

Electronic Supplementary Information (ESI)

Ionic liquid@MIL-101 prepared via the ship-in-bottle technique: Remarkable adsorbents for removal of benzothiophene from liquid fuel

Nazmul Abedin Khan, Zubair Hasan,¹ and Sung Hwa Jhung^{*}

Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 702-701, Republic of Korea, sung@knu.ac.kr

¹Present address: Department of Environment and Energy, Sejong University, Republic of Korea.

Experimental:

Materials: Terephthalic acid (TPA, C₆H₄-1,4-(CO₂H)₂, 98%), chromium chloride (CrCl₃·6H₂O, 96%), *n*-octane (C₈H₁₈, 99%), benzothiophene (BT, C₈H₆S, 98%), diallyldimethylammonium chloride (C₈H₁₆ClN, 97%), 1,4-butane sultone (C₄H₈O₃S, 98%), cysteamine (C₂H₇NS, ≥98.0%) were purchased from Sigma Aldrich. 4,4'-Azobis(4-cyanovaleric acid) (AVCA, C₁₂H₁₆N₄O₄, 98%) was obtained from Alfa Aesar. Methanol (CH₄O, 99.5%), ethanol (C₂H₅O, 78%), toluene (C₇H₈) and dichloromethane (CH₂Cl₂, 99.5%) were purchased from OCI company Ltd. Triethylenediamine (C₆H₁₂N₂, >98%) was obtained from Tokyo Chemicals Ltd. All chemicals were used without further purification.

Synthesis of MIL-101: MIL-101 was synthesized from CrCl₃·6H₂O, TPA and deionized water similar to a reported method.¹ The reactants composition was 1.0 CrCl₃·6H₂O : 1.0 TPA : 300 H₂O. The precursor of 30 g was loaded in a Teflon-lined autoclave and put in a preheated electric oven at 210 °C for 8 h. After the reaction, the autoclave was cooled to room temperature and solid green-colored products were recovered by filtration. After synthesis, the MOF was purified in three steps. In the first step, 1.0 g MIL-101 was added to 300 mL water and stirred magnetically for 5 h at 70 °C. Then the MOF was filtered and dried overnight in a drying oven. In the second step, the dried MOF was added to 250 mL ethanol; stirred magnetically at 60 °C for 3 h and then filtered. In the third step, the dried MOF from the second step was added to 150 mL 30 mM NH₄F solution and stirred for 10 h at 60 °C. After that, it was filtered and washed at least five times with hot water and then dried in a drying oven again. Finally, the purified MIL-101 was dehydrated at 150 °C overnight and stored in a desiccator.

Synthesis of IL/MIL-101-imp: The acidic chloroaluminate IL was prepared by mixing of 1-butyl-3-methylimidazolium chloride (10 mmol) and AlCl_3 (10 mmol) in a vial to follow the previous report.¹ The vial was sealed and a colorless thick liquid was observed by stirring the mixture for 24 h at 70 °C. IL supported MIL-101 adsorbents were prepared by impregnating IL (33 wt.%) to MIL-101 using dichloromethane as solvent. For example, an exact amount of IL was taken into a vial containing 5 mL of dichloromethane. Dehydrated MIL-101 (0.2 g) was added to that solution and stirred magnetically for 10 min at room temperature. The solvent was evaporated by using a rotary evaporator and the solid was dried overnight in a vacuum oven at 100 °C. Finally, the adsorbent was designated as IL/MIL-101-imp. The handling of IL and IL/MIL-101-imp adsorbents prior to adsorption experiments was carried out under inert conditions in a glove box.

Synthesis of IL/MIL-101-cov: The synthesis of covalently bound IL/MIL-101 was carried out according to the reported method with a small modification.² In brief, 0.5 g of MIL-101 (dehydrated at under vacuum 150 °C for 12 h), 40 mL of anhydrous toluene, and 2.5 mmol of triethylenediamine were taken in an 100 mL round bottom flask and the mixture was refluxed at 80 °C for 12 h with continuous magnetic stirring. The solids were separated by filtration, washed thoroughly to remove excess triethylene diamine, and again dispersed in 40 mL of anhydrous toluene in a 100 mL round bottom flask. 2.5 mmol of 1,4-butane sultone was added and the solution was refluxed at 80 °C for 12 h with continuous magnetic stirring. The solids were filtered and dried under vacuum at 120 for 4 h. In the final step, the dried solids were suspended in 30mL of ethanol, equivalent of concentrated H_2SO_4 (98%) was added drop by drop at 50 °C for 24 h. Finally, the catalyst was separated by filtration and dried under vacuum at 60 °C for 12h.

