Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Rhodium-Catalyzed Tunable Oxidative Cyclization toward the Selective Synthesis of α-Pyrones and Furans

Jiaping Wu, Dongxu Wang, Yanjun Wan, and Cheng Ma* Department of Chemistry, Zhejiang University, 20 Yugu Road, Hangzhou 310027, China

Table of Contents

Experimental section	S2
General information	S2
General procedure A for the synthesis of 1	S2–S5
Synthesis of 1f-d ₄	S5–S6
Optimization of reaction conditions	S6–S7
General procedure B for the synthesis of α -pyrones 3	87–815
General procedure C for the synthesis of furans 4	S15–S22
Mechanistic studies	S22–S26
References	S26
NMR spectra	S27–S166

Experimental section

General information

All reactions were carried out under oxygen atmosphere, with dry, freshly distilled solvents in anhydrous conditions. DCM was distilled from CaH₂ immediately prior to use. All chemicals were used without further purification as commercially available unless otherwise noted. Thin-layer chromatography (TLC) was performed on silica gel plates (60F–254) using UV-light (254 and 365 nm). Flash chromatography was conducted on silica gel (300–400 mesh). NMR (400 MHz or 600 MHz for ¹H NMR, 100 MHz or 150 MHz for ¹³C NMR) spectra were recorded in CDCl₃ with TMS as the internal standard unless otherwise noted. High resolution mass spectral (HRMS) analyses were measured using ESI techniques.

Diazo compound 2^1 was prepared according to the literature procedure.

General procedure A for the synthesis of 1

To a mixture of 4-methylbenzenesulfonyl azide (0.45 mmol), CuI (5.7 mg, 0.03 mmol), and Et₄NI (7.7 mg, 0.03 mmol) in CH₂Cl₂ (3 mL) under nitrogen atmosphere at room temperature, aldehyde (0.3 mmol), terminal alkyne (0.45 mmol) and *t*-BuOLi (72.0 mg, 0.9 mmol) were added sequentially. The reaction was monitored by TLC and quenched with saturated aqueous ammonium chloride (3 mL) at the desired time. The reaction mixture was extracted with DCM (5 mL x 3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The resulting residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 3:1, v/v) to give the product **1**.

(E)-2,3-Diphenyl-N-tosylacrylamide (1a)

The product **1a** was isolated as a white solid in 90% yield following general procedure A. The purification was performed by flash column chromatography on silica gel (*n*-hexane/EtOAc = 3:1, v/v). **¹H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.97 (d, *J* = 8.0 Hz, 2H), 7.86 (s, 1H), 7.82 (s, 1H), 7.49-7.48 (m, 3H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.22-7.189 (m, 3H), 7.14-7.10 (m, 2H), 6.93-6.91 (d, *J* = 7.2 Hz, 2H), 2.44 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 164.1, 145.2, 141.4, 135.5, 134.2, 133.8, 131.7, 130.8, 130.3, 129.8, 129.7, 129.6, 128.7, 128.4, 21.7 ppm; HRMS calc for C₂₂H₁₉NO₃S [M]⁺ 377.1086, found 377.1092.

(E)-2-(4-Methoxyphenyl)-3-phenyl-N-tosylacrylamide (1b)

The product **1b** was isolated as an off-white solid in 82% yield following general procedure A. The purification was performed by flash column chromatography on silica gel (*n*-hexane/EtOAc = 3:1, v/v). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.98-7.96 (d, *J* = 8.0 Hz, 2H), 7.90 (s, 1H), 7.78 (s, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.11-7.10 (m, 4H),

7.00-6.95 (m, 4H), 3.88 (s, 3H), 2.44 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 164.5, 160.4, 145.1, 141.2, 135.5, 134.0, 131.3, 131.1, 130.8, 129.7, 129.6, 128.7, 128.4, 125.8, 115.8, 55.4, 21.7 ppm; HRMS calc for C₂₃H₂₁NO₄S [M]⁺ 407.1191, found 407.1205.

(*E*)-2-(4-Fluorophenyl)-3-phenyl-*N*-tosylacrylamide (1c)

The product **1c** was isolated as a white solid in 87% yield following general procedure A. The purification was performed by flash column chromatography on silica gel (*n*-hexane/EtOAc = 3:1, v/v). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.98-7.96 (d, *J* = 8.0 Hz, 2H), 7.86 (s, 1H), 7.81 (s, 1H), 7.37-7.35 (d, *J* = 8.4 Hz, 2H), 7.25-7.13 (m, 7H),

6.93-6.91 (d, J = 8.4 Hz, 2H), 2.45 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 164.5, 164.0 ($J_{C-F} = 203$ Hz), 145.3, 141.9, 135.4, 133.7, 131.9 ($J_{C-F} = 8.2$ Hz), 130.7, 130.0, 129.7, 129.6, 128.7 ($J_{C-F} = 24.6$ Hz), 117.6 ($J_{C-F} = 21.0$ Hz), 21.8 ppm; **HRMS** calc for C₂₂H₁₈FNO₃S [M]⁺ 395.0991, found 395.0995.

(E)-2-(4-Nitrophenyl)-3-phenyl-N-tosylacrylamide (1d)

The product **1d** was isolated as a white solid in 87% yield following general procedure A. The purification was performed by flash column chromatography on silica gel (*n*-hexane/EtOAc = 3:1, v/v). ¹**H** NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 8.04 (s, 1H), 7.99 (d, *J* = 8.0 Hz, 2H), 7.41-7.32 (m, 6H), 7.15-7.09 (m, 3H), 6.84 (t, *J* = 7.6 Hz, 1H),

6.58 (d, J = 7.6 Hz, 1H), 2.46 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) $\delta = 163.7$, 145.2, 137.7, 135.4, 135.2, 134.3, 133.3, 132.7, 130.6, 130.1, 129.9, 129.8, 129.5, 129.4, 128.8, 128.6, 126.1, 126.0, 21.6 ppm; HRMS calc for C₂₂H₁₈N₂O₅S [M]⁺ 422.0936, found 422.0933.

(E)-2-Phenyl-3-(o-tolyl)-N-tosylacrylamide (1e)

 O_2N

The product **1e** was isolated as a white solid in 71% yield following general procedure A. The purification was performed by flash column chromatography on silica gel (*n*-hexane/EtOAc = 3:1, v/v). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 8.00 (s, 1H), 8.00-7.98 (d, *J* = 8.0 Hz, 2H), 7.94 (s, 1H), 7.39-7.36 (m, 5H), 7.12-7.05 (m, 4H), 6.79-6.76 (t, *J* = 7.2 Hz, 1H), 6.56-6.54 (d, *J* = 7.6 Hz, 1H), 2.46 (s, 3H), 2.33 ppm (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ

= 164.1, 145.1, 139.9, 138.4, 135.4, 133.8, 133.1, 132.8, 130.2, 130.0, 129.7, 129.5, 129.2, 129.1, 129.0, 128.6, 125.3, 21.6, 20.0 ppm; **HRMS** calc for $C_{23}H_{21}NO_3S$ [M]⁺ 391.1242, found 391.1245.

(E)-3-(4-Methoxyphenyl)-2-phenyl-N-tosylacrylamide (1f)

The product **1f** was isolated as a white solid in 85% yield following general procedure A. The purification was performed by flash column chromatography on silica gel (*n*-hexane/EtOAc = 3:1, v/v). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.97-7.95 (d, J = 8.4 Hz, 2H), 7.81 (s, 1H), 7.78 (s, 1H), 7.52-7.49 (m, 3H), 7.34 (d, J = 8.0 Hz, 2H), 7.23-7.21 (m, 2H), 6.86 (d, J = 8.8 Hz, 2H), 6.64 (d, J = 8.4 Hz, 2H), 3.72 (s, 3H), 2.44

ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 164.2, 160.8, 145.0, 141.1, 135.5, 134.5, 132.7, 130.3, 129.8, 129.4, 129.4, 128.8, 128.6, 126.4, 113.8, 55.2, 21.6 ppm; HRMS calc for C₂₃H₂₁NO₄S [M]⁺ 407.1191, found 407.1205.

(E)-3-(4-Fluorophenyl)-2-phenyl-N-tosylacrylamide (1g)

The product **1g** was isolated as a light yellow solid in 88% yield following general procedure A. The purification was performed by flash column chromatography on silica gel (*n*-hexane/EtOAc = 3:1, v/v). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.89 (d, *J* = 8.4 Hz, 2H), 7.81 (s, 1H), 7.73 (s, 1H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.10 (m, 7H), 6.84 (d, *J* = 7.6 Hz, 2H), 2.37 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 164.0 (*J*_{C-F} =

249.0 Hz), 163.5, 144.8, 141.4, 134.9, 133.2, 131.4 ($J_{C-F} = 8.3$ Hz), 130.2, 129.5 ($J_{C-F} = 3.6$ Hz), 129.4, 129.1, 128.2, 128.0, 117.1 ($J_{C-F} = 28.8$ Hz), 21.3 ppm; **HRMS** calc for C₂₂H₁₈FNO₃S [M]⁺ 395.0991, found 395.0993.

(E)-3-(2,4-Dichlorophenyl)-2-phenyl-N-tosylacrylamide (1h)

The product **1h** was isolated as a light yellow solid in 87% yield following general procedure A. The purification was performed by flash column chromatography on silica gel (*n*-hexane/EtOAc = 3:1, v/v). ¹**H** NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.92-7.89 (m, 4H), 7.36-7.35 (m, 3H), 7.31-7.28 (m, 3H), 7.07-7.05 (m, 2H), 6.75 (d, *J* = 8.8 Hz, 1H), 6.42 (d, *J* = 8.4 Hz, 2H), 2.39 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 163.5,

145.4, 136.6, 136.3, 135.5, 135.3, 134.9, 133.1, 131.4, 131.3, 130.1, 129.8, 129.8, 129.7, 129.6, 128.8, 126.7, 21.8 ppm; **HRMS** calc for $C_{22}H_{17}C_{12}NO_3S$ [M]⁺ 445.0306, found 445.0304.

(E)-3-(4-Bromophenyl)-2-phenyl-N-tosylacrylamide (1i)

The product **1i** was isolated as a light yellow solid in 83% yield following general procedure A. The purification was performed by flash column chromatography on silica gel (*n*-hexane/EtOAc = 3:1, v/v). ¹**H** NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.89 (d, *J* = 8.4 Hz, 2H), 7.74 (s, 1H), 7.67 (s, 1H), 7.44-7.42 (m, 3H), 7.29 (d, *J* = 8.4 Hz, 2H), 7.19–7.17 (m, 2H), 7.13-7.11 (m, 2H), 6.69 (d, *J* = 8.4 Hz, 2H), 2.38 ppm (s, 3H); ¹³C NMR (100

MHz, CDCl₃, 25 °C, TMS) δ = 163.9, 145.3, 140.0, 135.4, 133.8, 132.7, 132.3, 132.1, 131.7, 130.4, 129.8, 129.6, 129.6, 128.7, 124.2, 21.8 ppm; **HRMS** calc for C₂₂H₁₈BrNO₃S [M]⁺ 455.0191, found 455.0191.

(E)-3-(4-Nitrophenyl)-2-phenyl-N-tosylacrylamide (1j)

The product **1j** was isolated as a light yellow solid in 84% yield following general procedure A. The purification was performed by flash column chromatography on silica gel (*n*-hexane/EtOAc = 3:1, v/v). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.90-7.88 (m, 5H), 7.74 (s, 1H), 7.44-7.42 (m, 3H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.12-7.10 (m, 2H), 6.99 (d, *J* = 8.0 Hz, 2H), 2.38 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ =

164.4, 147.6, 145.5, 140.2, 138.3, 135.2,132.9, 131.1, 130.5, 130.2, 129.7, 129.5, 129.4, 128.8, 123.5, 21.8 ppm; **HRMS** calc for $C_{22}H_{18}N_2O_5S$ [M]⁺ 422.0936, found 422.4538.

