Supporting Information

Synthesis, Structure and Reactivity of $\left[\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{ZnH}$, a Monomeric Terminal Zinc Hydride Compound in a Sulfur-Rich Coordination Environment: Access to a Heterobimetallic Compound

Ava Kreider-Mueller, Patrick J. Quinlivan, Michael Rauch, Jonathan S. Owen* and Gerard Parkin,*

Department of Chemistry, Columbia University, New York, New York 10027, USA.

EXPERIMENTAL SECTION

General considerations

All manipulations were performed using a combination of glovebox, high vacuum, and Schlenk techniques under an argon or nitrogen atmosphere. ${ }^{1}$ Solvents were purified and degassed using standard procedures. NMR spectra were measured on Bruker 300 DRX, Bruker 300 DPX, Bruker 400 Avance III, Bruker 400 Cyber-enabled Avance III, and Bruker 500 DMX spectrometers. ${ }^{1} \mathrm{H}$ NMR spectra are reported in ppm relative to SiMe_{4} ($\delta=0$) and were referenced internally with respect to the protio solvent impurity ($\delta=$ 7.16 for $\left.\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}\right) .{ }^{2}{ }^{13} \mathrm{C}$ NMR spectra are reported in ppm relative to $\mathrm{SiMe}_{4}(\delta=0)$ and were referenced internally with respect to the solvent $\left(\delta=128.06\right.$ for $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) .{ }^{2} \quad{ }^{19} \mathrm{~F}$ NMR spectra are reported in ppm relative to $\mathrm{CFCl}_{3}(\delta=0)$ and were referenced internally with respect to $\mathrm{C}_{6} \mathrm{~F}_{6}(\delta=-164.9) .^{3} \quad$ Coupling constants are given in hertz. Infrared spectra were recorded on a Perkin Elmer Spectrum Two spectrometer in attenuated total reflectance (ATR) mode, and are reported in reciprocal centimeters. Mass spectra were obtained on a JEOL JMS-HX110HF tandem mass spectrometer using fast atom bombardment (FAB). $\left[\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{ZnOPh},{ }^{4} \mathrm{CpMo}(\mathrm{CO})_{3} \mathrm{H}^{5}$ and $\left[\mathrm{Tp}^{\mathrm{Bu}, \mathrm{Me}}\right] \mathrm{ZnH}^{6}$ were prepared according to the literature procedures. PhOH (Aldrich), PhSH (Aldrich), 4fluorothiophenol (Aldrich), $\mathrm{PhSeH}(\mathrm{TCI}), \mathrm{Ph}_{2} \mathrm{~S}_{2}$ (Aldrich), $\mathrm{Ph}_{2} \mathrm{Se}_{2}$ (Aldrich), $\mathrm{Ph}_{2} \mathrm{Te}_{2}$ (Aldrich), $\mathrm{HCO}_{2} \mathrm{H}$ (Aldrich), PhSiH_{3} (Acros), $\mathrm{H}_{2} \mathrm{~S}$ (Aldrich), CO_{2} (Aldrich), $\mathrm{Me}_{2} \mathrm{Zn}$ (Strem Chemicals) and $\mathrm{Et}_{2} \mathrm{Zn}$ (Strem Chemicals) were commercially obtained and used without further purification.

X-ray Structure Determinations

X-ray diffraction data were collected on a Bruker Apex II diffractometer. Crystal data, data collection and refinement parameters are summarized in Table 1. The structures were solved using direct methods and standard difference map techniques, and were refined by full-matrix least-squares procedures on F^{2} with SHELXTL (Version 2014/7). ${ }^{7}$

