Supplementary Information

Double Hydrophosphination of Alkynes Promoted by Rhodium: the Key Role of an N -Heterocyclic Carbene Ligand

Andrea Di Giuseppe, ${ }^{* a}$ Roberto De Luca, ${ }^{\text {ab }}$ Ricardo Castarlenas,*ab Jesús J. Pérez-Torrente, ${ }^{\text {a }}$ Marcello Crucianelli, ${ }^{\text {b }}$ and Luis A. Oro*ac

a) Departamento Química Inorgánica, Instituto Síntesis Química y Catálisis Homogénea (ISQCH),
Universidad de Zaragoza - CSIC, C/ Pedro Cerbuna 12, 50009 Zaragoza (Spain)
E-mail: oro@unizar.es, rcastar@unizar.es, dgandrea@unizar.es
b) Dipartimento di Scienze Fisiche e Chimiche, Università dell'Aquila, Via Vetoio, I-67100 Coppito (AQ) (Italy)
c) Center for Refining \& Petrochemicals, King Fahd University of Petroleum \& Minerals, Dhahran, 31261 Saudi Arabia

Experimental Section

All reactions were carried out under argon atmosphere with rigorous exclusion of air. Alkynes were purchased from commercial sources and were used as received. Organic solvents were dried by standard procedures and distilled under argon prior to use or obtained oxygen- and water-free from a Solvent Purification System (Innovative Technologies). The organometallic catalysts $\left[\operatorname{Rh}(\mu-\mathrm{Cl})(\operatorname{IPr})\left(\eta^{2} \text {-coe }\right)\right]_{2}(\mathbf{1 a}),{ }^{[1]}\left[\mathrm{Rh}(\mu-\mathrm{Cl})\left(\eta^{2} \text {-coe }\right)_{2}\right]_{2}(\mathbf{1 b}),{ }^{[2]} \mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}(\mathbf{1 c}),{ }^{[3]}$ $\left[\mathrm{Rh}(\mu-\mathrm{Cl})\left(\mathrm{PCy}_{3}\right)\left(\eta^{2} \text {-coe }\right)\right]_{2}$ (1d), ${ }^{[4]}$ were prepared following the procedures described in the literature. The diphosphines 7a, b, e were previously reported and fully characterized. ${ }^{[5-8]}{ }^{1} \mathrm{H},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\},{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on either a Varian Gemini 2000, a Bruker ARX 300 or a Bruker Avance 500 and 400 MHz instrument. Chemical shifts (expressed in parts per million) are referenced to residual solvent peaks ($\left.{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right)$ or external $\mathrm{H}_{3} \mathrm{PO}_{4}$ $\left({ }^{31} \mathrm{P}\right)$, and $\mathrm{CFCl}_{3}\left({ }^{19} \mathrm{~F}\right)$. Coupling constants, J, are given in Hz . Spectral assignments were achieved by combination of ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-$ APT, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC/HMBC, and ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC experiments. High-resolution electrospray mass spectra were acquired on a Bruker Microtof-Q (ESI ${ }^{+}$).

Table S1. Reaction of phenylacetylene with diphenylphosphine catalyzed by $R h^{\prime}$ complexes. ${ }^{\text {a }}$

Entry	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Alkyne/Ph ${ }_{2} \mathrm{PH}$ molar ratio	Catalyst ${ }^{\text {b }}$	Solvent	Conv. $(\%)^{c}$	4a/5a/6a (\%) ${ }^{\text {d }}$	$\begin{gathered} 7 \mathrm{a} \\ (\%)^{\mathrm{d}} \end{gathered}$	$\begin{gathered} \mathbf{8} \\ (\%)^{d} \end{gathered}$
1	25	1:1	1a	$\mathrm{C}_{6} \mathrm{D}_{6}$	0	---	---	---
2	50	1:1	1a	$\mathrm{C}_{6} \mathrm{D}_{6}$	23	4/31/45	12	9
3	80	1:1	1a	$\mathrm{C}_{6} \mathrm{D}_{6}$	52	1/23/32	35	9
4	80	1:1	$1 \mathrm{a}^{\mathrm{e}}$	$\mathrm{C}_{6} \mathrm{D}_{6}$	21	3/25/48	20	5
5	80	$1: 5^{f}$	1a	$\mathrm{C}_{6} \mathrm{D}_{6}$	$>99^{9}$	0/17/45	14	23
6	80	$5: 1^{\text {h }}$	12	$\mathrm{C}_{6} \mathrm{D}_{6}$	>99	13/17/60	10	1
7	80	1:1	12	Pyr-d ${ }_{5}$	0	---	---	---
8	80	1:1	1a	Acetone- d_{6}	19	2/23/57	9	8
9	120	0.5:1 ${ }^{1}$	1a	tol- d_{8}	90	0/6/4	66	24
10	120	0.5:1 ${ }^{1}$	1a	1.4-dioxane	90	2/9/17	47	25
11	120	0.5:1 ${ }^{1}$	none	tol- d_{8}	44	0/88/12	0	0
12	120	0.5:1 ${ }^{\text {J }}$	1a	none	91	0/6/2	57	36
13	120	Only $\mathrm{Ph}_{2} \mathrm{PH}^{\mathrm{k}}$	none	tol- d_{8}	0	---	---	---
14	120	Only $\mathrm{Ph}_{2} \mathrm{PH}^{\mathrm{K}}$	1a	tol- d_{8}	43	---	---	100
15	120	0.5:1 ${ }^{1}$	10	tol-d8	96	0/8/4	67	22
16	120	0.5:1 ${ }^{\text {1 }}$	11	tol- d_{8}	45	2/79/17	1	1

${ }^{a}$ Reaction conditions: 0.2 mmol of phenylacetylene, 0.2 mmol of $\mathrm{Ph}_{2} \mathrm{PH}, 0.5 \mathrm{~mL}$ of solvent, 24 h of reaction. ${ }^{b} \mathrm{Rh} / \mathrm{PHPh}_{2}=0.05 .{ }^{c}$ Based on phosphine consumption, quantified by integration of the Inverse Gated Decoupled- ${ }^{31} \mathrm{P}$ NMR spectra. ${ }^{d}$ molar ratio, quantified by integration of the Inverse Gated Decoupled- ${ }^{31} \mathrm{P}$ NMR spectra. ${ }^{e} \mathrm{Rh} / \mathrm{PHPh}_{2}=0.025 .{ }^{f} 0.2 \mathrm{mmol}$ of phenylacetylene, 1 mmol of $\mathrm{Ph}_{2} \mathrm{PH} .{ }^{g}$ Based on phenylacetylene consumption, quantified by integration of the ${ }^{1} \mathrm{H}$ NMR spectra. ${ }^{h} 1 \mathrm{mmol}$ of phenylacetylene, 0.2 mmol of $\mathrm{Ph}_{2} \mathrm{PH} .{ }^{i} 0.1 \mathrm{mmol}$ of phenylacetylene, 0.2 mmol of $\mathrm{Ph}_{2} \mathrm{PH} .{ }^{j} 0.4 \mathrm{mmol}$ of phenylacetylene, 0.8 mmol of $\mathrm{Ph}_{2} \mathrm{PH}$ and 0.02 mmol of $1 \mathbf{a} .{ }^{k}$ 0.2 mmol of $\mathrm{Ph}_{2} \mathrm{PH}$.