Synthesis of IL/MIL-101-click: The IL-functionalized MIL-101 was synthesized using the concept of click chemistry reported by Shaplov et al. with small modification.³ In brief, 0.5 g of MIL-101 (dehydrated at under vacuum 150 °C for 12 h), 30 mL of anhydrous toluene, and 1.0 mmol of cysteamine were taken in an 100 mL round bottom flask and the mixture was refluxed at 110 °C for 12 h with continuous magnetic stirring. The solids were separated by filtration and termed as MIL-101-SH. 0.4 g MIL-101-SH, 6 mL H₂O, 0.01 g AVCA (initiator) and 0.5 g diallyldimethylammonium chloride was taken in around bottom flask and the solution was stirred magnetically for 4 h at 70 °C. The solids were collected after vacuum drying at 70 °C. The obtained solids (0.5 g) were dispersed in 5 mL dichloromethane and 0.005 g AlCl₃ was added. The mixture was stirred magnetically for 10 min at room temperature. The solvent was evaporated by using a rotary evaporator and the solid was dried overnight in a vacuum oven at 100 °C.

Adsorption experiments: All the adsorption capacities (mg/g) were calculated from the difference between final and initial concentrations of an adsorbate by using following equation:

$$q_t = \frac{(C_i - C_f)V}{m}$$

Where,

q_t = adsorbed amount in time t (mg/g)

C_i = initial concentration of the adsorbate (mg/ml)

C_f = final concentration after adsorption (mg/ml)

V = volume of the solution subjected to a single adsorption (ml)

m = mass of the adsorbent taken during a single adsorption (g)

Calculation of maximum adsorption capacity (Q_0): The maximum adsorption capacity (Q_0) was calculated using the Langmuir adsorption isotherm. The adsorption isotherms for different adsorbents were plotted according to the Langmuir equation^{4,5}

$$\frac{C_e}{q_e} = \frac{C_e}{Q_0} + \frac{1}{Q_0 b}$$

Where,

C_e : the equilibrium concentration of the adsorbate (mg/L)

q_e : the amount adsorbed at equilibrium (mg/g)

Q_0 : the Langmuir constant (maximum adsorption capacity, mg/g)

b : the Langmuir constant (L/mg)

Therefore, the maximum adsorption capacity, Q_0 , could be obtained from the reciprocal of the slope of a plot of C_e/q_e against C_e .

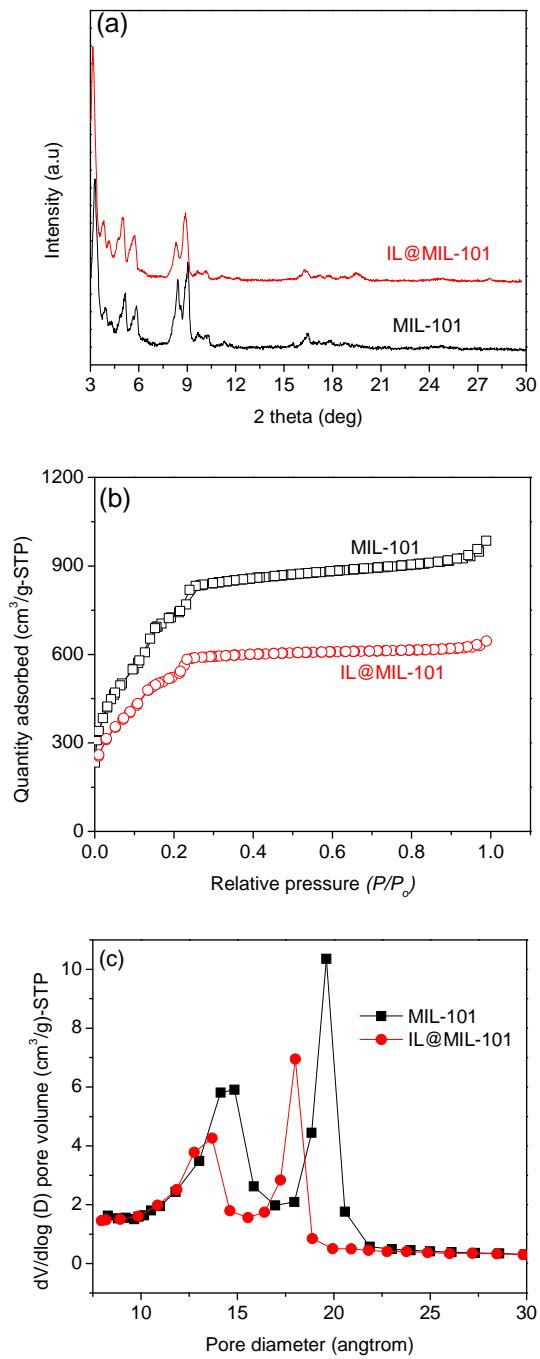
Separation factor: The separation factor (R_L) was calculated using the following equation that describes the adsorption process:⁶⁻⁸