(Z)-3-Phenyl-2-(thiophen-2-yl)-N-tosylacrylamide (1k)

The product 1k was isolated as a brown solid in 75% yield following general procedure A. The purification was performed by flash column chromatography on silica gel (*n*-hexane/EtOAc = 3:1, v/v). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 8.13 (s, 1H), 8.00-7.97 (d, *J* = 8.4 Hz, 2H), 7.93 (s, 1H), 7.54-7.42 (d, *J* = 5.2 Hz, 1H), 7.37-7.35 (d, *J* = 8.4 Hz, 2H), 7.29-7.25 (m, 1H),

7.21-7.17 (m, 3H), 7.03-7.01 (m, 3H), 2.45 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 163.4, 145.2, 144.7, 135.4, 134.2, 133.5, 130.9, 130.4, 129.6, 129.5, 129.4, 128.8, 128.7, 128.5, 123.9, 21.8 ppm; HRMS calc for C₂₀H₁₇NO₃S₂ [M]⁺ 383.0650, found 383.0653.

(E)-2-Phenyl-3-(thiophen-2-yl)-N-tosylacrylamide (11)

The product 11 was isolated as a brown solid in 82% yield following general procedure A. The purification was performed by flash column chromatography on silica gel (*n*-hexane/EtOAc = 3:1, v/v). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.97 (s, 1H), 7.88 (d, *J* = 8.0 Hz, 2H), 7.86 (s, 1H), 7.49-7.47 (m, 3H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.18-7.16 (m, 3H), 7.04-7.03 (m, 1H),

6.84-6.82 (m, 1H), 5.21 (s, 1H), 2.36 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 163.6, 145.1, 138.0, 135.5, 134.8, 134.7, 133.2, 131.7, 130.7, 130.2, 129.6, 128.7, 128.3, 127.0, 53.5, 21.8 ppm; HRMS calc for C₂₃H₂₁NO₃S [M]⁺ 383.0650, found 383.0651.

(E)-2-(4-Methoxybenzylidene)-N-tosylheptanamide (1m)

The product **1m** was isolated as a yellow solid in 86% yield following general procedure A. The purification was performed by flash column chromatography on silica gel (*n*-hexane/EtOAc = 3:1, v/v). ¹**H** NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 8.70 (s, 1H), 7.94 (d, *J* = 8.0 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.20-7.13 (m, 3H), 6.83-6.81 (m, 2H), 3.75 (s, 3H), 2.40-2.37 (m, 5H), 1.34-1.31 (m, 2H), 1.18-1.17 (m, 4H), 0.75 ppm (t, *J* = 4.8

Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 166.8, 160.1, 145.0, 136.8, 135.7, 133.7, 131.1, 129.6, 128.5, 127.3, 114.1, 55.3, 31.8, 28.5, 27.4, 22.4, 21.7, 14.0 ppm; HRMS calc for C₂₂H₂₇NO₄S [M]⁺ 401.1661, found 401.1659.

(E)-2-(Cyclohex-1-en-1-yl)-3-phenyl-N-tosylacrylamide (1n)

The product **1n** was isolated as an white solid in 88% yield following general procedure A. The purification was performed by flash column chromatography on silica gel (*n*-hexane/EtOAc = 3:1, v/v). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 8.54 (s, 1H), 7.93 (d, *J* = 8.4 Hz, 2H), 7.45 (s, 1H), 7.41-7.39 (m, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.24-7.22 (m, 3H), 5.79 (s, 1H), 2.36

(s, 3H), 2.15-2.14 (m, 2H), 1.94-1.94 (m, 2H), 1.67-1.63 ppm (m, 4H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) $\delta = 164.0, 145.1, 139.0, 135.6, 134.3, 133.9, 133.6, 132.2, 130.2, 129.7, 129.6, 128.7, 128.5, 28.0, 25.5, 22.7, 21.7, 21.4 ppm;$ **HRMS**calc for C₂₂H₂₃NO₃S [M]⁺ 381.1399, found 381.1401.

(E)-3-(Naphthalen-2-yl)-2-phenyl-N-tosylacrylamide (10)

The product **10** was isolated as a brown solid in 76% yield following general procedure A. The purification was performed by flash column chromatography on silica gel (*n*-hexane/EtOAc = 3:1, v/v). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 8.44 (s, 1H), 7.98-7.87 (m, 4H), 7.75-7.73 (m, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.48-7.43 (m, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.28-7.24 (m, 3H), 7.06-7.00 (m, 3H), 6.75 (d, *J* = 7.2 Hz, 1H), 2.41 ppm

(s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 164.0, 145.3, 139.6, 135.5, 134.4, 133.9, 133.3, 132.1, 131.3, 130.1, 129.7, 129.7, 129.5, 129.2, 128.8, 128.7, 128.0, 126.8, 126.2, 124.9, 124.0, 21.8 ppm; HRMS calc for C₂₆H₂₁NO₃S [M]⁺ 427.1242, found 427.1242.

(E)-3-(4-Chlorophenyl)-2-phenyl-N-tosylacrylamide (1p)

The product **1p** was isolated as a yellow solid in 79% yield following general procedure A. The purification was performed by flash column chromatography on silica gel (*n*-hexane/EtOAc = 3:1, v/v). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.96 (d, *J* = 8.0 Hz, 2H), 7.89 (s, 1H), 7.75 (s, 1H), 7.50-7.47 (m, 3H), 7.36-7.34 (d, *J* = 8.0 Hz, 2H), 7.21-7.18 (m, 2H), 7.10-7.07 (m, 2H), 6.84-6.82 (d, *J* = 8.4 Hz, 2H), 2.44 ppm (s, 3H); ¹³C

NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 163.8, 145.1, 139.8, 135.6, 135.3, 133.7, 132.2, 132.1, 131.8, 130.3, 129.6, 129.5, 129.5, 128.6, 21.6 ppm; **HRMS** calc for C₂₂H₁₈ClNO₃S [M]⁺ 411.0696, found 411.0691.

Synthesis of 1f-d₄

Step 1:

Methyl 4-hydroxybenzoate (500 mg, 3.30 mmol) was dissolved in dry DMF (6 mL) under N₂. The solution was cooled to 0°C and NaH (60% in mineral oil, 158 mg, 3.94 mmol) was added. The mixture was stirred at room temperature for 0.5 h, then CD₃I (0.5 mL) was added at 0°C. Stirring was continued at room temperature for 30 min and then Et₂O (20 mL) was added to the reaction mixture. The mixture was washed three times with brine, dried over anhydrous MgSO₄ and concentrated under reduced pressure to give the desired methyl 4-methoxybenzoate-d₃.

Step 2:

To a solution of methyl 4-methoxybenzoate-d₃ obtained in step 1(about 520 mg, 3.04 mmol) in dry THF (20 mL) under N₂ at room temperature, lithium aluminum deuteride (LiAlD₄, 65 mg, 1.54 mmol) was carefully added. The reaction mixture was then heated to reflux at 70 °C and stirred for 1.5 h. After the completion of reaction, the mixture was cooled to 0 °C and treated with H₂O and aqueous NaOH (10%), and extracted twice with Et₂O (20 mL). The organic phase was dried over anhydrous MgSO₄ and concentrated under reduced pressure to afford the desired 4-methoxybenzyl alcohol-d₅.

Step 3:

4-Methoxybenzyl alcohol-d₅ obtained in step 2 (about 391 mg, 2.74 mmol) was treated with PDC (2.10 g, 5.50 mmol) in dry CH_2Cl_2 (15 mL) at room temperature under N_2 for 24 h. The reaction mixture was filtered through a pad of Celite and the filter cake was washed with CH_2Cl_2 . The filtrate was concentrated under reduced pressure to give crude 4-methoxybenzaldehyde-d₄.

Step 4:

To a mixture of 4-methylbenzenesulfonyl azide (729 mg, 3.70 mmol), CuI (47.5 mg, 0.25 mmol), and Et₄NI (64.3 mg, 0.25 mmol) in CH₂Cl₂ (20 mL) under N₂ at room temperature, 4-methoxybenzaldehyde-d₄ (obtained in step 3, about 345mg, 2.5 mmol), ethynylbenzene (0.41 ml, 3.70 mmol) and *t*-BuOLi (600 mg, 7.50 mmol) were added sequentially. After 12 h, the reaction was quenched with saturated aqueous ammonium chloride (10 mL) and extracted with DCM (20 mL x 3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography silica gel (*n*-hexane/EtOAc = 3:1, v/v) to give the product **1f-d₄** (822mg, 61% yield over four steps). ¹H NMR (500 MHz, CDCl₃, 25 °C, TMS) δ = 7.88 (d, *J* = 8.0 Hz, 2H), 7.68 (s, 1H), 7.44-7.43 (m, 3H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.16-7.14 (m, 2H), 6.79 (d, *J* = 9.0 Hz, 2H), 6.57 (d, *J* = 9.0 Hz, 2H), 2.37 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 164.3, 160.9, 145.1, 135.6, 134.6, 132.8, 130.4, 129.9, 129.6, 129.5, 128.8, 128.7, 126.4, 113.9, 31.6, 22.7, 21.8, 14.2 ppm; HRMS calc for C₂₃H₁₇D₄NO₄S [M]⁺ 411.1442, found 411.1438.

Optimization of reaction conditions (Table S1)

To a schlenk tube (10 mL) were added N-tosylacrylamides 1 (0.20 mmol), diazo compounds 2 (0.4 mmol), catalyst, additive, and solvent (2.0 mL) under nitrogen atmosphere. After stirring the reaction mixture at the indicated temperature for 12 h, it was cooled to room temperature and diluted with dichloromethane (10 mL). The mixture was filtered through a Celite pad and washed with dichloromethane (3 x 20 mL). The filtrate was concentrated, and the product was purified by column chromatography on silica gel (*n*-hexane/EtOAc = 5:1, v/v) to afford pure products.

Ph Ph Ph H	+ N2 CO2tBu	2.5 mol% [Cp*RhCl ₂]2 additives solvent, 60 °C 12 h	Ph Ph Ph COofBu	+ Ph CO ₂ tBu O Ph
1a	2a		3aa	4aa

 Table S1. Optimization of reaction conditions^[a]

E t.m	Additives (equiv)		Yield (%) ^[b]	
Entry		Solvent	3aa	4aa
1	_	MeOH	98	_
2	NaOAc (2.0)	MeOH	93	
3 ^[c]	_	MeOH	_	_
4	_	EtOH	92	_
5	_	<i>t</i> BuOH	90	_
6	_	DCE	56	_
7	_	MeCN	17	_
8	_	THF	23	_
9	_	1,4-dioxane	30	_
10	_	toluene	34	_
11	_	DMF	26	_
$12^{[d]}$	_	MeOH	56	_
13	AgOAc (1.0)	MeOH	64	30
14	AgOAc (2.0)	MeOH	33	61
15	Ag ₂ O (2.0)	MeOH	35	60
16	$Ag_2CO_3(2.0)$	MeOH	40	45
17	$Cu(OAc)_2(2.0)$	MeOH	78	15
18	AgOAc (2.0)/AgSbF ₆ (0.1)	MeOH	13	78
19	AgOAc (2.0)/AgSbF ₆ (0.1)	t-AmOH	21	70
20	AgOAc (2.0)/AgSbF ₆ (0.1)	DCE	40	_
21	AgOAc (2.0)/CsOAc (0.1)	MeOH	42	52
22	AgOAc (2.0)/NaOPiv (0.1)	MeOH	40	55
23	AgOAc (2.0)/AgBF ₄ (0.1)	MeOH	53	40
24	AgOAc (2.0)/AgSbF ₆ (0.1)/TEMPO(2.0)	MeOH	93	_
25 ^[c]	AgOAc (2.0)/AgSbF ₆ (0.1)	MeOH	<5	_

[a] Reaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), [Cp*RhCl₂]₂ (2.5 mol%), and additives in solvent (2.0 mL) at 60 °C, 12 h, under N₂. [b] Isolated yields. [c] Without [Cp*RhCl₂]₂. [e] 1.0 equiv of 2a was used.