Synthesis of $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{ZnH}$

A solution of $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{ZnOPh}(162 \mathrm{mg}, 0.255 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(c a .6 \mathrm{~mL})$ was treated with $\mathrm{PhSiH}_{3}(35 \mu \mathrm{~L}, 0.28 \mathrm{mmol})$. The solution was stirred at room temperature for 1 hour, over which period a cloudy suspension formed. The volatile components were removed in vacuo, and the resulting powder was washed twice with a mixture of pentane $(3 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$, yielding $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{ZnH}$ as a white powder $(130 \mathrm{mg}, 94 \%)$. Crystals suitable for X-ray diffraction were obtained from a solution in benzene. Analysis calcd. for $\left[\mathrm{Tm}^{\mathrm{Bu}^{\mathrm{t}}} \mathrm{ZnH} \cdot 0.5\right.$ (benzene): C, $49.5 \% ; \mathrm{H}, 6.6 \%$; N, 14.4%. Found: C, $50.2 \% ; \mathrm{H}, 6.4 \% ; \mathrm{N}, 13.9 \% .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 1.50\left[\mathrm{~s}, 27 \mathrm{H}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 5.78$
 $\left.\mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right],\left[\mathrm{BH}\right.$, not observed]. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 28.8$ [9C, $\left.\mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 59.2\left[3 \mathrm{C}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 116.4$ [3C, $\left.\mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 122.5\left[3 \mathrm{C}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 159.5[3 \mathrm{C}$, $\operatorname{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}$. IR data (ATR, cm^{-1}): $3185(\mathrm{w}), 3146$ (w), $2980(\mathrm{w}), 2910(\mathrm{w})$, 2443 (w), 1716 (m), 1564 (w), 1477 (w), 1412 (m), 1396 (m), 1356 (vs), 1302 (m), 1254 (w), 1228 (w), 1190 (s), 1170 (s), 1129 (w), 1062 (m), 1028 (w), 926 (w), 820 (m), 755 (m), 724 (s), $686(\mathrm{~m}), 674(\mathrm{~s}), 587(\mathrm{~m}), 550(\mathrm{~m}), 501(\mathrm{~m}), 469(\mathrm{~s}) . \quad$ FAB-MS: $\mathrm{m} / \mathrm{z}=541.6[\mathrm{M}-\mathrm{H}]^{+}, \mathrm{M}$ $=\left[\mathrm{Tm}^{\mathrm{Bu}^{\mathrm{t}}}\right] \mathrm{ZnH}$.

Molecular Structure of $\left[\mathrm{Tm}^{\mathrm{Bu}}{ }^{t}\right] \mathrm{ZnH}$

Reaction of [$\left.\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{ZnH}$ with $\mathrm{H}_{2} \mathrm{~S}$

A solution of $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{ZnH}(5 \mathrm{mg}, 0.009 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(0.7 \mathrm{~mL})$ in an NMR tube equipped with a J. Young valve was treated with $\mathrm{H}_{2} \mathrm{~S}$ (1 atm). The sample was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy, thereby demonstrating the immediate formation of $\left[\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{ZnSH}$ as identified by comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum to that of an authentic sample. ${ }^{4}$

Reactivity of [$\left.\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{ZnH}$ towards ArEH

(a) PhOH

A solution of $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{ZnH}(8.8 \mathrm{mg}, 0.016 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(c a .0 .7 \mathrm{~mL})$ in an NMR tube equipped with a J. Young valve was treated with $\mathrm{PhOH}(2.3 \mathrm{mg}, 0.024 \mathrm{mmol})$. The sample was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy, thereby demonstrating the rapid
conversion to $\left[\mathrm{Tm}^{\mathrm{Bu}^{\mathrm{t}}}\right] \mathrm{ZnOPh}$, as identified by comparison with the data for an authentic sample. ${ }^{4}$

(b) PhSH

A solution of $\left[\mathrm{Tm}^{\mathrm{But}} \mathrm{ZnH}(10 \mathrm{mg}, 0.018 \mathrm{mmol})\right.$ in $\mathrm{C}_{6} \mathrm{D}_{6}(c a .0 .7 \mathrm{~mL})$ in an NMR tube equipped with a J. Young valve was prepared in a glove box. The sample was removed from the glove box treated with $\mathrm{PhSH}(2.3 \mu \mathrm{~L}, 0.022 \mathrm{mmol})$ and then degassed via one freeze-pump-thaw cycle. The sample was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy, thereby demonstrating the rapid conversion to $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{ZnSPh}$ as identified by comparison with the data for an authentic sample. ${ }^{4}$

