Supporting Information

Silver-Catalyzed Oxidative Decarboxylation of Difluoroacetates:

Efficient Access to C-CF₂ Bond Formation

Wen Wan, Guobin Ma, Jialiang Li, Yunrong Chen, Qingyang Hu,

Minjie Li, Haizhen Jiang, Jian Hao

Contents

Content:

1. General information
2. Synthesis of potassium α,α-difluoroaryl acetate
3. General procedure for synthesis of isocyanides
4. Survey of reaction conditions13
5. Preliminary mechanistic study14
6. General procedure for synthesis of 6-difluoromethyl phenanthridines17
7. Reference
8. Single crystal X-ray analysis of 3aa18
9. New compounds characterization19
10. NMR spectra for potassium α,α-difluoroaryl acetate29
11. NMR spectra for isocyanides52
12. NMR spectra for 6-difluoromethyl phenanthridines 3aa-3ar72
13. X-ray Crystal data for product 3aa119

1. General Information

¹H-, ¹³C- and ¹⁹F-NMR spectra were recorded in CDCl₃ on a Bruker AV-500 spectrometer. Chemical shifts for ¹H NMR spectra are reported in ppm relative to residual CHCl₃ as internal reference (δ 7.26 ppm for ¹H) downfield from TMS, chemical shifts for ¹³C NMR spectra are reported in ppm relative to internal CDCl₃ (δ 77.16 ppm for ¹³C), and chemical shifts for ¹⁹F NMR spectra are reported in ppm downfield from internal fluorotrichloromethane (CFCl₃). Coupling constants (*J*) are given in Hertz (Hz). The terms m, s, d, t, q refer to multiplet, singlet, doublet, triplet, quartlet respectively; br refers to a broad signal. Infrared spectra (IR) were recorded on AVATAR 370 FT-IR spectrometer, absorbance frequencies are given at maximum of intensity in cm⁻¹. Melting points were obtained on a X-4 digital melting point apparatus without correction. High resolution mass spectra (HRMS) and Mass spectra (MS) were recorded using an Electron impact (EI) or Electrospray ionization (ESI) techniques.

Materials: All reagents were used as received from commercial sources, unless specified otherwise, or prepared as described in the literature. DMSO was distilled under reduced pressure from CaH_2 and stored with 4 Å molecular sieves.

2. Synthesis of potassium α, α -difluoroaryl acetate

General procedure for Cu-promoted cross-coupling of aryl iodide with ethyl bromodifluoroacetate: ¹

MeO
$$\longrightarrow$$
 I + BrCF₂CO₂Et \xrightarrow{Cu} MeO \longrightarrow CF₂CO₂Et
60°C, 12h
S1 S2

In a 50 mL round bottom flask under an atmosphere of N₂, the appropriate aryl iodide **S1** (20 mmol, 1.0 equiv.) and ethyl bromodifluoroacetate (3.1 mL, 24 mmol, 1.2 equiv) were added to a suspension of activated Cu powder (3.4 g, 52 mmol, 2.6 equiv) in DMSO (50 mL). The reaction mixture was stirred at 60 °C for 12 h, after which time it was poured into a mixture of ice and sat. aq. NH₄Cl, the aqueous phase was extracted with Et₂O (3 × 50 mL). The combined organic phases were washed with sat. aq. NH₄Cl (2 × 50 mL) and brine (2 × 50 mL), then dried over MgSO₄, filtered and concentrated *in vacuo*. The crude mixture was purified by flash column chromatography on silica gel (Petroleum ether/EtOAc = 100/1→50/1) to give **S2** 2.21g (48% yield) as a pale yellow oil.

General procedure for saponification of ethyl α , α -difluoroaryl acetate:²

MeO
$$-CF_2CO_2Et \xrightarrow{KOH} MeO -CF_2CO_2K$$

S2 1a

The substituted ethyl α,α -difluoroaryl acetate **S2** (2.21 g, 9.6 mmol) were reacted with KOH (0.54 g, 1.0 mmol) in ethanol for 12 h at room temperature, and the desired potassium α,α -difluoroaryl acetate **1a** was obtained in 96% yield as an off-white solid by removing the ethanol. This material was used for the subsequent decarboxylation without further purification. All other potassium salts were dried for 6h *in vacuo* at room temperature prior to use.

Potassium 2,2-difluoro-2-(4-methoxyphenyl)acetate (1a)

White solid, mp: 238-240 °C; ¹H NMR (500 MHz, DMSO- d_6) δ ppm 7.49 (d, J = 8.3 Hz, 2 H), 6.92 (d, J = 8.3 Hz, 2H), 3.75 (s, 3H); ¹⁹F NMR (471 MHz, DMSO- d_6) δ ppm -96.64; ¹³C NMR (125 MHz, DMSO- d_6) δ ppm 165.84 (t, J = 27.5 Hz), 159.89 , 129.59 (t, J = 27.0 Hz), 126.97 (t, J = 5.8 Hz), 115.84 (t, J = 251.8 Hz), 113.20 , 55.22; **IR** (KBr): v_{max} 2974, 2843, 1649, 1614, 1254, 1077, 840, 763 cm⁻¹.

Potassium 2-(2,4-dimethoxyphenyl)-2,2-difluoroacetate (1b)

This compound was prepared via the same procedure described for **1a**, except that 1-iodo-2,4-dimethoxybenzene was used in place of 1-iodo-4-methoxybenzene. **1b** was obtained in 73% yield over two steps as

an off-white solid, mp: 239-241 °C; ¹**H** NMR (500 MHz, DMSO- d_6) δ ppm 7.33 (d, J = 8.5 Hz, 1H), 6.52 (d, J = 2.3 Hz, 1H), 6.49 (dd, J = 8.5, 2.4 Hz, 1H), 3.73(s, 3H), 3.68(s, 3H); ¹⁹**F** NMR (471 MHz, DMSO- d_6) δ ppm -96.94; ¹³**C** NMR (125 MHz, DMSO- d_6) δ ppm 167.17 (t, J = 27.9 Hz), 162.08 , 158.89 (d, J = 3.2 Hz), 128.19 (t, J = 7.8 Hz), 118.28 (t, J = 25.3 Hz), 115.95 (t, J = 250.0 Hz), 104.63 , 99.48 , 56.27 , 55.91; **IR** (KBr): v_{max} 2978, 2842, 1646, 1615, 1272, 1064, 836, 778 cm⁻¹.

Potassium 2-(benzo[d][1,3]dioxol-5-yl)-2,2-difluoroacetate (1c)

This compound was prepared via the same procedure described for 1a, except that 5-iodobenzo[d][1,3]dioxole was used in place of 1-iodo-4-methoxybenzene. 1c was obtained in 61% yield over two steps as an off-white solid, mp: 245-247

^oC; ¹H NMR (500 MHz, DMSO-*d*₆) δ ppm 7.16-7.04 (m, 2H), 6.90 (d, J = 8.0 Hz, 1H), 6.03 (s, 2H); ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ ppm -96.71; ¹³C NMR (125 MHz, DMSO-*d*₆) δ ppm 166.04 (t, J = 27.7 Hz), 148.12 , 147.19 , 131.10 (t, J = 26.8 Hz), 119.44 (t, J = 6.7 Hz), 115.68 (t, J = 252.4 Hz), 107.78 , 106.42 (t, J = 6.0 Hz), 101.47; **IR** (KBr): v_{max} 2912, 1634, 1505, 1263, 1044, 825, 765 cm⁻¹.

Potassium 2-(4-(benzyloxy)phenyl)-2,2-difluoroacetate (1d)

This compound was prepared via the same procedure described for 1a, except that 1-(benzyloxy)-4-iodobenzene was used in place of 1-iodo-4-methoxybenzene. 1d was obtained in 66% yield over two steps as an off-white solid, mp: 270-272 °C; ¹H NMR (500 MHz, DMSO- d_6) δ ppm 7.70- 7.20 (m, 7H), 7.02 (d, J = 8.3 Hz, 2H), 5.12 (s, 2H); ¹⁹F NMR (471 MHz, DMSO- d_6) δ ppm -96.77; ¹³C NMR (125 MHz, DMSO- d_6) δ ppm 165.85 (t, J = 27.7 Hz), 158.97 , 137.01 , 129.80 (t, J = 27.1 Hz), 128.54 , 127.93 , 127.70 , 127.00 (t, J = 5.9 Hz), 115.80 (t, J = 251.9 Hz), 114.16 , 69.31; **IR** (KBr): v_{max} 2891, 1656, 1514, 1256, 1069, 827, 733 cm⁻¹.

Potassium 2-(4-(tert-butyl)phenyl)-2,2-difluoroacetate (1e)

This compound was prepared via the same procedure described for 1a, except that 1-(tert-butyl)-4-iodobenzene was used in place of 1-iodo-4-methoxybenzene. **1e** was obtained in 52% yield over two steps as an off-white solid, mp: 296-297 °C; ¹**H** NMR (500 MHz, DMSO- d_6) δ ppm 7.52 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 8.0 Hz, 2H), 1.28 (s, 9H); ¹⁹**F** NMR (471 MHz, DMSO- d_6) δ ppm -98.21; ¹³**C** NMR (125 MHz, DMSO- d_6) δ ppm 165.98 (t, J = 27.5 Hz), 151.60 , 134.50 (t, J = 26.5 Hz), 125.28 (t, J = 5.7 Hz), 124.58 , 115.85 (t, J =251.7 Hz), 34.39 , 31.13; **IR** (KBr): v_{max} 2961, 1661, 1615, 1272, 1078, 813, 702 cm⁻¹.

Potassium 2,2-difluoro-2-mesitylacetate (1f)

This compound was prepared via the same procedure described for **1a**, except that 2-iodo-1,3,5-trimethylbenzene was used in place of 1-iodo-4-methoxybenzene. **1f** was obtained in 68% yield over two steps as an off-white solid, mp: 279-281 °C; ¹**H** NMR (500 MHz, DMSO- d_6) δ ppm 6.76 (s, 2H), 2.39 (t, J = 4.0Hz, 6H), 2.18 (s, 3H); ¹⁹**F** NMR (471 MHz, DMSO- d_6) δ ppm -90.33; ¹³**C** NMR (125 MHz, DMSO- d_6) δ ppm 165.97 (t, J = 27.4 Hz), 136.70 , 136.45 (t, J = 3.4 Hz), 132.36 (t, J = 23.8 Hz), 129.90 , 118.70 (t, J = 254.8 Hz), 21.70 (t, J = 5.6 Hz), 20.30; **IR** (KBr): v_{max} 2973, 1655, 1402, 1109, 1075, 820, 779 cm⁻¹.

Potassium 2-(3,4-dimethylphenyl)-2,2-difluoroacetate (1g)

This compound was prepared via the same procedure described for 1a, except that 4-iodo-1,2-dimethylbenzene was used in place of 1-iodo-4-methoxybenzene. 1g was obtained in 63% yield over two steps as an off-white solid, mp: 247-249 °C; ¹H NMR (500 MHz, DMSO- d_6) δ ppm ppm 7.33 (d, J = 7.8 Hz, 1H), 7.16 (d, J = 7.4 Hz, 1H), 7.08 (t, J = 7.6 Hz, 1H), 2.24 (s, 3H), 2.22 (s, 3H); ¹⁹F NMR (471 MHz, DMSO- d_6) δ ppm -95.74; ¹³C NMR (125 MHz, DMSO- d_6) δ ppm 165.70 (t, J = 27.1 Hz), 137.06 , 136.26 (t, J = 23.8 Hz), 134.35 (t, J = 3.2 Hz), 130.22 , 124.62 , 123.50 (t, J = 9.3 Hz), 116.59 (t, J =253.3 Hz), 20.04 , 15.76. IR (KBr): v_{max} 2943, 1652, 1405, 1276, 1037, 819, 749 cm⁻¹.

Potassium 2,2-difluoro-2-(p-tolyl)acetate (1h)

This compound was prepared via the same procedure described for 1a, except that 1-iodo-4-methylbenzene was used in place of 1-iodo-4-methoxybenzene. 1h was obtained in 53% yield over two steps as an off-white solid, mp: 258-260 °C; ¹H NMR (500 MHz, DMSO- d_6) δ ppm 7.47 (d, J = 7.9 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 2.30 (s, 3H); ¹⁹F NMR (471 MHz, DMSO- d_6) δ ppm -97.86; ¹³C NMR (125 MHz, DMSO- d_6) δ ppm 166.00 (t, J = 27.4 Hz), 138.63 , 134.51 (t, J = 26.5 Hz), 128.44 , 125.46 (t, J = 5.9 Hz), 115.89 (t, J = 251.7 Hz), 20.90; **IR** (KBr): v_{max} 3023, 1651, 1409, 1244, 1047, 812, 737 cm⁻¹.

Potassium 2-([1,1'-biphenyl]-4-yl)-2,2-difluoroacetate (1i)

This compound was prepared via the same procedure described for 1a, except that 4-iodo-1,1'-biphenyl was used in place of 1-iodo-4-methoxybenzene. 1i was obtained in 76% yield over two steps as an off-white solid, mp: 298-300 °C; ¹H NMR (500 MHz, DMSO- d_6) δ ppm 7.72-7.64 (m, 6H), 7.47 (t, J = 7.7 Hz, 2H), 7.37 (t, J = 7.4 Hz, 1H); ¹⁹F NMR (471 MHz, DMSO- d_6) δ ppm -98.37; ¹³C NMR (125 MHz, DMSO- d_6) δ ppm 165.55 (t, J = 27.5 Hz), 141.00 , 139.71 , 136.48 (t, J = 26.6 Hz), 129.06 , 127.78 , 126.84 ,

5 / 125

126.25 , 126.10 (t, J = 5.8 Hz), 115.73 (t, J = 252.5 Hz); **IR** (KBr): v_{max} 3033, 1636, 1404, 1264, 1066, 841, 742 cm⁻¹.

Potassium 2,2-difluoro-2-phenylacetate (1j)

This compound was prepared via the same procedure described for 1a, except that iodobenzene was used in place of 1-iodo-4-methoxybenzene. 1j was obtained in 46% yield over two steps as an off-white solid, mp: 263-265 °C; ¹H NMR (500 MHz, DMSO- d_6) δ ppm 7.61-7.54 (m, 2H), 7.42-7.36 (m, 3H); ¹⁹F NMR (471 MHz, DMSO- d_6) δ ppm -98.41; ¹³C NMR (125 MHz, DMSO- d_6) δ ppm 165.66 (t, J = 27.2 Hz), 137.34 (t, J = 26.3 Hz), 129.19 , 127.90 , 125.42 (t, J = 5.9 Hz), 115.71 (t, J = 252.3 Hz); **IR** (KBr): v_{max} 3042, 1638, 1411, 1262, 1109, 820, 688 cm⁻¹.

