
Experimental Details:

Small-angle X-ray scattering (SAXS)
Scattering measurements were performed on the small-angle scattering instrument at SAGA 

synchrotron faculties (Synchrotron SAGA, Tosu, Kyushu, Japan) and in a Brucker nanostar 
SAXS machine in the University of Kyushu (Onojo Campus). The LC mixtures were introduced 
in a house lab cell. The available scattering vector q range was between 1.02.10-2 nm−1 and 1.571 
nm−1 for SAGA SAXS and between 1.0.10-2 nm−1 and 0.23 nm−1 for the lab SAXS machine in 
the University of Kyushu respectively. This scattering vector q is calculated by the following 
equation:

𝑞=
4𝜋sin 𝜃

𝜆
where 2θ is the scattering angle and λ is the wavelength (λ=1.418 Å) for both spectrometers. 

Several successive frames of 1800s each were recorded for each sample. A check for radiation 
damage or sample evolution was performed and no difference between frames was found unless 
otherwise specified. Each frame-averaged scattering spectrum was corrected for the detector 
response and scaled to the transmitted intensity, using the scattering intensity from a reference 
glassy carbon sample integrated over a given angular range. Standard deviations of each 
measurement were computed as the square root of the number of detected photons.
Small-angle X-ray scattering (SAXS)

Fourier transform infrared (FTIR) measurements in the range 650-4000 cm-1, were recorded 
using a Thermo Nicolet 6700 FT spectrometer equipped with a Deuterated Triglycine Sulfate 
(DTGS) detector and a Nicolet Continum microscocope. The LC mixtures were spread over an 
ZnSe window of the microscope. The analyzed sample area was a square of side 100 m chosen 
under the microscope 15X Infinity Reflechromat objective. The analyses were performed in 
transmission mode and each spectrum was the average of 256 scans collected at 1 cm-1 
resolution. 
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Figure S1: Chemical structure of the pentaethylene glycol monododecyl ether nonionioc surfactant, 
abbreviated as C12E5.
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Figure S2: Temperature-Concentration phase diagrams of C12E5-H2O surfactant-water system. L1 and L2 

correspond to a spherical and reverse micelle phases whereas H1, V1 and L refer to hexagonal, cubic and 
lamellar (self-assembled) phases



 

Figure S3: Pictures of the prepared samples obtained by mixing niobate nanosheets at a concentration of 
20 g/L-1 (a) and nonionic surfactants at a mass fraction of 0.15 (b), 0.25 (c), and 0.4 (d).
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Figure S4: Symmetric and asymmetric CH2 stretching bands whose wave numbers indicate the presence 
of disorder / order in the alkyl chains. These two CH2 stretching bands appear at wave numbers, which are 
coherent to an all-trans conformation for the nonionic surfactants. Moreover, the integrated intensity of 
these bands is proportional to the density of surfactants. 
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Figure S5: temperature dependence of the Small Angle X-ray Scattering (SAXS) profiles of niobate 
nanosheets at a mass concentration of 2% and with C12E5 nonionic surfactant at a mass concentration of 
w=0.15 for the temperature range 10-70°C.


