Supporting Information

A Quinoidal *Bis*-Phenalenyl-Fused Porphyrin with Supramolecular Organization and Broad Near-Infrared Absorption

Vyacheslav V. Diev, Denise Femia, Qiwen Zhong, Peter I. Djurovich, Ralf Haiges and Mark E. Thompson* Department of Chemistry, University of Southern California, Los Angeles, CA 90089 (USA); met@usc.edu

Contents

1. General.	2
2. Synthetic procedures and characterization	3
3. Theoretical calculation data for 4 ' and 4 ''	10
S4. Cyclic voltammetry data of porphyrins 1–4.	17
5. UV-visible spectra of free-base 2H-4 and thin films of quinoidal porphyrins 3 and 4	19
6. Photooxidation of porphyrins 1, 3 and 4	20
7. ¹ H NMR and ¹³ C NMR spectra of 1–4 .	21
8. HRMS and MALDI-TOF spectra of 1–4	25
9. Crystallographic data for 4	26
10. References	31

1. General.

All reagents and solvents are commercial reagent grade and were used without further purification. The starting material [5,15-bis-(3,5-di-tert-butylphenyl)porphyrinato(2-)]zinc(II)¹ was prepared from dipyrromethane² and 3,5-di-tert-butylbenzaldehyde³ by known methods. [10,20-Bis-(3,5-di-tert-butylphenyl)-5,15-bis-bromo-porphyrinato(2-)]zinc(II) was prepared by bromination of [5,15-bis-(3,5-di-tert-butylphenyl)porphyrinato(2-)]zinc(II) with NBS in 5%pyridine/dichloromethane according to literature.⁴ The starting 6-bromo-2,3-dihydro-1Hphenalene⁵ was obtained from 1-methyl-4-bromonaphthalene (Sigma-Aldrich) via bromination with NBS/CCl₄/benzoyl peroxide to give 1-bromomethyl-4-bromonaphthalene, then alkylation with dimethyl malonate/NaOMe/MeOH and alkyline hydrolysis to give 2-((4-bromonaphthalen-1-yl)methyl)malonic acid,⁶ then decarboxylation to give 3-(4-bromonaphthalen-1-yl)propanoic acid,⁶ then acid chloride formation (oxalyl chloride/dichloromethane) followed by Friedel-Crafts acylation (AlCl₃/dichloromethane) to give 6-bromo-2,3-dihydro-1H-phenalen-1-one,⁷ then reduction with NaBH₄/MeOH followed by reduction with Et₃SiH/TFA/dichloromethane to give 6-bromo-2,3-dihydro-1*H*-phenalene.⁵ Moisture or air sensitive reactions were performed under an inert atmosphere of nitrogen. Flash chromatography was carried out with silica gel (60-200 mesh) and alumina (neutral, activity grade I). ¹H NMR spectra were recorded on Varian 400-MR, Varian 500-MR or Varian 600-MR spectrometers, and chemical shifts were reported as the delta scale in ppm relative to the residual non-deuterated solvent CHCl₃ (δ 7.26 ppm) or C₆H₆ (δ 7.15 ppm). Coupling constants (J) are given in Hz. ¹³C NMR spectra were proton wide-band decoupled and chemical shifts were reported as the delta scale in ppm relative to CHCl₃ (δ 77.0 ppm) or C_6D_6 (δ 128.02 ppm). MALDI-TOF mass spectra were recorded using a positive-MALDI-TOF method with/without α -cyano-4-hydroxycinnamic acid (CHCA) matrix. All

spectra were measured as solutions in the indicated solvents at room temperature using a 1 cm cell. Absorption maxima (λ_{max}) are reported in nm and extinction coefficients (ϵ) in M⁻¹cm⁻¹. Quantum efficiency measurements were carried out using a Hamamatsu C9920 system equipped with a xenon lamp, calibrated integrating sphere and model C10027 photonic multichannel analyzer. Redox potentials were measured by the cyclic voltammetry method and differential pulse voltammetry method. 0.1M *n*-Bu₄NPF₆ in CH₂Cl₂ was used as the supporting electrolyte (degassed with nitrogen), a Pt wire was employed as the counter electrode, an Ag wire used as the pseudo-reference electrode and a glassy carbon electrode was used as the working electrode. Ferrocene (Fc) or decamethylferrocene (dmfc) was added as an internal reference, and the potentials were measured relative to the Fc/Fc⁺ couple. CV was used to determine electrochemical reversibility, while all redox potentials were found using DPV.

2. Synthetic procedures and characterization.

4,4,5,5-tetramethyl-2-(2,3-dihydro-1*H*-**phenalene-6-yl)-1,3,2-dioxaborolane**. A mixture of 6-bromo-2,3-dihydro-1*H*-phenalene⁵ (8.1 g, 32.8 mmol), pinacolborane (5.3 g, 6 ml, 1.26 equiv.), $Cl_2Pd(PPh_3)_2$ (150 mg, 0.23 mmol, 0.7 mol%) and triethylamine (25 ml) in toluene (200 ml) was degassed with nitrogen and refluxed overnight. Reaction mixture was quenched with water, toluene was distilled off and the residue was subjected to column chromatography on silica gel (gradient elution with hexanes:ethyl acetate mixtures from 1:0 to 1000:3) to give 4,4,5,5-tetramethyl-2-(2,3-dihydro-1*H*-phenalene-6-yl)-1,3,2-dioxaborolane (5.2 g, 17.7 mmol, 54%). ¹H-NMR (CDCl₃, 500 MHz): 1.42 (s, 12H), 2.07 (p, 2H, J = 6 Hz), 3.13 (t, 4H, J = 6 Hz),

7.23 (d, 2H, J = 7 Hz), 7.42 (dd, 1H, J₁ = 7 Hz, J₂ = 9 Hz), 7.98 (d, 1H, J = 7 Hz), 8.62 (d, 1H, J = 9 Hz). ¹³C-NMR (CDCl₃, 125 MHz): 23.0, 24.9, 31.7, 32.0, 83.5, 123.3, 123.7, 125.8, 126.5, 129.9, 135.3, 136.3, 137.4, 140.2. MALDI TOF: 294 (M⁺), requires 294 for $C_{19}H_{23}BO_2$. Elemental analysis for $C_{19}H_{23}BO_2$: calcd: C 77.57, H 7.88; found: C 77.57, H 7.94.