Potassium 2,2-difluoro-2-(thiophen-2-yl)acetate (1k)

This compound was prepared via the same procedure described for **1a**, except that 2-iodothiophene was used in place of 1-iodo-4-methoxybenzene. **1k** was obtained in 38% yield over two steps as a pale yellow solid, mp: 215-217 °C; ¹H NMR (500 MHz, DMSO- d_6) δ ppm 7.60 (dd, J = 5.0, 1.3 Hz, 1H), 7.32 (dd, J = 3.4, 1.6 Hz, 1H), 7.02 (dd, J = 5.0, 3.6 Hz, 1H); ¹⁹F NMR (471 MHz, DMSO- d_6) δ ppm -86.85; ¹³C NMR (125 MHz, DMSO- d_6) δ ppm 164.60 (t, J = 26.6 Hz), 138.85 (t, J = 30.8 Hz), 127.98 , 126.99 (t, J = 5.5 Hz), 126.45 , 113.62 (t, J = 250.3 Hz); **IR** (KBr): v_{max} 3084, 1652, 1403, 1243, 1114, 1037, 809, 706 cm⁻¹.

Potassium 2-(4-chlorophenyl)-2,2-difluoroacetate (11)

This compound was prepared via the same procedure described for 1a, except that 1-chloro-4-iodobenzene was used in place of 1-iodo-4-methoxybenzene. 11 was obtained in 76% yield over two steps as an off-white solid, mp: 285-287 °C; ¹H NMR (500 MHz, DMSO- d_6) δ ppm 7.61 (d, J = 8.1 Hz, 2H), 7.44 (d, J = 8.2 Hz, 2H); ¹⁹F NMR (471 MHz, DMSO- d_6) δ ppm -98.67; ¹³C NMR (125 MHz, DMSO- d_6) δ ppm 165.41 (t, J = 27.2 Hz), 136.19 (t, J = 26.8 Hz), 134.12, 128.06 , 127.49 (t, J = 5.8 Hz), 115.26 (t, J = 252.7 Hz); IR (KBr): v_{max} 3043, 1630, 1400, 1263, 1053, 833, 775 cm⁻¹.

Potassium 2,2-difluoro-2-(4-(trifluoromethyl)phenyl)acetate (1m)

F₃C—CF₂COOK This compound was prepared via the same procedure described for **1a**, except that 1-iodo-4-(trifluoromethyl)benzene was used in place of 1-iodo-4-methoxybenzene. **1m** was obtained in 72% yield over two steps as an off-white solid,, mp: 283-285 °C; ¹H NMR (500 MHz, DMSO- d_6) δ ppm 7.80-7.74 (m, 4H); ¹⁹F NMR (471 MHz, DMSO- d_6) δ ppm -61.36 , -99.71; ¹³C NMR (125 MHz, DMSO- d_6) δ ppm 164.64 (t, J = 26.7 Hz), 129.67 (q, J = 31.8 Hz), 126.33 (t, J = 5.9 Hz), 124.90 (q, J = 3.9 Hz), 124.13 (q, J = 272.1 Hz), 115.00 (t, J = 253.7 Hz); **IR** (KBr): v_{max} 3052, 1634, 1414, 1266, 1077, 844, 816, 721, 688 cm⁻¹.

Potassium 2-(4-cyanophenyl)-2,2-difluoroacetate (1n)

This compound was prepared via the same procedure described for 1a, except that 4-iodobenzonitrile was used in place of 1-iodo-4-methoxybenzene. 1n was obtained in 78% yield over two steps as a pale yellow solid, mp: 262-264 °C; ¹H NMR (500 MHz, DMSO- d_6) δ ppm 7.86 (d, J = 8.2 Hz, 2H), 7.74 (d, J = 8.2 Hz, 2H); ¹⁹F NMR (471 MHz, DMSO- d_6) δ ppm -100.18; ¹³C NMR (125 MHz, DMSO- d_6) δ ppm 164.67 (t, J = 26.7 Hz), 142.02 (t, J = 26.7 Hz), 132.13 , 126.49 (t, J = 5.9 Hz), 118.63 , 114.89 (t, J = 253.9 Hz), 112.13; IR (KBr): v_{max} 3042, 2246, 1647, 1385, 1245, 1087, 853, 761, 701 cm⁻¹.

Potassium 2,2-difluoroacetate (1p)

 $HCF_2CO_2H + KOH \longrightarrow HCF_2CO_2K$

In a 50 mL round bottom flask, 2,2-difluoroacetic acid (10 mmol, 1.0 equiv) was added to a mixture of EtOH (15 mL) and KOH (10.5 mmol,1.05 equiv) and stirred for 6 h at room temperature. The desired potassium 2,2-difluoroacetate **1p** was obtained by removing the ethanol. Products were purified by washing with petroleum ether in 90% yield as an off-white solid, mp: 224-226 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ ppm 5.71 (t, *J* = 55.3 Hz, 1H); ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ ppm -123.22 (d, *J* = 55.3 Hz); ¹³C NMR (125 MHz, DMSO-*d*₆) δ ppm 167.99 (t, *J* = 23.6 Hz), 110.34 (t, *J* = 248.0 Hz); **IR** (KBr): *v*_{max} 3011, 1639, 1339, 1049, 815 cm⁻¹.

3. General procedure for synthesis of isocyanides:

All the 2-isocyanobiaryls (2a-2q) were prepared according to the following procedure:³

To an oven-dried three necked flask, 2-bromoaniline (20 mmol), phenylboronic acid (24 mmol), aqueous solution of K_2CO_3 (2M, 45 mL) and DME (40 mL) were added under a gentle stream of nitrogen, and the mixture was stirred for 30 min at room temperature under N_2 atmosphere. To the stirred mixture, $PdCl_2(PPh_3)_2$ (280 mg, 0.40 mmol) was added at room temperature, and the mixture was stirred for overnight at 80 °C, under N_2 . The reaction mixture was then cooled to room temperature and diluted with EtOAc. The organic layer was washed with water and dried over MgSO₄. After removing the volatiles in vacuo, the residue was subjected to column chromatography on silica gel (Petroleum ether/EtOAc = 30/1) to afford S4, (S4a, 89%).

To an oven-dried three necked flask equipped with a dropping funnel, **S4** (18 mmol) and THF (30 mL) were added under N₂ atmosphere and cooled to 0 $\,^{\circ}$ C. Acetic formic anhydride, which was prepared from the reaction of acetic anhydride (3.8 mL) with formic acid (1.7 mL) at 55 $\,^{\circ}$ C for 2 h, was transferred to the dropping funnel and dropped to the solution of **S4** at 0 $\,^{\circ}$ C. After the addition was complete, the mixture was warmed to room temperature and stirred for 2 h. Then, the mixture was quenched by sat. aqueous solution of NaHCO₃ and extracted with EtOAc three times. The extract was dried over Na₂SO₄ and concentrated under reduced pressure to give formamide as a pale yellow oil.

This material was used for the subsequent dehydration without further purification. To an oven-dried three necked flask equipped with a dropping funnel, THF (30 mL), NEt₃ (150 mmol) and the whole amount of formamide obtained above were added under N₂ atmosphere and cooled to 0 °C. POCl₃ (36 mmol) was added dropwise, and the mixture was stirred for 2 h at 0 °C after the addition was complete. Then, the mixture was quenched by sat. aqueous solution of Na₂CO₃ and stirred for 1 h. The mixture was extracted with CH₂Cl₂three times, dried over MgSO₄ and evaporated under reduced pressure. The compound was purified by column chromatography on Florisil (Petroleum ether/EtOAc = 40/1) to give **2a** as a green oil (78% yield from **S4**).

2-isocyano-1,1'-biphenyl (2a)

Green oil; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.58-7.54 (m, 2H), 7.51 (t, J = 7.2 Hz, 3H), 7.48-7.43 (m, 3H), 7.41-7.36 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ ppm 166.73, 138.58, 136.84, 130.41, 129.44, 128.82, 128.41, 128.22, 128.03, 127.66, 124.36; **IR** (KBr): v_{max} 3065, 2120, 1475, 1438, 762, 702 cm⁻¹.

2-isocyano-4'-methyl-1,1'-biphenyl (2b)

This compound was prepared via the same procedure described for **2a**, except that *p*-tolylboronic acid was used in place of phenylboronic acid. **2b** was obtained in 81% yield over two steps as a green oil; ¹H NMR (500 MHz, CDCl₃) δ ppm 7.49 (d, *J* = 7.4 Hz, 1H), 7.48-7.42 (m, 4H), 7.38-7.34 (m, 1H), 7.32 (d, *J* = 7.8 Hz, 2H), 2.44 (s,

3H); ¹³C NMR (125 MHz, CDCl₃) δ ppm 166.52, 138.74, 138.17, 134.04, 130.46, 129.47, 129.23, 128.79, 127.85, 127.76, 124.48, 21.22; **IR** (KBr): *ν*_{max} 3028, 2922, 2120, 1516, 1478, 1109, 819, 764 cm⁻¹.

2-isocyano-4'-methoxy-1,1'-biphenyl (2c)

This compound was prepared via the same procedure described for **2a**, except that (4-methoxyphenyl)boronic acid was used in place of phenyl boronic acid. **2c** was obtained in 85% yield over two steps as a pale green solid, mp: 69-71 °C; ¹H NMR (500 MHz, CDCl₃) δ ppm 7.48-7.45(m, 3H), 7.45-7.39 (m, 2H), 7.36-7.31

(m, 1H), 7.02(d, J = 8.8 Hz, 2H), 3.86 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ ppm 166.40 , 159.65 , 138.36 , 130.38 , 130.14 , 129.48 , 129.20 , 127.77 , 127.62 , 124.38 , 113.95 , 55.24; **IR** (KBr): v_{max} 3030, 2982, 2124, 1610, 1476, 1248, 1033, 826, 748 cm⁻¹.

4'-fluoro-2-isocyano-1,1'-biphenyl (2d)

This compound was prepared via the same procedure described for **2a**, except that (4-fluorophenyl)boronic acid was used in place of phenyl boronic acid. **2d** was obtained in 78% yield over two steps as a green solid, mp: 60-62 °C; ¹H NMR (500 MHz, CDCl₃) δ ppm 7.52-7.44 (m, 4H), 7.42-7.36 (m, 2H), 7.17 (t, *J* = 8.8 Hz, 2H);

¹⁹**F NMR** (471 MHz, CDCl₃) δ ppm -113.20- -113.30(m); ¹³**C NMR** (125 MHz, CDCl₃) δ ppm 166.85 , 162.81 (d, J = 248.2 Hz), 137.79 , 133.03 (d, J = 3.5 Hz), 130.81 (d, J = 8.2 Hz), 130.50 , 129.66 , 128.35 , 127.86 , 124.59 , 115.63 (d, J = 21.6 Hz); **IR** (KBr): v_{max} 3028, 2120, 1602, 1511, 1475, 1227, 832, 759 cm⁻¹.

4'-chloro-2-isocyano-1,1'-biphenyl (2e)

This compound was prepared via the same procedure described for 2a, except that (4-chlorophenyl)boronic acid was used in place of phenyl boronic acid. 2e was obtained in 88% yield over two steps as an off-white solid, mp: 98-100 °C; ¹H NMR (500 MHz, CDCl₃) δ ppm 7.55-7.46 (m, 6H), 7.45-7.39 (m, 2H); ¹³C NMR (125

MHz, CDCl₃) δ ppm 167.08, 137.53, 135.41, 134.57, 130.38, 130.33, 129.71, 128.82, 128.55, 127.91, 124.49; **IR** (KBr): v_{max} 3035, 2123, 1469, 1091, 824, 763 cm⁻¹.

2-isocyano-4'-(trifluoromethyl)-1,1'-biphenyl (2f)

This compound was prepared via the same procedure described for 2a, except that (4-(trifluoromethyl)phenyl)boronic acid was used in place of phenyl boronic acid. **2f** was obtained in 78% yield over two steps as a green solid, mp: 85-87 °C; ¹H **NMR** (500 MHz, CDCl₃) δ ppm 7.76 (d, *J* = 8.1 Hz, 2H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.55-7.46 (m, 2H), 7.47-7.41 (m, 2H); ¹⁹F NMR (471 MHz, CDCl₃) δ ppm -62.58;

¹³C NMR (125 MHz, CDCl₃) δ ppm 167.44, 140.68, 137.39, 130.53 (q, J = 32.6 Hz), 130.49, 129.87, 129.51, 129.10, 128.03, 125.63 (q, *J* = 3.8 Hz), 124.60, 124.14 (q, *J* = 272.2 Hz); **IR** (KBr): v_{max} 3033, 2124, 1622, 1473, 1328, 1116, 841, 764 cm⁻¹.

1-(2'-isocyano-[1,1'-biphenyl]-4-yl)ethan-1-one (2g)

This compound was prepared via the same procedure described for 2a, except that (4-acetylphenyl)boronic acid was used in place of phenyl boronic acid. 2g was obtained in 82% yield over two steps as an off-white solid, mp: 117-119 °C; ¹H **NMR** (500 MHz, CDCl₃) δ ppm 8.03 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 8.3 Hz, 2H), 7.46 (t, J = 7.8 Hz, 1H), 7.42-7.36 (m, 2H), 2.61 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ ppm 197.45, 167.25, 141.51, 137.47, 136.61, 130.29, 129.69, 129.22, 128.89, 128.48, 127.88, 124.35, 26.65;

IR (KBr): v_{max} 3035, 2122, 1676, 1466, 1264, 1152, 837, 764 cm⁻¹.

2'-isocyano-[1,1'-biphenyl]-4-carbonitrile (2h)

This compound was prepared via the same procedure described for 2a, except that (4-cyanophenyl)boronic acid was used in place of phenyl boronic acid. 2h was obtained in 70% yield over two steps as a green solid, mp: 123-125 °C; ¹H NMR (500 MHz, CDCl₃) δ ppm 7.75 (d, J = 6.4 Hz, 2H), 7.62 (d, J = 6.6 Hz, 2H),

7.55-7.47 (m, 2H), 7.47-7.38 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ ppm 167.60, 141.48, 136.62, 132.27, 130.20, 129.88, 129.74, 129.38, 127.97, 124.26, 118.41, 112.11; **IR** (KBr): *v*_{max} 3028, 2220, 2128, 1638, 1473, 1154, 847, 764 cm⁻¹; **HRMS** (EI) calcd. for C₁₄H₈N₂ 204.0687, found: 204.0698.

4-(2-isocyanophenyl)pyridine (2i)

This compound was prepared via the same procedure described for 2a, except that pyridin-4-ylboronic acid was used in place of phenyl boronic acid. 2i was obtained in 70% yield over two steps as a brown solid, mp: 61-63 °C; ¹H NMR (500 MHz, CDCl₃) δ ppm 8.76-8.64 (m, 2H), 7.54-7.35 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ ppm 167.89 , 150.08 , 144.62 , 135.80 , 130.09 , 129.90 , 129.56 , 128.07 , 124.28 , 123.57; **IR** (KBr): v_{max} 3030, 2122, 1599, 1472, 827, 765, 716 cm⁻¹.