(c) $p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{SH}$

A solution of $\left[\mathrm{Tm}^{\mathrm{Bu}^{\mathrm{t}}}\right] \mathrm{ZnH}(8 \mathrm{mg}, 0.015 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(c a .0 .7 \mathrm{~mL})$ in an NMR tube equipped with a septum was treated with $p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{SH}(1.6 \mu \mathrm{~L}, 0.015 \mathrm{mmol})$. The sample was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy, thereby demonstrating the rapid conversion to $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{ZnS}\left(\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{F}\right)$. The volatile components were removed by lyophilization to give a white powder, which was dissolved in $\mathrm{Et}_{2} \mathrm{O}(c a .1 \mathrm{~mL})$. The solution was allowed to evaporate at room temperature to yield $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{ZnS}\left(\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{F}\right)(7$ $\mathrm{mg}, 71 \%)$ as a microcrystalline powder. Analysis calcd. for $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{ZnS}\left(\mathrm{C}_{6} \mathrm{H}_{4}-4-\right.$ F)•(benzene): C, 53.0%; H, 5.9%; N, 11.2%. Found: C, 52.7%; H, 5.8%; N, 11.3%. Crystals of $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{ZnS}\left(\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{F}\right)$ suitable for X-ray diffraction were obtained via slow diffusion of pentane into a solution in benzene. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 1.41[\mathrm{~s}, 27 \mathrm{H}$, $\left.\mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 6.37\left[\mathrm{~d}^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,3 \mathrm{H}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 6.62\left[\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=\right.$ $\left.2,3 \mathrm{H}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 6.77\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CdS}\left(\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{F}\right)\right], 7.86\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CdS}\left(\mathrm{C}_{6} \mathrm{H}_{4}-4-\right.\right.$ F)], [BH, not observed]. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 28.7\left[9 \mathrm{C}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 59.4$ $\left[3 \mathrm{C}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 114.7\left[\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21,2 \mathrm{C}, \mathrm{CdS}\left(\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{F}\right)\right], 117.0[3 \mathrm{C}$, $\left.\mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 122.9\left[3 \mathrm{C}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 135.7\left[\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=7,2 \mathrm{C}\right.$, $\left.\mathrm{CdS}\left(\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{F}\right)\right], 139.9\left[\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3,1 \mathrm{C}, \mathrm{CdS}\left(\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{F}\right)\right], 157.2[3 \mathrm{C}$,
$\mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}_{3}\right], 160.6\left[\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=240,1 \mathrm{C}, \mathrm{CdS}\left(\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{F}\right)\right] .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):$ 125.31 (multiplet). IR data (ATR, cm ${ }^{-1}$): 3180 (w), 3147 (w), 2976 (w), 2928 (w), 2417 (w), 2233 (w), 1860 (w), 1687 (w), 1565 (m), 1480 (s), 1420 (m), 1398 (w), 1362 (vs), 1310 (m), 1259 (w), 1221 (m), 1194 (vs), 1174 (vs), 1130 (m), 1087 (m), 1071 (m), 1031 (w), 1014 (w), 928 (w), 816 (s), 759 (s), 732 (vs), 688 (s), 626 ($), 590(\mathrm{~m}), 554$ (m), 494 (s), 458 (w).

(d) PhSeH

A solution of $\left[\mathrm{Tm}^{\mathrm{Bu}^{\mathrm{t}}} \mathrm{ZnH}(10 \mathrm{mg}, 0.018 \mathrm{mmol})\right.$ in $\mathrm{C}_{6} \mathrm{D}_{6}(c a .0 .7 \mathrm{~mL})$ in an NMR tube equipped with a septum was treated with $\operatorname{PhSeH}(2 \mu \mathrm{~L}, 0.019 \mathrm{mmol})$. The sample was
monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy, thereby demonstrating the rapid conversion to $\left[\mathrm{Tm}^{\mathrm{Bu}}{ }^{\mathrm{t}} \mathrm{ZnSePh}\right.$, as identified by comparison with the data for an authentic sample. ${ }^{4}$

Reactivity of $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathbf{Z n H}$ towards $\mathrm{Ph}_{2} \mathrm{E}_{2}$

(a) $\mathrm{Ph}_{2} \mathrm{~S}_{2}$

A solution of $\left[\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{ZnH}(10 \mathrm{mg}, 0.018 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(c a .0 .7 \mathrm{~mL})$ in an NMR tube equipped with a J. Young valve was treated with $\mathrm{Ph}_{2} \mathrm{~S}_{2}(2 \mathrm{mg}, 0.009 \mathrm{mmol})$. The sample was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy, thereby demonstrating the rapid conversion to $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{ZnSPh}$, as identified by comparison with the data for an authentic sample. ${ }^{4}$ The conversion is quantitative in the presence of excess $\mathrm{Ph}_{2} \mathrm{~S}_{2}$.

(b) $\mathbf{P h}_{2} \mathbf{S e}_{2}$

A solution of $\left[\mathrm{Tm}^{\mathrm{Bu}^{\mathrm{t}}}\right] \mathrm{ZnH}(6 \mathrm{mg}, 0.011 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(c a .0 .7 \mathrm{~mL})$ in an NMR tube equipped with a J. Young valve was treated with $\mathrm{Ph}_{2} \mathrm{Se}_{2}(2 \mathrm{mg}, 0.006 \mathrm{mmol})$. The sample was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy, thereby demonstrating the rapid conversion to $\left[\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{ZnSePh}$, as identified by comparison with the data for an authentic sample. ${ }^{4}$ The conversion is quantitative in the presence of excess $\mathrm{Ph}_{2} \mathrm{Se}_{2}$.