A Schlenk tube (10 mL) was charged with N-tosylacrylamides 1 (0.2 mmol), diazo compound 2 (0.4 mmol), and [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol, 2.5 mol%) under N₂, MeOH (2.0 mL) was added by syringe. After stirring the reaction mixture at 60 °C for 12 h, it was cooled to room temperature and diluted with dichloromethane (10 mL). The mixture was filtered through a Celite pad and washed with dichloromethane (3 x 20 mL). The filtrate was concentrated, and the residue was purified by column chromatography on silica gel to afford the product 3.

Tert-butyl 6-methyl-2-oxo-3,4-diphenyl-2H-pyran-5-carboxylate (3aa)

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1a**, 75.4 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol) and [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 5:1, v/v) to give the

product **3aa** as a white solid (71.0 mg, 98%); ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.13-7.10 (m, 3H), 7.08-7.06 (m, 3H), 6.97-6.93 (m, 4H), 2.36 (s, 3H), 1.06 ppm (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 164.8, 161.6, 160.8, 151.5, 136.2, 133.1, 130.6, 128.4, 128.2, 128.0, 127.8, 127.6, 123.9, 116.1, 82.7, 27.4, 18.6 ppm; HRMS calc for C₂₃H₂₂O₄ [M]⁺ 362.1518, found 362.1521.

Ethyl 6-methyl-2-oxo-3,4-diphenyl-2H-pyran-5-carboxylate (3ab)

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1a**, 75.4 mg, 0.2 mmol), ethyl 2-diazo-3-oxobutanoate (**2b**, 62.4 mg, 0.4 mmol) and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 5:1, v/v) to give the

product **3ab** as a white solid (63.5 mg, 95%); ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.19-7.07 (m, 6H), 6.99-6.96 (m, 2H), 6.93-6.90 (m, 2H), 3.80 (t, *J* = 7.2 Hz, 2H), 2.39 (s, 3H), 0.72 ppm (d, *J* = 7.2 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 165.9, 161.7, 161.5, 151.4, 136.3, 133.0, 130.6, 128.2, 128.1, 128.0, 127.8, 127.7, 123.8, 114.8, 61.6, 18.8, 13.4 ppm; **HRMS** calc for C₂₁H₁₈O₄ [M]⁺ 334.1205, found 334.1207.

Methyl 6-methyl-2-oxo-3,4-diphenyl-2H-pyran-5-carboxylate (3ac)

MeO

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1a**, 75.4 mg, 0.2 mmol), methyl 2-diazo-3-oxobutanoate (**2c**, 56.8 mg, 0.4 mmol) and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 5:1, v/v) to give the

product **3ac** as a white solid (59.5 mg, 93%); ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.20-7.16 (m, 6H), 7.06-7.04 (m, 2H), 6.98-6.96 (m, 2H), 3.40 (s, 3H), 2.45 ppm (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 166.4, 161.7, 161.5, 151.3, 136.2, 133.0, 130.6, 128.3, 128.1, 128.0, 127.8, 127.7, 123.8, 114.6, 52.3, 18.9 ppm; **HRMS** calc for C₂₀H₁₆O₄ [M]⁺ 320.1049, found 320.1049.

Tert-butyl 3-(4-methoxyphenyl)-6-methyl-2-oxo-4-phenyl-2H-pyran-5-carboxylate (3ba)

To a mixture of (*E*)-2-(4-methoxyphenyl)-3-phenyl-N-tosylacrylamide (**1b**, 81.4 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol) and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column

chromatography on silica gel (*n*-hexane/EtOAc = 4:1, v/v) to give the product **3ba** as a white solid (70.6 mg, 90%); ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.24-7.22 (m, 3H), 7.05-7.04 (m, 2H), 6.98 (d, *J* = 8.8 Hz, 2H), 6.70 (d, *J* = 9.2 Hz, 2H), 3.73 (s, 3H), 2.44 (s, 3H), 1.15 ppm (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 164.4, 161.5, 159.8, 158.3, 150.5, 136.0, 131.4, 127.9, 127.6, 127.6, 124.7, 123.0, 115.6, 112.8, 82.1, 54.6, 26.9,

18.0 ppm; **HRMS** calc for $C_{24}H_{24}O_5 [M]^+$ 392.1624, found 392.1625.

Tert-butyl 3-(4-fluorophenyl)-6-methyl-2-oxo-4-phenyl-2H-pyran-5-carboxylate (3ca)

To a mixture of (*E*)-2-(4-fluorophenyl)-3-phenyl-N-tosylacrylamide (1c, 79.0 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate (2a, 73.6 mg, 0.4 mmol) and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on

silica gel (*n*-hexane/EtOAc = 5:1, v/v) to give the product **3ca** as a white solid (71.4 mg, 94%); ¹**H NMR** (400 MHz, CDCl₃, 25°C, TMS) δ = 7.22-7.20 (m, 3H), 7.02-6.99 (m, 4H), 6.86-6.82 (m, 2H), 2.43 (s, 3H), 1.12 ppm (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 25°C, TMS) δ = 164.7 (J_{C-F} = 372.6 Hz), 163.2, 161.6, 160.7, 151.8, 136.1, 132.5 (J_{C-F} = 8.0 Hz), 129.0 (J_{C-F} = 3.3 Hz), 128.3, 128.2, 122.8, 116.1, 115.0, 114.8, 82.8, 27.4, 18.6 ppm; **HRMS** calc for C₂₃H₂₁FO₄ [M]⁺ 380.1424, found 380.1427.

Tert-butyl 6-methyl-3-(4-nitrophenyl)-2-oxo-4-phenyl-2H-pyran-5-carboxylate (3da)

To a mixture of (*E*)-2-(4-nitrophenyl)-3-phenyl-N-tosylacrylamide (**1d**, 84.4 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate **2a** (73.6 mg, 0.4 mmol) and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography

on silica gel (*n*-hexane/EtOAc = 4:1, v/v) to give the product **3da** as a white solid (73.3 mg, 90%); ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 8.01 (d, *J* = 8.4 Hz, 2H), 7.15 (d, *J* = 8.8 Hz, 2H), 7.12-7.10 (m, 3H), 6.94-6.92 (m, 2H), 2.41 (s, 3H), 1.10ppm (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 164.1, 162.2, 160.9, 149.1, 147.3, 143.1, 132.2, 130.4, 129.6, 128.3, 128.2, 124.7, 123.2, 114.8, 83.3, 27.6, 18.9 ppm; HRMS calc for C₂₃H₂₁NO₆ [M]⁺ 407.1369, found 407.1367.

Tert-butyl 6-methyl-2-oxo-3-phenyl-4-(o-tolyl)-2H-pyran-5-carboxylate (3ea)

To a mixture of (*E*)-2-phenyl-3-(o-tolyl)-N-tosylacrylamide (**1e**, 78.2 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol) and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syring, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 4:1, v/v)

to give the product **3ea** as an off white solid (67.8 mg, 90%). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) $\delta =$ 7.07-7.05 (m, 3H), 7.00-6.92 (m, 4H), 6.78 (s, 1H), 6.69 (d, J = 7.2 Hz , 1H), 2.36 (s, 3H), 2.14 (m, 3H), 1.07 ppm (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) $\delta =$ 164.9, 161.7, 160.7, 151.7, 137.6, 136.1, 133.2, 130.5, 128.9, 128.8, 127.9, 127.7, 127.5, 125.6, 123.7, 116.1, 82.6, 27.4, 21.3, 18.6 ppm; **HRMS** calc for C₂₄H₂₄O₄[M]+ 376.1675, found 376.1677.

Tert-butyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-3-phenyl-2H-pyran-5-carboxylate (3fa)

To a mixture of (*E*)-3-(4-methoxyphenyl)-2-phenyl-N-tosylacrylamide (**1f**, 81.4 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol) and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column

chromatography on silica gel (*n*-hexane/EtOAc = 4:1, v/v) to give the product **3fa** as a white solid (72.9 mg, 93%).

¹**H** NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.19-7.16 (m, 3H), 7.07-7.04 (m, 2H), 6.95 (d, *J* = 8.2 Hz , 2H), 6.73 (d, *J* = 8.8 Hz , 2H), 3.73 (s, 3H), 2.43 (s, 3H), 1.21 ppm (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 164.5, 161.2, 159.8, 159.0, 150.8, 132.9, 130.1, 129.3, 127.9, 127.3, 127.0, 123.2, 115.9, 113.0, 82.1, 54.7, 27.1, 18.1 ppm; **HRMS** calc for C₂₄H₂₄O₅ [M]+ 392.1624, found 392.1621.

Tert-butyl 4-(4-fluorophenyl)-6-methyl-2-oxo-3-phenyl-2H-pyran-5-carboxylate (3ga)

To a mixture of (*E*)-3-(4-fluorophenyl)-2-phenyl-N-tosylacrylamide (**1g**, 79.0 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol) and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on

silica gel (*n*-hexane/EtOAc = 6:1, v/v) to give the product **3ga** as a white solid (64.6 mg, 85%). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.24-7.23 (m, 3H), 7.05-7.00 (m, 4H), 6.88-6.83 (m, 2H), 2.45 (s, 3H), 1.14 ppm (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 164.2 (*J*_{C-F} = 371.0 Hz), 162.7, 161.1, 160.2, 151.3, 135.6, 132.0, 128.5 (*J*_{C-F} = 3.6 Hz), 127.8 (*J*_{C-F} = 3.1 Hz),, 127.7, 122.3, 115.6, 114.5 (*J*_{C-F} = 21.2 Hz), 82.3, 26.9, 18.1 ppm; **HRMS** calc for C₂₃H₂₁FO₄[M]+ 380.1424, found 380.1426.

Tert-butyl 4-(2,4-dichlorophenyl)-6-methyl-2-oxo-3-phenyl-2H-pyran-5-carboxylate (3ha)

To a mixture of (*E*)-3-(2,4-dichlorophenyl)-2-phenyl-N-tosylacrylamide (**1h**, 89.0 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol) and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column

chromatography on silica gel (*n*-hexane/EtOAc = 4:1, v/v) to give the product **3ha** as a white solid (77.4 mg, 90%). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.31 (s, 1H), 7.21-7.20 (m, 3H), 7.11-7.08 (m, 3H), 6.96 (d, *J* = 8.4 Hz, 1H), 2.51 (s, 3H), 1.22 ppm (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 163.4, 162.2, 160.6, 147.7, 134.3, 133.7, 132.7, 132.1, 130.7, 129.3, 128.5, 127.7, 127.4, 126.3, 124.9, 114.3, 82.2, 27.0, 17.8 ppm; **HRMS** calc for C₂₃H₂₄Cl₂O₄[M]⁺ 430.0739, found 430.0740.

Tert-butyl 4-(4-bromophenyl)-6-methyl-2-oxo-3-phenyl-2H-pyran-5-carboxylate (3ia)

To a mixture of (*E*)-3-(4-bromophenyl)-2-phenyl-N-tosylacrylamide (**1i**, 91.0 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol) and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on

silica gel (*n*-hexane/EtOAc = 4:1, v/v) to give the product **3ia** as a yellow solid (75.7 mg, 86%). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.36 (d, *J* = 8.4 Hz , 2H), 7.21-7.19 (m, 3H), 7.05-7.03 (m, 2H), 6.92 (d, *J* = 8.4 Hz , 2H), 2.46 (s, 3H), 1.20 ppm (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 164.1, 160.8, 160.7, 149.7, 134.7, 132.2, 130.8, 130.0, 129.6, 127.5, 127.4, 123.6, 121.9, 115.1, 82.4, 27.0, 18.2 ppm; HRMS calc for C₂₃H₂₁BrO₄ [M]⁺ 440.0623, found 440.0624.