In-situ preparation of $\mathrm{RhCl}(\mathrm{IPr})\left(\mathrm{PHPh}_{2}\right)_{2}(9)$.

A solution of 1a ($25 \mathrm{mg}, 0.020 \mathrm{mmol}$) in $\mathrm{C}_{6} \mathrm{D}_{6}$ (0.5 mL , NMR-tube) at room temperature was treated with diphenylphosphine ($16 \mu \mathrm{~L}, 0.092 \mathrm{mmol}$). It was immediately observed the formation of 9. ${ }^{1} \mathrm{H}$ NMR (300 MHz , toluene- $\mathrm{d}_{8}, 298$ $K): \delta 7.58-6.79\left(\mathrm{H}_{\mathrm{Ph}}, 26 \mathrm{H}\right), 6.83(\mathrm{~s}, 2 \mathrm{H},=\mathrm{CHN}), 6.39\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{H}}=330,1 \mathrm{H}, \mathrm{P}_{\mathrm{a}} \mathrm{H}\right)$, 5.46 (d, $J_{\mathrm{P}-\mathrm{H}}=331,1 \mathrm{H}, \mathrm{P}_{\mathrm{b}} \mathrm{H}$), 4.10 (sept, $J_{\mathrm{H}-\mathrm{H}}=7,2 \mathrm{H}, \mathrm{CH} \mathrm{He}_{\mathrm{IPr}}$), 3.24 (sept, $J_{\mathrm{H}-\mathrm{H}}$
 CHMe $_{\text {IPr }}$), 0.99 (d, $J_{H-H}=7,1 \mathrm{H}, \mathrm{CHMe}_{\text {IPr }}$), $0.90\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=7,1 \mathrm{H}, \mathrm{CHMe} \underline{\mathrm{CPr}}\right.$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-APT NMR (75.1 MHz, toluene- $\mathrm{d}_{8}, 298 \mathrm{~K}$): $\delta 193.3$ (ddd, $\mathrm{J}_{\mathrm{C}-\mathrm{P}}=123, \mathrm{~J}_{\mathrm{C} \text {-Rh }}$ $=47, J_{C-P}=16, R h-C_{\mid P r}$), 148.6 ($s, C_{q-\mid P r}$), $144.6\left(\mathrm{~s}, \mathrm{C}_{q-\mid P r}\right), 137.5\left(\mathrm{~s}, \mathrm{C}_{q} \mathrm{~N}\right), 135-$ 122 (C_{Ph}), 28.9 (s, $\underline{\mathrm{C}} \mathrm{HMe}_{\text {IPr }}$), 28.7 (s, $\underline{\mathrm{C}} \mathrm{HMe}_{\text {IPr }}$), 26.2 (s, CHMe ${ }_{\text {IPr }}$), 25.9 (s, $\mathrm{CHMe}_{\mathrm{IPr}}$), 23.5 (s, CHMe ${ }_{\mathrm{IPr}}$), 21.7 (s, CHMe ${ }_{\mathrm{IPr}}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121.5 MHz , toluene- $d_{8}, 298 \mathrm{~K}$): $\delta 16.4\left(\mathrm{dd}, J_{\mathrm{Rn}-\mathrm{P}}=189, J_{\mathrm{P}-\mathrm{P}}=53, \mathrm{P}_{\mathrm{a}}\right), 9.7\left(\mathrm{dd}, J_{\mathrm{Rn}-\mathrm{P}}=118\right.$, $\left.J_{\mathrm{P}-\mathrm{P}}=53, \mathrm{P}_{\mathrm{b}}\right)$.

Preparation of $\mathrm{RhCl}(\mathrm{IPr})(r a c-P h e n p h o s)(10 a, b)$.

A yellow solution of $1 \mathbf{a}(100 \mathrm{mg}, 0.078 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was treated with $7 \mathrm{a}(74 \mathrm{mg}, 0.157 \mathrm{mmol})$ and stirred at room temperature for 1 h . The solution was concentrated to ca. 1 mL and then n-hexane (3 mL) was added to induce the precipitation of a yellow solid which was washed with hexane (3×3 mL) and dried in vacuo. The compound was obtained as a diastereomer mixture of 10a/10b in a 98/2 ratio. Yield: 141 mg (90%). 10a: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, 298 K): $\delta 7.81-6.76$ ($\mathrm{H}_{\mathrm{Ph}}, 31 \mathrm{H}$), 4.93 (sept, $\mathrm{J}_{\mathrm{H}-\mathrm{H}}=7,1 \mathrm{H}, \mathrm{CHMe} \mathrm{IPr}$), 3.85 (sept, $J_{\mathrm{H}-\mathrm{H}}=7,1 \mathrm{H}, \mathrm{C} \underline{\mathrm{H}} \mathrm{Me}_{\mathrm{IPr}}$), 3.32 (sept, $J_{\mathrm{H}-\mathrm{H}}=7,1 \mathrm{H}, \mathrm{CHMe}_{\mathrm{IPr}}$), 2.74 (sept, $J_{\mathrm{H}-\mathrm{H}}=7$,