[10,20-Bis(3,5-di-tert-butylphenyl)-5,15-bis-(2,3-dihydro-1H-phenalene-6-

yl)porphyrinato(2⁻)- κ N²¹, κ N²², κ N²³, κ N²⁴)zinc(II) **1.** A mixture of [10,20-*bis*-(3,5-di-*tert*butylphenyl)-5,15-*bis*-bromo-porphyrinato(2-)]zinc(II) (3.67 g, 4.04 mmol), cesium carbonate (13 g, 39 mmol, 10 equiv.), Pd(PPh₃)₄ (466 mg, 10 mol%), pyridine (5 ml) and 4,4,5,5tetramethyl-2-(2,3-dihydro-1*H*-phenalene-6-yl)-1,3,2-dioxaborolane (2.5 g, 8.49 mmol, 2.1 equiv.) in toluene (800 ml) was degassed and refluxed under nitrogen for 12 hours. Reaction mixture was cooled and passed through a pad of silica gel washing with toluene. Toluene was distilled off in vacuum, the residue was separated by crystallization from dichloromethane by adding methanol to afford porphyrin **1** (3.98 g, 3.69 mmol, 91%). ¹H-NMR (CDCl₃, 500 MHz): 1.48 and 1.53 (s, 36H, atropoisomers), 2.36 (p, 4H, J = 6 Hz), 3.35 (t, 4H, J = 6 Hz), 3.47 (t, 4H, J = 6 Hz), 6.95-6.98 (m, 4H), 7.21 (dd, 2H, J₁ = 2 Hz, J₂ = 5 Hz), 7.61 (d, 2H, J = 7 Hz), 7.73 and 8.06 (d, 4H, J = 1.5 Hz, atropoisomers), 8.03 and 8.10 (t, 2H, J = 1.5 Hz, atropoisomers), 8.17 (dd, 2H, J1 = 5 Hz, J2 = 7), 8.69 (dd, 4H, J₁ = 2.5 Hz, J₂ = 4.5 Hz), 8.85 (d, 4H, J = 4.5 Hz). ¹³C -NMR (CDCl₃, 125 MHz): 23.4, 31.7, 35.0, 118.8, 120.5, 122.1, 122.3, 123.5, 125.2, 127.22 and 127.27 (atropoisomers), 129.5, 129.7, 129.9, 130.0, 131.7, 132.0, 132.1, 132.2, 136.03 and 136.05 (atropoisomers), 136.6, 137.15 and 137.18 (atropoisomers), 138.24 and 138.26 (atropoisomers), 141.9, 148.35, 148.38 and 148.40 (atropoisomers), 150.4, 150.8. UV/VIS (CH₂Cl₂) λ , nm, (ϵ): 300 (23200), 425 (479300), 550 (20300), 588 (500). HRMS: 1080.5093 (M⁺), calcd. 1080.5043 for C₇₄H₇₂N₄Zn. Elemental analysis for C₇₄H₇₂N₄Zn*CH₃OH: calcd: C 80.80, H 6.87, N 5.03; found: C 80.81, H 6.70, N 5.34.

 $[10,20-Bis(3,5-di-tert-butylphenyl)-3,5-(2,3-dihydro-1H-phenalene-6,7-yl)-15-(2,3-dihydro-1H-phenalene-6-yl)porphyrinato(2-)-\kappa N^{21},\kappa N^{22},\kappa N^{23},\kappa N^{24})zinc(II)$ (compound 2) and $[10,20-Bis(3,5-di-tert-butylphenyl)-3,5,13,15-bis-(2,3-dihydro-1H-phenalene-6,7-yl)-porphyrinato(2-)-\kappa N^{21},\kappa N^{22},\kappa N^{23},\kappa N^{24})zinc(II)$ (compound 3).

The above *bis*-(2,3-dihydro-1*H*-phenalene)-porphyrin **1** (3.97 g, 0.67 mmol) was dissolved in dry dichloromethane (700 ml) under nitrogen atmosphere at room temperature and to the resulting solution anhydrous FeCl₃ (8 g) was added at once. The reaction mixture was vigorously stirred for 10 min and after that quenched with pyridine (10 ml). The resulting brown-purple solution was passed through a short plug silica gel (prewashed with dichloromethane-pyridine = 1000:5) eluting with dichloromethane:pyridine = 1000:5. All brown-purple fractions were collected. Solution of $Zn(OAc)_2 \cdot 2H_2O$ (1g) in methanol (30 ml) was added and stirred at room temperature for 1 hour. After that solvents were evaporated in vacuum and the residue passed through a short plug of silica gel (prewashed with dichloromethane:pyridine = 1000:5) eluting with dichloromethane:pyridine = 1000:5. Solvents were evaporated in vacuum and the residue was crystallized from 1% pyridine:dichloromethane by layered addition of methanol to give 3.4 g of a mixture of porphyrins **2** and **3** (1:1 ratio by NMR). Separation can be done on alumina column using dichloromethane to elute porphyrin **2** and then dichloromethane:hexanes:pyridine = 300:700:5 to eluate porphyrin **3**. Porphyrin **2** was crystallized from dichloromethane and porphyrin **3** from 1% pyridine:dichloromethane by layered addition of methanol. Yields – porphyrin **2** (0.75 g) and porphyrin **3** (0.48 g).

