Electronic Supporting Information for:

E-H (E = B, Si, Ge) Bond Activation of Pinacolborane, Silanes, and Germanes by Nucleophilic Palladium Carbene Complex

Cezar C. Comanescu and Vlad M. Iluc*

DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY, UNIVERSITY OF NOTRE DAME, NOTRE DAME, IN 46556

*Corresponding author: viluc@nd.edu

1	Experimental		
	1.1	General remarks	S 6
	1.2	References	S 6
	1.3	Synthesis of [PC(SiH ₂ Ph)P]PdH (3)	S 7
	1.4	Synthesis of [PC(SiHPh ₂)P]PdH (4)	S 8
	1.5	Synthesis of [PC(SiPh ₃)P]PdH (5)	S 9
	1.6	Reaction of of $[PC(sp^2)P]Pd(PMe_3)$ (1) with PhSiH ₃	S10
	1.7	Reaction of of $[PC(sp^2)P]Pd(PMe_3)$ (1) with Ph_2SiH_2	S10
	1.8	Reaction of of $[PC(sp^2)P]Pd(PMe_3)$ (1) with Ph ₃ SiH	S11
	1.9	Thermolysis of the hydrides 3-5	S12
	1.10	Synthesis of [PC(Bpin)P]PdH (9)	S12
	1.11	Synthesis of [PC(H)P]Pd(GeH ₂ Ph) (10)	S13
	1.12	Synthesis of [PC(H)P]Pd(GeHPh ₂) (11)	S14
	1.13	Synthesis of [PC(H)P]Pd(GePh ₃) (12)	S15
	1.14	Reaction of $[PC(sp^2)P]Pd(PPh_3)$ (2) with PhGeH ₃	S15
	1.15	Reaction of $[PC(sp^2)P]Pd(PPh_3)$ (2) with Ph_2GeH_2	S16
	1.16	Reaction of $[PC(sp^2)P]Pd(PPh_3)$ (2) with Ph_3GeH	S16
	1.17	X-ray data for compounds 3-5, 8-13	S17
2	DFT	results	S19
	F	Figure S1. Calculated mechanism and reaction profile for the formation of the	
		hydride products from $[PC(sp^2)P]Pd(PMe_3)$ (1)	S19
	H	Figure S2. Calculated mechanism and reaction profile for the formation of the	
		hydride products from $[PC(sp^2)P]Pd(PPh_3)$ (2)	S20
	H	Figure S3. Calculated mechanism and reaction profile for the formation of the silyl	
		products from $[PC(sp^2)P]Pd(PMe_3)$ (1)	S21
	ŀ	Figure S4. Calculated mechanism and reaction profile for the formation of the silvl	
		products from $[PC(sp^2)P]Pd(PPh_3)$ (2)	S22