2-(2-isocyanophenyl)naphthalene (2j)

This compound was prepared via the same procedure described for **2a**, except that naphthalen-2-ylboronic acid was used in place of phenyl boronic acid. **2j** was obtained in 80% yield over two steps as pale yellow solid, mp: 124-126 °C; ¹H NMR (500 MHz, CDCl₃) δ ppm 8.00 (s, 1H), 7.98 (d, J = 8.5 Hz, 1H), 7.93 (q, J = 5.7 Hz, 2H), 7.67 (d, J = 8.5 Hz, 1H), 7.59-7.52 (m, 4H), 7.50 (td, J = 7.6, 1.4 Hz, 1H), 7.41 (td, J = 7.7, 1.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ ppm 166.82 , 138.73 , 134.45 , 133.22 , 132.96 , 130.83 , 129.61 , 128.38 , 128.32 , 128.24 , 128.23 , 127.90 , 127.76 , 126.66 , 126.63 , 126.51 , 124.76; **IR** (KBr): v_{max} 3061, 2110, 1489, 1349, 1160, 827, 762 cm⁻¹.

9-(2-isocyanophenyl)phenanthrene (2k)

This compound was prepared via the same procedure described for **2a**, except that phenanthren-9-ylboronic acid was used in place of phenyl boronic acid. **2k** was obtained in 58% yield over two steps as a pale yelow solid, mp: 181-183 °C; ¹H **NMR** (500 MHz, CDCl₃) δ ppm 8.84 (d, *J* = 8.3 Hz, 1H), 8.79 (d, *J* = 8.3 Hz, 1H), 7.97 (d, *J* = 7.8 Hz, 1H), 7.81-7.72 (m, 3H), 7.69 (t, *J* = 7.4 Hz, 1H), 7.66-7.58 (m,

3H), 7.57-7.47 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ ppm 166.49 , 138.02 , 133.69 , 131.75 , 131.18 , 130.56 , 130.52 , 130.38 , 129.31 , 128.91 , 128.68 , 128.38 , 127.25 , 127.21 , 126.99 , 126.87 , 126.84 , 126.43 , 126.13 , 123.15 , 122.68; **IR** (KBr): v_{max} 3044, 2110, 1489, 1349, 1160, 827, 762 cm⁻¹.

2-isocyano-5-methyl-1,1'-biphenyl (2l)

This compound was prepared via the same procedure described for **2a**, except that 2-bromo-4-methylaniline was used in place of 2-bromoaniline. **2l** was obtained in 88% yield over two steps as a pale yellow solid, mp: 93-95 °C; ¹H NMR (500 MHz, Chloroform-*d*) δ 7.55-7.52 (m, 2H), 7.52-7.47 (m, 2H), 7.44 (tt, *J* = 7.1, 2.4 Hz, 1H),

7.38 (d, J = 8.0 Hz, 1H), 7.25 (s, 1H), 7.18 (d, J = 8.1 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ ppm 165.88 , 139.88 , 138.54 , 137.16 , 131.14 , 128.94 , 128.78 , 128.50 , 128.25 , 127.64 , 122.08 , 21.34; **IR** (KBr): v_{max} 2914, 2115, 1639, 1472, 1127, 825, 705 cm⁻¹.

5-fluoro-2-isocyano-1,1'-biphenyl (2m)

This compound was prepared via the same procedure described for **2a**, except that 2-bromo-4-fluoroaniline was used in place of 2-bromoaniline. **2m** was obtained in 82% yield over two steps as a green solid, mp: 58-60 °C; ¹H NMR (500 MHz, CDCl₃) δ ppm 7.55-7.44 (m, 6H), 7.14 (dd, *J* = 8.9, 2.8 Hz, 1H), 7.07 (ddd, *J* = 8.8,

7.6, 2.8 Hz, 1H); ¹⁹**F NMR** (471 MHz, CDCl₃) δ ppm -108.56- -108.66 (m); ¹³**C NMR** (125 MHz, CDCl₃) δ ppm 166.91 , 162.19 (d, J = 252.1 Hz), 141.26 (d, J = 8.7 Hz), 136.00 , 129.79 (d, J = 9.2 Hz), 128.94 , 128.82 , 128.74 , 120.82 , 117.48 (d, J = 23.5 Hz), 115.30 (d, J = 23.3 Hz); **IR** (KBr): v_{max} 3058, 2129, 1576, 1475, 1265, 1181, 822, 769, 705 cm⁻¹.

5-chloro-2-isocyano-1,1'-biphenyl (2n)

This compound was prepared via the same procedure described for **2a**, except that 2-bromo-4-chloroaniline was used in place of 2-bromoaniline. **2n** was obtained in 84% yield over two steps as an off-white solid, mp: 77-79 °C; ¹H NMR (500 MHz, CDCl₃) δ ppm 7.52-7.45 (m, 5H), 7.45-7.41 (m, 2H), 7.35 (dd, *J* = 8.6, 2.3 Hz,

1H); ¹³**C NMR** (125 MHz, CDCl₃) δ ppm 168.09, 140.31, 135.69, 135.30, 130.53, 128.98, 128.89, 128.79, 128.69, 128.23, 123.00; **IR** (KBr): v_{max} 3022, 2120, 1642, 1469, 1090, 812, 761, 691 cm⁻¹.

2-isocyano-4-methoxy-1,1'-biphenyl (20)

This compound was prepared via the same procedure described for **2a**, except that 2-bromo-5-methoxyaniline was used in place of 2-bromoaniline. **2o** was obtained in 86% yield over two steps as a green solid, mp: 57-59 °C; ¹H NMR (500 MHz, CDCl₃) δ ppm 7.53-7.45 (m, 4H), 7.40 (tt, *J* = 6.9, 2.6 Hz, 1H), 7.34

(d, J = 8.4 Hz, 1H), 7.05-6.99 (m, 2H), 3.85 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ ppm 166.37 , 159.09 , 136.83 , 131.42 , 131.28 , 128.98 , 128.50 , 127.91 , 125.01 , 116.10 , 112.71 , 55.68; **IR** (KBr): v_{max} 3063, 2965, 2124, 1611, 1481, 1281, 1039, 764, 696 cm⁻¹.

2-isocyano-3,5-dimethyl-1,1'-biphenyl (2p)

This compound was prepared via the same procedure described for **2a**, except that 2-bromo-4,6-dimethylaniline was used in place of 2-bromoaniline. **2p** was obtained in 79% yield over two steps as a yellow oil; ¹**H** NMR (500 MHz, CDCl₃) δ ppm 7.53-7.50 (m, 2H), 7.50-7.45 (m, 2H), 7.42 (tt, *J* = 7.1, 1.6 Hz, 1H), 7.10 (s, 1H),

7.07 (s, 1H), 2.48 (s, 3H), 2.38 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ ppm 167.84 , 139.18 , 138.85 , 137.73 , 135.65 , 130.05 , 129.03 , 128.68 , 128.47 , 128.15 , 122.31 , 21.31, 19.34; **IR** (KBr): ν_{max} 3033, 2921, 2115, 1600, 1463, 1262, 1028, 861, 772, 704 cm⁻¹.

2-isocyano-4',5-dimethyl-1,1'-biphenyl (2q)

This compound was prepared via the same procedure described for **2a**, except that 2-bromo-4-methylaniline was used in place of 2-bromoaniline, *p*-tolylboronic acid was used in place of phenylboronic acid. **2q** was obtained in 85% yield over two steps as a pale green solid, mp: $63-65 \, {}^{\circ}C$; ¹H NMR (500 MHz, CDCl₃) δ ppm 7.45

(d, J = 8.0 Hz, 2H), 7.38 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 7.9 Hz, 2H), 7.25 (s, 1H), 7.16 (dd, J = 8.1, 1.3 Hz, 1H), 2.45 (s, 3H), 2.43 (s, 3H); ¹³**C** NMR (125 MHz, CDCl₃) δ ppm 165.77, 139.76, 138.48, 138.03, 134.20, 131.03, 129.17, 128.76, 128.49, 127.57, 122.02, 21.29, 21.21; **IR** (KBr): v_{max} 3023, 2914, 2121, 1610, 1480, 815, 725 cm⁻¹.

Ethyl 2-isocyano-3,3-diphenylacrylate (2r)

Ethyl 2-isocyano-3,3-diphenylacrylate 2r was prepared according to the previously reported procedures:⁴

$$\begin{array}{c} O \\ Ph \end{array} + CN \\ \hline CO_2Et \end{array} \xrightarrow{NaH} \\ THF, RT, 2h \\ \hline Ph \end{array} \xrightarrow{Ph} \\ \hline OCl_3, NEt_3 \\ \hline THF, 0 \ ^{\circ}C, 2h \\ \hline Ph \\ NC \\ \hline S5 \\ \hline 2r \\ \end{array}$$

A mixture of benzophenone (1.82 g, 10.0 mmol) and ethyl isocyanoacetate (S2, 1.13 g, 10.0 mmol) in THF (10 ml) was added dropwise to a suspension of NaH (60% in oil) (0.48 g, 12.0 mmol) in THF (10.0 ml) at room temperature. After stirring for 2 h at room temperature, 10% AcOH was added to the mixture at 0 $\,^{\circ}$ C until there is no hydrogen release. The solvent was removed under reduced pressure and the residue was extracted with CH₂Cl₂ three times and the extract was washed with H₂O, dried over Na₂SO₄ and concentrated under reduced pressure. Further recrystallization in MeOH afforded the product **S5** (2.3 g, 78%) as a white solid.

THF (10.0 mL), NEt₃ (5.6 mL, 40 mmol) and **S5** (1.48 g, 5.0 mmol) were added to an oven-dried three necked flask under N₂ atmosphere and cooled to 0 °C. POCl₃ (0.93 mL, 10.0 mmol) was added dropwise and the mixture was stirred for 2 h at 0 °C after the addition was completed. Then the mixture was quenched by sat. Na₂CO₃ and stirred for another 1 h. The mixture was extracted with CH₂Cl₂ three times, dried over Na₂SO₄ and concentracted under reduced pressure. The residue was purified by column chromatography on silica gel (Petroleum ether/EtOAc = 20/1) to give **2r** (1.20 g, 86%) as a yellow solid. Mp: 85-87 °C; ¹H NMR (500 MHz, CDCl₃) δ ppm 7.45-7.33 (m, 8H), 7.16 (d, *J* = 6.7 Hz, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 1.07 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ ppm 169.68 , 161.94 , 153.83 , 138.02 , 137.37 , 130.23 , 129.86 , 129.45 , 129.10 , 128.43 , 128.22 , 114.35 , 62.22 , 13.57; **IR** (KBr): v_{max} 3030, 2987, 2113, 1723, 1639, 1447, 1260, 1116, 755, 699 cm⁻¹; **HRMS** (ESI-TOF) calcd. for C₁₈H₁₆NO₂⁺ 278.1176, found: 278.1184.

4. Survey of reaction conditions. ^[a]

Entry	Catalyst [mol %]	Oxidant	Base Temp Yield		Yield	
		[equiv]	[equiv]	Solvent	[°C]	[%] ^[b]
1	AgNO ₃ (10)	$Na_2S_2O_8(2)$		DMSO	120	39
2	AgCO ₃ (10)	$Na_2S_2O_8(2)$		DMSO	120	35
3	Ag ₂ O (10)	$Na_{2}S_{2}O_{8}(2)$		DMSO	120	34
4	AgBF ₄ (10)	$Na_2S_2O_8(2)$		DMSO	120	29
5	AgSbF ₆ (10)	$Na_2S_2O_8(2)$		DMSO	120	21
6	AgOAc (10)	$Na_{2}S_{2}O_{8}(2)$		DMSO	120	34
7	AgNO ₃ (10)	PhI(OAc) 2 (2)		DMSO	120	0
8	AgNO ₃ (10)	$K_2S_2O_8(2)$		DMSO	120	48
9	AgNO ₃ (10)	$(NH_4)_2S_2O_8(2)$		DMSO	120	56
10	AgNO ₃ (10)	$(NH_4)_2S_2O_8(2)$		DMF	120	8
11	AgNO ₃ (10)	$(NH_4)_2S_2O_8(2)$		DMPU	120	0
12	AgNO ₃ (10)	$(NH_4)_2S_2O_8(2)$		NMP	120	0
13	AgNO ₃ (10)	$(NH_4)_2S_2O_8(2)$		DMSO	100	66
14	AgNO ₃ (10)	$(NH_4)_2S_2O_8(2)$		DMSO	80	73
15	AgNO ₃ (10)	$(NH_4)_2S_2O_8(2)$		DMSO	60	65
16	AgNO ₃ (10)	$(NH_4)_2S_2O_8(2)$	K ₂ CO ₃ (0.5)	DMSO	80	43
17	AgNO ₃ (10)	$(NH_4)_2S_2O_8(2)$	KOH (0.5)	DMSO	80	62
18	AgNO ₃ (10)	$(NH_4)_2S_2O_8(2)$	Et ₃ N (0.5)	DMSO	80	60
19	AgNO ₃ (10)	$(NH_4)_2S_2O_8(2)$	KHCO ₃ (0.5)	DMSO	80	87
20 ^[c]	AgNO ₃ (10)	$(NH_4)_2S_2O_8(2)$	$KHCO_3(1)$	DMSO	80	64
21 ^[d]	AgNO ₃ (10)	$(NH_4)_2S_2O_8(2)$	KHCO ₃ (2)	DMSO	80	44
22	AgNO ₃ (10)	$(NH_4)_2S_2O_8(1)$	KHCO ₃ (0.5)	DMSO	80	53
23	AgNO ₃ (20)	$(NH_4)_2S_2O_8(2)$	KHCO ₃ (0.5)	DMSO	80	92
24	AgNO ₃ (30)	$(NH_4)_2S_2O_8(2)$	KHCO ₃ (0.5)	DMSO	80	97
25 ^[e]		$(NH_4)_2S_2O_8(2)$	KHCO ₃ (0.5)	DMSO	80	12
26 ^[f]	AgNO ₃ (10)		KHCO ₃ (0.5)	DMSO	80	0

[a] Reaction conditions: potassium difluoroacetate **1a** (0.5 mmol), 2-isocyanobiphenyl **2a** (2.5 mmol), Ag(I) salt, oxidant and base in solvent (3.0 mL) under N₂ atmosphere. [b] Yields determined by ¹⁹F NMR analysis with PhCF₃ as the internal standard. [c] 0.5 mmol loading of base and 0.5 mmol loading of oxidant. [d] 1.0 mmol loading of base and 1.0 mmol loading of oxidant. [e] Without catalyst. [f] Without oxidant.