1H, CHMe ${ }_{\text {IPr }}$), 3.32 (overlapped, 1H, CHP), 2.61 - 2.50 (m, 1H, CH ${ }_{2} \mathrm{P}$), 2.43$2.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 1.87\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=7,3 \mathrm{H}, \mathrm{CHMe}_{\mathrm{Pr}}\right), 1.37\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=7,3 \mathrm{H}\right.$, CHMe $_{\text {IPr }}$), $1.28\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=7,3 \mathrm{H}, \mathrm{CHMe}_{\mathrm{IPr}}\right), 1.20\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=7,3 \mathrm{H}, \mathrm{CH} \underline{\mathrm{Me}_{\mathrm{IPr}}}\right), 1.09$ (d, $\left.J_{H-H}=7,3 H, C H \underline{M e}_{I P r}\right), 1.06\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=7,3 \mathrm{H}, \mathrm{CHMe}_{\mathrm{IPr}}\right), 0.97\left(\mathrm{~d}, J_{\mathrm{H}-\mathrm{H}}=7,3 \mathrm{H}\right.$, CHMe ${ }_{\text {IPr }}$), 0.36 ($\mathrm{d}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=7,3 \mathrm{H}, \mathrm{CH} \underline{\mathrm{Me}}_{\text {IPr }}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{APT}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, 298 K): $\delta 195.9$ (ddd, $J_{\mathrm{C}-\mathrm{P}}=121, J_{\mathrm{C}-\mathrm{Rh}}=47, J_{\mathrm{C}-\mathrm{P}}=12$, Rh-CIPr$), 149.4\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}-\mathrm{IPr}}\right)$,
 149.0 - 122.1 (CPh), 42.2 (dd, $\left.J_{C-P}=19,15, C H P\right), 39.5$ (dd, $J_{C-P}=36,29, \mathrm{CH}_{2-}$
 27.5 (s, CHMe ${ }_{\text {IPr }}$), 26.7 ($\mathrm{s}, \mathrm{CHMe}_{\text {IPr }}$), 26.1 (s, CHMe ${ }_{\text {IPr }}$), 25.6 (s, CHMe ${ }_{\text {IPr }}$), 24.4
 NMR ($202 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 78.1$ (dd, $\left.J_{\mathrm{Rh}-\mathrm{P}}=122, J_{\mathrm{P}-\mathrm{P}}=44, \mathrm{P}-\mathrm{CH}\right), 45.9$ $\left(\mathrm{dd}, J_{\mathrm{Rh}-\mathrm{P}}=203, J_{\mathrm{P}-\mathrm{P}}=44, \mathrm{P}-\mathrm{CH}_{2}\right.$).

10b: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta 74.2$ (dd, $\mathrm{J}_{\mathrm{Rh}-\mathrm{P}}=210, \mathrm{~J}_{\mathrm{P}-\mathrm{P}}=44, \mathrm{P}-$ $\mathrm{CH}), 46.6\left(\mathrm{dd}, J_{\mathrm{Rn}-\mathrm{P}}=122, J_{\mathrm{P}-\mathrm{P}}=44, \mathrm{P}-\mathrm{CH}_{2}\right)$.

Reaction of 10 with PHPh_{2}.

A solution of $10(10 \mathrm{mg}, 0.01 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL}$, NMR-tube) at room temperature was treated with $\mathrm{PHPh}_{2}(3.5 \mu \mathrm{~L}, 0.02 \mathrm{mmol})$. The solution was heated at $333 \mathrm{~K}\left(60^{\circ} \mathrm{C}\right)$ in a NMR spectrometer and the interconversion between 10a,b and 9 quantified every 10 min by integration of the Inverse Gated Decoupled- ${ }^{31}$ P NMR spectra. After 5 h 10b was totally undetectable and a 10a:9 molar ratio of 79:21 was measured. This value remained unchanged in the next 5 h where upon the formation of tetraphenylbiphosphine (8) decreases the amount of both complexes.

Preparation of $\left[\mathrm{RhCl}(\mathrm{dppe})_{2}\right] \mathrm{Cl}(11)$.

Complex 11 was prepared according to a modified literature method and its spectra were consistent with that of the published data. ${ }^{[9]} \mathrm{A}$ red solution of $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](\mathbf{1 c})(104 \mathrm{mg}, 0.112 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}(10 \mathrm{~mL})$ at room temperature was treated with \{1,2-bis(diphenylphosphino)ethane\} (dppe) ($90 \mathrm{mg}, 0.224$ mmol) and stirred at room temperature for 1 h . The solution was concentrated to ca. 1 mL and then diethylether (3 mL) was added to induce the precipitation of a yellow solid which was washed with diethylether ($3 \times 3 \mathrm{~mL}$) and dried in vacuo. Yield: 96 mg (92\%).

Standard procedure for the catalytic hydrophosphination of alkynes. In a Young type NMR tube 0.005 mol of catalyst 1a were dissolved in 0.4 mL of toluene +0.1 mL of $\mathrm{C}_{6} \mathrm{D}_{6}$ and then 0.2 mmol of phosphine and 0.1 mmol of alkyne were added and the solution was heated at $120^{\circ} \mathrm{C}$. Conversion was quantified by integration of ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra. Inverse Gated Decoupling was employed to obtain ${ }^{1} \mathrm{H}$ decoupled NMR spectra of ${ }^{31} \mathrm{P}$ nuclei without signal enhancement by nuclear Overhauser effects (NOE). To observe all components in the sample, a full spectrum was recorded with 256 scans using a 200 ppm spectral width, 101 K data points, 0.99 -s acquisition time, a relaxation delay of 5 s , and a 30° pulse width. A typical example of ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra corresponding to the hydrophosphination of phenylacetylene (entry 3, Table S1) is shown below (peak marked with X correspond to PPh_{3}, an impurity already present in the commercial $\left.\mathrm{Ph}_{2} \mathrm{PH}\right)$.

Reaction of phenylacetylene and diphenylphosphine.
Preparation of (1-phenylethane-1,2-diyl)bis(diphenylphosphine) (racPhenphos) (7a).

In a schlenk tube 64 mg of 1a (0.05 mmol) in 10 mL of toluene was treated with $110 \mu \mathrm{~L}$ of phenylacetylene (1 mmol), $350 \mu \mathrm{~L}$ of $\mathrm{Ph}_{2} \mathrm{PH}(2 \mathrm{mmol})$ and magnetically stirred for 24 h at $120^{\circ} \mathrm{C}$. At the end of the reaction, the volatiles were removed in vacuo. The residue was dissolved in 10 mL of dichloromethane and filtered through a short column (5 cm) of silica. The resulted solution was concentrated to ca. 1 mL and then methanol (10 mL) was added to induce the precipitation of a fluffy off-white solid which was washed with methanol ($3 \times 10 \mathrm{~mL}$) cold hexane ($3 \times 2 \mathrm{~mL}$) and dried in vacuo. Yield: 195 mg (41%). The NMR spectrum was consistent with that of the published data. ${ }^{[5]}$ ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.67-6.91\left(25 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right), 3.77-3.66$ (m, 1H, CHP), $2.89-2.77$ (m, 2H, CH2P). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-APT NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298$
$\mathrm{K}): \delta 141.0-126.3$ (C_{Ph}), 42.3 (dd, $J_{\mathrm{C}-\mathrm{P}}=16,15, \mathrm{CHP}$), 32.9 ($\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=22,17$, $\left.\mathrm{CH}_{2} \mathrm{P}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121 MHz, C ${ }_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 2.8$ (d, JP-p $=18, \mathrm{CHP}$), -21.2 $\left(\mathrm{d}, J_{\mathrm{P}-\mathrm{P}}=18, \mathrm{CH}_{2} \mathrm{P}\right.$).

diphenyl(1-phenylvinyl)phosphine (4a)

The NMR spectrum was consistent with that of the published data. ${ }^{[10]}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.49-7.24$ (15H, CHPh), 6.00 (dd, 1H, $J_{\mathrm{H}-\mathrm{P}}=13, J_{\mathrm{H}-\mathrm{H}}$ $\left.=1,=\mathrm{CH}_{\text {(trans-P) })}\right), 5.15\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}-\mathrm{P}}=6, J_{\mathrm{H}-\mathrm{H}}=1,=\mathrm{CH}_{\text {(cis-P) })}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta-4.7$ (s).