[10,20-*Bis*(3,5-di-*tert*-butylphenyl)-3,5-(2,3-dihydro-1*H*-phenalene-6,7-yl)-15-(2,3-dihydro-1*H*-phenalene-6-yl)porphyrinato(2-)- κ N²¹, κ N²², κ N²³, κ N²⁴)zinc(II) 2. ¹H-NMR (5%-pyridined₅ in C₆D₆, 500 MHz): 1.47, 1.48 and 1.50 (s, 36H, atropoisomers), 1.95 (p, 2H, J = 5 Hz), 2.03 (p, 2H, J = 5 Hz), 2,97-3.02 (m, 4H), 3.03 (t, 2H, J = 6 Hz), 3.16 (t, 2H, J = 6 Hz), 6.76 (dd, 1H, J₁ = 7 Hz, J₂ = 9 Hz), 7.03 (d, 1H, J = 7 Hz), 7.20 (d, 1H, J = 9 Hz), 7.32 (d, 1H, J = 7.5 Hz), 7.42 (d, 1H, J = 7 Hz), 7.47 (d, 1H, J = 7.5 Hz), 7.95 (t, 1H, J = 1.5 Hz), 7.99 (t, 1H, J = 1.5 Hz), 8.28 (d, 1H, J = 7 Hz), 8.35 (t, 1H, J = 1.5 Hz), 8.37 (t, 1H, J = 1.5 Hz), 8.42 (d, 1H, J = 7.5 Hz), 8.51 (d, 2H, J = 1.5 Hz), 8.73 (d, 1H, J = 7.5 Hz), 8.78 (d, 1H, J = 4.5 Hz), 8.86 (d, 1H, J = 4.5 Hz), 9.02 (d, 1H, J = 4.5 Hz), 9.10 (d, 1H, J = 4.5 Hz), 9.19 (d, 1H, J = 4.5 Hz), 9.33 (d, 1H, J = 4.5 Hz), 9.74 (s, 1H). ¹³C-NMR (5%-pyridine-d₅ in C₆D₆, 150 MHz): 23.7, 24.8, 31.86, 31.91, 31.92, 35.16, 35.19, 35.20, 114.0, 118.7, 120.7, 120.8, 121.0, 122.7, 122.8, 122.9, 123.1, 123.3, 123.8, 124.5, 124.8, 125.6, 125.9, 125.94, 126.0, 130.1, 130.6, 130.7, 130.9, 130.94, 131.2, 131.7, 132.3, 132.4, 132.41, 132.6, 132.7, 132.9, 134.0, 136.2, 136.4, 136.9, 137.9, 138.1, 138.7, 139.4, 140.2, 143.7, 143.72, 146.1, 148.9, 149.04, 149.06, 149.8, 149.9, 150.3, 151.1, 151.7, 151.8, 152.1. UV/VIS (CH₂Cl₂) λ , nm, (ϵ): 299 sh (29600), 311 (31500), 385 (25800), 484 (178800), 561 (56200), 619 (12600), 650 sh (23600), 670 (42200). Emission (CH₂Cl₂): λ_{max} , 700 nm. HRMS: 1078.4895 (M⁺), calcd. 1078.4886 for C₇₄H₇₀N₄Zn. Elemental analysis for C₇₄H₇₀N₄Zn: calcd: C 82.24, H 6.53, N 5.18; found: C 81.80, H 6.50, N 5.11.

[10,20-Bis(3,5-di-tert-butylphenyl)-3,5,13,15-bis-(2,3-dihydro-1H-phenalene-6,7-yl)-

porphyrinato(2-)-κN²¹,κN²²,κN²³,κN²⁴)zinc(II) **3**. ¹H-NMR (5%-pyridine-d₅ in C₆D₆, 500 MHz): 1.52 (s, 18H), 1.57 (s, 18 H), 1.94 (br. s, 4H), 2.23 (br. s, 4H), 2.98 (br. s, 4H), 6.66 (d, 2H, J = 7 Hz), 6.98 (d, 2H, J = 7.5 Hz), 7.43 (d, 2H, J = 7 Hz), 7.98 (s, 1H), 8.09 (s, 1H), 8.39 (br. s, 2H), 8.52 (br. s, 2H), 8.68 (d, 2H, J = 7.5 Hz), 9.12 (d, 2H, J = 4.5 Hz), 9.24 (d, 2H, J = 4.5 Hz), 9.57 (s, 2H). ¹³C-NMR (5%-pyridine-d₅ in C₆D₆, 125 MHz): 1.4, 23.1, 24.8, 31.9, 32.0, 35.2, 35.23, 113.2, 120.7, 123.5, 124.4, 125.8, 126.0, 126.1, 129.9, 130.6, 130.8, 132.7, 133.1, 134.1, 135.3, 136.6, 138.1, 139.2, 139.3, 143.6, 143.7, 146.5, 148.6, 149.0, 149.4, 151.4, 179.2. UV/VIS (CH₂Cl₂) λ, nm, (ε): 229 (54400), 320 (30800), 497 (152300), 535 (57100), 691 (17800), 753 (70600). Emission (CH₂Cl₂): λ_{max} , 765 nm, quantum yield – 11%. HRMS:

1076.4747 (M⁺), calcd. 1076.4730 for $C_{74}H_{68}N_4Zn$. Elemental analysis for $C_{74}H_{68}N_4Zn^*C_5H_5N$: calcd: C 81.95, H 6.35, N 6.05; found: C 81.30, H 6.33, N 6.13.