(c) $\mathrm{Ph}_{2} \mathrm{Te}_{2}$

A solution of $\left[\mathrm{Tm}^{\mathrm{Bu}^{\mathrm{t}}}\right] \mathrm{ZnH}(6 \mathrm{mg}, 0.011 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(c a .0 .7 \mathrm{~mL})$ in an NMR tube equipped with a J. Young valve was treated with $\mathrm{Ph}_{2} \mathrm{Te}_{2}(2 \mathrm{mg}, 0.005 \mathrm{mmol})$. The sample was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy, thereby demonstrating the rapid conversion to $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{ZnTePh}$, as identified by comparison with the data for an authentic sample. ${ }^{4}$ The conversion is quantitative in the presence of excess $\mathrm{Ph}_{2} \mathrm{Te}_{2}$.

Synthesis of $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{Zn}\left(\kappa^{1}-\mathrm{O}_{2} \mathrm{CH}\right)$

(a) From $\mathrm{HCO}_{2} \mathrm{H}$

A solution of $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{ZnH}(25 \mathrm{mg}, 0.046 \mathrm{mmol})$ in benzene $(c a .0 .7 \mathrm{~mL})$ was treated with formic acid ($1.8 \mu \mathrm{~L}, 0.048 \mathrm{mmol})$, resulting in immediate effervescence. The volatile components were removed by lyophilization to yield $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{Zn}\left(\kappa^{1}-\mathrm{O}_{2} \mathrm{CH}\right)$ as a white powder ($24 \mathrm{mg}, 89 \%$). Crystals of $\left[\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{Zn}\left(\kappa^{1}-\mathrm{O}_{2} \mathrm{CH}\right)$ suitable for X-ray diffraction were obtained via slow diffusion of pentane into a solution in benzene. Analysis calcd. for $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{Zn}\left(\kappa^{1}-\mathrm{O}_{2} \mathrm{CH}\right) \cdot($ benzene $)$: $\mathrm{C}, 50.5 \% ; \mathrm{H}, 6.2 \% ; \mathrm{N}, 12.6 \%$. Found: C, $49.7 \% ; \mathrm{H}$, $6.9 \% ; \mathrm{N}, 12.0 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 1.48\left[\mathrm{~s}, 27 \mathrm{H}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 6.37\left[\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=\right.$ $\left.2,3 \mathrm{H}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 6.64\left[\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,3 \mathrm{H}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 9.15[\mathrm{~s}$, $1 \mathrm{H}, \mathrm{O}_{2} \mathrm{CH}$], [BH, not observed]. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 28.9$ [9C, $\left.\mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 59.6\left[3 \mathrm{C}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 117.1[3 \mathrm{C}$, $\left.\mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 123.0\left[3 \mathrm{C}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 157.5[3 \mathrm{C}$, $\mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}, 167.4$ [1C of $\left.\mathrm{O}_{2} \mathrm{CH}\right]$. IR data (ATR, cm^{-1}): 3144 (w), 2977 (w), 2926(w), 2801 (w), 2420 (w), 1630 (s), 1567 (w), 1480 (w), 1419 (m), 1398 (m), 1362 (vs), 1305 (m), 1229 (w), 1193 (vs), 1174 (vs), 1133 (w), 1071 (w), 1031 (w), 929 (w), 821 (m), 760 (m), 728 (s), 685 (s), $590(\mathrm{~m}), 553$ (m), 495 (m), 456 (w). FAB-MS: $m / z=541.5$ [M $\left.\mathrm{O}_{2} \mathrm{CH}\right]^{+}, \mathrm{M}=\left[\mathrm{Tm}^{\mathrm{Bu}^{\mathrm{t}}}\right] \mathrm{ZnO}_{2} \mathrm{CH}$.
(b) From CO_{2}

A solution of $\left[\mathrm{Tm}^{\mathrm{Bu}^{\mathrm{t}}} \mathrm{ZnH}(11 \mathrm{mg}, 0.020 \mathrm{mmol})\right.$ in $\mathrm{C}_{6} \mathrm{D}_{6}(c a .0 .7 \mathrm{~mL})$ in an NMR tube equipped with a J. Young valve was treated with $\mathrm{CO}_{2}(c a .1 .3 \mathrm{~atm})$. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy, thereby demonstrating the rapid formation of $\left[\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{Zn}\left(\kappa^{1}-\mathrm{O}_{2} \mathrm{CH}\right)$.

