.7(12)? C13 C14 C15 C10 -1(3) . . . ? C1 C2 C16 S2 177.3(10) . . . ? C23 C2 C16 S2 -66.9(14)? C3 C2 C16 S2 65.2(13)? O4 S2 C16 C2 -44.3(12)? O5 S2 C16 C2 87.0(11) ? C17 S2 C16 C2 -159.0(11)? O4 S2 C17 C18 151.8(13)? O5 S2 C17 C18 21.8(15)? C16 S2 C17 C18 -92.9(14)? O4 S2 C17 C22 - 33.4(15) ? O5 S2 C17 C22 -163.4(13)? C16 S2 C17 C22 81.9(14)? C22 C17 C18 C19 1(3)? S2 C17 C18 C19 176.2(14) ? C17 C18 C19 C20 0(3) . . . ? C18 C19 C20 C21 -4(3)? C18 C19 C20 Br1 -178.7(14)? C19 C20 C21 C22 6(3) ? Br1 C20 C21 C22 -179.2(14) . . . ? C20 C21 C22 C17 -4(3) ? C18 C17 C22 C21 1(3) ? S2 C17 C22 C21 -174.2(14)? C4 C3 C24 C25 -178.9(15)? C2 C3 C24 C25 13(3)? C4 C3 C24 I1 3(2)? C2 C3 C24 I1 -165.7(10) ? C3 C24 C25 C30 -112.3(19)? I1 C24 C25 C30 66.1(16) . . . ? C3 C24 C25 C26 71(2)? I1 C24 C25 C26 -110.1(13)?

$C30 C25 C26 C27 2(2) \dots ?$	
C24 C25 C26 C27 178.4(13) ?	
C25 C26 C27 C28 -2(2) ?	
C26 C27 C28 C29 1(2) ?	
C26 C27 C28 C31 -179.9(16) ?	
C27 C28 C29 C30 -1(2) ?	
C31 C28 C29 C30 179.9(15)?	
C28 C29 C30 C25 2(2) ?	
C26 C25 C30 C29 -2(2) ?	
C24 C25 C30 C29 -178.4(14) ?	

_diffrn_measured_fraction_theta_max	0.996
_diffrn_reflns_theta_full	25.02
_diffrn_measured_fraction_theta_full	0.996
_refine_diff_density_max 1.73	4
_refine_diff_density_min -1.07	9
_refine_diff_density_rms 0.25	7