[10,20-Bis(3,5-di-tert-butylphenyl)-3,5,13,15-bis-(phenalene-6,7-yl)-porphyrinato(2-)-

κN²¹,κN²²,κN²³,κN²⁴)zinc(II) 4. A sample of mono-fused porphyrin 2 (255 mg, 0.237 mmol) in a glass tube was purged with nitrogen and placed into furnace preheated to 500°C. The furnace temperature rose to 500°C in 1-2 min and the solid sample was kept at this temperature under positive pressure of nitrogen for additional 8 min. After cooling the sample to ambient temperature under nitrogen, the crude mixture was dissolved in 1% pyridine in CH₂Cl₂ and the resulting solution was passed through a short alumina column (prewashed with 1% pyridine in CH₂Cl₂). All brown-green fractions were collected, solvents evaporated and the residue crystallized from 1% pyridine in CH₂Cl₂ by layered addition of methanol to give 60 mg (0.056 mmol, 24%) of porphyrin 4. ¹H-NMR (5%-pyridine-d₅ in C₆D₆, 500 MHz): 1.43 (s, 36H), 7.37 (d, 2H, J = 4.5 Hz), 7.50 (d, 2H, J = 9 Hz), 7.55 (t, 2H, J = 7.5 Hz), 7.56 (d, 2H, J = 4.5 Hz), 7.70 (d, 2H, J = 7.5 Hz), 7.78 (d, 2H, J = 9 Hz), 7.81 (d, 2H, J = 7.5 Hz), 7.87 (t, 2H, J = 1.5 Hz), 7.99 (d, 4H, J = 1.5 Hz), 8.07 (s, 2H), 8.11 (d, 2H, J = 8.5 Hz), 8.51 (d, 2H, J = 8.5 Hz). 13 C-NMR (5%-pyridine-d₅ in C₆D₆, 125 MHz): 31.7, 35.1, 116.5, 119.4, 122.5, 124.5, 125.0, 125.9, 126.7, 127.17, 127.21, 128.5, 128.6, 128.7, 128.8, 129.0, 129.1, 130.2, 131.1, 131.4, 131.7, 135.6, 141.1, 145.2, 148.1, 149.5, 149.8, 150.0, 166.1. UV/VIS (CH₂Cl₂) λ, nm, (ε): 257 (42700), 296

(35600), 341 (26300), 392 (20400), 477 (63800), 530 (23800), 654 sh (20900), 728 sh (44500), 796 (69900). Emission (CH₂Cl₂): λ_{max} , 835 nm, quantum yield – 0.3%. HRMS: 1070.4270 (M⁺), calcd. 1070.4260 for C₇₄H₆₂N₄Zn. Elemental analysis for C₇₄H₆₂N₄Zn*C₅H₅N*CH₂Cl₂: calcd: C 77.69, H 5.62, N 5.66; found: C 78.05, H 5.40, N 5.68.

3. Theoretical calculation data for 4' and 4''

Calculations on **4'** (*tert*-butyl groups replaced with H) were performed using Jaguar 8.9 in the Material Science package, release 2014-3 (Schrödinger, LLC, New York, NY, 2014) for TDDFT results (B3LYP/LACVP**).⁸ Calculations on **3''** and **4''** (*meso-3*,5-di-*tert*-butyl phenyl groups replaced with H) were performed using Gaussian '03 (Gaussian, Inc., Pittsburgh PA, 2003).⁹ Broken symmetry calculations were performed by applying the keyword guess=mix to the unrestricted B3LYP method.

Figure S1. Optimized structure of 4" by B3LYP/6-31G*/LANL2DZ:

front view

side view

E⁰= -2050.6095516 a.u. (B3LYP/6-31G*/LANL2DZ)

Figure S2. Frontier molecular orbitals of 3" and 4"

doubly-fused 3"

HOMO-2, $\varepsilon_{HOMO} = -5.77 \text{ eV}$

quinoidal-4"