5. Preliminary mechanistic study

Table S1. Effects of Additives on silver-catalyzed oxidative decarboxylation of difluoroacetates

CF ₂ COOK + OMe	Addtive 20 mol% AgNO ₃ , 200 mol% (NH ₄) ₂ S ₂ O ₈ , 50 mol% KHCO ₃ , DMSO 4Å M.S. 80 °C, 12h	OMe N F F
1a	2a	3aa
Entry	Additive	Yield $(\%)^a$
1	ambient light	92
2	dark	94
3	1.0 equiv 1,4-dinitrobenzene	26
4	1.0 equiv hydroquinone	trace
5	1.0 equiv TEMPO	46
6	2.0 equiv TEMPO	trace
3 * ** 1 1 1	1 11 19 19 19 19	

^a Yields determined by ¹⁹F-NMR spectroscopy with PhCF₃ as internal standard.

General Procedure: An oven-dried 10 mL Schlenk tube was charged with AgNO₃ (10.2 mg, 0.06 mmol, 0.2 equiv), $(NH_4)_2S_2O_8$ (137 mg, 0.6 mmol, 2.0 equiv), anhydrous KHCO₃ (15 mg, 0.15 mmol, 0.5 equiv), pre-activated 4Å powdered molecular sieves (60 mg), additive (1.0 equiv or 2.0 equiv) and potassium 2,2-difluoro-2-(4-methoxyphenyl)acetate **1a** (72 mg, 0.3 mmol, 1.0 equiv) under air, followed by 2-isocyanobiphenyl **2a** (135 mg, 0.75 mmol, 2.5 equiv). The tube was sealed with a septum, evacuated and backfilled with N₂ for three times. Anhydrous DMSO (3.0 mL) was added with syringe under N₂. The reaction mixture was heated to 80 °C (oil bath). After stirring for 12 h, the reaction was cooled to room temperature and PhCF₃ (0.3 mmol) was added. The yield was determined by ¹⁹F-NMR.

Control reactions to probe for the possible mechanism.

A 10 mL Schlenk tube was charged with $(NH_4)_2S_2O_8$ (137 mg, 0.6 mmol, 2.0 equiv), anhydrous KHCO₃ (15 mg, 0.15 mmol, 0.5 equiv), potassium 2,2-difluoro-2-(4-methoxyphenyl)acetate **1a** (72 mg, 0.3 mmol, 1.0 equiv), pre-activated 4Å powdered molecular sieves (60 mg) under air, followed by 2-isocyanobiphenyl **2a** (135 mg, 0.75 mmol, 2.5 equiv). The tube was sealed with a septum, evacuated and backfilled with N₂ for three times. Anhydrous DMSO (3.0 mL) was added with syringe under N₂. After 12 h of stirring at 80 °C, the resulting mixture was analyzed by ¹⁹F-NMR, and the desired product **3aa** was detected only 12% yield. (Scheme 1)

Scheme 1

A 10 mL Schlenk tube was charged with, AgNO₃ (10.2 mg, 0.06 mmol, 0.2 equiv), anhydrous KHCO₃ (15 mg, 0.15 mmol, 0.5 equiv), potassium 2,2-difluoro-2-(4-methoxyphenyl)acetate **1a** (72 mg, 0.3 mmol, 1.0 equiv), pre-activated 4Å powdered molecular sieves (60 mg) under air, followed by 2-isocyanobiphenyl **2a** (135 mg, 0.75 mmol, 2.5 equiv). The tube was sealed with a septum, evacuated and backfilled with N₂ for three times. Anhydrous DMSO (3.0 mL) was added with syringe under N₂. After 12 h of stirring at 80 °C, the resulting mixture was analyzed by ¹⁹F-NMR, and the desired product **3aa** was not detected. (Scheme 2)

Scheme 2

An oven-dried 10mL Schlenk tube was charged with AgNO₃ (10.2 mg, 0.06 mmol, 0.2 equiv), $(NH_4)_2S_2O_8$ (137 mg, 0.6 mmol, 2.0 equiv), anhydrous KHCO₃ (15 mg, 0.15 mmol, 0.5 equiv), pre-activated 4Å powdered molecular sieves (60 mg), additive (1.0 equiv or 2.0 equiv) and 2,2-difluoro-2-(4-methoxyphenyl)acetic acid (62 mg, 0.3 mmol, 1.0 equiv) under air, followed by 2-isocyanobiphenyl **2a** (135 mg, 0.75 mmol, 2.5 equiv). The tube was sealed with a septum, evacuated and backfilled with N₂ for three times. Anhydrous DMSO (3.0 mL) was added with syringe under N₂. The reaction mixture was heated to 80 °C (oil bath). After stirring for 12 h, the reaction was cooled to room temperature and PhCF₃ (0.3 mmol) was added. The resulting mixture was analyzed by ¹⁹F-NMR, and the desired product **3aa** was detected only 2% yield. (Scheme 3)

The Effect of Water: A 10 mL Schlenk tube was charged with AgNO₃ (10.2 mg, 0.06 mmol, 0.2 equiv), (NH₄)₂S₂O₈ (137 mg, 0.6 mmol, 2.0 equiv), anhydrous KHCO₃ (15 mg, 0.15 mmol, 0.5 equiv), potassium 2,2-difluoro-2-phenylacetate **1a** (72 mg, 0.3 mmol, 1.0 equiv) under air, followed by 2-isocyanobiphenyl **2a** (135 mg, 0.75 mmol, 2.5 equiv). The tube was sealed with a septum, evacuated and backfilled with N₂ for three times. DMSO (3.0 mL) and H₂O (54 mg, 10.0 equiv) was added with syringe subsequently. The reaction mixture was heated to 80 °C (oil bath). After stirring for 12 h, the reaction was cooled to room temperature and PhCF₃ (0.3 mmol) was added. The resulting mixture was

analyzed by ¹⁹F-NMR, and the desired product **3aa** was detected 39% yield (Scheme 4).

A 10 mL Schlenk tube was charged with AgNO₃ (10.2 mg, 0.06 mmol, 0.2 equiv), $(NH_4)_2S_2O_8$ (137 mg, 0.6 mmol, 2.0 equiv), anhydrous KHCO₃ (15 mg, 0.15 mmol, 0.5 equiv), potassium trifluoroacetate **10** (46 mg, 0.3 mmol, 1.0 equiv), pre-activated 4Å powdered molecular sieves (60 mg) under air, followed by 2-isocyanobiphenyl **2a** (135 mg, 0.75 mmol, 2.5 equiv). The tube was sealed with a septum, evacuated and backfilled with N₂ for three times. Anhydrous DMSO (3.0 mL) was added with syringe under N₂. After 12 h of stirring at 80 °C, the resulting mixture was analyzed by ¹⁹F-NMR, and the desired product **30a** was not detected (Scheme 5).

A 10 mL Schlenk tube was charged with AgNO₃ (10.2 mg, 0.06 mmol, 0.2 equiv), (NH₄)₂S₂O₈ (137 mg, 0.6 mmol, 2.0 equiv), anhydrous KHCO₃ (15 mg, 0.15 mmol, 0.5 equiv), potassium 2,2-difluoroacetate **1p** (40 mg, 0.3 mmol, 1.0 equiv), pre-activated 4Å powdered molecular sieves (60 mg) under air, followed by 2-isocyanobiphenyl **2a** (135 mg, 0.75 mmol, 2.5 equiv). The tube was sealed with a septum, evacuated and backfilled with N₂ for three times. Anhydrous DMSO (3.0 mL) was added with syringe under N₂. After 12 h of stirring at 80 °C, the resulting mixture was analyzed by ¹⁹F-NMR, and the desired product **3pa** was detected only 3% yield (Scheme 6).

6. General procedure for synthesis of 6-difluoromethyl phenanthridines

A 10 mL Schlenk tube was charged with AgNO₃ (10.2 mg, 0.06 mmol, 0.2 equiv), (NH₄)₂S₂O₈ (137 mg, 0.6 mmol, 2.0 equiv), anhydrous KHCO₃ (15 mg, 0.15 mmol, 0.5 equiv), potassium 2,2-difluoro-2-phenylacetate **1a** (72 mg, 0.3 mmol, 1.0 equiv), pre-activated 4Å powdered molecular sieves (60 mg) under air, followed by 2-isocyanobiphenyl **2a** (135 mg, 0.75 mmol, 2.5 equiv). The tube was sealed with a septum, evacuated and backfilled with N₂ for three times. Anhydrous DMSO (3.0 mL) was added with syringe under N₂. The mixture was stirred at 80 °C for 12 h. It was quenched by water and extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under vacuum. The pure product was obtained by flash column chromatography on silica gel (Petroleum ether/ EtOAc = 20:1) to afford **3aa** in 88% yield.

7. Reference

- a) K. Sato, M. Omote, A. Ando, I. Kumadaki, J. Fluorine Chem. 2004, 125, 509; b) S. Mizuta, I. S. R. Stenhagen, M. O'Duill, J. Wolstenhulme, A. K. Kirjavainen, S. J. Forsback, M. Tredwell, G. Sandford, P. R. Moore, M. Huiban, S. K. Luthra, J. Passchier, O. Solin, V. Gouverneur, Org. Lett. 2013, 15, 2648; c) K. Fujikawa, Y. Fujioka, A. Kobayashi, H. Amii, Org. Lett. 2011, 13, 5560.
- [2] L. J. Gooßen, F. Rudolphi, C. Oppel, N. Rodr guez, Angew. Chem. Int. Ed. 2008, 47, 3043.
- [3] a) Q. Wang, X. Dong, T. Xiao, L. Zhou, Org. Lett. 2013, 15, 4846; b) Y. Cheng, H. Jiang, Y. Zhang, S. Yu, Org. Lett., 2013, 5580; c) M. Tobisu, K. Koh, T. Furukawa, N. Chatani, Angew. Chem. Int. Ed. 2012, 51, 11363; d) B. Zhang, C. Mück-Lichtenfeld, C. G. Daniliuc, A. Studer, Angew. Chem. Int. Ed. 2013, 52, 10792; e) L. Wang, W. Sha, Q. Dai, X. Feng, W. Wu, H. Peng, B Chen., J. Cheng, Org. Lett. 2014, 16, 2088.
- [4] H. Jiang, Y. Cheng, R. Wang, Y. Zhang, S. Yu, Chem. Commun. 2014, 50, 6164.

8. Single crystal X-ray analysis of 3aa

9. New Compounds Characterization

6-(difluoro(4-methoxyphenyl)methyl)phenanthridine (3aa)

The product (91 mg, 90% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 20:1). **Mp**: 120-122 $^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃) δ ppm 8.64 (d, *J* = 8.4 Hz, 1H), 8.57 (d, *J* = 8.1 Hz, 1H), 8.34 (d, *J* = 7.5 Hz, 1H), 8.28 (dd, *J* = 8.4 1.3 Hz, 1H), 7.82-7.69 (m, 3H), 7.62-7.55 (m, 3H), 6.92 (d, *J* = 8.7 Hz, 2H), 3.80 (s,

3H); ¹⁹**F** NMR (471 MHz, CDCl₃) δ ppm -86.22; ¹³**C** NMR (125 MHz, CDCl₃) δ ppm 161.00 (t, J = 1.8 Hz), 153.31 (t, J = 28.2 Hz), 142.24 , 134.01 , 131.17 , 130.74 , 129.04 (t, J = 26.7 Hz), 129.03 , 128.47 , 127.83 (t, J = 5.4 Hz), 127.53 (t, J = 4.9 Hz), 127.47 , 124.76 , 123.02 , 122.46 , 122.02 , 120.30 (t, J = 243.2 Hz), 113.81 , 55.38; **IR** (KBr): v_{max} 3072, 2948, 1612, 1515, 1252, 1028, 821, 758, 722 cm⁻¹; **MS** (EI): m/z (%) 314(100), 157(89), 335(71); **HRMS** (ESI-TOF) calcd. for C₂₁H₁₆F₂NO⁺ 336.1194, found: 336.1198.

6-((2,4-dimethoxyphenyl)difluoromethyl)phenanthridine (3ba)

The product (94 mg, 86% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 15:1). **Mp**: 156-158 ^oC; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.65 (d, *J* = 8.3 Hz, 1H), 8.56 (d, *J* = 7.4 Hz, 1H), 8.48 (d, *J* = 8.4 Hz, 1H), 8.18 (d, *J* = 6.7 Hz, 1H), 7.80 (t,

J = 7.7 Hz, 1H), 7.76-7.67 (m, 3H), 7.60 (t, J = 7.7 Hz, 1H), 6.60 (d, J = 8.7 Hz, 1H), 6.47 (s, 1H), 3.84 (s, 3H), 3.43 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ ppm -86.89; ¹³C NMR (125 MHz, CDCl₃) δ ppm 162.68, 159.12 (t, J = 3.8 Hz), 153.46 (t, J = 28.9 Hz), 142.38, 133.88, 131.07, 130.49, 128.75, 128.25 (t, J = 7.6 Hz), 128.11, 127.32 (t, J = 4.5 Hz), 127.28, 124.70, 123.18, 122.32, 121.96, 120.45 (t, J = 242.7 Hz), 118.21 (t, J = 25.4 Hz), 104.31, 99.71, 55.85, 55.48; **IR** (KBr): v_{max} 3066, 2934, 1611, 1454, 1134, 1041, 929, 766, 728 cm⁻¹; **LC-MS** (ESI): m/z 366.4 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for C₂₂H₁₈F₂NO₂⁺ 366.1300, found: 366.1306.

6-(benzo[d][1,3]dioxol-5-yldifluoromethyl)phenanthridine (3ca)

The product (47 mg, 45% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 20:1). **Mp**: 158-160 $^{\circ}$ C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.65 (d, *J* = 8.3 Hz, 1H), 8.57 (d, *J* = 8.3 Hz, 1H), 8.33 (d, *J* = 8.3 Hz, 1H), 8.27 (d, *J* = 8.2 Hz, 1H), 7.81 (t, *J*

= 7.4 Hz, 1H), 7.77 (t, J = 7.5 Hz, 1H), 7.73 (t, J = 7.5 Hz, 1H), 7.61 (t, J = 7.6 Hz, 1H), 7.15 (s, 1H), 7.11 (d, J = 8.3 Hz, 1H), 6.80 (d, J = 8.2 Hz, 1H), 5.98 (s, 2H); ¹⁹**F** NMR (471 MHz, CDCl₃) δ ppm -86.18; ¹³**C** NMR (125 MHz, CDCl₃) δ ppm 153.09 (t, J = 28.0 Hz), 149.21, 147.88, 142.23, 134.03, 131.20, 130.79, 130.66 (t, J = 26.7 Hz), 129.07, 128.54, 127.52, 127.43 (t, J = 4.7 Hz), 124.78, 122.96, 122.50, 122.04, 120.62 (t, J = 6.3 Hz), 119.98 (t, J = 244.1 Hz), 108.13, 106.99 (t, J = 5.4 Hz), 101.65; **IR** (KBr): v_{max} 3069, 1498, 1446, 1253, 1033, 811, 722 cm⁻¹; **LC-MS** (ESI): m/z 350.3 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for C₂₁H₁₄F₂NO₂⁺ 350.0987, found: 350.0989.