$$R_L = \frac{1}{1 + bC_0}$$

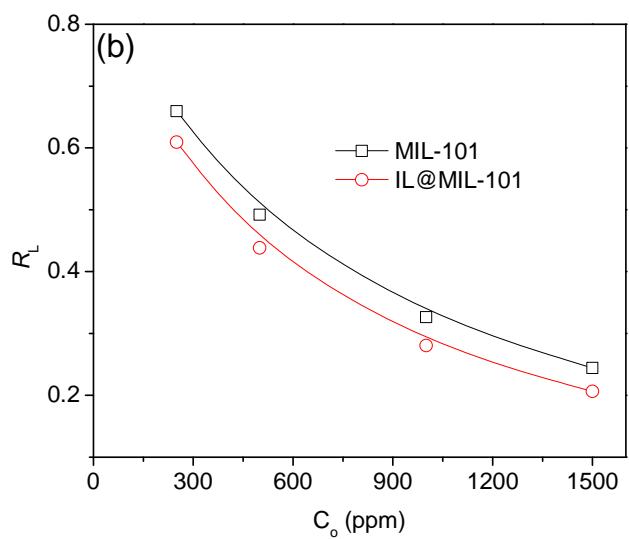
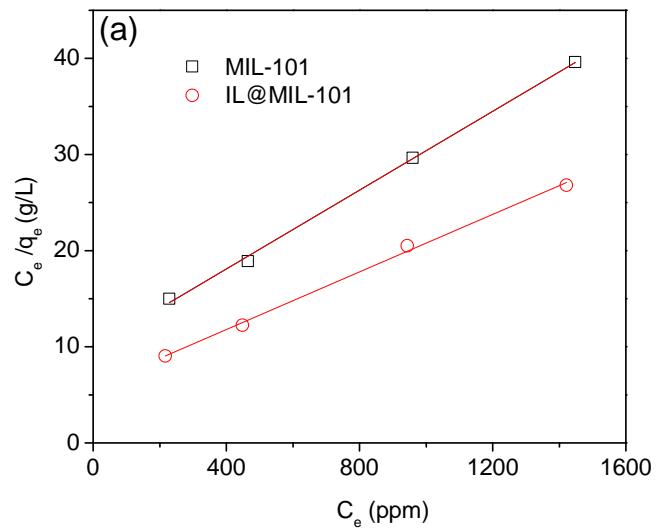
Where,

R_L : separation factor

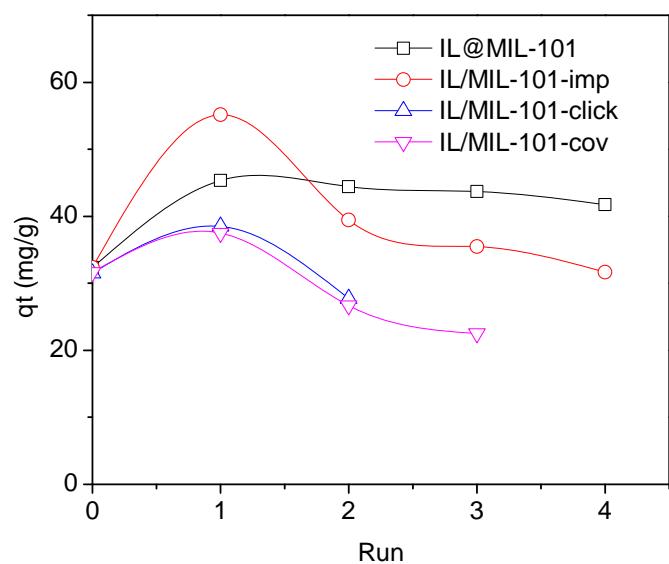
b : the Langmuir constant (L/mg)