(Z)-diphenyl(styryl)phosphine (5a)

The NMR spectrum was consistent with that of the published data. ${ }^{[10]}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.52-7.30\left(15 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right.$), 7.28 (overlapped, 1 H , $=C H P), 6.50$ (dd, $\left.1 \mathrm{H}, J_{H-H}=13, J_{H-P}=3,=C H P h\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121 MHz , $\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta-24.1$ (s).

(E)-diphenyl(styryl)phosphine (6a)

The NMR spectrum was consistent with that of the published data. ${ }^{[10]}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.61-7.28\left(15 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right.$), 7.49 (overlapped, 1 H , $=C H P$), 6.95 (overlapped, 1H, =CHPh). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): δ -11.3 (s).

tetraphenylbiphosphine (8)

The NMR spectrum was consistent with that of the published data. ${ }^{[11]}{ }^{1} \mathrm{H}$ NMR (300 MHz, C ${ }_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.42-7.01\left(20 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right):-14.7$ (s).

NMR spectra of 7a

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$)

${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right)$

 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-A P T$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right)$

Reaction of 4-methoxyphenylacetylene and diphenylphosphine.
(1-(4-methoxyphenyl)ethane-1,2-diyl)bis(diphenylphosphine) (7b)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.68-6.63\left(24 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right), 3.74-3.67(\mathrm{~m}$, 1H, CHP), 3.27 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $2.86-2.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.83-2.75(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{P}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{APT}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 158.6$ ($\mathrm{d}, \mathrm{J}_{\mathrm{C}-\mathrm{P}}=2$, $\underline{\mathrm{C}}_{q} \mathrm{OCH}_{3}$), 140.1 - $113.7\left(\mathrm{C}_{\mathrm{Ph}}\right), 54.5\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 41.5\left(\mathrm{dd}, \mathrm{J}_{\mathrm{C}-\mathrm{P}}=16,15, \mathrm{CHP}\right)$, 33.9 (dd, $J_{C-P}=23,17, \mathrm{CH}_{2} \mathrm{P}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 1.8$ (d, $\left.J_{P-P}=17, C H P\right),-21.2\left(d, J_{P-P}=17, C H_{2} P\right)$.

(Z)-(4-methoxystyryl)diphenylphosphine (5b)

${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.48-7.25\left(14 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right), 7.30$ (overlapped, $1 \mathrm{H},=\mathrm{CHP}$), 6.43 (dd, $1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=13, J_{\mathrm{H}-\mathrm{P}}=3$, $=\mathrm{CHPh}$), 3.41 (s, 3H, OMe). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): δ-23.6 (s).
(E)-(4-methoxystyryl)diphenylphosphine (6b)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.69-7.20\left(14 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right), 7.23$ (overlapped, $1 \mathrm{H},=\mathrm{CHP}$), 6.97 (dd, $\left.1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=17, J_{\mathrm{H}-\mathrm{P}}=6,=\mathrm{CHPh}\right), 3.32$ (s, $3 \mathrm{H}, \mathrm{OMe}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): δ-11.2 (s).

NMR spectra of the reaction crude.
Reaction conditions: 4-methoxyphenylacetylene (0.2 mmol), $\mathrm{Ph}_{2} \mathrm{PH}$ (0.2 mmol), 1a (0.005 mmol$), \mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL}), 48 \mathrm{~h}$ at $80^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$)

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right)$

 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-APT NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$)

$\begin{array}{llllllllllllllll}155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 \\ 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35\end{array}$

Reaction of 4-trifluoromethylphenylacetylene and diphenylphosphine.
(1-(4-(trifluoromethyl)phenyl)ethane-1,2-diyl)bis(diphenylphosphine) (7c)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.63-6.81\left(24 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right), 3.74-3.68(\mathrm{~m}$, 1H, CHP), $2.8-2.78$ (m, 2H, CH 2 P), $2.76-2.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{APT}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 142.4-114.9$ (C_{Ph}), 42.5 (dd, $\mathrm{J}_{\mathrm{C}-\mathrm{P}}=17,16$, CHP), 32.9 (dd, $\left.J_{C-P}=21,18, C_{2} P\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): δ 4.2 (d, JP-P $=17, C H P),-20.1\left(\mathrm{~d}, J_{P-P}=17, \mathrm{CH}_{2} \mathrm{P}\right) .{ }^{19} \mathrm{~F}$ NMR ($228 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, $298 \mathrm{~K}): \delta-62.1\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$.
(Z)-diphenyl(4-(trifluoromethyl)styryl)phosphine (5c)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.54-7.07$ (14H, CH $\mathrm{CH}_{\mathrm{Ph}}$), 7.10 (overlapped, $1 \mathrm{H},=\mathrm{CHP}$), 6.57 (dd, $\left.1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=13, J_{\mathrm{H}-\mathrm{P}}=2,=\mathrm{CHPh}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(121 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta-24.1(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR ($228 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta-62.0\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$.
(E)-diphenyl(4-(trifluoromethyl)styryl)phosphine (6c)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.62-7.24\left(14 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right), 7.03$ (overlapped, $1 \mathrm{H},=\mathrm{CHP}$), 6.85 (dd, $\left.1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=17, J_{\mathrm{H}-\mathrm{P}}=11,=\mathrm{CHPh}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(121 \mathrm{MHz}$, $\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta-10.8(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR (228 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta-61.7\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$.

NMR spectra of the reaction crude.