Tert-butyl 6-methyl-4-(4-nitrophenyl)-2-oxo-3-phenyl-2H-pyran-5-carboxylate (3ja)

To a mixture of (*E*)-3-(4-nitrophenyl)-2-phenyl-N-tosylacrylamide (**1**j, 84.4 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol) and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography

on silica gel (*n*-hexane/EtOAc = 4:1, v/v) to give the product **3ja** as a white solid (75.7 mg, 93%). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 8.00 (d, *J* = 8.8 Hz, 2H), 7.15 (d, *J* = 8.8 Hz, 2H), 7.11-7.09 (m, 3H), 6.94-6.93 (m, 2H), 7.10-7.09 (m, 2H), 2.40 (s, 3H), 1.10 ppm (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 163.6, 161.7, 160.4, 148.6, 146.8, 142.6, 131.7, 129.9, 129.1, 127.7, 127.7, 124.1, 122.7, 114.3, 82.8, 27.1, 18.4 ppm; **HRMS** calc for C₂₃H₂₁NO₆ [M]⁺ 407.1369, found 407.1367.

Tert-butyl 6-methyl-2-oxo-4-phenyl-3-(thiophen-2-yl)-2H-pyran-5-carboxylate (3ka)

To a mixture of (*Z*)-3-phenyl-2-(thiophen-2-yl)-N-tosylacrylamide (**1k**, 76.6 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol) and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel

(*n*-hexane/EtOAc = 4:1, v/v) to give the product **3ka** as a white solid (69.9 mg, 95%). ¹**H** NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.36-7.34 (m, 3H), 7.23-7.22 (m, 1H), 7.18-7.16 (m, 2H), 6.85-6.81 (m, 2H), 2.43 (s, 3H), 1.15 ppm (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 164.5, 160.8, 159.6, 150.5, 136.4, 133.8, 130.4, 128.7, 128.6, 128.3, 127.4, 126.1, 117.3, 116.6, 82.8, 27.4, 18.5 ppm; **HRMS** calc for C₂₁H₂₀O₄S [M]⁺ 368.1082, found 368.1082.

Tert-butyl 6-methyl-2-oxo-3-phenyl-4-(thiophen-2-yl)-2H-pyran-5-carboxylate (3la)

To a mixture of (*E*)-2-phenyl-3-(thiophen-2-yl)-N-tosylacrylamide (11, 76.6 mg, 0.2 mmol), *tert*-butyl 2-diazo-3-oxobutanoate (2a, 73.6 mg, 0.4 mmol) and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel

(*n*-hexane/EtOAc = 5:1, v/v) to give the product **3la** as a white solid (71.4 mg, 97%). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.19-7.15 (m, 4H), 7.07-7.05 (m, 2H), 6.83-6.82 (m, 2H), 2.35 (s, 3H), 1.19 ppm (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 164.3, 160.7, 159.8, 144.1, 135.8, 132.7, 129.8, 128.3, 127.5, 126.2, 124.5, 115.8, 82.5, 27.1, 18.1 ppm; **HRMS** calc for C₂₁H₂₀O₄S [M]⁺ 368.1082, found 368.1084.

Tert-butyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-3-pentyl-2H-pyran-5-carboxyate (3ma)

To a mixture of (*E*)-2-(4-methoxybenzylidene)-N-tosylheptanamide (**1m**, 80.2 mg, 0.2 mmol), *tert*-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol) and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column

chromatography on silica gel (*n*-hexane/EtOAc = 5:1, v/v) to give the product **3ma** as a white solid (73.3 mg, 95%). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.11-7.09 (m, 2H), 6.96-6.94 (m, 2H), 3.85 (s, 3H), 2.34 (s, 3H), 2.28-2.24 (m, 2H), 1.43-1.40 (m, 2H), 1.16-1.13 (m, 13H), 0.80 ppm (t, *J* = 6.6 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 165.1, 162.4, 129.6, 158.2, 150.4, 128.9, 128.6, 124.8, 116.1, 113.7, 82.3, 55.4, 31.7, 28.2, 27.7, 27.5, 22.2, 18.3, 13.4 ppm; **HRMS** calc for C₂₃H₃₀O₅ [M]⁺ 386.2093, found 386.2095.

Tert-butyl 3-(cyclohex-1-en-1-yl)-6-methyl-2-oxo-4-phenyl-2H-pyran-5-carboxylate (3na)

To a mixture of (*E*)-2-(cyclohex-1-en-1-yl)-3-phenyl-N-tosylacrylamide (**1n**, 76.2 mg, 0.2 mmol), *tert*-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol), and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel

(n-hexane/EtOAc = 4:1, v/v) to give the product **3na** as a white solid (60.8 mg, 83%).¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.35-7.32 (m, 3H), 7.17-7.14 (m, 2H), 5.38 (m, 1H), 2.38 (s, 3H), 1.95-1.94 (m, 2H), 1.86-1.85 (m, 2H), 1.50-1.47 (m, 2H), 1.43-1.40 (m, 2H), 1.13 ppm (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 164.5, 160.9, 159.3, 150.1, 136.3, 130.6, 130.5, 127.6, 127.3, 127.2, 126.2, 115.2, 82.0, 27.8, 26.9, 24.7, 21.9, 21.0, 18.0 ppm; HRMS calc for C₂₃H₂₆O₄ [M]⁺ 366.1831, found 366.1833.

Tert-butyl 6-methyl-4-(naphthalen-2-yl)-2-oxo-3-phenyl-2H-pyran-5-carboxylate (30a)

To a mixture of (*E*)-3-(naphthalen-2-yl)-2-phenyl-N-tosylacrylamide (**10**, 85.4 mg, 0.2 mmol), *tert*-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol), and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column

chromatography on silica gel (*n*-hexane/EtOAc = 4:1, v/v) to give the product **30a** as a white solid (71.7 mg, 87%).¹**H NMR** (400 MHz, CDCl₃, 25°C, TMS) δ = 7.78-7.73 (m, 3H), 7.48-7.44 (m, 2H), 7.33-7.30 (m, 1H), 7.15-7.13 (m, 1H), 7.03-7.01 (m, 5H), 2.52 (s, 3H), 0.72 ppm (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 25°C, TMS) δ = 164.4, 161.3, 150.8, 133.9, 133.2, 133.0, 130.7, 129.7, 128.6, 128.2, 127.6, 127.6, 126.7, 126.5, 126.2, 125.5, 125.2, 124.9, 116.6, 82.3, 26.9, 18.9 ppm; **HRMS** calc for C₂₇H₂₄O₄[M]⁺ 412.1675, found 412.1674.

Ethyl 2-oxo-3,4-diphenyl-6-propyl-2H-pyran-5-carboxylate (3ad)

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1a**, 75.4 mg, 0.2 mmol), ethyl 2-diazo-3-oxohexanoate (**2d**, 73.6 mg, 0.4 mmol), and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc =

5:1, v/v) to give the product **3ad** as a white solid (69.5 mg, 96%). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.1.2-7.08 (m, 6H), 6.99-6.94 (m, 2H), 6.93-6.91 (m, 2H), 3.79 (q, *J* = 7.2 Hz, 2H), 2.60 (t, *J* = 3.8 Hz, 2H), 1.79-1.73 (m, 2H), 0.96 (t, *J* = 7.2 Hz, 3H), 0.73 ppm (t, *J* = 3.8 Hz,3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 165.9, 164.6, 161.6, 151.3, 136.2, 133.1, 130.6, 128.2, 128.1, 128.0, 127.8, 127.6, 123.8, 114.8, 61.6, 34.3, 21.2, 13.8, 13.4 ppm; **HRMS** calc for C₂₃H₂₂O₄ [M]⁺ 362.1518, found 362.1519.

Ethyl 2-oxo-3,4,6-triphenyl-2H-pyran-5-carboxylate (3ae)

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1a**, 75.4 mg, 0.2 mmol), ethyl 2-diazo-3-oxo-3-phenylpropanoate (**2e**, 87.2 mg, 0.4 mmol) and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 5:1,

v/v) to give the product **3ae** as a white solid (68.1 mg, 86%). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) $\delta =$

7.19-7.07 (m, 6H), 6.99-6.93 (m, 2H), 6.92-6.90 (m, 2H), 3.80 (q, J = 7.2 Hz, 2H), 2.39 (s, 3H), 0.72 ppm (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) $\delta = 165.9$, 161.7, 161.5, 151.4, 136.3, 133.0, 130.6, 128.2, 128.1, 128.0, 127.8, 127.7, 123.8, 114.8, 61.6, 18.8, 13.4 ppm; HRMS calc for C₂₆H₂₀O₄ [M]+ 396.1362, found 396.1364.

Ethyl 6-(4-chlorophenyl)-2-oxo-3,4-diphenyl-2H-pyran-5-carboxylate (3af)

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1a**, 75.4 mg, 0.2 mmol), ethyl 3-(4-chlorophenyl)-2-diazo-3-oxopropanoate (**2f**, 100.8 mg, 0.4 mmol), and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography

on silica gel (*n*-hexane/EtOAc = 5:1, v/v) to give the product **3ae** as a white solid (71.4 mg, 83%). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.63-7.61 (m, 2H), 7.42-7.37 (m, 3H), 7.14-7.11 (m, 5H), 7.03-7.01 (m, 2H), 6.96-6.94 (m, 2H), 3.79 (q, *J* = 7.2 Hz, 2H), 0.78 ppm (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 165.8, 161.0, 158.8, 150.3, 134.6, 133.9, 132.7, 131.5, 131.2, 130.5, 129.9, 128.7, 128.4, 128.1, 128.0, 125.2, 114.8, 62.0 13.4 ppm; **HRMS** calc for C₂₆H₁₉ClO₄ [M]+ 430.0972, found 430.0973.

Ethyl 6-(4-bromophenyl)-2-oxo-3,4-diphenyl-2H-pyran-5-carboxylate (3ag)

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1a**, 75.4 mg, 0.2 mmol), ethyl 3-(4-bromophenyl)-2-diazo-3-oxopropanoate (**2g**, 118.4 mg, 0.4 mmol), and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography

on silica gel (*n*-hexane/EtOAc = 5:1, v/v) to give the product **3ae** as a white solid (73.0 mg, 77%). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.63-7.61 (m, 2H), 7.43-7.38 (m, 3H), 7.29-7.27 (m, 2H), 7.14 (m, 3H), 7.03-7.01 (m,2H), 6.90-6.88 (m, 2H), 3.79 (q, *J* = 7.2 Hz, 2H), 0.79 ppm (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 165.8, 161.0, 158.8, 150.3, 134.4, 132.7, 131.5, 131.4, 131.2, 130.5, 130.1, 128.7, 128.1, 125.2, 122.9, 114.7, 62.0, 13.4 ppm; **HRMS** calc for C₂₆H₁₉BrO₄ [M]+ 474.0467, found 474.0467.

Ethyl 6-(4-nitrophenyl)-2-oxo-3,4-diphenyl-2H-pyran-5-carboxylate (3ah)

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1a**, 75.4 mg, 0.2 mmol), ethyl 2-diazo-3-(4-nitrophenyl)-3-oxopropanoate (**2h**, 105.2 mg, 0.4 mmol), and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column

chromatography on silica gel (*n*-hexane/EtOAc = 4:1, v/v) to give the product **3ah** as a white solid (75.0 mg, 85%). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 8.25 (d, *J* = 8.8 Hz, 2H), 7.85 (d, *J* = 8.8 Hz, 2H), 7.19-7.12 (m, 6H), 7.06-6.99 (m, 4H), 3.77 (q, *J* = 7.2 Hz, 2H), 0.75 ppm (t, *J* = 7.2 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 165.3, 160.5, 155.4, 151.1, 149.0, 137.3, 135.0, 132.5, 130.5, 129.3, 128.7, 128.3, 128.2, 128.2, 128.0, 126.5, 123.9, 116.8, 62.3, 13.3 ppm; **HRMS** calc for C₂₆H₁₉NO₆[M]⁺ 441.1212, found 441.1210.