Molecular Structure of $\left[\mathrm{Tm}^{\left.B u^{t}\right] \mathrm{Zn}\left(\kappa^{1}-\mathrm{O}_{2} \mathrm{CH}\right) ~}\right.$

Synthesis of $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathbf{Z n E t}$

A solution of $\left[\mathrm{Tm}^{\mathrm{Bu}^{\mathrm{t}}} \mathrm{ZnH}(10 \mathrm{mg}, 0.018 \mathrm{mmol})\right.$ in $\mathrm{C}_{6} \mathrm{D}_{6}(c a .0 .7 \mathrm{~mL})$ in an NMR tube equipped with a J. Young valve was treated with $\mathrm{Et}_{2} \mathrm{Zn}(25 \mu \mathrm{~L}$ of a 0.9 M solution in $\mathrm{C}_{6} \mathrm{D}_{6}, 0.023 \mathrm{mmol}$), thereby resulting in the formation of $\left[\mathrm{Tm}^{\mathrm{Bu}^{\mathrm{t}}}\right] \mathrm{ZnEt}$ accompanied by a dark gray precipitate. The mixture was filtered after one hour and the volatile components were removed by lyophilization, yielding $\left[\mathrm{Tm}^{\mathrm{Bu}}{ }^{\mathrm{t}}\right] \mathrm{ZnEt}$ as a white powder (6 $\mathrm{mg}, 57 \%$). Crystals of $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{ZnEt}$ suitable for X-ray diffraction were obtained via slow diffusion of pentane into a solution in benzene. Analysis calcd. for $\left[\mathrm{Tm}^{\mathrm{Bu}^{\mathrm{t}}} \mathrm{ZnEt}: \mathrm{C}\right.$, $48.3 \% ; \mathrm{H}, 6.9 \%$; N, 14.7%. Found: C, 48.0%; $\mathrm{H}, 7.1 \%$; N, 14.3%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, room temperature): 1.069 [A component of ABX_{3} multiplet, ${ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=13,{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8,1 \mathrm{H}$ of $\mathrm{ZnCH}_{2} \mathrm{CH}_{3}$], 1.085 [B component of ABX_{3} multiplet, ${ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=13,{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8,1 \mathrm{H}$ of
$\left.\mathrm{ZnCH}_{2} \mathrm{CH}_{3}\right], 1.53\left[\mathrm{~s}, 27 \mathrm{H}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 1.99\left[\mathrm{X}_{3}\right.$ component of ABX 3 multiplet, $\left.\mathrm{t}^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8,3 \mathrm{H}, \mathrm{ZnCH}_{2} \mathrm{CH}_{3}\right], 4.72\left[\right.$ broad s, $\left.1 \mathrm{H}, \underline{\mathrm{HB}}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 6.41$ $\left[\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,3 \mathrm{H}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 6.70\left[\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,3 \mathrm{H}\right.$, $\left.\mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right] .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{7} \mathrm{D}_{8}, 340 \mathrm{~K}\right) 0.78\left[\mathrm{q}^{3}{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8,2 \mathrm{H}\right.$ of $\left.\mathrm{ZnCH}_{2} \mathrm{CH}_{3}\right]$, $1.55\left[\mathrm{~s}, 27 \mathrm{H}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 1.73\left[\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8,3 \mathrm{H}, \mathrm{ZnCH}_{2} \mathrm{CH}_{3}\right], 4.52[$ broad m, $\left.1 \mathrm{H}, \underline{\mathrm{HB}}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 6.46\left[\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,3 \mathrm{H}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 6.60[\mathrm{~d}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,3 \mathrm{H}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right] .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 5.4\left[1 \mathrm{C}\right.$ of $\left.\mathrm{ZnCH}_{2} \mathrm{CH}_{3}\right]$, 14.9 [1C of $\left.\mathrm{ZnCH}_{2} \mathrm{CH}_{3}\right], 28.8\left[9 \mathrm{C}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 59.0$ [3C, $\left.\mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 116.3\left[3 \mathrm{C}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 122.5[3 \mathrm{C}$, $\left.\mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 159.6\left[3 \mathrm{C}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right.$. IR Data (ATR, cm^{-1}): 3134 (w), 2976 (w), 2925 (w), 2878 (w), 2415 (w), 2294 (w), 2237 (w), 1566 (w), 1481 (w), 1417 (m), 1396 (w), 1360 (vs), 1299 (m), 1255 (w), 1228 (w), 1193 (vs), 1174 (vs), 1133 (w), 1069 (m), 1029 (w), 980 (w), 929 (w), 908 (w), 821 (m), 757 (m), 725 (s), 686 (s), $634(\mathrm{w})$, 588 (m), 554 (m), 495 (m), 457 (w).