Reaction conditions: 4-trifluoromethylphenylacetylene (0.2 mmol), $\mathrm{Ph}_{2} \mathrm{PH}(0.2$ mmol), 1a (0.005 mmol), $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL}), 48 \mathrm{~h}$ at $80^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$)

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right)$

| 6 | 4 | 2 | 0 | -2 | -4 | -6 | -8 | -10 | -12 | -14 | -16 | -18 | -20 | -22 | -24 | -26 |
| :--- |

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-APT NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$)

Reaction of 3-methoxyphenylacetylene and diphenylphosphine.
(1-(3-methoxyphenyl)ethane-1,2-diyl)bis(diphenylphosphine) (7d)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.71-6.68\left(24 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right), 3.77-3.65(\mathrm{~m}$, 1H, CHP), 3.38 (s, 3H, OMe), $2.88-2.81$ (m, 2H, CH $\mathrm{C}_{2} \mathrm{P}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-A P T$ NMR (75 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 159.9$ (s, $\underline{\mathrm{C}}_{q} \mathrm{OCH}_{3}$), 140.8 - 133.5 (CPh), 54.4 (s, OCH_{3}), 42.5 (dd, $\left.J_{C-P}=16,15, C H P\right), 33.5\left(d d, J_{C-P}=22,17, \mathrm{CH}_{2} P\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 2.5$ ($\mathrm{d}, \mathrm{J}_{\mathrm{P}-\mathrm{P}}=18, \mathrm{CHP}$), $20.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{P}}=18, \mathrm{CH}_{2} \mathrm{P}\right)$.

(Z)-(3-methoxystyryl)diphenylphosphine (5d)

${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta 7.60-7.13\left(14 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right), 7.29$ (overlapped, $1 \mathrm{H},=\mathrm{CHP}), 6.52\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=13, J_{\mathrm{H}-\mathrm{P}}=2\right.$, $\left.=\mathrm{CHPh}\right), 3.40(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): δ-23.2 (s).
(E)-(3-methoxystyryl)diphenylphosphine (6d)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.65-7.22\left(14 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right), 7.13$ (overlapped, $1 \mathrm{H},=\mathrm{CHP}$), 6.83 (overlapped, $1 \mathrm{H},=\mathrm{CHPh}$), 3.43 (s, 3H, OMe). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta-11.3$ (s).

NMR spectra of the reaction crude.

Reaction conditions: 1-ethynyl-3-methoxybenzene (0.2 mmol), $\mathrm{Ph}_{2} \mathrm{PH}$ (0.2 mmol), 1a (0.005 mmol), $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL}), 72 \mathrm{~h}$ at $80^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (300 MHz, C $\left.{ }_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right)$

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right)$

Reaction of 2-ethynylpyridine and diphenylphosphine.

2-(1,2-bis(diphenylphosphanyl)ethyl)pyridine (7e)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 8.48-8.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{2-\mathrm{py}}\right), 7.58-6.77(23 \mathrm{H}$, $\mathrm{CH}_{\mathrm{Ph}}$), $3.93-3.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 3.47-3.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHP}), 2.75-2.66(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{APT}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 160.8$ (dd, $\mathrm{J}_{\mathrm{C}-\mathrm{P}}=6,2$, $\mathrm{C}_{\text {q-py }}$), 149.5 (s, $\mathrm{C}_{2 \text {-py }}$), 139.7 - $127.8\left(\mathrm{C}_{\text {Ph }}+\mathrm{C}_{\mathrm{Py}}\right), 124.6\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{p}}=5, \mathrm{C}_{\mathrm{py}}\right), 121.0$ $\left(d, J_{C-P}=2, C_{p y}\right), 44.7\left(t, J_{C-P}=16, C H P\right), 32.1\left(d d, J_{C-P}=22,17, C H_{2} P\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121 MHz, C ${ }_{6} D_{6}, 298 \mathrm{~K}$): $\delta 3.4$ (d, JP-P $=21, \mathrm{CHP}$), -19.9 (d, JP-P $=21$, $\mathrm{CH}_{2} \mathrm{P}$).
(Z)-2-(2-(diphenylphosphanyl)vinyl)pyridine (5e)

The NMR spectrum was consistent with that of the published data. ${ }^{[12]}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 8.43-8.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{2 \text {-py }}\right), 7.66-6.55\left(13 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right)$, 7.67 (overlapped, $1 \mathrm{H},=\mathrm{CH}$), 7.22 (overlapped, $1 \mathrm{H},=\mathrm{CH}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta-15.0$ (s).
(E)-2-(2-(diphenylphosphanyl)vinyl)pyridine (6e)

The NMR spectrum was consistent with that of the published data. ${ }^{[12] ~}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 8.45-8.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{2 \text {-py }}\right), 7.69-6.63\left(13 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right)$, $8.10\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=17, J_{\mathrm{H}-\mathrm{P}}=13,=\mathrm{CH}\right), 7.08\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=17, J_{\mathrm{H}-\mathrm{P}}=11\right.$, $=\mathrm{CH}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta-11.8(\mathrm{~s})$.

NMR spectra of the reaction crude.

Reaction conditions: 2-ethynylpyridine (0.2 mmol), $\mathrm{Ph}_{2} \mathrm{PH}(0.4 \mathrm{mmol})$, 1a (0.005 $\mathrm{mmol})$, of $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL}), 72 \mathrm{~h}$ at $80^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$)

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-APT NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$)

Reaction of 1-nonine and diphenylphosphine.

nonane-1,2-diylbis(diphenylphosphine) (7f)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.54-6.86\left(20 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right), 2.69-2.58(\mathrm{~m}$, 1H, CHP), $2.57-2.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right.$), 2.31 - 2.21 (m, 1H, CH2P), 2.19-1.06 $\left(12 \mathrm{H}, \mathrm{CH}_{2}\right), 0.96\left(\mathrm{t}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=7,3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-A P T \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298\right.$ K): $\delta 139.4$ - 128.4 (C_{Ph}), 33.0 (dd, $J_{\mathrm{C}-\mathrm{P}}=15,12, \mathrm{CHP}$), $\delta 31.2$ (dd, $J_{C-P}=14$, $10, \mathrm{CH}_{2}\left(\mathrm{C}_{3}\right)$), 30.9 (dd, $\left.\mathrm{J}_{\mathrm{C}-\mathrm{P}}=17,15, \mathrm{CH}_{2} \mathrm{P}\right)$, $\delta 27.1\left(\mathrm{dd}, \mathrm{J}_{\mathrm{C}-\mathrm{P}}=10,2, \mathrm{CH}_{2}\left(\mathrm{C}_{4}\right)\right.$), 32.2 - $23.1\left(\mathrm{CH}_{2}\left(\mathrm{C}_{5}-\mathrm{C}_{8}\right)\right), 14.0\left(\mathrm{~s}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta$ $-3.7\left(d, J_{P-P}=22, C H P\right),-20.4\left(d, J_{P-P}=22, \mathrm{CH}_{2} P\right)$.

(Z)-non-1-en-1-yldiphenylphosphine (5f)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.64-7.30\left(10 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right), 6.26$ (overlapped, $1 \mathrm{H},=\mathrm{CH}$), 6.18 (overlapped, $1 \mathrm{H},=\mathrm{CH}$), 2.07 (overlapped, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}$), 1.620.90 (overlapped, $\left.13 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta-$ 29.8 (s).
(E)-non-1-en-1-yldiphenylphosphine (6f)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.65-7.22\left(10 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right), 6.37$ (overlapped, $1 \mathrm{H},=\mathrm{CH}$), 6.33 (overlapped, $1 \mathrm{H},=\mathrm{CH}$), 2.51 (overlapped, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}$), 1.710.89 (overlapped, $\left.13 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta-$ 13.4 (s).