Methyl 2-oxo-3,4-diphenyl-6-(p-tolyl)-2H-pyran-5-carboxylate (3ai)

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1a** 75.4 mg, 0.2 mmol), methyl 2-diazo-3-oxo-3- phenylpropanoate **2i** (81.6 mg, 0.4 mmol), and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The

solvent was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 5:1, v/v) to give the product **3ai** as a white solid (67.3 mg, 85%). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.63 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 7.25-7.19 (m, 6H), 7.15-7.13 (m, 2H), 7.10-7.09 (m, 2H), 3.40 (s, 3H), 2.44 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 166.7, 161.4,

158.6, 151.7, 141.7, 135.5, 133.1, 130.6, 129.5, 128.7, 128.4, 128.2, 128.1, 127.9, 127.9, 127.8, 124.6, 114.5, 52.5, 21.6 ppm; **HRMS** calc for $C_{26}H_{20}O_4 [M]^+$ 396.1362, found 396.1361.

Methyl 6-(4-fluorophenyl)-2-oxo-3,4-diphenyl-2H-pyran-5-carboxylate (3aj)

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1a**, 75.4 mg, 0.2 mmol), methyl 2-diazo-3-(4-fluorophenyl)-3-oxopropanoate (**2j**, 88.8 mg, 0.4 mmol), and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on

silica gel (*n*-hexane/EtOAc = 5:1, v/v) to give the product **3aj** as a white solid (68.8 mg, 86%). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.76-7.73 (m, 2H), 7.25-7.24 (m, 3H), 7.22-7.13 (m, 7H), 7.10-7.09 (m, 2H), 3.39 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 166.4, 165.6, 163.0, 161.1 (J_{C-F} = 378.8 Hz), 151.5, 135.4, 132.9, 130.6, 130.4 (J_{C-F} = 9.5 Hz), 128.5, 128.2, 127.9, 127.8 (J_{C-F} = 4.1 Hz), 125.0, 116.1 (J_{C-F} = 21.4 Hz), 114.9, 52.6 ppm; HRMS calc for C₂₅H₁₇FO₄ [M]⁺ 400.1111, found 400.1110.

Methyl 6-(4-chlorophenyl)-2-oxo-3,4-diphenyl-2H-pyran-5-carboxylate (3ak)

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1a**, 75.4 mg, 0.2 mmol), methyl 3-(4-chlorophenyl)-2-diazo-3-oxopropanoate (**2k**, 95.2 mg, 0.4 mmol), and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography

on silica gel (*n*-hexane/EtOAc = 5:1, v/v) to give the product **3ak** as a white solid (67.4 mg, 81%). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.52 (d, *J* = 8.8 Hz, 2H), 7.31 (d, *J* = 8.8 Hz, 2H), 7.09-7.04 (m, 6H), 6.98-6.96 (m, 2H), 6.93-6.92 (m, 2H), 3.23 ppm (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 166.3, 161.0, 157.1, 151.4, 137.5, 135.3, 132.8, 130.5, 129.9, 129.3, 129.1, 128.6, 128.2, 128.2, 127.9, 127.9, 125.3, 115.1, 52.7 ppm; **HRMS** calc for C₂₅H₁₇ClO₄ [M]⁺416.0895, found 416.0898.

Methyl 6-(4-bromophenyl)-2-oxo-3,4-diphenyl-2H-pyran-5-carboxylate (3al)

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1a**, 75.4 mg, 0.2 mmol), methyl 3-(4-bromophenyl)-2-diazo-3-oxopropanoate (**2l**, 112.4 mg, 0.4 mmol), and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography

on silica gel (*n*-hexane/EtOAc = 5:1, v/v) to give the product **3al** as a white solid (70.8 mg, 77%). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.64-7.59 (m, 4H), 7.25-7.23 (m, 3H), 7.22-7.20 (m, 3H), 7.14-7.12 (m, 2H), 7.09-7.07 (m, 2H) 3.39 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 165.8, 160.5, 156.6, 150.9, 134.8, 132.3, 131.6, 130.0, 129.9, 129.0, 128.1, 127.7, 127.7, 127.4, 127.4, 125.4, 124.8, 114.7, 52.2 ppm; HRMS calc for C₂₅H₁₇BrO₄ [M]⁺ 460.0310, found 460.0311.

Methyl 2-oxo-3,4-diphenyl-6-(thiophen-2-yl)-2H-pyran-5-carboxylate (3am)

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1a** 75.4 mg, 0.2 mmol), methyl 2-diazo-3-oxo-3-(thiophen-2-yl)propanoate (**2m**, 84.0 mg, 0.4 mmol) and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel

(*n*-hexane/EtOAc = 5:1, v/v) to give the product **3am** as a white solid (66.0 mg, 85%). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.65 (d, *J* = 4.4 Hz, 1H), 7.59 (d, *J* = 4.8 Hz, 1H), 7.25-7.23 (m, 3H), 7.21-7.19 (m, 3H), 7.16-7.09 (m, 5H), 3.49 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 165.8, 160.0, 151.5, 151.0, 134.8, 132.6, 132.5, 130.3, 130.1, 129.6, 128.0, 127.9, 127.6, 127.3, 127.3, 123.9, 112.4, 52.3 ppm; HRMS calc for C₂₃H₁₆O₄S [M]⁺ 388.0769, found 388.0771.

Ethyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-3-phenyl-2H-pyran-5-carboxylate (3fb)

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1f**, 81.4 mg, 0.2 mmol), ethyl 2-diazo-3-oxobutanoate (**2b**, 62.4 mg, 0.4 mmol) and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) under N₂, MeOH (2.0 mL) was added via syringe, and then stirred at 60 °C. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel

(*n*-hexane/EtOAc = 5:1, v/v) to give the product **3fb** as a white solid (69.9 mg, 96%). ¹**H** NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.12-7.10 (m, 3H), 7.00-6.97 (m, 2H), 6.83 (dd, J_1 = 2.0 Hz, J_2 = 6.8 Hz, 2H), 6.63 (dd, J_1 = 2.0 Hz, J_2 = 6.8 Hz, 2H), 3.86 (q, J = 7.2 Hz, 2H), 3.66 (s, 3H), 2.36 (s, 3H), 0.82 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 166.1, 161.6, 161.2, 159.5, 151.1, 133.3, 130.7, 129.6, 128.4, 127.9, 127.5, 123.6, 115.1, 113.5, 61.6, 55.2, 18.8, 13.6 ppm; **HRMS** calc for C₂₂H₂₀O₅ [M]⁺ 364.1311, found 364.1312.

General procedure C for the synthesis of furans 4

A Schlenk tube (10 mL) was charged with the N-tosylacrylamides **1** (0.2 mmol), diazo compound **2** (0.4 mmol) [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol, 2.5 mol%), AgSbF₆ (6.9 mg, 0.02 mmol, 10 mol%), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added by syringe. After stirring the reaction mixture at 60 °C for 12 h, the reaction mixture was cooled to room temperature and diluted with dichloromethane (10 mL). The resulting mixture was filtered through a Celite pad and washed with dichloromethane (3 x 20 mL). The filtrate was concentrated, and the residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to afford **4** as a pure product.

Tert-butyl 2-methyl-4,5-diphenylfuran-3-carboxylate (4aa)

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1a**, 75.4 mg, 0.2 mmol), *tert*-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol), AgSbF₆ (6.9 mg, 0.02 mmol), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via

syringe. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product **4aa** as a colorless syrup (48.7 mg, 73%). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.30-7.27 (m, 3H), 7.24-7.19 (m, 4H), 7.11- 7.08 (m, 3H), 2.58 (s, 3H), 1.16 ppm (s, 9H);

¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 162.4, 156.7, 146.0, 133.2, 129.4, 129.0, 127.2, 127.1, 126.1, 124.3, 121.2, 116.0, 79.3, 26.9, 13.0 ppm; **HRMS** calc for C₂₂H₂₂O₃ [M]⁺ 334.1569, found 334.1570.

Ethyl 2,4,5-triphenylfuran-3-carboxylate (4ab)

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1a**, 75.4 mg, 0.2 mmol), ethyl 2-diazo-3-oxobutanoate (**2b**, 62.4 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol), AgSbF₆ (6.9 mg, 0.02 mmol), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped at the desired time. The solvent was

concentrated under vacuum and the residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product **4ab** as a colorless syrup (36.7 mg, 60%). ¹**H** NMR (400 MHz, CDCl₃, 25 °C, TMS) δ =7.30-7.21 (m, 7H), 7.13-7.07(m, 3H), 3.99 (q, *J* = 7.2 Hz, 2H), 2.60 (s, 3H), 0.95 ppm (t, *J* = 7.2 Hz, 3H); ¹³**C** NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 163.0, 157.2, 146.3, 132.7, 129.3, 129.1, 127.2, 127.1, 126.3, 126.2, 124.4, 121.3, 114.6, 58.8, 13.2, 12.8 ppm; **HRMS** calc for C₂₀H₁₈O₃ [M]⁺ 306.1256, found 306.1256.

Methyl 2,4,5-triphenylfuran-3-carboxylate (4ac)

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1a**, 75.4 mg, 0.2 mmol), methyl 2-diazo-3-oxobutanoate **2c** (56.8 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol), AgSbF₆ (6.9 mg, 0.02 mmol), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped at the desired time. The solvent

was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product **4ac** as a colorless syrup (38.5 mg, 60%). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.30-7.27 (m, 3H), 7.23-7.20 (m, 4H), 7.10-7.08 (m, 3H), 3.54 (s, 3H), 2.59 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 163.4, 157.3, 146.5, 132.4, 129.2, 129.1, 127.2, 127.1, 126.4, 126.3, 124.5, 121.3, 114.3, 50.0, 13.3 ppm; HRMS calc for C₁₉H₁₆O₃ [M]⁺ 292.1099, found 292.1101.

Tert-butyl 5-(4-methoxyphenyl)-2-methyl-4-phenylfuran-3-carboxylate (4ba)

To a mixture of (*E*)-2-(4-methoxyphenyl)-3-phenyl-N-tosylacrylamide (**1b**, 81.4 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol), AgSbF₆ (6.9 mg, 0.02 mmol), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue

was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product **4ba** as an off white solid (49.5 mg, 68%). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) $\delta = \delta = 7.29-7.26$ (m, 3H), 7.21-7.18 (m, 3H), 7.17-7.15 (m, 1H), 6.66 (d, J = 9.2 Hz, 2H), 3.67 (s, 3H), 2.57 (s, 3H), 1.16 ppm (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) $\delta = 162.5$, 157.7, 156.2, 146.1, 133.4, 129.2, 127.1, 126.0, 125.8, 122.3, 119.6, 115.8, 112.7, 79.3, 54.2, 26.9, 12.9 ppm; HRMS calc for C₂₃H₂₄O₄ [M]⁺ 364.1675, found 364.1677.