Molecular Structure of [Tm ${ }^{\left.B u^{t}\right] Z n E t}$
(only one configuration of the disordered ethyl group is shown)

Reactivity of [$\left.\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{ZnH}$ towards $\mathrm{Me}_{2} \mathrm{Zn}$

A solution of $\left[\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{ZnH}(5 \mathrm{mg}, 0.009 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(0.7 \mathrm{~mL})$ in an NMR tube equipped with a J. Young valve was treated with $\mathrm{Me}_{2} \mathrm{Zn}(7 \mathrm{mg}, 0.073 \mathrm{mmol})$, resulting in the deposition of a white precipitate. The mixture was lyophilized to afford $\left[\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{ZnMe}$ as a white powder as identified by comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum to that of an authentic sample. ${ }^{4}$

Reactivity of $\left[\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{ZnH}$ towards $\mathrm{Me}_{2} \mathrm{Cd}$

A solution of $\left[\mathrm{Tm}^{\mathrm{Bu}^{\mathrm{t}}} \mathrm{ZnH}(5 \mathrm{mg}, 0.09 \mathrm{mmol})\right.$ in $\mathrm{C}_{6} \mathrm{D}_{6}(c a .0 .7 \mathrm{~mL})$ in an NMR tube equipped with a J. Young valve was treated with $\mathrm{Me}_{2} \mathrm{Cd}(100 \mu \mathrm{~L}$ of a 0.111 M solution in $\mathrm{C}_{6} \mathrm{D}_{6}, 0.011 \mathrm{mmol}$) resulting in the formation of a dark precipitate. The sample was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy, thereby demonstrating the formation of, inter alia, $\left[\mathrm{Tm}^{\mathrm{Bu}}{ }^{\mathrm{t}}\right] \mathrm{CdMe} .{ }^{8}$

Synthesis of $\left[\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{ZnMoCp}(\mathrm{CO})_{3}$

A solution of $\left[\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{ZnH}(12 \mathrm{mg}, 0.022 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(c a .0 .7 \mathrm{~mL})$ in an NMR tube equipped with a J. Young valve was treated with $\mathrm{CpMo}(\mathrm{CO})_{3} \mathrm{H}(12 \mathrm{mg}, 0.049 \mathrm{mmol})$, resulting in immediate evolution of H_{2}. The mixture was filtered and the volatile components were removed from the filtrate by lyophilization to yield
$\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{ZnMoCp}(\mathrm{CO})_{3}$ as a pale pink powder $(10 \mathrm{mg}, 58 \%)$. Crystals of $\left[\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{ZnMoCp}(\mathrm{CO})_{3}$ suitable for X-ray diffraction were obtained via slow diffusion of pentane into a solution in benzene. Analysis calcd. for
$\left[\mathrm{Tm}^{\mathrm{Bu}^{\mathrm{t}}} \mathrm{ZnMoCp}(\mathrm{CO})_{3} \cdot\right.$ (benzene): C, $48.5 \% ; \mathrm{H}, 5.2 \% ; \mathrm{N}, 9.7 \%$. Found: C, $48.2 \% ; \mathrm{H}$, $5.0 \% ; \mathrm{N}, 9.4 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 1.78\left[\mathrm{~s}, 27 \mathrm{H}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 5.19[\mathrm{~s}, 5 \mathrm{H}$, MoCp], $6.84\left[\mathrm{~d}^{3}{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,3 \mathrm{H}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 7.05\left[\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,3 \mathrm{H}\right.$, $\left.\mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right] .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 29.3\left[9 \mathrm{C}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right]$, $59.8\left[3 \mathrm{C}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 88.8[5 \mathrm{C}$ of MoCp$], 117.1$ [3C,
$\left.\mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 123.5\left[3 \mathrm{C}, \mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \mathrm{CS}\right\}_{3}\right], 157.0[3 \mathrm{C}$, $\mathrm{HB}\left\{\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{H}_{2}\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCS}_{3}\right]_{3}, 3 \mathrm{C}\right.$ of CO not observed. IR Data for $\left[\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{ZnMoCp}(\mathrm{CO})_{3}$ (ATR, cm ${ }^{-1}$): 3186 (w), 3153 (w), 2978 (w), 2925 (w), 2419 (w), 1938 (s), 1835 (vs), 1568 (m), 1478 (m), 1420 (m), 1397 (m), 1360 (vs), 1307 (m), 1258 (w), 1229 (w), 1195 (s), 1174 (s), 1136 (w), 1105 (w), 1072 (w), 1059 (w), 1036 (w), 1010 (w), 1001 (w), 926 (w), 853 (w), 837 (w), 822 (m), 801 (m), $760(\mathrm{~m}), 737(\mathrm{~m}), 724(\mathrm{~m}), 680(\mathrm{vs}), 598(\mathrm{~s}), 555(\mathrm{~m}), 515(\mathrm{~m})$, $490(\mathrm{~m}), 457(\mathrm{w}) . \quad$ FAB-MS: $\mathrm{m} / \mathrm{z}=541.2\left[\mathrm{M}-\mathrm{MoCp}(\mathrm{CO})_{3}\right]^{+}, \mathrm{M}=\left[\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{ZnMoCp}(\mathrm{CO})_{3}$.