	Figure S5. Calculated mechanism and reaction profile for the formation of the	
	silyls from [PC(sp ²)P]Pd(PMe ₃) (1) by a deprotonation mechanism	S23
	Figure S6. Calculated mechanism and reaction profile for the formation of the	
	silyls from [PC(sp ²)P]Pd(PPh ₃) (2) by a deprotonation mechanism	S24
3	NMR Spectra	S25
	3.1 NMR Spectra for $[PC(SiH_2Ph)P]PdH(3)$	S25
	Figure S7. ¹ H NMR spectrum for $[PC(SiH_2Ph)P]PdH(3)$	S25
	Figure S8. ${}^{31}P{}^{1}H$ NMR spectrum for [PC(SiH ₂ Ph)P]PdH (3)	S26
	Figure S9. ¹³ C{ ¹ H} NMR spectrum for $[PC(SiH_2Ph)P]PdH(3)$	S27
	Figure S10. ²⁹ Si $\{^{1}H\}$ NMR spectrum for [PC(SiH ₂ Ph)P]PdH (3)	S28
	Figure S11. ¹ H- ¹³ C HSQC NMR spectrum for $[PC(SiH_2Ph)P]PdH(3)$	S29
	3.2 NMR Spectra for [PC(SiHPh ₂)P]PdH (4)	S30
	Figure S12. ¹ H NMR spectrum for [PC(SiHPh ₂)P]PdH (4)	S 30
	Figure S13. ³¹ P ^{1}H NMR spectrum for [PC(SiHPh ₂)P]PdH (4)	S31
	Figure S14. ¹³ C $\{^{1}H\}$ NMR spectrum for [PC(SiHPh ₂)P]PdH (4)	S32
	Figure S15. ²⁹ Si $\{^{1}H\}$ NMR spectrum for [PC(SiHPh ₂)P]PdH (4)	S33
	3.3 NMR Spectra for $[PC(SiPh_3)P]PdH(5)$	S34
	Figure S16. ¹ H NMR spectrum for [PC(SiPh ₃)P]PdH (5)	S34
	Figure S17. ${}^{31}P{}^{1}H$ NMR spectrum for [PC(SiPh ₃)P]PdH (5)	S35
	Figure S18. ${}^{13}C{}^{1}H$ NMR spectrum for [PC(SiPh ₃)P]PdH (5)	S36
	Figure S19. ²⁹ Si $\{^{1}H\}$ NMR spectrum for [PC(SiPh ₃)P]PdH (5)	S37
	Figure S20. ¹ H- ¹³ C HSQC NMR spectrum for $[PC(SiPh_3)P]PdH(5)$	S38
	Figure S21. ¹ H- ¹ H COSY NMR spectrum for $[PC(SiPh_3)P]PdH(5)$	S39
	3.4 NMR Spectra for $[PC(H)P]Pd(SiHPh_2)$ (7)	S40
	Figure S22. ¹ H NMR spectrum for $[PC(H)P]Pd(SiHPh_2)(7)$	S40
	Figure S23. ${}^{17}P{}^{1}H{}$ NMR spectrum for $[PC(H)P]Pd(S1HPh_2)$ (7)	S41
	Figure S24. $^{13}C{^{1}H}$ NMR spectrum for $[PC(H)P]Pd(S1HPh_2)$ (7)	S42
	Figure S25. ²⁷ Si{ ¹ H} NMR spectrum for $[PC(H)P]Pd(SiHPh_2)$ (7)	S43
	3.5 NMR Spectra for $[PC(H)P]Pd(S1Ph_3)$ (8)	S44
	Figure S26. ¹ H NMR spectrum for $[PC(H)P]Pd(S1Ph_3)$ (8)	S44
	Figure S27. $^{1}P{^{1}H}$ NMR spectrum for $[PC(H)P]Pd(SiPh_{3})$ (8)	545
	Figure S28. ${}^{10}C{}^{1}H{}$ NMR spectrum for $[PC(H)P]Pd(S1Ph_3)$ (8)	S46
	Figure 529. \sim SI(⁺ H) INMR spectrum for [PC(H)P]Pd(SIPh ₃) (6)	54/
	Figure S30. H- 3 C HSQC NMR spectrum for [PC(H)P]Pd(S1Pn ₃) (8)	548
	Figure S31. $P{H}$ NMR spectrum for $[PC(H)P]Pd(PMe_3)(SPPn_3)$ (14)	549
	5.0 INVIR Spectra IOF [PC(Bpiii)P]PdH (9)	530
	Figure S32. If NMR spectrum for $[PC(Dpin)P]Pdfi (9)$	S30 S51
	Figure S35. $F \{ H \}$ NMR spectrum for $[PC(Dpin)P]PdH (9)$	551
	Figure S34. $C_{\{11\}}$ NMR spectrum for [PC(Dpin)P]PdH (9)	S52 S52
	Figure 555. Distance spectrum for $[DC(Bpin)]$ if $UII (7)$ Figure S36 ${}^{1}H_{-}{}^{13}C$ HSOC NMR spectrum for $[DC(Bpin)]$ DIDdH (0)	555 851
	Figure 530. II- C HSQC With spectrum for $[PC(Bpin)P]DdH (0)$	554
	$3.7 \text{ NMR Spectra for [PC(H)P]Pd(GeH_aPh) (10)}$	555
	Figure S38 ¹ H NMR spectrum for $[PC(H)P]Pd(GeH_Ph)$ (10)	556
	$\mathbf{I} \mathbf{I} \mathbf{G} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} U$	550