Tert-butyl 5-(4-fluorophenyl)-2-methyl-4-phenylfuran-3-carboxylate (4ca)

To a mixture of (*E*)-2-(4-fluorophenyl)-3-phenyl-N-tosylacrylamide (**1c**, 79.0 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) AgSbF₆ (6.9 mg, 0.02 mmol, 10 mol%) and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the

residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the

product **4ca** as a white solid (42.9 mg, 61%). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.30-7.27 (m, 3H), 7.20-7.17 (m, 4H), 6.80 (t, *J* = 8.8 Hz, 2H), 2.57 (s, 3H), 1.16 ppm (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 163.4, 163.1 (*J*_{C-F} = 246.7 Hz), 157.7, 146.3, 134.1, 130.1, 128.3, 127.3 (*J*_{C-F} = 9.0 Hz), 127.1, 126.7 (*J*_{C-F} = 2.7 Hz), 121.9, 117.1, 115.4 (*J*_{C-F} = 20.9 Hz), 80.5, 27.9, 14.0 ppm; **HRMS** calc for C₂₂H₂₁FO₃ [M]⁺ 352.1475, found 352.1476.

Tert-butyl 2-methyl-5-(4-nitrophenyl)-4-phenylfuran-3-carboxylate (4da)

To a mixture of (*E*)-2-(4-nitrophenyl)-3-phenyl-N-tosylacrylamide (**1d**, 84.4 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) AgSbF₆ (6.9 mg, 0.02 mmol) and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue

was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product **4da** as an off white solid (53.1 mg, 70%). ¹**H** NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.33-7.29 (m, 3H), 7.18-7.12 (m, 4H), 7.00-6.98 (m, 1H), 6.89-6.88 (m, 1H), 2.57 (s, 3H), 1.24 ppm (s, 9H); ¹³**C** NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 162.1, 158.9, 147.8, 133.4, 128.9, 127.3, 126.8, 126.6, 126.0, 125.1, 124.4, 116.6, 113.3, 79.5, 26.9, 13.0 ppm; **HRMS** calc for C₂₂H₂₁NO₅ [M]⁺ 379.1420, found 379.1421.

Tert-butyl 2-methyl-5-phenyl-4-(o-tolyl)furan-3-carboxylate (4ea)

To a mixture of (*E*)-2-phenyl-3-(o-tolyl)-N-tosylacrylamide (**1e**, 78.2 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) AgSbF₆ (6.9 mg, 0.02 mmol), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped at the desired time.

The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product **4ea** as an off white solid (44.5 mg, 64%). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.27-7.24 (m, 2H), 7.18-7.16 (m, 1H), 7.13-7.06 (m, 4H), 7.02-7.00 (m, 2H), 2.58 (s, 3H), 2.27 (s, 3H), 1.18 ppm (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 162.5, 156.6, 145.8, 136.5, 133.0, 129.7, 129.5, 127.2, 127.1, 126.8, 126.1, 126.0, 124.2, 121.3, 116.1, 79.2, 26.8, 20.4, 12.9 ppm; **HRMS** calc for C₂₃H₂₄O₃ [M]⁺ 348.1725, found 348.1725.

Tert-butyl 4-(4-methoxyphenyl)-2-methyl-5-phenylfuran-3-carboxylate (4fa)

To a mixture of (*E*)-3-(4-methoxyphenyl)-2-phenyl-N-tosylacrylamide (**1f**, 81.4 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol) and $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) AgSbF₆ (6.9 mg, 0.02 mmol), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped

at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 30:1, v/v) to give the product **4fa** as an off white solid (36.5 mg, 50%). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.27-7.24 (m, 2H), 7.14-7.10 (m, 5H), 8.85 (d, *J* = 8.8 Hz, 2H), 3.78 (s, 3H), 2.59 (s, 3H), 1.23 ppm (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 162.5, 157.8, 156.6, 146.1, 130.1, 129.5, 127.2, 126.1, 125.2, 124.3, 120.9, 116.1, 112.7, 79.3, 54.2, 27.0, 13.1 ppm; **HRMS** calc for C₂₃H₂₄O₄ [M]⁺ 364.1675, found 364.1678.

Tert-butyl 4-(4-fluorophenyl)-2-methyl-5-phenylfuran-3-carboxylate (4ga)

To a mixture of (*E*)-3-(4-fluorophenyl)-2-phenyl-N-tosylacrylamide (**1g**, 79.0 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) AgSbF₆ (6.9 mg, 0.02 mmol),

and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product **4ga** as an off white solid (48.6 mg, 69%). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.30-7.27 (m, 3H), 7.20-7.17 (m, 4H), 6.80 (t, *J* = 8.8 Hz, 2H), 2.57 (s, 3H), 1.16 ppm (s, 9H); ¹³C NMR (100 MHz, CDCl₃,

25 °C, TMS) δ = 162.3, 162.0 (J_{C-F} = 245.9 Hz), 156.7, 145.3, 133.0, 129.0, 127.3, 126.3, 126.2 (J_{C-F} = 7.0 Hz), 125.7 (J_{C-F} = 4.3 Hz), 120.8, 116.0, 114.4 (J_{C-F} = 21.5 Hz), 79.4, 26.9, 12.9 ppm; **HRMS** calc for C₂₂H₂₁FO₃ [M]⁺ 352.1475, found 352.1476.

Tert-butyl 4-(4-bromophenyl)-2-methyl-5-phenylfuran-3-carboxylate (4ia)

To a mixture of (*E*)-3-(4-bromophenyl)-2-phenyl-N-tosylacrylamide (**1i**, 91.0 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) AgSbF₆ (6.9 mg, 0.02 mmol), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash

column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product **4ia** as an off white solid (44.5 mg, 54%). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ =7.44 (d, *J* = 8.4 Hz, 2H), 7.21-7.15 (m, 2H), 7.13-7.09 (m, 5H), 2.58 (s, 3H), 1.22 ppm (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 162.1, 157.0, 146.2, 132.2, 130.9, 130.4, 129.1, 127.3, 126.4, 124.4, 120.3, 120.0, 115.7, 79.7, 27.0, 13.1 ppm; HRMS calc for C₂₂H₂₁BrO₃ [M]⁺412.0674, found 412.0673.

Tert-butyl 2-methyl-4-(4-nitrophenyl)-5-phenylfuran-3-carboxylate (4ja)

To a mixture of (*E*)-3-(4-nitrophenyl)-2-phenyl-N-tosylacrylamide (**1j**, 84.4 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) AgSbF₆ (6.9 mg, 0.02 mmol), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by

flash column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product **4ja** as an off white solid (45.5 mg, 60%). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ =8.00 (d , *J* = 8.4 Hz, 2H), 7.15(d, *J* = 8.4 Hz, 2H), 7.11-7.09 (m, 3H), 6.94-6.92 (m, 2H), 2.40 (s, 3H), 1.10 ppm (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃, 25°C, TMS) δ = 162.0, 156.9, 147.8, 133.4, 128.9, 127.3, 126.8, 126.6, 126.0, 125.1, 124.4, 116.6, 113.3, 79.5, 26.9, 13.0 ppm; **HRMS** calc for C₂₂H₂₁NO₅ [M]⁺ 379.1420, found 379.1422.

Tert-butyl 2-methyl-4-phenyl-5-(thiophen-2-yl)furan-3-carboxylate (4ka)

To a mixture of (*Z*)-3-phenyl-2-(thiophen-2-yl)-N-tosylacrylamide (**1k**, 76.6 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) AgSbF₆ (6.9 mg, 0.02 mmol), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash

column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product **4ka** as an off white solid (38.1 mg, 56%). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.33-7.30 (m, 3H), 7.24-7.22 (m, 2H), 7.02-7.00 (m, 1H), 6.85-6.84 (m, 1H), 6.81-6.79 (m, 1H), 2.60 (s, 3H), 1.16 ppm (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 162.2, 156.6, 142.8, 132.4, 131.4, 129.2, 127.2, 126.5, 126.0, 123.4, 122.4, 120.3, 115.8, 79.4, 26.8, 13.0 ppm; **HRMS** calc for C₂₀H₂₀O₃S [M]⁺ 340.1133, found 340.1133.

Tert-butyl 2-methyl-5-phenyl-4-(thiophen-3-yl)furan-3-carboxylate (4la)

To a mixture of (*E*)-2-phenyl-3-(thiophen-2-yl)-N-tosylacrylamide (**11**, 76.6 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) AgSbF₆ (6.9 mg, 0.02 mmol), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped at the desired time. The

solvent was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product **4la** as an off white solid (48.3 mg, 71%). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ =7.34-7.30 (m , 3H), 7.18-7.12 (m, 3H), 7.01-6.89 (m, 1H), 6.89-6.88 (m, 1H), 2.58 (s, 3H), 1.25 ppm (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 163.1, 157.9, 148.8, 134.5, 130.0, 128.3, 127.9, 127.6, 127.1, 126.2, 125.5, 117.7, 114.4, 80.6, 28.0, 14.1 ppm; **HRMS** calc for C₂₀H₂₀O₃S [M]⁺ 340.1133, found 340.1131.

Ethyl 4-(4-methoxyphenyl)-2-methyl-5-pentylfuran-3-carboxylate (4ma)

To a mixture of (*E*)-2-(4-methoxybenzylidene)-N-tosylheptanamide (**1m**, 80.2 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) AgSbF₆ (6.9 mg, 0.02 mmol), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was

purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product **4ma** as a colorless syrup (35.6 mg, 54%). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.08-7.04 (m, 2H), 6.83-6.81 (m, 2H), 3.75 (s, 3H), 2.47 (s, 3H), 2.38 (t, *J* = 7.6 Hz, 2H), 1.49 (q, *J* = 7.6 Hz, 2H), 1.24 (s, 9H), 1.18-1.12 (m, 9H), 0.77 ppm (t, *J* = 6.8 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 162.8, 157.3, 155.6, 149.9, 130.0, 125.1, 119.7, 113.9, 112.1, 79.1, 54.2, 30.2, 27.2, 27.0, 24.8, 21.3, 13.0, 12.9 ppm; **HRMS** calc for C₂₀H₂₆O₄ [M]⁺ 330.1831, found 330.1830.

Tert-butyl 4-(4-chlorophenyl)-2-methyl-5-phenylfuran-3-carboxylate (4pa)

To a mixture of (*E*)-3-(4-chlorophenyl)-2-phenyl-N-tosylacrylamide (**1p**, 80.2 mg, 0.2 mmol), tert-butyl 2-diazo-3-oxobutanoate (**2a**, 73.6 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) AgSbF₆ (6.9 mg, 0.02 mmol), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash

column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product **4pa** as a white solid (37.5 mg, 51%). ¹**H** NMR (400 MHz, CDCl₃, 25 °C, TMS) δ =7.30-7.28 (m, 2H), 7.23-7.20 (m, 2H), 7.16-7.12 (m, 5H), 2.58 (s, 3H), 1.22 ppm (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 162.2, 157.0, 146.2, 132.1, 131.7, 130.5, 129.1, 127.4, 126.4, 124.4, 119.9, 120.0, 115.7, 79.6, 26.9, 13.1 ppm; **HRMS** calc for C₂₂H₂₁ClO₃ [M]⁺ 368.1179, found 368.1180.

Ethyl 4,5-diphenyl-2-propylfuran-3-carboxylate (4ad)

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1a**, 75.4 mg, 0.2 mmol), ethyl 2-diazo-3-oxohexanoate (**2d**, 73.6 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) AgSbF₆ (6.9 mg, 0.02 mmol), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped at the desired time. The solvent was

concentrated under vacuum and the residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product **4ad** as a colorless syrup (50.8 mg, 76%). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.32-7.22 (m, 7H), 7.14-7.06 (m, 3H), 3.99 (q, *J* = 7.2 Hz, 2H), 2.98 (t, *J* = 7.6 Hz, 2H),

1.80-1.70 (m, 3H), 0.97 (t, J = 7.2 Hz, 3H), 0.94 ppm (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) $\delta = 163.0, 160.9, 146.3, 132.8, 129.4, 129.1, 127.2, 127.1, 126.3, 126.2, 124.4, 121.2, 114.3, 58.8, 28.9, 20.6, 126.1, 1$ 12.9, 12.7 ppm; **HRMS** calc for $C_{22}H_{22}O_3$ [M]⁺ 334.1569, found 334.1568.