Molecular Structure of $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{ZnMoCp}(\mathrm{CO})_{3}$

Comparison of the Reactivity of $\left[\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{ZnH}$ and $\left[\mathrm{Tp}{ }^{\mathrm{But}, \mathrm{Me}}\right] \mathrm{ZnH}$ towards CO_{2}

A solution of $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{ZnH}(5.0 \mathrm{mg}, 0.009 \mathrm{mmol})$ and $\left[\mathrm{Tp}^{\mathrm{Bu} t^{\mathrm{Te}}}\right] \mathrm{ZnH}(4.5 \mathrm{mg}, 0.009 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(0.7 \mathrm{~mL})$ in an NMR tube equipped with a J. Young valve was treated with CO_{2} (1 atm). The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy, thereby demonstrating the immediate formation of $\left[\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{Zn}\left(\kappa^{1}-\mathrm{O}_{2} \mathrm{CH}\right)$, while $\left[\mathrm{Tp}^{\mathrm{Bu}, \mathrm{Me}}\right] \mathrm{ZnH}$ remained unreacted. The mixture was allowed to stand overnight at room temperature, after which period ca. 35% of $\left[\mathrm{Tp}^{\mathrm{But}_{, \mathrm{Me}}}\right] \mathrm{ZnH}$ had converted to $\left[\mathrm{Tp}^{\mathrm{Bu}^{\mathrm{t}}, \mathrm{Me}}\right] \mathrm{Zn}\left(\kappa^{1}-\mathrm{O}_{2} \mathrm{CH}\right)$. The mixture was then heated at $60^{\circ} \mathrm{C}$ for one day, thereby resulting in complete conversion of $\left[\mathrm{Tp}^{\mathrm{Bu}, \mathrm{Me}}\right] \mathrm{ZnH}$ to $\left[\mathrm{Tp}^{\mathrm{Bu}, \mathrm{Me}}\right] \mathrm{Zn}\left(\kappa^{1}-\mathrm{O}_{2} \mathrm{CH}\right)$.

Table 1. Crystal, intensity collection and refinement data.

$\left[\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{ZnH} \cdot 0.5\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \quad\left[\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{ZnS}\left(\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{F}\right)$

lattice	Rhombohedral	Monoclinic
formula	$\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{BN}_{6} \mathrm{~S}_{3} \mathrm{Zn}$	$\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{BFN}_{6} \mathrm{~S}_{4} \mathrm{Zn}$
formula weight	1165.93	670.05
space group	$R-3$	$P 2_{1} / n$
a / \AA	$13.3984(11)$	$13.199(5)$
b / \AA	$13.3984(11)$	$17.979(6)$
c / \AA	$27.542(2)$	$13.504(5)$
$\alpha /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	90	$92.785(5)$
$\gamma /{ }^{\circ}$	120	90
$V / \AA \AA^{3}$	$4281.9(6)$	$3200.9(19)$
Z	6	4
temperature (K)	$130(2)$	$130(2)$
radiation (λ, \AA)	0.71073	0.71073
ρ (calcd.), g cm ${ }^{-3}$	1.356	1.390
μ (Mo K $\alpha), \mathrm{mm}^{-1}$	1.104	1.062
θ max, deg.	32.771	25.679
no. of data collected	22244	35664
no. of data used	3358	6078
no. of parameters	113	373
$R_{1}[I>2 \sigma(I)]$	0.0373	0.0680
$w R_{2}[I>2 \sigma(I)]$	0.0739	0.1182
$R_{1}[$ all data]	0.0651	0.1651
$w R_{2}[$ all data	0.0799	0.1524
GOF	1.005	1.006
$R_{\text {int }}$	0.0755	0.2396

Table 1 (continued). Crystal, intensity collection and refinement data.