HOMO-2, $\varepsilon = -5.56 \text{ eV}$

HOMO-1, $\varepsilon_{HOMO} = -5.16 \text{ eV}$

HOMO-1, $\epsilon = -5.51 \text{ eV}$

HOMO, $\varepsilon_{HOMO} = -4.68 \text{ eV}$

LUMO, $\varepsilon_{HOMO} = -2.71 \text{ eV}$

LUMO+1, ε_{HOMO} = -2.29 eV

LUMO+2, $\varepsilon_{\text{HOMO}} = -1.78 \text{ eV}$

HOMO, $\varepsilon = -4.66 \text{ eV}$

LUMO, $\varepsilon = -3.40 \text{ eV}$

LUMO+1, ε = -2.37 eV

LUMO+2, $\varepsilon = -1.87 \text{ eV}$

Atom	Х	у	Z
C1	6.5189777938	5.7405280692	1.9089208035
C2	6.8550652829	4.6543560881	1.0360853635
H3	7.2264342435	4.7426383849	0.0269767092
C4	6.5565487885	3.4913170701	1.7029942153
H5	6 6907350383	2 4819501608	1 3433738633
C6	6.0111591831	3.8620312041	2.9721513124
C7	5 5699618543	2 9737600931	3 9751390631
C8	5 0043285240	3 3068548038	5 2238853195
C9	4 4783745024	2 3722584695	6 1702094796
H10	4 4602739827	1 2989128218	6 0514408861
C11	3 9701126738	3 0981593267	7 2183694067
H12	3 4386317721	2 7090210326	8 0731051795
C13	4 1858652259	<i>A A 8 4 4 9 3 2 6 3 2</i>	6 9157846921
C13	3 7007503018	5 6208208621	7 6040502206
C14	3.7007393918	5 5147773344	0.0940392200
C15 C16	3.3919438128	J.J14///JJ44 A A5921A1A22	9.0010942201
U17	3.9230117903	4.4363141422	9.0992020377
П1/ С19	4.0002858520	5./940/95005	9.404/828990
	5.5824724995	4.2990461787	11.20/85822/8
H19	4.0292514158	5.4969559422	11./905423013
C20	2.6604531290	5.1845630358	11.85/5520139
C21	2.2638510472	5.0084690232	13.1896/15/15
H22	2.64/01819/3	4.1569561424	13.7464803726
C23	1.3898219993	5.9118092463	13.8019182378
H24	1.0881749891	5.7565572559	14.8340085853
C25	0.9125962489	7.0076921691	13.0978362608
H26	0.2369620583	7.7135918205	13.5745316725
C27	1.2952999834	7.2309781306	11.7565089847
C28	2.1725464795	6.3015857823	11.1155311440
C29	0.8351454974	8.3619878093	11.0199915603
H30	0.1645444897	9.0656175294	11.5070024190
C31	1.2373388684	8.5682442539	9.7279429281
H32	0.8897802950	9.4412052311	9.1840161875
C33	2.1085827482	7.6548024777	9.0741215415
C34	2.5611384391	6.4966231534	9.7531390842
C35	2.5959599277	7.8655248487	7.7505592709
C36	3.4047939227	6.8752781779	7.0828031074
C37	2.4793439084	8.9323034500	6.8673705197
H38	1.9358747213	9.8529966741	7.0153094373
C39	3.2523246599	8.6004717052	5.7192097675
C40	3.5009470732	9.4636046690	4.6277155599
C41	4.3377494371	9.1709721784	3.5254364630
C42	4.7700242441	10.1241173223	2.5596605552
H43	4 4672250417	11 1592198059	2 5222606928
C44	5 6956279085	9 4794977857	1 7464341206
C45	6 5080917052	9 9288772045	0.6628007402
C46	6 3981027740	11 2336349739	0 1079542533
H47	5 6370181710	11 9048196481	0.4936127524
C48	7 2320421366	11 6467040966	-0.8956863092
H40	7 1361063831	12 6450150357	-1 3143092038
C50	8 2502448075	10 7866736606	-1 4034660150
C51	0.2302440973	11 203/2220000	_2 4212051050
U51 H52	0 0250050204	12034223099	-2.4212931030
C53	10 1361138461	10 3605052008	-2.0333073049
055	10.1501150401	10.3003032330	2.0050555257

 Table S1. Cartesian coordinates for the optimized structure of 4'

H54	10.8125033450	10.6974502378	-3.6643477494
C55	10.2818083432	9.0796946279	-2.3423547217
H56	11.0747707760	8.4249381832	-2.6951350415
C57	9.4181898275	8.6219862864	-1.3391118226
C58	8.3771659807	9.4723381915	-0.8584203999
C59	9.5643510708	7.3323147808	-0.7303222536
H60	10.4078572899	6.7121053159	-1.0241154747
C61	8.6952208268	6.8890873881	0.2193742976
H62	8.8759796800	5.9313089937	0.6879782410
C63	7.5747858144	7.6705362304	0.6708382589
C64	7.4812893733	9.0263073688	0.1632668203
C65	6.6365914695	7.1645151800	1.6155615829
C66	5.7771009195	8.1225926076	2.2280741075
C67	5.7045216453	1.5121288657	3.6770595427
C68	4.9159016423	0.9076374551	2.6871178213
H69	4.1984334668	1.5105317231	2.1378848477
C70	5.0400511892	-0.4546293801	2.4146974396
C71	5.9593753848	-1.2306564364	3.1221940427
H72	6.0579943366	-2.2913195528	2.9074374428
C73	6.7503771990	-0.6380843737	4.1075032527
C74	6.6208519729	0.7224246473	4.3865179885
H75	7.2365836204	1.1834904228	5.1534130247
C76	2.8724444881	10.8179610437	4.6614647173
C77	3.2192362026	11.7490476713	5.6533842959
H78	3.9606667607	11.4791855990	6.3995326327
C79	2.6345163943	13.0146752252	5.6729912741
C80	1.6877489983	13.3653089113	4.7092422011
H81	1.2288099816	14.3500274125	4.7284078308
C82	1.3351458442	12.4469139944	3.7194042530
C83	1.9282980729	11.1850358289	3.6900172933
H84	1.6531936372	10.4703283487	2.9198847188
N95	5.9895380445	5.2493838927	3.0601553354
N96	4.7979149003	4.5956943447	5.7066486243
N97	3.7873879707	7.3250391689	5.8620584957
N98	4.9548616996	7.9484865755	3.2938490689
Zn100	4.9472314442	6.2839768205	4.5150532343
H101	2.9214342385	13.7278467561	6.4409968961
H102	0.5965547754	12.7120377351	2.9678252533
H103	7.4704546018	-1.2350396224	4.6607781913
H104	4.4163949674	-0.9097814574	1.6499086054