NMR spectra of the reaction crude.

Reaction conditions: 1-nonyne (0.2 mmol), $\mathrm{Ph}_{2} \mathrm{PH}(0.2 \mathrm{mmol}), 1 \mathrm{a}(0.005 \mathrm{mmol})$, $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL}), 48 \mathrm{~h}$ at $80^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$)

${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-APT NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right)$

Reaction of cyclopropylacetylene and diphenylphosphine.
(1-cyclopropylethane-1,2-diyl)bis(diphenylphosphine) (7g)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.66-6.87\left(20 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right), 2.74-2.64(\mathrm{~m}$, 1H, CH ${ }_{2}$ P), $2.48-2.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.08-1.96$ (m, 1H, CHP), $0.96-0.84$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}), 0.72-0.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 0.62-0.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 0.42-0.29$ (m, 1H, CH ${ }_{2}$), $0.10-0.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-APT NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298$ $K): ~ \delta 139.3-128.2\left(C_{P h}\right), 38.9$ (dd, $\left.J_{C-P}=16,12, C H P\right), 33.2\left(d d, J_{C-P}=19,15\right.$, $\left.\mathrm{CH}_{2} \mathrm{P}\right), 15.2\left(\mathrm{dd}, \mathrm{J}_{\mathrm{C}-\mathrm{P}}=19,5, \mathrm{CH}\right), 7.5\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=13,8, \mathrm{CH}_{2}\right), 5.9\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=5\right.$, 3, CH_{2}). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 0.3$ (d, $\mathrm{J}_{\mathrm{P}-\mathrm{P}}=23, \mathrm{CHP}$), -18.6 (d, JP-P $=23, \mathrm{CH}_{2} P$).
(Z)-(2-cyclopropylvinyl)diphenylphosphine (5g)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.71-7.19\left(10 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right), 6.20\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}\right.$ $=12, J_{H-P}=3, C H P$), 5.61 (overlapped, $1 \mathrm{H},=\mathrm{CH}$), 2.38 (overlapped, 1 H , $\mathrm{CHC}_{2} \mathrm{H}_{4}$), 0.65 (overlapped, $2 \mathrm{H}, \mathrm{CH}_{2}$), 0.35 (overlapped, $2 \mathrm{H}, \mathrm{CH}_{2}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta-29.3$ (s).
(E)-(2-cyclopropylvinyl)diphenylphosphine (6g)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.66-7.08$ ($10 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}$), 6.40 (dd, $1 \mathrm{H}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}$ $=16, J_{H-P}=2,=C H P$), 5.88 (overlapped, $1 \mathrm{H},=\mathrm{CH}$), 1.43 (overlapped, 1 H , $\mathrm{CHC}_{2} \mathrm{H}_{4}$), 0.59 (overlapped, $2 \mathrm{H}, \mathrm{CH}_{2}$), 0.34 (overlapped, $2 \mathrm{H}, \mathrm{CH}_{2}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta-13.1$ (s).

NMR spectra of the reaction crude.
Reaction conditions: cyclopropylacetylene (0.2 mmol), $\mathrm{Ph}_{2} \mathrm{PH}$ (0.4 mmol), 1a (0.005 mmol), $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL}), 72 \mathrm{~h}$ at $80^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$)

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right)$

Reaction of 3-dimethylamino-1-propyne and diphenylphosphine.

2,3-bis(diphenylphosphanyl)-N,N-dimethylpropan-1-amine (7i)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.73-7.02\left(20 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right), 2.87-2.78(\mathrm{~m}$, 1H, CHP), $2.78-2.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.62-2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 2.54-2.48$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $2.13\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): \delta-4.67$ (d, JP-P $=35, C H P),-18.83\left(d, J_{P-P}=35, C H_{2} P\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-A P T$ NMR $(75 \mathrm{MHz}$, $\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 140.3-132.5\left(\mathrm{C}_{\mathrm{Ph}}\right), 61.5\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=15,7, \mathrm{CH}_{2} \mathrm{~N}\right.$), $45.5(\mathrm{~s}$, $\mathrm{CH}_{3} \mathrm{~N}$), 32.7 (dd, $J_{\mathrm{C}-\mathrm{P}}=16,12, \mathrm{CHP}$), 30.2 (dd, $\left.J_{\mathrm{C}-\mathrm{P}}=17,12, \mathrm{CH}_{2} \mathrm{P}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta-4.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=35, \mathrm{CHP}\right),-18.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{P}-\mathrm{P}}=35\right.$, $\mathrm{CH}_{2} \mathrm{P}$).
(Z)-3-(diphenylphosphanyl)-N,N-dimethylprop-2-en-1-amine (5i)

The NMR spectrum was consistent with that of the published data. ${ }^{[10]}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.40-7.00\left(10 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right), 6.52-6.30$ (overlapped, m, $2 \mathrm{H}, \mathrm{P} \underline{H} C=\mathrm{CH} C$), $2.90-2.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.12\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta-30.0$ (s).
(E)-3-(diphenylphosphanyl)-N,N-dimethylprop-2-en-1-amine (6i)

The NMR spectrum was consistent with that of the published data. ${ }^{[10]}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.57-6.93$ (10H, $\mathrm{CH}_{\mathrm{Ph}}$), $6.49-6.23$ (overlapped, m, $2 \mathrm{H}, \mathrm{P} \underline{H} C=\mathrm{CH} C), 2.79-2.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.14\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (121 MHz, C ${ }_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta-13.8(\mathrm{~s})$.

NMR spectra of the reaction crude.
Reaction conditions: 3-dimethylamino-1-propyne (0.1 mmol), $\mathrm{Ph}_{2} \mathrm{PH}$ (0.2 mmol), 1a (0.005 mmol), $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL}), 24 \mathrm{~h}$ at $120^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$)

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right)$

$\begin{array}{llllllllllllllllll}-5 & -7 & -9 & -11 & -13 & -15 & -17 & -19 & -21 & -23 & -25 & -27 & -29 & -31 & -33 & -35 & -37 & -39 \\ -41 & -4\end{array}$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-APT NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$)

Reaction of 3,3-Dimethyl-1-butyne and diphenylphosphine.
(Z)-(3,3-dimethylbut-1-en-1-yl)diphenylphosphine (5h)

The NMR spectrum was consistent with that of the published data. ${ }^{[13]}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.68-6.92\left(10 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right), 6.45\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=28, J_{\mathrm{H}-\mathrm{P}}\right.$ $=13, \mathrm{CHC}), 6.21\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=13, J_{\mathrm{H}-\mathrm{P}}=4, \mathrm{CHP}\right), 1.37\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-29.0(\mathrm{~s})$.