6-((4-(benzyloxy)phenyl)difluoromethyl)phenanthridine (3da)

The product (86 mg, 70% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 15:1). **Mp**: 165-167 °C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.66 (d, *J* = 7.8 Hz, 1H), 8.58 (d, *J* = 8.2 Hz, 1H), 8.38 (d, *J* = 8.6 Hz, 1H), 8.30 (dd, *J* = 8.0, 1.5 Hz, 1H),

7.84-7.72 (m, 4H), 7.64-7.59 (m, 4H), 7.45-7.37 (m, 6H), 7.37-7.32 (m, 1H), 7.02 (d, J = 8.7 Hz, 3H), 5.06 (s, 2H); ¹⁹**F NMR** (471 MHz, CDCl₃) δ ppm -86.19; ¹³**C NMR** (125 MHz, CDCl₃) δ ppm 160.22, 153.29 (t, J = 28.2 Hz), 142.25, 136.57, 134.00, 131.18, 130.74, 129.29 (t, J = 26.8 Hz), 129.02, 128.71, 128.47, 128.20, 127.88 (t, J = 5.3 Hz), 127.59, 127.53 (d, J = 4.6 Hz), 127.48, 124.76, 123.02, 122.46, 122.02, 120.31 (t, J = 243.3 Hz), 114.68, 70.14; **IR** (KBr): v_{max} 3074, 2915, 1607, 1511, 1236, 1062, 918, 746, 705 cm⁻¹; **LC-MS** (ESI): m/z 412.4 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for C₂₇H₂₀F₂NO⁺ 412.1507, found: 412.1510.

6-((4-(tert-butyl)phenyl)difluoromethyl)phenanthridine (3ea)

The product (69 mg, 64% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 20:1). **Mp**: 194-196 $^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃) δ ppm 8.64 (d, *J* = 8.3 Hz, 1H), 8.56 (d, *J* = 8.3 Hz, 1H), 8.40 (d, *J* = 8.3 Hz, 1H), 8.29 (d, *J* = 8.1 Hz, 1H), 7.82-7.69

(m, 3H), 7.65-7.57 (m, 3H), 7.45 (d, J = 8.3 Hz, 2H), 1.33 (s, 9H); ¹⁹F NMR (471 MHz, CDCl₃) δ ppm -87.32; ¹³C NMR (125 MHz, CDCl₃) δ ppm 153.42, 153.34 (t, J = 27.9 Hz), 142.31, 134.01, 133.86 (t, J = 26.4 Hz), 131.22, 130.72, 129.01, 128.45, 127.54 (t, J = 5.1 Hz), 127.49, 125.99 (t, J = 5.4 Hz), 125.45, 124.76, 123.05, 122.45, 122.02, 120.33 (t, J = 243.6 Hz), 34.86, 31.31; **IR** (KBr): v_{max} 3069, 2951, 2867, 1609, 1470, 1259, 1084, 837, 757, 718 cm⁻¹; **LC-MS** (ESI): m/z 362.4 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for C₂₄H₂₂F₂N⁺ 362.1715, found: 362.1719.

6-(difluoro(mesityl)methyl)phenanthridine (3fa)

The product (74 mg, 71% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 20:1). **Mp**: 169-170 $^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃) δ ppm 8.83 (d, *J* = 8.0 Hz, 1H), 8.71 (d, *J* = 8.0 Hz, 1H), 8.60 (d, *J* = 8.0 Hz, 1H), 8.02 (d, *J* = 8.0 Hz, 1H), 7.90 (t, *J* =

7.6 Hz, 1H), 7.80-7.65 (m, 3H), 6.98 (s, 2H), 2.39 (s, 3H), 2.33 (t, J = 4.0 Hz, 6H); ¹⁹**F** NMR (471 MHz, CDCl₃) δ ppm -78.44; ¹³**C** NMR (125 MHz, CDCl₃) δ ppm 153.30 (t, J = 32.5 Hz), 142.30, 138.66, 137.86 (t, J = 3.2 Hz), 134.25, 131.41, 131.23 (t, J = 22.5 Hz), 130.78, 130.61, 128.71, 128.49, 127.59, 127.54, 125.74 (t, J = 243.7 Hz), 124.80, 123.27, 122.46, 121.96, 22.66 (t, J = 5.8 Hz), 21.01; **IR** (KBr): v_{max} 3075, 2973, 2929, 1612, 1454, 1243, 1128, 1016, 887, 753, 723 cm⁻¹; **LC-MS** (ESI): m/z 348.4 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for C₂₃H₂₀F₂N⁺ 348.1558, found: 348.1553.

6-((3,4-dimethylphenyl)difluoromethyl)phenanthridine (3ga)

The product (60 mg, 63% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 20:1). **Mp**: 151-153 °C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.68 (d, *J* = 8.3

20 / 125

Hz, 1H), 8.63-8.57 (m, 2H), 8.18-8.11 (m, 1H), 7.85 (t, J = 7.6 Hz, 1H), 7.77-7.70 (m, 2H), 7.68 (t, J = 7.7 Hz, 1H), 7.51 (d, J = 7.8 Hz, 1H), 7.32 (d, J = 7.5 Hz, 1H), 7.20 (t, J = 7.7 Hz, 1H), 2.36 (s, 3H), 2.27 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ ppm -84.44; ¹³C NMR (125 MHz, CDCl₃) δ ppm

153.40 (t, J = 29.9 Hz), 142.18, 138.20, 136.42 (t, J = 2.5 Hz), 134.94 (t, J = 23.4 Hz), 134.09, 131.85, 131.20, 130.76, 128.87, 128.50, 127.70 (t, J = 5.1 Hz), 127.49, 125.08, 124.73, 124.70 (t, J = 8.7 Hz), 123.29, 122.46 (t, J = 243.7 Hz), 122.44, 121.99, 20.65, 16.93; **IR** (KBr): v_{max} 3069, 2917, 1573, 1452, 1261, 1121, 1015, 757, 717 cm⁻¹; **LC-MS** (ESI): m/z 334.4 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for $C_{22}H_{18}F_2N^+$ 334.1402, found: 334.1405.

6-(difluoro(p-tolyl)methyl)phenanthridine (3ha)

The product (57 mg, 60% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 20:1). **Mp**: 123-125 °C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.65 (d, *J* = 8.3 Hz, 1H), 8.58 (dd, *J* = 8.3, 2.2 Hz, 1H), 8.35 (d, *J* = 8.5 Hz, 1H), 8.28 (d, *J* = 7.8 Hz, 1H), 7.84-7.70 (m,

3H), 7.60 (t, J = 7.7 Hz, 1H), 7.55 (d, J = 7.4 Hz, 2H), 7.23 (d, J = 7.9 Hz, 2H), 2.38 (s, 3H); ¹⁹**F NMR** (471 MHz, CDCl₃) δ ppm -87.44; ¹³**C NMR** (125 MHz, CDCl₃) δ ppm 153.29 (t, J = 28.0 Hz), 142.28, 140.37 (t, J = 1.9 Hz), 134.02, 133.97 (t, J = 26.4 Hz), 131.22, 130.74, 129.18, 129.03, 128.47, 127.50 (t, J = 4.8 Hz), 127.48, 126.18 (t, J = 5.4 Hz), 124.79, 123.02, 122.47, 122.03, 120.30 (t, J = 243.5 Hz), 21.44; **IR** (KBr): v_{max} 3073, 2921, 1613, 1449, 1254, 1058, 923, 754, 717 cm⁻¹; **LC-MS** (ESI): m/z 320.4 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for C₂₁H₁₆F₂N⁺ 320.1245, found: 320.1244.

6-([1,1'-biphenyl]-4-yldifluoromethyl)phenanthridine (3ia)

The product (59 mg, 52% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 20:1). **Mp**: 143-144 $^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃) δ ppm 8.68 (d, *J* = 8.1 Hz, 1H), 8.60 (d, *J* = 8.2 Hz, 1H), 8.45 (d, *J* = 8.4 Hz, 1H), 8.28 (d, *J* = 7.9 Hz, 1H), 7.84 (t, *J*

= 8.5 Hz, 1H), 7.81-7.72 (m, 4H), 7.69-7.63 (m, 3H), 7.61 (d, J = 7.8 Hz, 2H), 7.46 (t, J = 8.4 Hz, 2H), 7.38 (t, J = 7.4 Hz, 1H); ¹⁹**F** NMR (471 MHz, CDCl₃) δ ppm -87.57; ¹³**C** NMR (125 MHz, CDCl₃) δ ppm 153.14 (t, J = 28.2 Hz), 143.08, 142.26, 140.27, 135.62 (t, J = 26.6 Hz), 134.07, 131.23, 130.83, 129.07, 128.96, 128.56, 127.91, 127.58, 127.46 (t, J = 5.0 Hz), 127.30, 127.18, 126.80 (t, J = 5.5 Hz), 124.81, 123.02, 122.53, 122.05, 120.46 (t, J = 243.0 Hz) ; **IR** (KBr): v_{max} 3037, 2922, 1607, 1477, 1255, 1064, 841, 757, 729, 685 cm⁻¹; **LC-MS** (ESI): m/z 382.4 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for C₂₆H₁₈F₂N⁺ 382.1402, found: 382.1406.

6-(difluoro(phenyl)methyl)phenanthridine (3ja)

30mol % of AgNO₃ was used. The product (46 mg, 50% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 20:1). **Mp**: 147-149 °C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.62 (d, *J* = 8.4 Hz, 1H), 8.55 (d, *J* = 7.8 Hz, 1H), 8.40 (d, *J* = 8.4 Hz, 1H), 8.26 (d, *J* = 8.0 Hz, 1H), 7.83-7.68 (m, 5H), 7.60 (t, *J* = 8.4 Hz, 1H), 7.50-7.42 (m, 3H); ¹⁹**F NMR** (471 MHz,

CDCl₃) δ ppm -87.80; ¹³C NMR (125 MHz, CDCl₃) δ ppm 153.11 (t, J = 28.1 Hz), 142.19, 136.75 (t, J = 26.2 Hz), 133.98, 131.15, 130.74, 130.25, 129.00, 128.49, 128.44, 127.49, 127.36 (t, J = 5.0 Hz), 126.26 (t, J = 5.6 Hz), 124.73, 122.94, 122.46, 122.00, 120.36 (t, J = 243.5 Hz); **IR** (KBr): v_{max} 3051, 2922,

1609, 1448, 1247, 1101, 1006, 753, 710 cm⁻¹; **MS** (EI): m/z (%) 284(100), 304(82), 305(59); **HRMS** (ESI-TOF) calcd. for C₂₀H₁₃F₂N⁺ 306.1089, found: 306.1087.

6-(difluoro(thiophen-2-yl)methyl)phenanthridine (3ka)

30mol % of AgNO₃ was used. The product (42 mg, 45% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 15:1). **Mp**: 126-128 °C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.63 (d, *J* = 8.3 Hz, 1H), 8.55 (dd, *J* = 8.1, 1.5 Hz, 1H), 8.44 (d, *J* = 8.4 Hz, 1H), 8.29 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.44 (d, *J* = 8.4 Hz, 1H), 8.29 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.44 (d, *J* = 8.4 Hz, 1H), 8.29 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.44 (d, *J* = 8.4 Hz, 1H), 8.29 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.44 (d, *J* = 8.4 Hz, 1H), 8.29 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.55 (dd, *J* = 8.1 Hz, 1H), 8.55 (dd, *J* = 8.0 Hz, 1H), 8.55 (dd, *J* = 8.1 Hz, 1H), 8.55 (dd, *J* = 8.0 Hz, 1H), 8.55 (dd, J =

1.5 Hz, 1H), 7.83-7.79 (m, 1H), 7.79-7.75 (m, 1H), 7.75-7.70 (m, 1H), 7.65-7.60 (m, 1H), 7.49 (dd, J = 5.1, 1.3 Hz, 1H), 7.24-7.20 (m, 1H), 7.02-6.98 (m, 1H); ¹⁹F NMR (471 MHz, CDCl₃) δ ppm -76.94; ¹³C NMR (125 MHz, CDCl₃) δ ppm 152.31 (t, J = 27.8 Hz), 142.07, 138.64 (t, J = 30.6 Hz), 134.02, 131.06, 130.88, 129.08, 128.74 (t, J = 5.6 Hz), 128.70, 128.66, 127.55, 127.35 (t, J = 5.2 Hz), 126.70, 124.81, 122.83, 122.47, 122.02, 118.41 (t, J = 241.4 Hz); **IR** (KBr): ν_{max} 3095, 2929, 1647, 1460, 1245, 1128, 1049, 983, 727 cm⁻¹; **LC-MS** (ESI): m/z 312.3 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for C₁₈H₁₂F₂NS⁺ 312.0653, found: 312.0652.

6-((4-chlorophenyl)difluoromethyl)phenanthridine (3la)

30mol % of AgNO₃ was used. The product (42 mg, 41% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 10:1). **Mp**: 120-122 °C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.63 (d, *J* = 8.3 Hz, 1H), 8.55 (d, *J* = 7.7 Hz, 1H), 8.43 (d, *J* = 7.9 Hz, 1H),

8.18 (dd, J = 7.7, 1.8 Hz, 1H), 7.82 (t, J = 7.6 Hz, 1H), 7.77-7.68 (m, 2H), 7.67-7.59 (m, 3H), 7.43 (d, J = 8.4 Hz, 2H); ¹⁹**F** NMR (471 MHz, CDCl₃) δ ppm -87.47; ¹³**C** NMR (125 MHz, CDCl₃) δ ppm 152.71 (t, J = 29.1 Hz), 142.07, 136.32, 135.22 (t, J = 26.6 Hz), 134.04, 131.14, 130.87, 129.05, 128.64, 127.95 (t, J = 5.7 Hz), 127.61, 127.21 (t, J = 5.2 Hz), 124.73, 122.86, 122.54, 122.00, 120.48 (t, J = 244.2 Hz); **IR** (KBr): v_{max} 3076, 2945, 1600, 1486, 1257, 1041, 812, 761, 722 cm⁻¹; **LC-MS** (ESI): m/z 340.3 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for C₂₀H₁₃ClF₂N⁺ 340.0699, found: 340.0697.