Ethyl 2,4,5-triphenylfuran-3-carboxylate (4ae)

2-diazo-3-oxo-3-phenylpropanoate 2e (87.2 mg, 0.4 mmol), [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol) AgSbF₆ (6.9 mg, 0.02 mmol), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product 4ae as an off white solid (50.1 mg, 68%). ¹H NMR (400 MHz, $CDCl_{3}$, 25 °C, TMS) δ = 7.85 (d, J = 8.4 Hz, 2H), 7.40-7.28 (m, 10H), 7.18-7.12 (m, 3H), 3.98 (q, J = 7.2 Hz, 2H), 0.85 ppm (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) $\delta = 163.3$, 153.2, 147.2, 132.2, 129.1, 129.0, 128.8, 128.1, 127.4, 127.3, 127.2, 126.7, 126.6, 126.5, 124.7, 122.6, 115.9, 59.5, 12.5 ppm; HRMS calc for $C_{25}H_{20}O_3[M]^+$ 368.1412, found 368.1410.

To a mixture of (E)-2,3-diphenyl-N-tosylacrylamide (1a, 75.4 mg, 0.2 mmol), ethyl

Ethyl 2-(4-nitrophenyl)-4,5-diphenylfuran-3-carboxylate (4ah)

To a mixture of (E)-2,3-diphenyl-N-tosylacrylamide (1a, 75.4 mg, 0.2 mmol), ethyl 2-diazo-3-(4-nitrophenyl)-3-oxopropanoate (2h, 105.2 mg, 0.4 mmol), [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol) AgSbF₆ (6.9 mg, 0.02 mmol), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue

was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product 4ah as an off white solid (39.9 mg, 50%). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ =8.24 (d , J = 9.2 Hz, 2H), 8.08 (d, J = 9.2 Hz, 2H), 7.39-7.33 (m, 5H), 7.30-7.27 (m, 2H), 7.22-7.18 (m, 3H), 4.02 (q, J = 7.2 Hz, 2H), 0.89 ppm (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) $\delta = 164.0$, 150.9, 150.0, 147.4, 135.6, 132.6, 129.9, 129.5, 128.6, 128.5, 128.0, 127.9, 126.0, 124.3, 123.8, 119.9, 61.1, 13.5 ppm; **HRMS** calc for $C_{24}H_{17}NO_5$ [M]⁺ 399.1107, found 399.1109.

Methyl 4,5-diphenyl-2-(p-tolyl)furan-3-carboxylate (4ai)

To a mixture of (E)-2,3-diphenyl-N-tosylacrylamide (1a, 75.4 mg, 0.2 mmol) methyl 2-diazo-3-oxo-3-phenylpropanoate (2i, 81.6 mg, 0.4 mmol), [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol) AgSbF₆ (6.9 mg, 0.02 mmol), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by

flash column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product **4ai** as an off white solid (47.8 mg, 65%). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.70 (d, J = 8.4 Hz, 2H), 7.35-7.30 (m, 7H), 7.20 -7.14 (m, 5H), 3.51 (s, 3H), 2.34 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 164.8, 154.9, 148.2, 139.3, 133.2, 130.2, 130.0, 129.1, 128.4, 128.4, 127.8, 127.7, 127.7, 127.1, 125.8, 123.6, 116.0, 51.5, 21.5 ppm; **HRMS** calc for $C_{25}H_{20}O_3$ [M]⁺ 368.1412, found 368.1413.

Methyl 2-(4-fluorophenyl)-4,5-diphenylfuran-3-carboxylate (4aj)

To a mixture of (E)-2,3-diphenyl-N-tosylacrylamide (1a, 75.4 mg, 0.2 mmol), methyl 2-diazo-3-(4-fluorophenyl)-3-oxopropanoate (2j, 88.8 mg, 0.4 mmol), [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol) AgSbF₆ (6.9 mg, 0.02 mmol), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product **4aj** as an off white solid (46.1 mg, 62%). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.85-7.82 (m, 2H), 7.34-7.27 (m, 7H), 7.17-7.15(m, 3H), 7.10-7.05 (m, 2H), 3.50 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 164.1, 164.0 (*J*_{C-F} = 248.5 Hz), 153.3, 148.0, 132.5, 129.5, 129.4, 129.4, 128.0, 127.9, 127.4 (*J*_{C-F} = 14.4 Hz), 125.6 (*J*_{C-F} = 2.1 Hz), 125.4, 123.1, 115.9, 115.1 (*J*_{C-F} = 21.7 Hz), 51.1 ppm; HRMS calc for C₂₄H₁₇FO₃ [M]⁺ 372.1162, found 372.1165.

Methyl 2-(4-chlorophenyl)-4,5-diphenylfuran-3-carboxylate (4ak)

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1a**, 75.4 mg, 0.2 mmol), methyl 3-(4-chlorophenyl)-2-diazo-3-oxopropanoate (**2k**, 95.2 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) AgSbF₆ (6.9 mg, 0.02 mmol), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was

purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product **4ak** as an off white solid (51.2 mg, 66%). ¹**H** NMR (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.77 (d, *J* = 8.8 Hz, 2H), 7.36-7.31 (m, 7H), 7.28-7.26 (m, 2H), 7.16-7.14 (m, 2H), 3.50 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 163.5, 152.2, 147.6, 134.1, 131.8, 128.8, 128.7, 128.0, 127.6, 127.4, 127.3, 127.2, 126.9, 126.7, 124.8, 122.7, 115.8, 50.5 ppm; **HRMS** calc for C₂₄H₁₇ClO₃ [M]⁺ 388.0866, found 388.0867.

Methyl 2-(4-bromophenyl)-4,5-diphenylfuran-3-carboxylate (4al)

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1a**, 75.4 mg, 0.2 mmol), methyl 3-(4-bromophenyl)-2-diazo-3-oxopropanoate (**2l**, 112.4 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) AgSbF₆ (6.9 mg, 0.02 mmol), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped

at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product **4al** as an off white solid (65.7 mg, 76%). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.71 (d, *J* = 8.4 Hz, 2H), 7.51 (d, *J* = 8.4 Hz, 2H), 7.34-7.26 (m, 7H), 7.16-7.15 (m, 3H), 3.51 ppm (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 164.6, 153.3, 148.8, 132.9, 131.6, 129.9, 129.8, 129.3, 128.8, 128.5, 128.4, 128.0, 127.8, 125.9, 123.8, 123.5, 117.0, 51.6 ppm; **HRMS** calc for C₂₄H₁₇BrO₃ [M]⁺432.0361, found 432.0362.

Methyl 4,5-diphenyl-2-(thiophen-2-yl)furan-3-carboxylate (4am)

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1a**, 75.4 mg, 0.2 mmol), methyl 2-diazo-3-oxo-3-(thiophen-2-yl)propanoate (**2m**, 84.0 mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) AgSbF₆ (6.9 mg, 0.02 mmol), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped at the desired

time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product **4am** as an off white solid (46.8 mg, 65%). ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS) $\delta = \delta = 7.89-7.87$ (m, 1H), 7.38-7.36 (m, 1H), 7.35-7.29 (m, 5H), 7.27-7.25 (m, 2H), 7.18-7.13 (m, 3H), 7.07-7.05 (m, 1H), 3.55 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) $\delta = 164.2$, 151.0, 147.9, 133.2, 131.7, 130.0, 129.8, 128.5, 128.4, 128.4, 127.9, 127.9, 127.7, 127.5, 125.8, 123.6, 114.7, 51.3 ppm; HRMS calc for C₂₂H₁₆O₃S [M]⁺ 360.0820, found 360.0820.

Methyl 2-(naphthalen-2-yl)-4,5-diphenylfuran-3-carboxylate (4an)

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1a**, 75.4 mg, 0.2 mmol), methyl 2-diazo-3-(naphthalen-2-yl)-3-oxopropanoate (**2n**, 101.6mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) AgSbF₆ (6.9 mg, 0.02 mmol), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified

by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product **4an** as an off white solid (57.4 mg, 71%). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 8.33 (s, 1H), 7.86-7.77 (m, 4H), 7.45-7.43 (m, 2H), 7.40-7.38 (m, 2H), 7.34-7.31(m, 5H), 7.18-7.15 (m, 3H), 3.54 ppm (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃, 25 °C, TMS) δ = 164.9, 154.4, 148.7, 133.5, 133.1, 133.0, 130.1, 130.0, 128.7, 128.5, 128.5, 127.9, 127.9, 127.8, 127.8, 127.5, 127.3, 126.9, 126.5, 126.0, 125.0, 123.8, 116.9, 51.6 ppm; **HRMS** calc for C₂₈H₂₀O₃ [M]⁺ 404.1412, found 404.1411.

Methyl 2-(4-methoxyphenyl)-4,5-diphenylfuran-3-carboxylate (4ao)

To a mixture of (*E*)-2,3-diphenyl-N-tosylacrylamide (**1a**, 75.4 mg, 0.2 mmol), methyl 2-diazo-3-(4-methoxyphenyl)-3-oxopropanoate (**2o**, 93.6mg, 0.4 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.005 mmol) AgSbF₆ (6.9 mg, 0.02 mmol), and AgOAc (66.8 mg, 0.4 mmol) under N₂, MeOH (2.0 mL) was added via syringe. The reaction was monitored by TLC

and stopped at the desired time. The solvent was concentrated under vacuum and the residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 10:1, v/v) to give the product **4an** as an off white solid (38.4 mg, 50%). ¹**H NMR** (400 MHz, CDCl₃, 25 °C, TMS) δ = 7.79 (d, *J* = 9.2 Hz, 2H), 7.34-7.27 (m, 7H), 7.17-7.11 (m, 3H), 6.91 (d, *J* = 8.8 Hz, 2H), 3.78 (s, 3H), 3.49 ppm (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS) δ = 164.4, 159.9, 154.6, 147.4, 132.8, 129.7, 129.5, 129.0, 127.9, 127.2, 127.1, 125.3, 123.1, 122.1, 114.8, 113.3, 54.9, 50.9 ppm; **HRMS** calc for C₂₅H₂₀O₄ [M]⁺ 384.1362, found 384.1365.

Mechanistic studies

• Olefin deuteration experiment

[RhCp*Cl₂]₂ (1.6 mg, 0.0025 mmol, 1.5 mol %) and **1f-d₄** (41.1 mg, 0.1 mmol, 1.0 equiv) were added to a 10 mL vial equipped with a stir bar. MeOH (1.0 mL) was added using a syringe. The reaction was stirred at 60 °C under nitrogen atmosphere for 4 h, then the reaction mixture was quckli cooled and filtered through a pad of Celite and the filter cake is washed with CH₂Cl₂. The filtrate was concentrated in vacuo to leave a crude mixture, which was purified by silica gel column chromatography to afford **1f-d₄** in 96% yield with no hydrogen incorporation at the olefin position according to ¹H NMR.

• KIE experiments

KIE experiments for the synthesis of pyrone 3fa (intermolecular competition)

[RhCp*Cl₂]₂ (3.1 mg, 0.005 mmol, 2.5 mol%), **1f** (40.7 mg, 0.1 mmol, 0.05 equiv), **1f-d₄** (41.1 mg, 0.1 mmol, 0.05 equiv) and **2a** (73.6 mg, 0.4 mmol, 2.0 equiv) were successively added to a 10 mL vial equipped with a stir bar. MeOH (2.0 mL) was added using a syringe. The mixture was stirred at 60 °C for 2 h under N₂, then the reaction mixture was quickly cooled and filtered through a pad of Celite and the filter cake was washed with CH₂Cl₂. The filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (*n*-hexane/EtOAc = 5:1, v/v) to afford **3fa/3fa-d₃**. The ratio of **3fa/3fa-d₃** = 4.0 was determined by ¹H NMR.