(E)-(3,3-dimethylbut-1-en-1-yl)diphenylphosphine (6h)

The NMR spectrum was consistent with that of the published data. ${ }^{[13]}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.71-6.89\left(10 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right), 6.52\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=17, J_{\mathrm{H}-\mathrm{P}}\right.$ $=16, \mathrm{CHC}$), 6.37 (dd, $1 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=17, J_{\mathrm{H}-\mathrm{P}}=4, \mathrm{CHP}$), $1.02\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-13.3(\mathrm{~s})$.

NMR spectra of the reaction crude.

Reaction conditions: 3,3-Dimethyl-1-butyne (0.2 mmol), $\mathrm{Ph}_{2} \mathrm{PH}(0.2 \mathrm{mmol})$, 1a (0.005 mmol), $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL}), 24 \mathrm{~h}$ at $80^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$)

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right)$

Reaction of diphenylacetylene and diphenylphosphine.

(E)-(1,2-diphenylvinyl)diphenylphosphine (6j)

The NMR spectrum was consistent with that of the published data. ${ }^{[12]}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.57-6.87\left(20 \mathrm{H}, \mathrm{CH}_{\mathrm{Ph}}\right) 6.78$ (d, 1H, $J_{\mathrm{H}-\mathrm{P}}=9$, $=\mathrm{CH}$),. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 9.1$ (s).

NMR spectra of the reaction crude.

Reaction conditions: diphenylacetylene (0.1 mmol), $\mathrm{Ph}_{2} \mathrm{PH}(0.2 \mathrm{mmol})$, 1a (0.005 mmol), of tol $-d_{8}(0.5 \mathrm{~mL}), 24 \mathrm{~h}$ at $120^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$)

$\begin{array}{llllllllllllllll}7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0 .\end{array}$
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$)

Preparation and isolation of diphosphine-borane adducts.

In a Young type NMR tube 0.005 mol of catalyst 1a were dissolved in 0.5 mL of toluene and then $0.2 \mathrm{mmol}(35 \mu \mathrm{~L})$ of $\mathrm{Ph}_{2} \mathrm{PH}$ and 0.1 mmol of the corresponding alkyne were added and the solution was heated at $120{ }^{\circ} \mathrm{C}$ for 24 h . At the end of the reaction, the volatiles were removed in vacuo. The residue was dissolved in 1 mL of dichloromethane and filtered through a short pad of silica (2 cm). The resulted solution was treated with $0.32 \mathrm{mmol}(30 \mu \mathrm{~L})$ of $\mathrm{BH}_{3}-\mathrm{SMe}_{2}$ in a schlenk tube and the mixture magnetically stirred for 1 h at room temperature. After the elimination of volatiles in vacuo the samples were dissolved in 2 mL of $\mathrm{CH}_{3} \mathrm{CN}$ and then purified by HPLC operating in reverse phase. Samples were injected and eluted at $30^{\circ} \mathrm{C}$ with a mixture of acetonitrile:water (80:20) pumped at a flow rate of $15 \mathrm{~mL} / \mathrm{min}$. The elimination of volatiles in vacuo provides the diphosphine-borane adducts that were isolated as solids and characterized by NMR.

(1-(4-(trifluoromethyl)phenyl)ethane-1,2-diyl)bis(diphenylphosphine)bis(borane) ($7 \mathrm{c}-\mathrm{BH}_{3}$)

Yield: 20 mg (35\%), off yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 8.05$ 6.86 (m, 24H, CH ${ }_{\text {Ph }}$), $4.57-4.47$ (m, 1H, CHP), $3.24-3.13$ (m, 1H, CH2P), $2.55-2.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right), 1.28-0.66\left(\mathrm{br}, 6 \mathrm{H}, \mathrm{BH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-A P T$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 137.2$ - 123.3 (C_{Ph}), 125.9 ($\mathrm{q}, \mathrm{J}_{\mathrm{C}-\mathrm{F}}=272 \mathrm{~Hz}, \mathrm{CF}_{3}$), 37.5 (d, $J_{C-P}=30 \mathrm{~Hz}, \mathrm{CHP}$), 26.9 (dd, $J_{\mathrm{C}-\mathrm{P}}=34,5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 25.0$ (br, CHP), 17.0 (br, $\mathrm{CH}_{2} \mathrm{P}$). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(160 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-42.1$ (br, BH_{3}), -40.3 (br, BH_{3}). HRMS (ESI) m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~B}_{2} \mathrm{~F}_{3} \mathrm{P}_{2}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 593.2099$ found 593.2070
$7 \mathrm{c}-\mathrm{BH}_{3}:{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

$7 \mathrm{c}-\mathrm{BH}_{3}:{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-APT NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

7c-BH3: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

7c-BH3: ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

(1-(3-methoxyphenyl)ethane-1,2-diyl)bis(diphenylphosphine)-bis(borane)

(7d-BH3)

Yield: 22 mg (42\%), off white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 8.05$ 6.26 (m, 24H, CHPh), 4.46 - 4.37 (m, 1H, CHP), 3.45 (s, 3H, OMe), $3.25-3.15$ (m, 1H, CH ${ }_{2}$ P), $2.47-2.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}\right.$), $1.28-0.64$ (br, $6 \mathrm{H}, \mathrm{BH}_{3}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-$ APT NMR (126 MHz, CDCl_{3}): $\delta 135.8$ - 111.9 (C_{Ph}), 54.9 (s, OCH_{3}), 37.8 (dd, $J_{C-P}=30,2 \mathrm{~Hz}, \mathrm{CHP}$), 27.0 (dd, $\left.J_{\mathrm{C}-\mathrm{P}}=34,6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(202 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 26.6$ (br, CHP), 16.7 (br, $\mathrm{CH}_{2} \mathrm{P}$). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (160 MHz , $\mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-41.6$ (br, BH_{3}), -40.2 (br, BH_{3}). HRMS (ESI) m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{~B}_{2} \mathrm{OP}_{2}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 555.2331$ found 555.2312

7d-BH3: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

7d-BH3: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-APT NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

7d-BH3: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

7d-BH $\mathbf{3}^{:}{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

\qquad
(nonane-1,2-diylbis(diphenylphosphine))-bis(borane) (7f- BH_{3})