6-(difluoro(4-(trifluoromethyl)phenyl)methyl)phenanthridine (3ma)

30mol % of AgNO₃ was used. The product (29 mg, 26% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 10:1). **Mp**: 110-112 °C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.69 (d, J = 8.3 Hz, 1H), 8.62-8.57 (m, 1H), 8.50 (d, J = 8.4 Hz, 1H),

8.14-8.09 (m, 1H), 7.91-7.85 (m, 1H), 7.81 (d, J = 8.2 Hz, 2H), 7.77-7.72 (m, 4H), 7.72-7. 67 (m, 1H); ¹⁹**F** NMR (471 MHz, CDCl₃) δ ppm -62.77, -88.13; ¹³**C** NMR (125 MHz, CDCl₃) δ ppm 152.59 (t, J = 29.6 Hz), 142.07, 140.31 (t, J = 26.3 Hz), 134.17, 132.33 (q, J = 32.7 Hz), 131.23, 131.03, 129.12, 128.82, 127.78, 127.19 (t, J = 5.1 Hz), 127.15 (t, J = 5.6 Hz), 125.37 (q, J = 3.8 Hz), 124.81, 123.98 (q, J = 272.4 Hz), 122.93, 122.66, 122.08, 120.69 (t, J = 244.7 Hz); **IR** (KBr): v_{max} 3071, 2926, 1640, 1516, 1325, 1125, 1041, 828, 756, 719 cm⁻¹; **LC-MS** (ESI): m/z 374.4 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for C₂₁H₁₃F₅N⁺ 374.0963, found: 374.0969.

4-(difluoro(phenanthridin-6-yl)methyl)benzonitrile (3na)

30mol % of AgNO₃ was used. The product (15 mg, 15% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 10:1). **Mp**: 209-211°C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.68 (d, *J* = 8.3 Hz, 1H), 8.60-8.52 (m, 2H), 8.05-7.99 (m, 1H), 7.91-7.85

(m, 1H), 7.82-7.75 (m, 4H), 7.75-7.69 (m, 3H); ¹⁹**F** NMR (471 MHz, CDCl₃) δ ppm -88.42; ¹³**C** NMR (125 MHz, CDCl₃) δ ppm 152.27 (t, J = 30.3 Hz), 141.87, 141.17 (t, J = 26.3 Hz), 134.11, 132.02, 131.08, 129.09, 128.88, 127.80, 127.52 (t, J = 5.9 Hz), 127.01 (t, J = 5.5 Hz), 124.73, 122.81, 122.65, 122.05, 120.83 (t, J = 245.1 Hz), 118.40, 113.99; **IR** (KBr): v_{max} 3071, 2944, 2228, 1609, 1247, 1027, 829, 759 cm⁻¹; **LC-MS** (ESI): m/z 331.4 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for C₂₁H₁₃F₂N₂⁺ 331.1041, found: 331.1043.

6-(difluoro(4-methoxyphenyl)methyl)-8-methylphenanthridine (3ab)

The product (85 mg, 81% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 20:1). **Mp**: 133-135 °C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.53-8.49 (m, 2H), 8.24 (dd, *J* = 7.9 1.5 Hz, 1H), 8.13 (s, 1H), 7.75-7.67 (m, 2H), 7.64-7.56 (m, 3H), 6.93

(d, J = 8.8 Hz, 2H), 3.80 (s, 3H), 2.49 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ ppm -86.20; ¹³C NMR (125 MHz, CDCl₃) δ ppm 160.96, 152.98 (t, J = 28.2 Hz), 141.93, 137.44, 132.54, 131.92, 131.09, 129.12 (t, J = 26.7 Hz), 128.54, 128.36, 127.84 (t, J = 5.4 Hz), 126.88 (t, J = 4.8 Hz), 124.85, 123.21, 122.32, 121.83, 120.47 (t, J = 243.2 Hz), 113.77, 55.37, 22.04; **IR** (KBr): v_{max} 3075, 2923, 1612, 1514, 1250, 1025, 821, 754 cm⁻¹; **LC-MS** (ESI): m/z 350.4 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for C₂₂H₁₈F₂NO⁺ 350.1351, found: 350.1353.

6-(difluoro(4-methoxyphenyl)methyl)-8-methoxyphenanthridine (3ac)

The product (88 mg, 80% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 20:1). **Mp**: 182-184 $^{\circ}$ C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.49 (d, J = 9.1 Hz, 1H), 8.45-8.42 (m, 1H), 8.27-8.22 (m, 1H), 7.72-7.63 (m, 3H), 7.59 (d, J = 8.5

Hz, 2H), 7.39 (dd, J = 9.1, 2.6 Hz, 1H), 6.92 (d, J = 8.6 Hz, 2H), 3.80 (s, 3H), 3.79 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ ppm -87.57; ¹³C NMR (125 MHz, CDCl₃) δ ppm 160.98 (t, J = 1.7 Hz), 158.35, 152.31 (t, J = 28.0 Hz), 141.45, 131.09, 129.00 (t, J = 26.7 Hz), 128.47, 128.41, 127.99, 127.71 (t, J = 5.4 Hz), 124.88, 124.25, 123.97, 121.59, 121.51, 120.28 (t, J = 243.4 Hz), 113.80, 107.45 (t, J = 4.8 Hz), 55.39, 55.35; **IR** (KBr): v_{max} 3059, 2933, 1613, 1516, 1240, 1082, 831, 755, 636, 535 cm⁻¹; **MS** (EI): m/z (%) 157(100), 365(82); **LC-MS** (ESI): m/z 366.4 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for

 $C_{22}H_{18}F_2NO_2^+$ 366.1300, found: 366.1302.

6-(difluoro(4-methoxyphenyl)methyl)-8-fluorophenanthridine (3ad)

The product (91 mg, 86% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 20:1). **Mp**: 132-134 $^{\circ}$ C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.61 (dd, *J* = 9.2, 5.4 Hz, 1H), 8.47 (dd, *J* = 7.8, 1.8 Hz, 1H), 8.23 (dd, *J* = 7.8, 1.8 Hz, 1H), 8.00 (dd, *J* = 10.4,

1.6 Hz, 1H), 7.78-7.69 (m, 2H), 7.59-7.52 (m, 3H), 6.94 (d, J = 8.8 Hz, 2H), 3.81 (s, 3H); ¹⁹**F** NMR (471 MHz, CDCl₃) δ ppm -86.86 (s, CF₂), -110.73- -110.80 (m, F); ¹³**C** NMR (125 MHz, CDCl₃) δ ppm 161.11 (t, J = 1.8 Hz), 161.09 (d, J = 248.5 Hz), 152.58 (td, J = 29.1, 4.1 Hz), 141.90, 131.27, 130.73 (d, J = 1.7 Hz), 128.91 (d, J = 3.8 Hz), 128.51 (t, J = 26.6 Hz), 127.83 (t, J = 5.5 Hz), 124.98 (d, J = 8.7 Hz), 124.31, 124.14 (d, J = 8.6 Hz), 121.78, 120.32 (t, J = 243.3 Hz), 120.25, 120.05, 113.89, 112.29 (dt, J = 23.1, 5.2 Hz), 55.41; **IR** (KBr): v_{max} 3077, 2945, 1614, 1516, 1253, 1033, 823, 761 cm⁻¹; **LC-MS** (ESI): m/z 354.4 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for C₂₁H₁₅F₃NO⁺ 354.1100, found: 354.1103.

8-chloro-6-(difluoro(4-methoxyphenyl)methyl)phenanthridine (3ae)

The product (93 mg, 84% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 20:1). **Mp**: 180-181 $^{\circ}$ C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.57 (d, *J* = 8.9 Hz, 1H), 8.51 (dd, *J* = 7.8, 1.7 Hz, 1H), 8.36 (d, *J* = 1.8 Hz, 1H), 8.22 (dd, *J* = 7.8, 1.7 Hz, 1H), 8.36 (d, *J* = 1.8 Hz, 1H), 8.22 (dd, *J* = 7.8, 1.7 Hz, 1H), 8.36 (d, *J* = 1.8 Hz, 1H), 8.22 (dd, *J* = 7.8, 1.7 Hz, 1H), 8.36 (d, *J* = 1.8 Hz, 1H), 8.22 (dd, *J* = 7.8, 1.7 Hz, 1H), 8.36 (d, *J* = 1.8 Hz, 1H), 8.22 (dd, *J* = 7.8, 1.7 Hz, 1H), 8.36 (d, *J* = 1.8 Hz, 1H), 8.36 (d, *J* = 1.8 Hz, 1H), 8.36 (d, *J* = 1.8 Hz, 1H), 8.22 (dd, *J* = 7.8, 1.7 Hz, 1H), 8.36 (d, *J* = 1.8 Hz, 1H), 8.22 (dd, *J* = 7.8, 1.7 Hz, 1H), 8.36 (d, *J* = 1.8 Hz, 1H), 8.22 (dd, *J* = 7.8, 1.7 Hz, 1H), 8.36 (d, *J* = 1.8 Hz, 1H), 8.22 (dd, *J* = 7.8, 1.7 Hz, 1H), 8.36 (d, *J* = 1.8 Hz, 1H), 8.22 (dd, *J* = 7.8, 1.7 Hz, 1H), 8.21 (dd, *J* = 7.8, 1.7 Hz, 1H), 8.36 (d, *J* = 1.8 Hz, 1H), 8.22 (dd, *J* = 7.8, 1.7 Hz, 1H), 8.21 (dd, *J* = 7.8, 1.7 Hz, 1H), 8.21 (dd, *J* = 7.8, 1.7 Hz, 1H), 8.36 (dd, *J* = 1.8 Hz, 1H), 8.21 (dd, *J* = 7.8, 1.7 Hz, 1H), 8.36 (dd, *J* = 1.8 Hz, 1H), 8.21 (dd, *J* = 7.8, 1.7 Hz, 1H), 8.21 (dd, *J* = 7.8 Hz, 1H), 8.21 (dd, J = 7.8 Hz, 1H

1H), 7.80-7.71 (m, 3H), 7.56 (d, J = 8.9 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H); ¹⁹**F** NMR (471 MHz, CDCl₃) δ ppm -86.46; ¹³**C** NMR (125 MHz, CDCl₃) δ ppm 161.12, 152.42 (t, J = 29.3 Hz), 142.16, 133.58, 132.44, 131.44, 131.34, 129.38, 128.95, 128.53 (t, J = 26.6 Hz), 127.86 (t, J = 5.4 Hz), 126.84 (t, J = 5.4 Hz), 124.19, 123.88, 121.92, 120.38 (t, J = 243.7 Hz), 113.90, 55.45; **IR** (KBr): v_{max} 377, 2923, 1612, 1513, 1250, 1029, 820, 761, 729 cm⁻¹; **LC-MS** (ESI): m/z 370.3 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for C₂₁H₁₅ClF₂NO⁺ 370.0805, found: 370.0811.

6-(difluoro(4-methoxyphenyl)methyl)-8-(trifluoromethyl)phenanthridine (3af)

The product (85 mg, 70% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 8:1). **Mp**: 151-153 °C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.77-8.71 (m, 2H), 8.56 (d, *J* = 7.8 Hz, 1H), 8.25 (d, *J* = 8.1 Hz, 1H), 8.00 (d, *J* = 8.9 Hz, 1H), 7.85-7.74 (m, 2H),

7.59 (d, J = 8.6 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ ppm -62.48, -86.51; ¹³C NMR (125 MHz, CDCl₃) δ ppm 161.17, 153.43 (t, J = 29.7 Hz), 142.87, 136.18, 131.43, 130.25, 129.39 (q, J = 32.9 Hz), 129.12, 128.43 (t, J = 26.5 Hz), 127.80 (t, J = 5.6 Hz), 126.65 (q, J = 3.2 Hz), 125.07 (q, J = 4.9 Hz), 123.81, 123.63, 122.86(q, J = 273.4 Hz), 122.40, 122.32, 120.47 (t, J = 243.5 Hz), 113.92, 55.45; **IR** (KBr): v_{max} 3073, 2963, 1618, 1513, 1310, 1248, 1175, 1096, 835, 768, 726 cm⁻¹; **LC-MS** (ESI): m/z 404.4 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for C₂₂H₁₅F₅NO⁺ 404.1068, found: 404.1071.

1-(6-(difluoro(4-methoxyphenyl)methyl)phenanthridin-8-yl)ethan-1-one (3ag)

The product (68 mg, 60% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 10:1). **Mp**: 173-175 ^oC; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.94 (s, 1H), 8.65 (d, *J* = 8.7 Hz, 1H), 8.55 (d, *J* = 8.4 Hz, 1H), 8.33 (d, *J* = 8.7 Hz, 1H), 8.27 (d, *J* = 8.2 Hz, 1H), 7.82 (t, *J* = 7.6 Hz, 1H), 7.76 (t, *J* = 8.3 Hz, 1H), 7.62 (d, *J* = 9.0 Hz, 1H), 7.82 (t, *J* = 7.6 Hz, 1H), 7.76 (t, *J* = 8.3 Hz, 1H), 7.62 (d, *J* = 9.0 Hz, 1H), 7.82 (t, *J* = 7.6 Hz, 1H), 7.76 (t, *J* = 8.1 Hz, 1H), 7.62 (t, *J* = 9.0 Hz, 1H), 7.82 (t, *J* = 7.6 Hz, 1H), 7.76 (t, *J* = 8.1 Hz, 1H), 7.62 (t, *J* = 9.0 Hz, 1H), 7.82 (t, *J* = 7.6 Hz, 1H), 7.76 (t, *J* = 8.1 Hz, 1H), 7.62 (t, *J* = 9.0 Hz, 1H), 7.82 (t, *J* = 7.6 Hz, 1H), 7.76 (t, *J* = 8.1 Hz, 1H), 7.62 (t, *J* = 9.0 Hz, 1H), 7.82 (t, *J* = 7.6 Hz, 1H), 7.76 (t, *J* = 8.1 Hz, 1H), 7.62 (t, *J* = 9.0 Hz, 1H), 7.82 (t, *J* = 7.6 Hz, 1H), 7.76 (t, *J* = 8.1 Hz, 1H), 7.62 (t, *J* = 9.0 Hz, 1H), 7.82 (t, *J* = 7.6 Hz, 1H), 7.76 (t, *J* = 8.1 Hz, 1H), 7.62 (t, *J* = 9.0 Hz, 1H), 7.82 (t, *J* = 9.0 Hz, 1H), 7.82 (t, *J* = 7.6 Hz, 1H), 7.76 (t, *J* = 8.1 Hz, 1H), 7.62 (t, *J* = 9.0 Hz, 1H), 7.82 (t, J = 9.0 Hz, 1H), 7.82 (

2H), 6.96 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H), 2.64 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ ppm -86.70; ¹³C NMR (125 MHz, CDCl₃) δ ppm 197.13, 161.14, 153.74 (t, J = 28.8 Hz), 143.06, 136.97, 135.33, 131.32, 130.27, 128.97(t, J = 4.6 Hz), 128.93, 128.92, 128.74 (t, J = 26.5 Hz), 127.67 (t, J = 5.5 Hz), 124.05, 123.06, 122.65, 122.38, 120.20, 113.95, 55.43, 26.60; **IR** (KBr): v_{max} 2926, 1685 1611, 1514, 1250, 1060, 1015, 938, 768, 579 cm⁻¹; **LC-MS** (ESI): m/z 378.4 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for C₂₃H₁₈F₂NO₂⁺ 378.1300, found: 378.1295.