	$\begin{gathered} {\left[\mathrm{Tm}^{\mathrm{But}}\right] \mathrm{Zn}-} \\ \left(\mathrm{K}^{1}-\mathrm{O}_{2} \mathrm{CH}\right) \cdot 2\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \end{gathered}$	$\left[\mathrm{Tm}^{\text {But }}\right.$] $\mathrm{ZnEt} \cdot 3\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$
lattice	Monoclinic	Rhombohedral
formula	$\mathrm{C}_{34} \mathrm{H}_{47} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{~S}_{3} \mathrm{Zn}$	$\mathrm{C}_{41} \mathrm{H}_{57} \mathrm{BN}_{6} \mathrm{~S}_{3} \mathrm{Zn}$
formula weight	744.13	806.28
space group	P2/1	R-3
a / \AA	10.3568(8)	13.4730(14)
b / \AA	19.5721(15)	13.4730(14)
c / \AA	10.5278(11)	67.359(7)
$\alpha /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	119.4240(1)	90
$\gamma /{ }^{\circ}$	90	120
V / \AA^{3}	1858.8(3)	10589(2)
Z	2	12
temperature (K)	130(2)	130(2)
radiation (λ, \AA)	0.71073	0.71073
ρ (calcd.), $\mathrm{g} \mathrm{cm}^{-3}$	1.330	1.517
μ (Mo K α), mm^{-1}	0.868	0.916
θ max, deg.	30.974	28.276
no. of data collected	30599	37365
no. of data used	11621	2775
no. of parameters	442	121
$R_{1}[I>2 \sigma(I)]$	0.0467	0.0411
$w R_{2}[I>2 \sigma(I)]$	0.0785	0.1274
R_{1} [all data]	0.0694	0.0496
$w R_{2}$ [all data]	0.0858	0.1322
GOF	1.007	1.037
$R_{\text {int }}$	0.0576	0.0538

Table 1 (continued). Crystal, intensity collection and refinement data.

> | $\left[\mathrm{Tm}^{\mathrm{Bu}}\right]{\mathrm{ZnMoCp}(\mathrm{CO})_{3}}$ |
| :---: |
| $\cdot 2\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ |

lattice	Triclinic
formula	$\mathrm{C}_{41} \mathrm{H}_{51} \mathrm{BMoN}_{6} \mathrm{O}_{3} \mathrm{~S}_{3} \mathrm{Zn}$
formula weight	944.17
space group	$P-1$
a / \AA	$10.2866(10)$
b / \AA	$12.0489(12)$
c / \AA	$19.2260(19)$
$\alpha /{ }^{\circ}$	$92.6350(10)$
$\beta /{ }^{\circ}$	$93.9040(10)$
$\gamma /{ }^{\circ}$	$114.8880(10)$
V / \AA^{3}	$2149.3(4)$
Z	2
temperature (K)	$296(2)$
radiation (λ, \AA)	0.71073
ρ (calcd.), g cm ${ }^{-3}$	1.459
$\mu($ Mo K $\alpha), \mathrm{mm}^{-1}$	1.040
θ max, deg.	30.722
no. of data collected	35130
no. of data used	13225
no. of parameters	518
$R_{1}[I>2 \sigma(I)]$	0.0398
$w R_{2}[I>2 \sigma(I)]$	0.0871
$R_{1}[$ all data]	0.0607
$w R_{2}[$ all data $]$	0.0965
GOF	1.033
$R_{\text {int }}$	0.0504

REFERENCES

(1) (a) McNally, J. P.; Leong, V. S.; Cooper, N. J. in Experimental Organometallic Chemistry, Wayda, A. L.; Darensbourg, M. Y., Eds.; American Chemical Society: Washington, DC, 1987; Chapter 2, pp 6-23. (b) Burger, B. J.; Bercaw, J. E.
(b) Burger, B.J.; Bercaw, J. E. in Experimental Organometallic Chemistry; Wayda, A.
L.; Darensbourg, M. Y., Eds.; American Chemical Society: Washington, DC, 1987;

Chapter 4, pp 79-98.
(c) Shriver, D. F.; Drezdzon, M. A.; The Manipulation of Air-Sensitive Compounds,
$2^{\text {nd }}$ Edition; Wiley-Interscience: New York, 1986.
(2) (a) Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512-7515.
(b) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.;

Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. Organometallics 2010, 29, 2176-2179.
(3) Dungan, C. H.; van Wazer, J. R. Compilation of Reported ${ }^{19}$ F NMR Chemical Shifts 1951 to mid 1967, Wiley-Interscience: New York, 1970.
(4) Melnick, J. G.; Docrat, A.; Parkin, G. Chem. Commun. 2004, 2870-2871.
(5) Fischer, E. O. Inorg. Syn. 1963, 7, 136-139.
(6) Rauch, M.; Rong, Y.; Sattler, W.; Parkin, G. Polyhedron 2015 http:/ / dx.doi.org/10.1016/j.poly.2015.10.010.
(a) Sheldrick, G. M. SHELXTL, An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data; University of Göttingen, Göttingen, Federal Republic of Germany, 1981.
(b) Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.
(8) (a) Melnick, J. G.; Parkin, G. Dalton Trans. 2006, 4207-4210.
(b) Kreider-Mueller, A.; Quinlivan, P. J.; Rong, Y.; Owen, J. S.; Parkin, G. J.

Organomet. Chem. 2015, 792, 177-183.