Yield: 22 mg (42\%), brown waxy solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): δ 7.85 - 7.18 (m, 20H, CHPh), 3.21 - 3.08(m, 1H, CHP), 2.65 - 2.54 (m, 1H, $\mathrm{CH}_{2} \mathrm{P}$), 2.21-2.11 (m, 1H, CH2 P), 1.60-0.37 (m, 12H, CH 2), 1.22-0.91 (br, 6H, BH_{3}), $0.75\left(\mathrm{t}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-A P T \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298\right.$ $\mathrm{K}): \delta 133.0$ - 127.7 (C_{Ph}), 29.9 ($\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=2 \mathrm{~Hz}, \mathrm{CH}_{2}\left(\mathrm{C}_{3}\right)$), 29.3 (dd, $J_{\mathrm{C}-\mathrm{P}}=33,2$ $\mathrm{Hz}, \mathrm{CHP}), 28.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3 \mathrm{~Hz}, \mathrm{CH}_{2}\left(\mathrm{C}_{4}\right)\right), 27.2\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=33,5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}\right), 31.5$ - 22.5 (all s, $\mathrm{CH}_{2}\left(\mathrm{C}_{5}-\mathrm{C}_{8}\right)$), 14.1 ($\left.\mathrm{s}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$: $\delta 25.0$ (br, CHP), 17.0 (br, $\mathrm{CH}_{2} \mathrm{P}$). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right.$): $\delta-$ 42.1 (br, BH_{3}), -39.6 (br, $\left.\mathrm{BH}_{3}\right)$. HRMS (ESI) m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{~B}_{2} \mathrm{P}_{2}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 523.3020 found 523.3005

7f-BH $\mathbf{B}_{3}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

7f-BH3: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-APT NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

7f-BH3: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

7f-BH3: ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

BH_{3})

Yield: $13 \mathrm{mg}(28 \%)$, off white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 7.95-$ 7.19 (m, 20H, CH Ch), 2.99 - 2.89 (m, 1H, CH C), 2.75 - 2.63 (m, 1H, CHP), $2.25-2.14$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{P}$), $0.69-0.61$ (m, 1H, CH), 0.01 - (-0.06) (m, 1H, $\left.\mathrm{CH}_{2}\right),(-0.12)-(-0.20)\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right),(-0.78)-(-0.86)\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}-$-APT NMR (126 MHz, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 133.3$ - 126.9 (C_{Ph}), 35.1 (d, $\mathrm{J}_{\mathrm{C}-\mathrm{P}}=34 \mathrm{~Hz}$, CHP), 28.5 (dd, $\left.J_{C-P}=33,7 \mathrm{~Hz}, \mathrm{CH}_{2} P\right), 12.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4 \mathrm{~Hz}, \mathrm{CH}\right), 6.4\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{P}}=\right.$ $2 \mathrm{~Hz}, \mathrm{CH}_{2}$), 5.9 (dd, $\mathrm{J}_{\mathrm{C}-\mathrm{P}}=13 \mathrm{~Hz}, \mathrm{CH}_{2}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$: $\delta 24.8$ (br, CHP), 16.5 (br, CH2P). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right.$): $\delta-$ 42.6 (br, BH_{3}), -39.8 (br, $\left.\mathrm{BH}_{3}\right)$. HRMS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~B}_{2} \mathrm{P}_{2}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 489.2224 found 489.2213
$\mathbf{7 g}-\mathrm{BH}_{3}:{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

$7 \mathrm{~g}-\mathrm{BH}_{3}:{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-APT NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

$\mathbf{7 g}-\mathrm{BH}_{3}:{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

$\mathbf{7 g}-\mathrm{BH}_{3}:{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

(2,3-bis(diphenylphosphanyl)-N,N-dimethylpropan-1-amine)-tris(borane)

 (7i-BH3)

Yield: 13 mg (26\%), off white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 7.91$ 7.05 (m, 20H, CH ${ }_{\text {Ph }}$), 3.77 - 3.65 (m, 1H, CHP), 3.32 - 3.23 (m, 1H, CH2N),
 $3 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-APT NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 134.4$ - 125.0 (C_{Ph}), 65.0 (dd, $J_{\mathrm{C}-\mathrm{P}}=9,3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}$), $50.5\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{~N}\right), 50.4$ (s, $\mathrm{CH}_{3} \mathrm{~N}$), 28.6 (dd, $\mathrm{J}_{\mathrm{C}-\mathrm{p}}=$ 32, $5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{P}$), 26.2 (dd, $\mathrm{J}_{\mathrm{C}-\mathrm{p}}=32,2 \mathrm{~Hz}, \mathrm{CHP}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz , $\mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 29.4$ (s, CHP), 16.7 (s, $\mathrm{CH}_{2} \mathrm{P}$). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, 298 K): δ-8.2 (br, N-BH3), -42.5 (br, P-BH3), -39.8 (br, P-BH3). HRMS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~B}_{3} \mathrm{NP}_{2}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 520.2822$ found 520.2807

7i-BH3: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

7i-BH $3:{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$-APT NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

7i-BH3: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, $\mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

7i-BH $:{ }^{11}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$)

References:

1 X.-Y. Yu, B. O. Patrick, B. R. James, Organometallics 2006, 25, 4870.
$2 \quad$ A. Van der Ent, A. L. Onderdelinden, Inorg. Synth. 1990, 28, 90.
3 J. A. Osborn, F. H. Jardine, J. F. Young, G. Wilkinson, J. Chem. Soc., A 1966, 12, 1711.

4 A. J. Naaktgeboren, R. J. M. Nolte, W. Drenth, J. Am. Chem. Soc. 1980, 102, 3350.
5 G. Consiglio, O. Piccolo, L. Roncetti, F. Morandini, Tetrahedron 1986, 42, 2043.
6 M. Kamitani, M. Itazaki, C. Tamiya, H. Nakazawa, J. Am. Chem. Soc. 2012, 134, 11932.

7 J. L. Bookham, D. M. Smithies, A. Wright, M. Thornton-Pett, W. McFarlane, J. Chem. Soc., Dalton Trans. 1998, 811.
8 A. Kondoh, H. Yorimitsu, K. Oshima, J. Am. Chem. Soc. 2007, 129, 4099.
9 A. P. Ginsberg, W. E. Lindsell, K. J. McCullough, C. R. Sprinkle, A. J. Welch, J. Am. Chem. Soc. 1986, 108, 403.
10 M. A. Kazankova, I. V. Efimova, A. N. Kochetkov, V. V. Afans'ev, I. P. Beletskaya, Russ. J. Org. Chem. 2002, 38, 1465.

11 O. T. Beachley, Jr., D. J. MacRae, A. Y. Kovalevsky, Organometallics 2003, 22, 1690.
12 H. Hu, C. Cui, Organometallics 2012, 31, 1208.
13 T. N. Mitchell, K. Heesche, J. Organomet. Chem. 1991, 409, 1208.