6-(difluoro(4-methoxyphenyl)methyl)phenanthridine-8-carbonitrile (3ah)

The product (70 mg, 65% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 4:1). **Mp**: 168-170 °C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.71 (s, 1H), 8.68 (d, *J* = 8.7 Hz, 1H), 8.52 (d, *J* = 8.2 Hz, 1H), 8.21 (d, *J* = 8.2 Hz, 1H), 7.95 (d, *J* = 8.4 Hz, 1H), 7.83 (t, *J* = 7.6 Hz, 1H), 7.78 (t, *J* = 7.5 Hz, 1H), 7.54 (d, *J* = 8.4 Hz, 2H),

6.95 (d, J = 8.5 Hz, 2H), 3.83 (s, 3H); ¹⁹**F** NMR (471 MHz, CDCl₃) δ ppm -85.76; ¹³C NMR (125 MHz, CDCl₃) δ ppm 161.25 , 152.71 (t, J = 29.9 Hz), 143.00 , 136.38 , 132.87 (t, J = 5.5 Hz), 131.88 , 131.46 , 130.81 , 129.37 , 128.00 (t, J = 26.4 Hz), 127.80 (t, J = 5.5 Hz), 123.81 , 123.38 , 122.52 , 122.36 , 120.32 (t, J = 243.4 Hz), 118.47 , 113.98 , 111.14 , 55.44; **IR** (KBr): v_{max} 3075, 2940, 2226, 1610, 1511, 1254, 1086, 1016, 835, 766 cm⁻¹; **LC-MS** (ESI): m/z 361.4 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for C₂₂H₁₅F₂N₂O⁺ 361.1147, found: 361.1143.

5-(difluoro(4-methoxyphenyl)methyl)benzo[c][2,7]naphthyridine (3ai)

The product (50 mg, 51% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 6:1). **Mp**: 143-145 $^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃) δ ppm 9.71 (s, 1H), 8.87 (d, J = 5.7 Hz, 1H), 8.51 (d, J = 8.2 Hz, 1H), 8.35 (d, J = 5.6 Hz, 1H), 8.24 (dd, J = 8.2,

1.3 Hz, 1H), 7.87-7.82 (m, 1H), 7.78-7.73 (m, 1H), 7.57 (d, J = 8.7 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 3.79 (s, 3H); ¹⁹**F** NMR (471 MHz, CDCl₃) δ ppm -86.09; ¹³**C** NMR (125 MHz, CDCl₃) δ ppm 161.12, 153.22 (t, J = 30.2 Hz), 151.09 (t, J = 6.4 Hz), 148.32, 143.28, 138.60, 131.19, 131.17, 129.00, 128.20 (t, J = 26.5 Hz), 127.72 (t, J = 5.5 Hz), 122.52, 122.43, 119.98 (t, J = 243.7 Hz), 118.11, 115.53, 113.88, 55.33; **IR** (KBr): v_{max} 3065, 2923, 1606, 1513, 1248, 1072, 841, 755, 728 cm⁻¹; **LC-MS** (ESI): m/z 337.4 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for C₂₀H₁₅F₂N₂O⁺ 337.1147, found: 337.1150.

5-(difluoro(4-methoxyphenyl)methyl)benzo[i]phenanthridine (3aj)

The product (60 mg, 52% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 3:1). **Mp**: 174-176 $^{\circ}$ C; ¹**H NMR** (500 MHz, CDCl₃) *major*: δ ppm 8.66 (d, *J* = 8.6 Hz, 1H), 8.59 (d, *J* = 8.0 Hz, 1H), 8.57 (d, *J* = 8.9 Hz, 1H), 8.25 (d, *J* = 8.2 Hz,

1H), 8.12 (d, J = 8.9 Hz, 1H), 7.92 (d, J = 7.7 Hz, 1H), 7.82-7.75 (m, 3H), 7.75-7.70 (m, 1H), 7.58 (t, J = 7.3 Hz, 1H), 7.50-7.44 (m, 1H), 7.01 (d, J = 8.7 Hz, 2H), 3.86 (s, 3H); ¹⁹**F** NMR (471 MHz, CDCl₃) *major*: δ ppm -79.52, *minor*: 86.52; ¹³**C** NMR (125 MHz, CDCl₃) *major*: δ ppm 161.01, 151.83 (t, J = 29.3 Hz), 142.72, 134.84, 132.90, 132.63, 130.30, 130.08 (t, J = 27.3 Hz), 129.73 (t, J = 7.6 Hz), 129.20, 129.09, 128.56 (t, J = 5.0 Hz), 128.27, 128.07, 126.98, 126.15, 124.22, 122.59, 121.31, 121.31 (t, J = 242.8 Hz), 119.77, 113.89, 55.44; **IR** (KBr): v_{max} 2908, 1607, 1511, 1245, 1032, 821, 756 cm⁻¹; **LC-MS** (ESI): m/z 386.4 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for C₂₅H₁₈F₂NO⁺ 386.1351, found: 386.1353.

5-(difluoro(4-methoxyphenyl)methyl)dibenzo[i,k]phenanthridine (3ak)

The product (72 mg, 55% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 10:1). **Mp**: 197-199 °C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.71 (d, *J* = 8.1 Hz, 1H), 8.68 (d, *J* = 8.6 Hz, 1H), 8.64 (d, *J* = 8.3 Hz, 1H), 8.54 (d, *J* = 8.3 Hz, 1H), 8.35 (d, *J* = 8.5 Hz, 1H), 8.28 (d, *J* = 8.3 Hz, 1H), 7.85 (d, *J* =

8.6 Hz, 2H), 7.78-7.72 (m, 2H), 7.69-7.59 (m, 3H), 7.47-7.42 (m, 1H), 7.02 (d, J = 8.8 Hz, 2H), 3.87 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ ppm -79.80; ¹³C NMR (125 MHz, CDCl₃) δ ppm 160.95, 151.17 (t, J = 29.7 Hz), 144.53, 136.26, 132.72, 130.25 (t, J = 6.2 Hz), 130.15 (t, J = 27.4 Hz), 130.05, 129.88, 129.36, 129.11, 128.81, 128.55, 128.54 (t, J = 5.2 Hz), 127.95, 127.70, 127.63, 127.31, 127.11, 126.42, 123.96, 123.50, 123.04, 121.81, 120.89 (t, J = 244.2 Hz), 113.80, 55.44; **IR** (KBr): v_{max} 3064, 2923, 1607, 1511, 1246, 1036, 767, 730 cm⁻¹; **LC-MS** (ESI): m/z 436.5 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for C₂₉H₂₀O₇ 436.1507, found: 436.1506.

6-(difluoro(4-methoxyphenyl)methyl)-2-methylphenanthridine (3al)

The product (89 mg, 85% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 20:1). **Mp**: 114-116 °C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.66 (d, *J* = 9.1 Hz, 1H), 8.38 (s, 1H), 8.29 (d, *J* = 8.1 Hz, 1H), 8.15 (d, *J* = 8.3 Hz, 1H),

7.85-7.76 (m, 1H), 7.63-7.56 (m, 2H), 7.55 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 3.81 (s, 3H), 2.65 (s, 3H); ¹⁹**F** NMR (471 MHz, CDCl₃) δ ppm -86.00; ¹³C NMR (125 MHz, CDCl₃) δ ppm 160.92, 152.25 (t, J = 28.1 Hz), 140.50, 138.55, 133.64, 130.79, 130.71, 130.43, 129.12 (t, J = 26.7 Hz), 127.78 (t, J = 5.4 Hz), 127.36 (t, J = 4.7 Hz), 127.24, 124.55, 123.03, 122.36, 121.58, 120.35 (t, J = 243.6 Hz), 113.74, 55.29, 22.10; **IR** (KBr): v_{max} 3063, 2916, 1612, 1514, 1250, 1027, 892, 825, 771 cm⁻¹; **MS** (EI): m/z (%) 328(100), 157(76), 349(75); **HRMS** (ESI-TOF) calcd. for C₂₂H₁₈F₂NO⁺ 350.1351, found: 350.1354.

6-(difluoro(4-methoxyphenyl)methyl)-2-fluorophenanthridine (3am)

The product (87 mg, 82% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 20:1). **Mp**: 134-136 °C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.51 (d, *J* = 8.3 Hz, 1H), 8.35 (d, *J* = 8.4 Hz, 1H), 8.23 (dd, *J* = 9.0, 5.6 Hz, 1H), 8.16 (dd, *J*

= 10.0, 2.7 Hz, 1H), 7.85-7.79 (m, 1H), 7.66-7.61 (m, 1H), 7.56 (d, J = 8.7 Hz, 2H), 7.52-7.46 (m, 1H), 6.93 (d, J = 8.8 Hz, 2H), 3.82 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ ppm -86.27, -110.35- -110.46 (m); ¹³C NMR (125 MHz, CDCl₃) δ ppm 162.31 (d, J = 249.1 Hz), 161.06, 152.70 (t, J = 28.3 Hz), 139.09, 133.55 (d, J = 9.7 Hz), 133.46 (d, J = 4.2 Hz), 130.83, 128.93 (t, J = 26.6 Hz), 128.17, 127.85 (t, J = 5.5 Hz), 127.66, 126.33 (d, J = 9.3 Hz), 123.10, 122.65, 120.38 (t, J = 243.2 Hz), 118.04 (d, J =24.4 Hz), 113.84, 107.09 (d, J = 23.5 Hz), 55.43; **IR** (KBr): v_{max} 2932, 1615, 1451, 1246, 1174, 1029, 896, 828, 772, 678 cm⁻¹; **MS** (EI): m/z (%) 157(100), 332(79), 353(52); **HRMS** (ESI-TOF) calcd. for C₂₁H₁₅F₃NO⁺ 354.1100, found: 354.1098.

2-chloro-6-(difluoro(4-methoxyphenyl)methyl)phenanthridine (3an)

The product (78 mg, 70% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 20:1). **Mp**: 141-142 °C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.58-8.46 (m, 2H), 8.35 (d, *J* = 8.4 Hz, 1H), 8.16 (d, *J* = 9.2 Hz, 1H), 7.81 (t, *J* = 7.5 Hz,

1H), 7.69 (d, J = 8.7 Hz, 1H), 7.63 (t, J = 8.0 Hz, 1H), 7.55 (d, J = 8.4 Hz, 2H), 6.93 (d, J = 8.4 Hz, 2H), 3.81 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ ppm -86.35; ¹³C NMR (125 MHz, CDCl₃) δ ppm 161.07, 153.64 (t, J = 28.6 Hz), 140.64, 134.56, 133.02, 132.64, 131.06, 129.62, 128.81 (t, J = 26.6 Hz), 128.18, 127.83 (t, J = 5.4 Hz), 127.66 (t, J = 4.9 Hz), 125.87, 123.21, 122.50, 121.75, 120.30 (t, J = 243.7 Hz), 113.86, 55.43; **IR** (KBr): v_{max} 3074, 2926, 1610, 1515, 1253, 1030, 822, 763, 679 cm⁻¹; **MS** (EI): m/z (%) 157(100), 348(54), 369(44); **HRMS** (ESI-TOF) calcd. for C₂₁H₁₅ClF₂NO⁺ 370.0805, found: 370.0802.

6-(difluoro(4-methoxyphenyl)methyl)-3-methoxyphenanthridine (3ao)

The product (85 mg, 78% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 6:1). **Mp**: 173-174 °C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.54 (d, *J* = 8.4 Hz, 1H), 8.45 (d, *J* = 9.0 Hz, 1H), 8.25 (d, *J* = 8.5 Hz, 1H), 7.75 (t, *J* =

7.7 Hz, 1H), 7.66 (d, J = 2.7 Hz, 1H), 7.56 (d, J = 8.6 Hz, 2H), 7.50 (t, J = 8.3 Hz, 1H), 7.36 (dd, J = 9.1, 2.7 Hz, 1H), 6.91 (d, J = 8.7 Hz, 2H), 3.98 (s, 3H), 3.80 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ ppm -86.18; ¹³C NMR (125 MHz, CDCl₃) δ ppm 161.02, 160.42, 153.73 (t, J = 27.6 Hz), 143.95, 134.27, 130.79, 129.16 (t, J = 26.6 Hz), 127.79 (t, J = 5.3 Hz), 127.52 (t, J = 4.7 Hz), 126.39, 123.22, 122.13, 121.99, 120.14 (t, J = 243.1 Hz), 119.87, 118.89, 113.87, 110.62, 55.83, 55.41; **IR** (KBr): v_{max} 2931, 1611, 1477, 1254, 1171, 1026, 837, 770, 678 cm⁻¹; **MS** (EI): m/z (%) 344(100), 157(97), 365(84); **HRMS** (ESI-TOF) calcd. for C₂₂H₁₈F₂NO₂⁺ 366.1300, found: 366.1296.

6-(difluoro(4-methoxyphenyl)methyl)-2,4-dimethylphenanthridine (3ap)

The product (88 mg, 81% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 20:1). **Mp**: 120-122 °C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.62 (d, J = 8.4 Hz, 1H), 8.57 (d, J = 8.5 Hz, 1H), 8.17 (s, 1H), 7.82-7.76 (m, 1H),

7.69-7.60 (m, 3H), 7.41 (s, 1H), 6.98 (d, J = 8.6 Hz, 2H), 3.85 (s, 3H), 2.61 (s, 3H), 2.57 (s, 3H); ¹⁹**F NMR** (471 MHz, CDCl₃) δ ppm -86.15; ¹³**C NMR** (125 MHz, CDCl₃) δ ppm 160.70, 150.76 (t, J = 30.8 Hz), 139.04, 138.71, 137.99, 133.94, 131.29, 130.10, 129.30 (t, J = 26.4 Hz), 128.15 (t, J = 5.8 Hz), 127.19 (t, J = 5.2 Hz), 127.05, 124.35, 122.87, 122.59, 121.84 (t, J = 242.5 Hz), 119.25, 113.29, 55.31, 22.09, 17.72; **IR** (KBr): v_{max} 2917, 1613, 1450, 1250, 1168, 1029, 821, 771, 627 cm⁻¹; **MS** (EI): m/z (%) 157(100), 363(99), 328(98); **HRMS** (ESI-TOF) calcd. for C₂₃H₂₀F₂NO⁺ 364.1507, found: 364.1511.