KIE experiments for the synthesis of pyrone 3fa (parallel experiments)

[RhCp*Cl₂]₂ (3.1 mg, 0.005 mmol, 2.5 mol%), **1f** (81.4 mg, 0.2 mmol, 1.0 equiv) and **2a** (73.6 mg, 0.4 mmol, 2.0 equiv) were successively added to a 10 mL vial equipped with a stir bar. MeOH (2.0 mL) was added using a syringe. In another reaction vessel, **1f-d**₄ (82.2mg, 0.2 mmol, 1.0 equiv) was used instead of **1f**. The two reactions were stirred at 60 °C for 2 h under N₂, then the reaction mixtures were quickly cooled and filtered through a pad of Celite and the filter cake was washed with CH₂Cl₂, respectively. The resulting filtrate was mixed and concentrated in vacuo. The residue was purified by silica gel column chromatography (*n*-hexane/EtOAc = 5:1, v/v) to afford **3fa/3fa-d₃** (**KIE**) = 3.5 was determined by ¹H NMR.

KIE experiments for the synthesis of furan 4fa (intermolecular competition)

[RhCp*Cl₂]₂ (3.1 mg, 0.005 mmol, 2.5 mol%), AgOAc (66.8 mg, 0.4 mmol, 2.0 equiv), AgSbF₆ (6.9 mg, 0.02 mmol, 10 mol%), **1f** (40.7 mg, 0.1 mmol, 0.05 equiv), **1f-d₄** (41.1 mg, 0.1 mmol, 0.05 equiv) and **2a** (73.6 mg, 0.4 mmol, 2.0 equiv) were successively added to a 10 mL vial equipped with a stir bar. MeOH (2.0 mL) was added using a syringe. The mixture was stirred at 60 °C for 2 h under N₂, then the reaction mixture was filtered through a pad of Celite and the filter cake was washed with CH₂Cl₂. The filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (*n*-hexane/EtOAc = 30:1, v/v) to afford **4fa/4fa-d₃** (about 20% conversion). The ratio of **4fa/4fa-d₃** = 2.8 was determined by ¹H NMR.

KIE experiments for the synthesis of furan 4fa (parallel experiments)

[RhCp*Cl₂]₂ (3.1 mg, 0.005 mmol, 2.5 mol%), AgOAc (66.8 mg, 0.4 mmol, 2.0 equiv), AgSbF₆ (6.9 mg, 0.02 mmol, 10 mol%), **1f** (81.4 mg, 0.2 mmol, 1.0 equiv) and **2a** (73.6 mg, 0.4 mmol, 2.0 equiv) were successively added to a 10 mL vial equipped with a stir bar. MeOH (2.0 mL) was added using a syringe. In another reaction vessel, **1f-d**₄ (82.2mg, 0.2 mmol, 1.0 equiv) was used instead of **1f**. The two reactions were stirred at 60 °C for 2 h under N₂, then the reaction mixtures were quickly cooled and filtered through a pad of Celite and the filter cake was washed with CH₂Cl₂, respectively. The resulting filtrate was mixed and concentrated in vacuo. The residue was purified by silica gel column chromatography (*n*-hexane/EtOAc = 30:1) to afford 4**fa/4fa-d**₃ (about 20% conversion). The ratio of **4fa:[D₄]-4fa** (KIE) = 2.6 was determined by ¹H NMR.

References

[1] a) Y. Jiang, V. Z. Y. Khong, E. Lourdusamy and C.-M. Park, *Chem. Commun.*, 2012, 48, 3133; b) J. Linder, T. P. Garner, H. E. L. Williams, M. S. Searle and C. J. Moody, *J. Am. Chem. Soc.*, 2011, 133, 1044; c) B. Shi, A. J. Blake, W. Lewis, I. B. Campbell, B. D. Judkins and C. J. Moody, *J. Org. Chem.*, 2010, 75, 152; d) J. Pietruszka and A. Witt, *Synthesis* 2006, 4266.

NMR spectra

(E)-2,3-Diphenyl-N-tosylacrylamide (1a)

(E)-2-(4-Methoxyphenyl)-3-phenyl-N-tosylacrylamide (1b)

(E)-2-(4-Fluorophenyl)-3-phenyl-N-tosylacrylamide (1c)

(E)-2-(4-Nitrophenyl)-3-phenyl-N-tosylacrylamide (1d)

(E)-2-Phenyl-3-(o-tolyl)-N-tosylacrylamide (1e)

(E)-3-(4-Methoxyphenyl)-2-phenyl-N-tosylacrylamide (1f)

(E)-3-(4-Methoxyphenyl)-2-phenyl-N-tosylacrylamid-d₄ (1f-d₄)

(E)-3-(4-Fluorophenyl)-2-phenyl-N-tosylacrylamide (1g)

(E)-3-(2,4-Dichlorophenyl)-2-phenyl-N-tosylacrylamide (1h)

S44

(E)-3-(4-Bromophenyl)-2-phenyl-N-tosylacrylamide (1i)

(E)-3-(4-Nitrophenyl)-2-phenyl-N-tosylacrylamide (1j)

(Z)-3-Phenyl-2-(thiophen-2-yl)-N-tosylacrylamide (1k)

(E)-2-Phenyl-3-(thiophen-2-yl)-N-tosylacrylamide (11)

(*E*)-2-(4-Methoxybenzylidene)-*N*-tosylheptanamide (1m)

S54

(E)-2-(Cyclohex-1-en-1-yl)-3-phenyl-N-tosylacrylamide (1n)

(E)-3-(Naphthalen-2-yl)-2-phenyl-N-tosylacrylamide (10)

(E)-3-(4-Chlorophenyl)-2-phenyl-N-tosylacrylamide (1p)

Tert-butyl 6-methyl-2-oxo-3,4-diphenyl-2*H*-pyran-5-carboxylate (3aa)

Ethyl 6-methyl-2-oxo-3,4-diphenyl-2H-pyran-5-carboxylate (3ab)

Methyl 6-methyl-2-oxo-3,4-diphenyl-2H-pyran-5-carboxylate (3ac)

S66

Tert-butyl 3-(4-fluorophenyl)-6-methyl-2-oxo-4-phenyl-2H-pyran-5-carboxylate (3ca)

Tert-butyl 6-methyl-3-(4-nitrophenyl)-2-oxo-4-phenyl-2H-pyran-5-carboxylate (3da)

Tert-butyl 6-methyl-2-oxo-3-phenyl-4-(o-tolyl)-2H-pyran-5-carboxylate (3ea)

Tert-butyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-3-phenyl-2H-pyran-5-carboxylate (3fa)

Tert-butyl 4-(2,4-dichlorophenyl)-6-methyl-2-oxo-3-phenyl-2H-pyran-5-carboxylate (3ha)

S80

Tert-butyl 4-(4-bromophenyl)-6-methyl-2-oxo-3-phenyl-2H-pyran-5-carboxylate (3ia)

Tert-butyl 6-methyl-4-(4-nitrophenyl)-2-oxo-3-phenyl-2H-pyran-5-carboxylate (3ja)

Tert-butyl 6-methyl-2-oxo-4-phenyl-3-(thiophen-2-yl)-2H-pyran-5-carboxylate (3ka)

Tert-butyl 6-methyl-2-oxo-3-phenyl-4-(thiophen-2-yl)-2H-pyran-5-carboxylate (3la)

Tert-butyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-3-pentyl-2H-pyran-5-carboxyate (3ma)

S90

Tert-butyl-3-(cyclohex-1-en-1-yl)-6-methyl-2-oxo-4-phenyl-2H-pyran-5-carboxylate (3na)

Tert-butyl 6-methyl-4-(naphthalen-2-yl)-2-oxo-3-phenyl-2H-pyran-5-carboxylate (3oa)

Ethyl 2-oxo-3,4-diphenyl-6-propyl-2H-pyran-5-carboxylate (3ad)

Ethyl 2-oxo-3,4,6-triphenyl-2H-pyran-5-carboxylate (3ae)

S98

Ethyl 6-(4-chlorophenyl)-2-oxo-3,4-diphenyl-2H-pyran-5-carboxylate (3af)

Ethyl 6-(4-bromophenyl)-2-oxo-3,4-diphenyl-2H-pyran-5-carboxylate (3ag)

Ethyl 6-(4-nitrophenyl)-2-oxo-3,4-diphenyl-2H-pyran-5-carboxylate (3ah)

Methyl 2-oxo-3,4-diphenyl-6-(p-tolyl)-2H-pyran-5-carboxylate (3ai)

Methyl 6-(4-fluorophenyl)-2-oxo-3,4-diphenyl-2H-pyran-5-carboxylate (3aj)

Methyl 6-(4-chlorophenyl)-2-oxo-3,4-diphenyl-2H-pyran-5-carboxylate (3ak)

Methyl 6-(4-bromophenyl)-2-oxo-3,4-diphenyl-2H-pyran-5-carboxylate (3al)

S112

Methyl 2-oxo-3,4-diphenyl-6-(thiophen-2-yl)-2H-pyran-5-carboxylate (3am)

Ethyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-3-phenyl-2*H*-pyran-5-carboxylate (3fb)

Tert-butyl 2-methyl-4,5-diphenylfuran-3-carboxylate (4aa)

Ethyl 2,4,5-triphenylfuran-3-carboxylate (4ab)

Methyl 2,4,5-triphenylfuran-3-carboxylate (4ac)

Tert-butyl 5-(4-methoxyphenyl)-2-methyl-4-phenylfuran-3-carboxylate (4ba)

Tert-butyl 5-(4-fluorophenyl)-2-methyl-4-phenylfuran-3-carboxylate (4ca)

Tert-butyl 2-methyl-5-(4-nitrophenyl)-4-phenylfuran-3-carboxylate (4da)

Tert-butyl 2-methyl-5-phenyl-4-(o-tolyl)furan-3-carboxylate (4ea)

Tert-butyl 4-(4-methoxyphenyl)-2-methyl-5-phenylfuran-3-carboxylate (4fa)

S132

Tert-butyl 4-(4-fluorophenyl)-2-methyl-5-phenylfuran-3-carboxylate (4ga)

Tert-butyl 4-(4-bromophenyl)-2-methyl-5-phenylfuran-3-carboxylate (4ia)

Tert-butyl 2-methyl-4-(4-nitrophenyl)-5-phenylfuran-3-carboxylate (4ja)

Tert-butyl 2-methyl-4-phenyl-5-(thiophen-2-yl)furan-3-carboxylate (4ka)

Tert-butyl 2-methyl-5-phenyl-4-(thiophen-3-yl)furan-3-carboxylate (4la)

Ethyl 4-(4-methoxyphenyl)-2-methyl-5-pentylfuran-3-carboxylate (4ma)

Tert-butyl 4-(4-chlorophenyl)-2-methyl-5-phenylfuran-3-carboxylate (4pa)

Ethyl 2,4,5-triphenylfuran-3-carboxylate (4ae)

Ethyl 2-(4-nitrophenyl)-4,5-diphenylfuran-3-carboxylate (4ah)

Methyl 4,5-diphenyl-2-(p-tolyl)furan-3-carboxylate (4ai)

Methyl 2-(4-fluorophenyl)-4,5-diphenylfuran-3-carboxylate (4aj)

Methyl 2-(4-chlorophenyl)-4,5-diphenylfuran-3-carboxylate (4ak)

Methyl 2-(4-bromophenyl)-4,5-diphenylfuran-3-carboxylate (4al)

Methyl 4,5-diphenyl-2-(thiophen-2-yl)furan-3-carboxylate (4am)

Methyl 2-(naphthalen-2-yl)-4,5-diphenylfuran-3-carboxylate (4an)

Methyl 2-(4-methoxyphenyl)-4,5-diphenylfuran-3-carboxylate (4ao)