Aton	n x	у	Z
С	3.502815000	-1.809239000	-0.410116000
С	2.514604000	-2.767688000	-0.679394000
С	1.259324000	-2.074788000	-0.688854000
Ν	1.462912000	-0.701827000	-0.467556000
С	2.816906000	-0.530019000	-0.299648000
С	2.522350000	4.186716000	-0.734914000
С	3.523020000	3.241856000	-0.562291000
С	2.879260000	1.982739000	-0.240999000
Ν	1.511067000	2.158563000	-0.250290000
С	1.266409000	3.514209000	-0.534993000
С	3.529374000	0.685606000	-0.049517000
С	-3.523024000	3.241844000	-0.562349000
С	-2.522355000	4.186710000	-0.734950000
С	-1.266414000	3.514209000	-0.535005000
Ν	-1.511071000	2.158564000	-0.250306000
С	-2.879264000	1.982739000	-0.241017000
С	-0.000002000	4.106346000	-0.649235000
С	-2.514613000	-2.767682000	-0.679436000
С	-3.502824000	-1.809232000	-0.410159000
С	-2.816909000	-0.530017000	-0.299667000
Ν	-1.462916000	-0.701827000	-0.467573000
С	-1.259329000	-2.074787000	-0.688871000
С	-0.000002000	-2.685612000	-0.814245000
С	-3.529374000	0.685607000	-0.049527000
С	4.909559000	0.549480000	0.317385000
С	-4.909553000	0.549479000	0.317389000
С	5.660937000	1.646989000	0.889317000
С	6.997841000	1.549521000	1.190291000
C	7.738885000	0.334821000	0.950698000
C	7.018947000	-0.808433000	0.466180000
С	5.609986000	-0.724392000	0.186060000
Н	5.133054000	2.558748000	1.137244000
C	7.725760000	-2.045720000	0.277009000
C	6.999491000	-3.197755000	-0.177414000
C	5.640841000	-3.127220000	-0.411983000
C	4.922061000	-1.903265000	-0.228405000
C	-5.660902000	1.646963000	0.889406000
C	-6.997802000	1.549493000	1.190402000
C	-7.738863000	0.334814000	0.950/56000
C	-/.018944000	-0.808426000	0.4661/4000
C	-5.609989000	-0.724383000	0.186031000
C	-/./25/6/000	-2.045/01000	0.276969000
C	-6.999512000	-3.197725000	-0.1//503000
C	-5.040801000	-3.12/195000	-0.4120/4000
U U	-4.922072000	-1.903230000	-0.228405000
П	-5.155000000	2.558099000	1.13/383000
с u	-9.120939000	-2.10443/000	0.340/31000
п u	-9.049191000	-3.042014000	0.391/30000
п С	-7.337701000	-4.13144/000	-0.324/08000 1.217622000
C	-9.120/04000	_0.233230000	1.21/022000
C	9.009113000	0.27720000	1.009447000
č	9 809127000	-0 977389000	1 009405000
\sim	2.002127000	5.7 , , 507000	1.002 102000

 Table S2. Cartesian coordinates for the optimized structure of 4"

С	9.120955000	-2.104455000	0.546769000
Н	9.649179000	-3.042641000	0.391793000
Н	7.537734000	-4.131484000	-0.324599000
Н	2.639703000	-3.833244000	-0.818287000
Η	2.639802000	5.229822000	-0.999061000
Н	4.580606000	3.391621000	-0.713483000
Н	-2.639805000	5.229813000	-0.999113000
Η	0.000000000	5.172102000	-0.872808000
Н	-2.639715000	-3.833236000	-0.818342000
Н	-0.000001000	-3.760981000	-0.982755000
Н	7.516422000	2.393870000	1.639629000
Н	5.099413000	-4.009253000	-0.742511000
Н	-7.516364000	2.393822000	1.639798000
Н	-5.099440000	-4.009224000	-0.742623000
Η	-9.654362000	1.106926000	1.590192000
Н	-10.874792000	-1.036771000	1.214568000
Н	9.654402000	1.106948000	1.590062000
Η	10.874810000	-1.036774000	1.214506000
Zn	-0.000007000	0.737756000	-0.281614000
Η	-4.580607000	3.391598000	-0.713580000

Table S3. Total atomic spin densities of **4**^{**} obtained by BS-UB3LYP/6-31G*/LANL2DZ.

Mulliken atomic spin densities:

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 C0.00129123 C-0.00000243 C0.02111763 H0.000004 N0.01121524 C-0.02633644 C-0.01362364 H0.0017135 C-0.01085525 C-0.03168445 C0.02698865 H-0.0007336 C-0.00692726 C0.03168446 H0.00103966 H-0.0017137 C0.00425227 C0.01825947 C0.02158167 H0.0007338 C-0.01424528 C-0.02592748 H-0.00142368 H-0.0014649 N0.00611729 C0.01275149 H-0.00138369 H0.00065410 C-0.0083730 C-0.00631150 C0.02230270 H0.00146411 C0.02633631 C0.01377651 C-0.01242171 H-0.00065412 C-0.00425232 H-0.00103952 C-0.02230172 Zn0.000000
4 N 0.011215 24 C -0.026336 44 C -0.013623 64 H 0.001713 5 C -0.010855 25 C -0.031684 45 C 0.026988 65 H -0.000733 6 C -0.006927 26 C 0.031684 46 H 0.001039 66 H -0.001713 7 C 0.004252 27 C 0.018259 47 C 0.021581 67 H 0.000733 8 C -0.014245 28 C -0.025927 48 H -0.001423 68 H -0.001464 9 N 0.006117 29 C 0.012751 49 H -0.001383 69 H 0.000654 10 C -0.00837 30 C -0.006311 50 C 0.022302 70 H 0.001464 11 C 0.026336 31 C 0.013776 51 C -0.012421 71 H -0.000654 12 C -0.004252 32 H -0.001039 52 C -0.022301 72 Zn 0.000000
5 C -0.010855 25 C -0.031684 45 C 0.026988 65 H -0.000733 6 C -0.006927 26 C 0.031684 46 H 0.001039 66 H -0.001713 7 C 0.004252 27 C 0.018259 47 C 0.021581 67 H 0.000733 8 C -0.014245 28 C -0.025927 48 H -0.001423 68 H -0.001464 9 N 0.006117 29 C 0.012751 49 H -0.001383 69 H 0.000654 10 C -0.00837 30 C -0.006311 50 C 0.022302 70 H 0.001464 11 C 0.026336 31 C 0.013776 51 C -0.012421 71 H -0.000654 12 C -0.004252 32 H -0.001039 52 C -0.022301 72 Zn 0.000000
6 C -0.006927 26 C 0.031684 46 H 0.001039 66 H -0.001713 7 C 0.004252 27 C 0.018259 47 C 0.021581 67 H 0.000733 8 C -0.014245 28 C -0.025927 48 H -0.001423 68 H -0.001464 9 N 0.006117 29 C 0.012751 49 H -0.001383 69 H 0.000654 10 C -0.00837 30 C -0.006311 50 C 0.022302 70 H 0.001464 11 C 0.026336 31 C 0.013776 51 C -0.012421 71 H -0.000654 12 C -0.004252 32 H -0.001039 52 C -0.022301 72 Zn 0.000000
7 C 0.004252 27 C 0.018259 47 C 0.021581 67 H 0.000733 8 C -0.014245 28 C -0.025927 48 H -0.001423 68 H -0.001464 9 N 0.006117 29 C 0.012751 49 H -0.001383 69 H 0.000654 10 C -0.00837 30 C -0.006311 50 C 0.022302 70 H 0.001464 11 C 0.026336 31 C 0.013776 51 C -0.012421 71 H -0.000654 12 C -0.004252 32 H -0.001039 52 C -0.022301 72 Zn 0.000000
8 C -0.014245 28 C -0.025927 48 H -0.001423 68 H -0.001464 9 N 0.006117 29 C 0.012751 49 H -0.001383 69 H 0.000654 10 C -0.000837 30 C -0.006311 50 C 0.022302 70 H 0.001464 11 C 0.026336 31 C 0.013776 51 C -0.012421 71 H -0.000654 12 C -0.004252 32 H -0.001039 52 C -0.022301 72 Zn 0.000000
9 N 0.006117 29 C 0.012751 49 H -0.001383 69 H 0.000654 10 C -0.000837 30 C -0.006311 50 C 0.022302 70 H 0.001464 11 C 0.026336 31 C 0.013776 51 C -0.012421 71 H -0.000654 12 C -0.004252 32 H -0.001039 52 C -0.022301 72 Zn 0.000000
10 C -0.000837 30 C -0.006311 50 C 0.022302 70 H 0.001464 11 C 0.026336 31 C 0.013776 51 C -0.012421 71 H -0.000654 12 C -0.004252 32 H -0.001039 52 C -0.022301 72 Zn 0.000000
11 C 0.026336 31 C 0.013776 51 C -0.012421 71 H -0.000654 12 C -0.004252 32 H -0.001039 52 C -0.022301 72 Zn 0.000000
12 C -0.004252 32 H -0.001039 52 C -0.022301 72 Zn 0.000000
13 C 0.006927 33 C 0.010632 53 C 0.012420 73 H 0.000234
14 C 0.000838 34 C -0.021117 54 C -0.021581
15 N -0.006117 35 C 0.013623 55 H 0.001423
16 C 0.014246 36 C -0.026988 56 H 0.001383
17 C -0.000001 37 C -0.018259 57 H 0.002032
18 C 0.029913 38 C 0.025928 58 H 0.000489
19 C -0.012704 39 C -0.012751 59 H -0.000234
20 C 0.010855 40 C 0.006312 60 H -0.000489

S4. Cyclic voltammetry data of porphyrins 1–4.

Table S4. Redox potentials in dichloromethane (volts versus ferrocene/ferrocenium)

compound	$E_{1/2}^{ox,1}$	$E_{1/2}^{\text{red},1}$	$E_{1/2}^{red,2}$	$\Delta E^{\text{ox-red}}$
1	+0.25	-1.98	-2.34	2.23
2	+0.17	-1.66	-1.87	1.83
3	-0.08	-1.66		1.58
4	+0.04	-1.32	-1.70	1.36

Figure S3. Porphyrin 1 CV and DPV (decamethylferrocene as standard):

Figure S4. Porphyrin 2 CV and DPV (decamethylferrocene as standard):

Figure S5. Porphyrin 3 CV and DPV (decamethylferrocene as standard):

5. UV-visible spectra of free-base **2H-4** and thin films of quinoidal porphyrins **3** and **4**.

Figure S8. UV-visible absorption spectra of porphyrins 3 and 4 as thin films cast from CH_2Cl_2 solution.

6. Photooxidation of porphyrins 1, 3 and 4.

Figure S9. Photooxidation of porphyrins 1, 3 and 4.

Relative rates of photooxidation of porphyrins 1 (black curve), 3 (blue curve) and 4 (red curve) as determined by normalized changes of absorption max of the lowest energy absorption peak upon irradiation under standardized conditions (300 W white light lamp, quartz cell in air).

7. ¹H NMR and ¹³C NMR spectra of **1–4**.