6-(difluoro(4-methoxyphenyl)methyl)-2,8-dimethylphenanthridine (3aq)

The product (83 mg, 76% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 20:1). **Mp**: 150-152 °C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.50 (d, J = 8.5 Hz, 1H), 8.30 (s, 1H), 8.12 (d, J = 8.4 Hz, 1H), 8.10 (s, 1H), 7.62-7.53 (m,

4H), 6.92 (d, J = 8.8 Hz, 2H), 3.81 (s, 3H), 2.62 (s, 3H), 2.49 (s, 3H); ¹⁹F NMR (471 MHz, CDCl₃) δ ppm -86.09; ¹³C NMR (125 MHz, CDCl₃) δ ppm 160.91, 151.99 (t, J = 28.1 Hz), 140.27, 138.46, 137.23, 132.29, 131.63, 130.82, 130.29, 129.26 (t, J = 26.7 Hz), 127.85 (t, J = 5.3 Hz), 126.80 (t, J = 4.8 Hz), 124.70, 123.30, 122.28, 121.44, 120.52 (t, J = 242.9 Hz), 113.74, 55.37, 22.17, 22.03; **IR** (KBr): v_{max} 3013, 2912, 1613, 1514, 1452, 1248, 1064, 829, 776, 560 cm⁻¹; **LC-MS** (ESI): m/z 364.4 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for C₂₃H₂₀F₂NO⁺ 364.1507, found: 364.1502.

ethyl 1-(difluoro(4-methoxyphenyl)methyl)-4-phenylisoquinoline-3-carboxylate (3ar)

The product (94 mg, 72% yield) as a pale yellow solid was purified with silica gel chromatography (Petroleum ether/EtOAc = 4:1). **Mp**: 134-136 °C; ¹**H NMR** (500 MHz, CDCl₃) δ ppm 8.42-8.36 (m, 1H), 7.73-7.68 (m, 1H), 7.65-7.58 (m, 4H), 7.53-7.48 (m, 3H), 7.40-7.35 (m, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 4.11 (q, *J* = 7.1 Hz, 2H), 3.81 (s, 3H), 0.98 (t, *J* = 7.1 Hz, 3H); ¹⁹**F NMR** (471 MHz, CDCl₃) δ ppm -85.81; ¹³**C NMR** (125 MHz, CDCl₃) δ ppm 166.78,

160.93, 152.71 (t, J = 29.3 Hz), 140.83, 136.87, 135.56, 135.00, 130.69, 129.78,128.96 (t, J = 26.7 Hz), 128.77, 128.28, 127.79, 127.03, 126.12, 125.61, 120.12 (t, J = 243.6 Hz), 113.69, 61.30, 55.26, 13.61; **IR** (KBr): v_{max} 3050, 2924, 1730, 1610, 1508, 1245, 1109, 1017, 831, 766, 698 cm⁻¹; **LC-MS** (ESI): m/z 434.5 [M+1]⁺; **HRMS** (ESI-TOF) calcd. for C₂₆H₂₂F₂NO₃⁺ 434.1562, found: 434.1567.

10. NMR spectra for potassium α,α-difluoroaryl acetate

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

11. NMR spectra for isocyanides

233 190 180 170 160 150 140 130 120 110 130 93 80 70 60 50 40 30 20 10 3 ppm

12. NMR spectra for 6-difluoromethyl phenanthridines 3aa-3ar

75 / 125

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

13. X-ray Crystal data for product 3aa

Identification code	3aa
Empirical formula	$C_{21}H_{15}F_2NO$
Formula weight	335.34
Temperature	296(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2(1)
Unit cell dimensions	a = 5.498(5) A alpha = 90 deg.
	b = 9.083(8) A beta = 92.524(10) deg.
	c = 16.538(15) A gamma = 90 deg.
Volume	825.1(13) A ³
Z, Calculated density	2, 1.350 Mg/m^3
Absorption coefficient	0.098 mm ⁻¹
F(000)	348
Crystal size	0.28 x 0.19 x 0.08 mm
Theta range for data collection	2.47 to 25.04 deg.
Limiting indices	-6<=h<=6, -10<=k<=10, -19<=l<=11
Reflections collected / unique	4258 / 2878 [R(int) = 0.0154]
Completeness to theta $= 25.04$	99.20%
Absorption correction	None
Max. and min. transmission	0.9922 and 0.9730
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2878 / 1 / 228
Goodness-of-fit on F ²	1.603
Final R indices [I>2sigma(I)]	$R_1 = 0.0311, wR_2 = 0.0536$
R indices (all data)	$R_1 = 0.0354, wR_2 = 0.0549$
Absolute structure parameter	0.0(6)
Extinction coefficient	0.049(2)
Largest diff. peak and hole	0.106 and -0.092 e.A ⁻³
Largest diff. peak and hole	0.106 and -0.092 e.A ⁻³

Table 1. Crystal data and structure refinement for 3aa.

Atom	Х	У	Z	U(eq)
C(1)	6366(3)	7056(2)	7420(1)	47(1)
C(2)	7939(3)	7279(2)	6784(1)	59(1)
C(3)	9599(4)	8410(2)	6816(1)	71(1)
C(4)	9694(4)	9349(2)	7476(2)	75(1)
C(5)	8153(3)	9180(2)	8095(1)	67(1)
C(6)	6431(3)	8015(2)	8086(1)	50(1)
C(7)	4752(3)	7753(2)	8720(1)	52(1)
C(8)	4599(4)	8677(2)	9405(1)	76(1)
C(9)	2994(4)	8388(3)	9990(1)	85(1)
C(10)	1451(4)	7174(2)	9931(1)	74(1)
C(11)	1567(3)	6255(2)	9283(1)	64(1)
C(12)	3227(3)	6509(2)	8666(1)	48(1)
C(13)	3432(3)	5566(2)	7961(1)	43(1)
C(14)	2026(3)	4115(2)	7886(1)	48(1)
C(15)	2327(3)	3206(2)	7143(1)	43(1)
C(16)	605(3)	3259(2)	6504(1)	52(1)
C(17)	838(3)	2387(2)	5825(1)	56(1)
C(18)	2807(3)	1437(2)	5780(1)	49(1)
C(19)	4549(3)	1380(2)	6412(1)	51(1)
C(20)	4292(3)	2266(2)	7082(1)	49(1)
C(21)	4969(4)	-267(2)	4959(1)	86(1)
F(1)	2715(2)	3282(1)	8563(1)	66(1)
F(2)	-419(2)	4383(1)	7977(1)	68(1)
N(1)	4846(2)	5826(1)	7368(1)	46(1)
O(1)	2846(2)	606(1)	5085(1)	68(1)

Table 2. Atomic coordinates (Å x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for 3aa. $U_{(eq)}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

C(1)-N(1)	1.396(2)
C(1)-C(2)	1.406(2)
C(1)-C(6)	1.403(2)
C(2)-C(3)	1.374(3)
C(2)-H(2)	0.93
C(3)-C(4)	1.385(3)
C(3)-H(3)	0.93
C(4)-C(5)	1.366(3)
C(4)-H(4)	0.93
C(5)-C(6)	1.420(2)
C(5)-H(5)	0.93
C(6)-C(7)	1.447(2)
C(7)-C(12)	1.408(2)
C(7)-C(8)	1.416(2)
C(8)-C(9)	1.363(3)
C(8)-H(8)	0.93
C(9)-C(10)	1.392(3)
C(9)-H(9)	0.93
C(10)-C(11)	1.363(3)
C(10)-H(10)	0.93
C(11)-C(12)	1.418(2)
C(11)-H(11)	0.93
C(12)-C(13)	1.454(2)
C(13)-N(1)	1.300(2)
C(13)-C(14)	1.530(2)
C(14)-F(2)	1.381(2)
C(14)-F(1)	1.3903(19)
C(14)-C(15)	1.496(2)
C(15)-C(20)	1.384(2)
C(15)-C(16)	1.388(2)
C(16)-C(17)	1.384(2)
C(16)-H(16)	0.93
C(17)-C(18)	1.389(2)
C(17)-H(17)	0.93
C(18)-O(1)	1.377(2)
C(18)-C(19)	1.387(2)
C(19)-C(20)	1.382(2)
C(19)-H(19)	0.93
C(20)-H(20)	0.93
C(21)-O(1)	1.434(2)
C(21)-H(21A)	0.96

Table 3. Bond lengths [Å] and angles [°] for 3aa.

C(21)-H(21B)	0.96
C(21)-H(21C)	0.96
N(1)-C(1)-C(2)	117.07(15)
N(1)-C(1)-C(6)	122.68(15)
C(2)-C(1)-C(6)	120.20(16)
C(3)-C(2)-C(1)	120.52(19)
C(3)-C(2)-H(2)	119.7
C(1)-C(2)-H(2)	119.7
C(2)-C(3)-C(4)	119.58(19)
C(2)-C(3)-H(3)	120.2
C(4)-C(3)-H(3)	120.2
C(5)-C(4)-C(3)	121.23(19)
C(5)-C(4)-H(4)	119.4
C(3)-C(4)-H(4)	119.4
C(4)-C(5)-C(6)	120.73(19)
C(4)-C(5)-H(5)	119.6
C(6)-C(5)-H(5)	119.6
C(1)-C(6)-C(5)	117.72(17)
C(1)-C(6)-C(7)	118.18(15)
C(5)-C(6)-C(7)	124.11(16)
C(12)-C(7)-C(8)	118.12(18)
C(12)-C(7)-C(6)	118.83(15)
C(8)-C(7)-C(6)	123.04(17)
C(9)-C(8)-C(7)	121.1(2)
C(9)-C(8)-H(8)	119.5
C(7)-C(8)-H(8)	119.5
C(8)-C(9)-C(10)	121.0(2)
C(8)-C(9)-H(9)	119.5
C(10)-C(9)-H(9)	119.5
C(11)-C(10)-C(9)	119.4(2)
C(11)-C(10)-H(10)	120.3
C(9)-C(10)-H(10)	120.3
C(10)-C(11)-C(12)	121.4(2)
C(10)-C(11)-H(11)	119.3
C(12)-C(11)-H(11)	119.3
C(7)-C(12)-C(11)	119.00(16)
C(7)-C(12)-C(13)	117.21(15)
C(11)-C(12)-C(13)	123.77(16)
N(1)-C(13)-C(12)	124.59(15)
N(1)-C(13)-C(14)	114.29(14)
C(12)-C(13)-C(14)	121.06(14)
F(2)-C(14)-F(1)	103.90(12)
F(2)-C(14)-C(15)	109.30(13)

F(1)-C(14)-C(15)	108.99(14)
F(2)-C(14)-C(13)	109.26(13)
F(1)-C(14)-C(13)	106.50(13)
C(15)-C(14)-C(13)	117.95(13)
C(20)-C(15)-C(16)	118.33(16)
C(20)-C(15)-C(14)	121.02(15)
C(16)-C(15)-C(14)	120.63(15)
C(17)-C(16)-C(15)	120.84(16)
C(17)-C(16)-H(16)	119.6
C(15)-C(16)-H(16)	119.6
C(16)-C(17)-C(18)	119.93(16)
C(16)-C(17)-H(17)	120
C(18)-C(17)-H(17)	120
O(1)-C(18)-C(19)	124.94(16)
O(1)-C(18)-C(17)	115.22(15)
C(19)-C(18)-C(17)	119.84(16)
C(20)-C(19)-C(18)	119.35(16)
C(20)-C(19)-H(19)	120.3
C(18)-C(19)-H(19)	120.3
C(19)-C(20)-C(15)	121.70(16)
C(19)-C(20)-H(20)	119.2
C(15)-C(20)-H(20)	119.2
O(1)-C(21)-H(21A)	109.5
O(1)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5
O(1)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
C(13)-N(1)-C(1)	118.34(14)
C(18)-O(1)-C(21)	117.85(14)

Symmetry transformations used to generate equivalent atoms:

Atom	U11	U22	U33	U23	U13	U12
C(1)	46(1)	35(1)	60(1)	4(1)	-2(1)	-2(1)
C(2)	65(1)	45(1)	68(1)	7(1)	11(1)	-5(1)
C(3)	70(1)	52(1)	92(2)	16(1)	10(1)	-13(1)
C(4)	64(1)	49(1)	110(2)	18(1)	-9(1)	-18(1)
C(5)	67(1)	45(1)	87(1)	-6(1)	-14(1)	-8(1)
C(6)	48(1)	38(1)	63(1)	0(1)	-9(1)	2(1)
C(7)	52(1)	47(1)	58(1)	-8(1)	-13(1)	8(1)
C(8)	72(1)	72(1)	82(2)	-28(1)	-9(1)	7(1)
C(9)	82(2)	100(2)	73(2)	-35(1)	-5(1)	26(2)
C(10)	78(2)	89(2)	55(1)	-7(1)	9(1)	23(1)
C(11)	64(1)	66(1)	60(1)	2(1)	8(1)	11(1)
C(12)	48(1)	47(1)	48(1)	1(1)	-2(1)	7(1)
C(13)	42(1)	39(1)	48(1)	2(1)	1(1)	2(1)
C(14)	42(1)	47(1)	56(1)	9(1)	5(1)	-2(1)
C(15)	39(1)	35(1)	55(1)	4(1)	2(1)	-7(1)
C(16)	43(1)	43(1)	70(1)	0(1)	-3(1)	2(1)
C(17)	49(1)	54(1)	63(1)	-3(1)	-12(1)	2(1)
C(18)	49(1)	40(1)	57(1)	1(1)	2(1)	-5(1)
C(19)	44(1)	42(1)	67(1)	0(1)	0(1)	5(1)
C(20)	42(1)	47(1)	58(1)	4(1)	-7(1)	-3(1)
C(21)	85(2)	84(2)	90(2)	-31(1)	-2(1)	21(1)
F(1)	87(1)	53(1)	59(1)	13(1)	8(1)	-4(1)
F(2)	46(1)	73(1)	85(1)	-12(1)	16(1)	-6(1)
N(1)	48(1)	37(1)	53(1)	1(1)	2(1)	-2(1)
O(1)	70(1)	67(1)	67(1)	-18(1)	-3(1)	8(1)

Table 4. Anisotropic displacement parameters (Ų x 10³) for 3aa. The anisotropic displacementfactor exponent takes the form: $-2\pi^2$ [h²a*²U₁₁+...+2hka*b*U₁₂]

Table 5. Hydrogen coordinates (Å x 10^4) and isotropic displacement parameters (Å² x 10^3) for 3aa

Atom	Х	У	Z	U(eq)
H(2)	7856	6655	6337	71
H(3)	10652	8544	6398	86
H(4)	10827	10110	7499	90
H(5)	8234	9835	8528	80
H(8)	5611	9495	9457	91
H(9)	2927	9011	10434	102
H(10)	352	6992	10331	89
H(11)	536	5444	9244	76
H(16)	-723	3888	6532	63
H(17)	-321	2438	5399	67
H(19)	5878	751	6384	61
H(20)	5469	2230	7503	59
H(21A)	5123	-1012	5370	130
H(21B)	6386	352	4987	130
H(21C)	4822	-725	4436	130