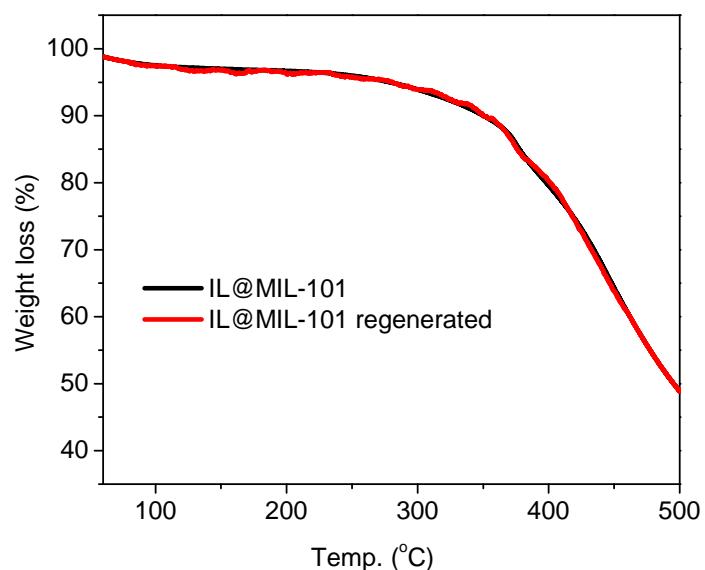

C_0 : initial concentration of adsorbate (mg/L)

Adsorbent regeneration: The used adsorbents were reactivated for further utilization following the two consecutive procedure. Firstly, the used adsorbent was soaked into n-octane solvent and allowed to stir 12 h at room temperature. While, the solvent was exchanged three times with fresh n-octane to wash out the adsorbed BT from the adsorbent. In next step,



the solid adsorbent was filtered and dried at 100 °C for 12 h. Then the dried adsorbent was heated at 230 °C under vacuum to evaporate the remaining adsorbed materials.

Reference:


1. N. A. Khan, Z. Hasan and S. H. Jhung, *Chem. Eur. J.*, 2014, **20**, 376.
2. Q.-X. Luo, M. Ji, M.-H. Lu, C. Hao, J.-S. Qiu and Y.-Q. Li, *J. Mater. Chem. A*, 2013, **1**, 6530.
3. A. S. Shaplov, P. S. Vlasov, E. I. Lozinskaya, O. A. Shishkan, D. O. Ponkratov, I. A. Malyshkina, F. Vidal, C. Wandrey, I. A. Godovikov and Y. S. Vygodskii, *Macromol. Chem. Phys.* 2012, **213**, 1359.
4. B. H. Hameed and A.A. Rahman, *J. Hazard. Mater.* 2008, **160**, 576.
5. S.-H. Lin and R.-S. Juang, *J. Environ. Manag.* 2009, **90**, 1336.
6. T. W. Weber and R.K. Chakkravorti, *AIChE J.* 1974, **20**, 228.
7. Y. Önal, C. Akmil-Basar and C. Sarıcı-Özdemir, *J. Hazard. Mater.* 2007, **148**, 727.
8. K. P. Singh, D. Mohan, S. Sinha, G.S. Tondon, *Ind. Eng. Chem. Res.* 2003, **42**, 1965.


Fig. S1. (a) XRD patterns; (b) nitrogen adsorption-desorption isotherms and (c) BJH pore size distributions of the adsorbents.

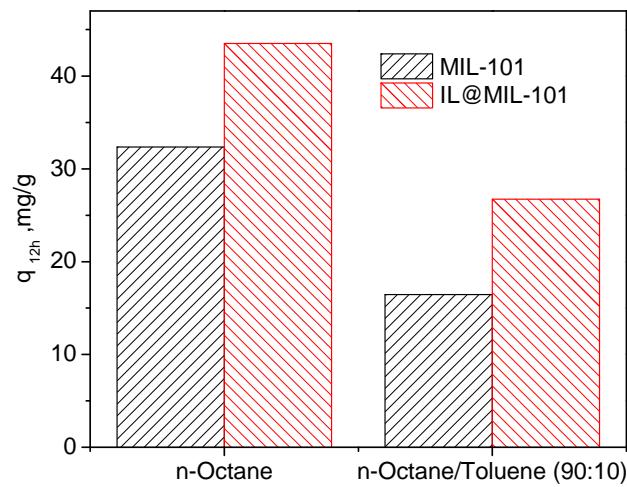

Fig. S2. (a) Langmuir plots and (b) effect of initial BT concentrations on the separation factor R_L for the adsorption.

Fig. S3. Reusability of the adsorbents for the adsorption of BT. The initial BT concentration was 1000 ppm.

Fig. S4. Results of thermogravimetric analyses of the fresh and regenerated (after use once) IL@MIL-101.

Fig. S5. Effect of co-presence of toluene in solvent on the adsorption of BT with MIL-101 and IL@MIL-101. The initial BT concentration was 1000 ppm.