Figure S10. ¹H-NMR and ¹³C NMR spectra of porphyrin 1 in CDCl₃ at 25^oC

Figure S11. ¹H-NMR and ¹³C NMR spectra of porphyrin 2 in $1\% C_5D_5N - C_6D_6$ at $25^{\circ}C$

Figure S12. ¹H-NMR and ¹³C NMR spectra of porphyrin 3 in 1% C_5D_5N - C_6D_6 at 25^oC

Figure S13. ¹H-NMR and ¹³C NMR spectra of porphyrin 4 in 1% $C_5D_5N - C_6D_6$ at 25^oC

8. HRMS and MALDI-TOF spectra of 1–4.

9. Crystallographic data for 4.

The single crystal X-ray diffraction data for C₉₇H₈₅N₅Zn (4•pyridine) were collected on a Bruker SMART APEX DUO 3-circle platform diffractometer, equipped with an APEX II CCD detector with the χ -axis fixed at 54.74°, and using Cu K_{\Box} radiation (multi-layer optics monochromator) from an IuS microsource. The diffractometer was equipped with an Oxford Cryostream 700 apparatus for low-temperature data collection. A complete hemisphere of data was scanned on omega and phi (2° width) with a run time of 30 to 120 seconds per frame at a detector resolution of 512 x 512 pixels using the BIS software package.¹⁰ A total of 2064 frames were collected with a total exposure time of 43.43 hours. The frames were then integrated using the SAINT algorithm¹¹ to give the hkl files corrected for Lp/decay. The absorption correction was performed using the SADABS program.¹² The structures were solved by the Direct Method and refined on F² using the Bruker SHELXTL Software Package.¹³ All non-hydrogen atoms were refined anisotropically. Further crystallographic details can be obtained from the Cambridge Crystallographic Data Centre (CCDC, 12 Union Road, Cambridge CB21EZ, UK (Fax: (+44) 1223-336-033; e-mail: deposit@ccdc.cam.ac.uk) on quoting the deposition no. CCDC 1434349).

Table S5. Sample and crystal data for $C_{97}H_{85}N_5Zn$ (4•pyridine).

Chemical formula	C ₉₇ H ₈₅ N ₅ Zn	
Formula weight	1386.06 g/mol	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal size	0.069 x 0.118 x 0.270 mm	L
Crystal system	triclinic	
Space group	P -1	
Unit cell dimensions	a = 13.8075(4) Å b = 20.3411(7) Å c = 27.8465(9) Å	$\alpha = 81.213(3)^{\circ}$ $\beta = 86.010(3)^{\circ}$ $\gamma = 75.367(3)^{\circ}$
Volume	7474.5(4) Å ³	
Ζ	4	
Density (calculated)	1.232 g/cm ³	
Absorption coefficient	0.853 mm ⁻¹	
F(000)	2928	
Theta range	2.27 to 69.36°	
Index ranges	$-16 \le h \ge 16$	
	$-24 \le k \ge 24$	
	$-30 \le k \ge 33$	
Reflections collected	80677	
Independent reflections	24937 [R(int) = 0.1733]	
Data / restraints / parameters	24937 / 282 / 1919	
Final R indices	10989 data; I>2σ(I)	R1 = 0.0843, $wR2 = 0.1683$
	all data	R1 = 0.2037, wR2 = 0.2144
Goodness-of-fit	1.008	
Largest diff. peak and hole	0.764 and -0.543 eÅ ⁻³	

Figure S15. Unit cell of $C_{97}H_{85}N_5Zn$ (4•pyridine). View along a.

Figure S14. Unit cell of $C_{97}H_{85}N_5Zn$ (4•pyridine). View along b.

10. References

¹ (a) R. Shediac, R., M. H. B. Gray, H. T. Uyeda, R. C. Johnson, J. T. Hupp, P. J. Angiolillo, M. J. Therien, *J. Am. Chem. Soc.* **2000**, *122*, 7017. (b) M. J. Plater, S. Aiken, G. Bourhill,

Tetrahedron, 2002, 58, 2405.

² J. K. Laha, S. Dhanalekshmi, M. Taniguchi, A. Ambroise, J. S. Lindsey, *Org. Proc. Res. Dev.* **2003**, *7*, 799.

³ M. S. Newman, L. F. Lee, J. Org. Chem. 1972, 37, 4468.

⁴ (a) T. E. O. Screen, I. M. Blake, L. H. Rees, W. Clegg, S. J. Borwick, H. L. Anderson, *J. Chem. Soc. Perkin. Trans.* 1, 2002, 320. (b) F. Cheng, S. Zhang, A. Adronov, L. Echegoyen, F. Diederich, *Chem. Eur. J.* 2006, *12*, 6062.

⁵ T. Kubo, Y. Katada, A. Shimizu, Y. Hirao, K. Sato, T. Takui, M. Uruichi, K. Yakushi, R. C. Haddon, *J. Am. Chem. Soc.* **2011**, *133*, 14240.

⁶ L. F. Fieser, M. D. Gates, J. Am. Chem. Soc. 1940, 62, 2335.

⁷ V. Boekelheide, M. Goldman, J. Am. Chem. Soc. 1954, 76, 604.

⁸ A. D. Bochevarov, E. Harder, T. F. Hughes, J. R. Greenwood, D. A. Braden, D. M. Philipp, D. Rinaldo, M. D. Halls, J. Zhang, R. A. Friesner, *Int. J. Quantum Chem.*, **2013**, *113*, 2110.

⁹ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, *Gaussian* 03, Gaussian, Inc., Pittsburgh PA, 2003.

1 1000 01 911 1 1, 2000.

¹⁰ Bruker Instrument Service v2010.11-3, Bruker AXS Madison, WI, 2010.

¹¹ SAINT V7.68A, Bruker AXS Madison, WI, 2009.

¹² SADABS V2008/1, Bruker AXS Madison, WI, 2008.

¹³ Bruker SHELXTL V2011.4-0, Bruker AXS Madison, WI, 2011; Sheldrick, G. M. *Acta Cryst.* **2008**, *A64*, 112-122.