	Figure S39. ${}^{31}P{}^{1}H$ NMR spectrum for [PC(H)P]Pd(GeH ₂ Ph) (10)	S57
	Figure S40. ¹³ C{ ¹ H} NMR spectrum for $[PC(H)P]Pd(GeH_2Ph)$ (10)	S58
	Figure S41. 1 H- 13 C HSQC NMR spectrum for [PC(H)P]Pd(GeH ₂ Ph) (10)	S59
	Figure S42. ¹ H- ¹ H COSY NMR spectrum for [PC(H)P]Pd(GeH ₂ Ph) (10)	S60
	3.8 NMR Spectra for [PC(H)P]Pd(GeHPh ₂) (11)	S61
	Figure S43. ¹ H NMR spectrum for $[PC(H)P]Pd(GeHPh_2)$ (11)	S61
	Figure S44. ${}^{31}P{}^{1}H$ NMR spectrum for [PC(H)P]Pd(GeHPh ₂) (11)	S62
	Figure S45. ${}^{13}C{}^{1}H$ NMR spectrum for [PC(H)P]Pd(GeHPh ₂) (11)	S63
	Figure S46. ¹ H- ¹³ C HSQC NMR spectrum for [PC(H)P]Pd(GeHPh ₂) (11)	S64
	3.9 NMR Spectra for [PC(H)P]Pd(GePh ₃) (12)	S65
	Figure S47. ¹ H NMR spectrum for $[PC(H)P]Pd(GePh_3)$ (12)	S65
	Figure S48. ${}^{31}P{}^{1}H$ NMR spectrum for [PC(H)P]Pd(GePh ₃) (12)	S66
	Figure S49. ¹³ C $\{^{1}H\}$ NMR spectrum for [PC(H)P]Pd(GePh ₃) (12)	S67
	Figure S50. ¹ H- ¹³ C HSQC NMR spectrum for [PC(H)P]Pd(GePh ₃) (12)	S68
	Figure S51. $^{1}H-^{1}H$ COSY NMR spectrum for [PC(H)P]Pd(GePh ₃) (12)	S69
	3.10 NMR Spectra for [PC(H)P]Pd(PMe ₃)(GeH ₂ Ph) (15)	S70
	Figure S52. ³¹ P{ ¹ H} NMR spectrum for $[PC(H)P]Pd(PMe_3)(GeH_2Ph)$ (15)	S70
	3.11 NMR Spectra for [PC(H)P]Pd(PMe ₃)(GeHPh ₂) (13)	S71
	Figure S53. ¹ H NMR spectrum for $[PC(H)P]Pd(PMe_3)(GeHPh_2)$ (13)	S71
	Figure S54. ³¹ P{ ¹ H} NMR spectrum for $[PC(H)P]Pd(PMe_3)(GeHPh_2)$ (13)	S72
4	Crystallographic Tables	S73
	4.1 Crystal data for $[PC(SiH_2Ph)P]PdH(3)$	S73
	Figure S55. Thermal-ellipsoid representation of 3	S73
	Table S1. Crystal data and structure refinement for 3	S74
	Table S2. Atomic coordinates and equivalent isotropic displacement parameters	
	$(Å^2)$ for 3	S75
	Table S3. Anisotropic displacement parameters (Å ²) for 3	S77
	Table S4. Distances [Å] for 3	S78
	Table S5. Angles [°] for 3	S79
	4.2 Crystal data for [PC(SiHPh ₂)P]PdH (4)	S 81
	Figure S56. Thermal-ellipsoid representation of 4	S 81
	Table S6. Crystal data and structure refinement for 4	S82
	Table S7. Atomic coordinates and equivalent isotropic displacement parameters	
	(\mathring{A}^2) for 4	S83
	Table S8. Anisotropic displacement parameters ($Å^2$) for 4	S86
	Table S9. Distances [A] for 4	S 88
	Table S10. Angles [°] for 4	S90
	4.3 Crystal data for $[PC(SiPh_3)P]PdH(5)$	S93
	Figure S57. Thermal-ellipsoid representation of 5	S93
	Table S11. Crystal data and structure refinement for 5	S94
	Table S12. Atomic coordinates and equivalent isotropic displacement parameters	
	(A^2) for 5	S95
	Table S13. Anisotropic displacement parameters ($Å^2$) for 5	S98
	Table S14. Distances [A] for 5	S100

Table S15. Angles [°] for 5	S102
4.4 Crystal data for $[PC(H)P]Pd(SiPh_3) \cdot C_5H_{12}$ (8 · C ₅ H ₁₂)	S105
Figure S58. Thermal-ellipsoid representation of 8.C ₅ H ₁₂	S105
Table S16. Crystal data and structure refinement for $8 \cdot C_5 H_{12}$	S106
Table S17. Atomic coordinates and equivalent isotropic displacement parameters	
$(Å^2)$ for $8 \cdot C_5 H_{12}$	S107
Table S18. Anisotropic displacement parameters ($Å^2$) for $8 \cdot C_5 H_{12}$	S111
Table S19. Distances [Å] for $8 \cdot C_5 H_{12}$	S113
Table S20. Angles [°] for 8·C ₅ H ₁₂	S115
4.5 Crystal data for [PC(Bpin)P]PdH (9)	S118
Figure S59. Thermal-ellipsoid representation of 9	S118
Table S21. Crystal data and structure refinement for 9	S119
Table S22. Atomic coordinates and equivalent isotropic displacement parameters	
$(Å^2)$ for 9	S120
Table S23. Anisotropic displacement parameters (Å ²) for 9	S123
Table S24. Distances [Å] for 9	S124
Table S25. Angles [°] for 9	S126
4.6 Crystal data for $[PC(H)P]Pd(GeH_2Ph)$ (10)	S129
Figure S60. Thermal-ellipsoid representation of 10	S129
Table S26. Crystal data and structure refinement for 10	S130
Table S27. Atomic coordinates and equivalent isotropic displacement parameters	
$(Å^2)$ for 10	S131
Table S28. Anisotropic displacement parameters (Å ²) for 10	S133
Table S29. Distances [Å] for 10	S134
Table S30. Angles [°] for 10	S135
4.7 Crystal data for $[PC(H)P]Pd(GeHPh_2)$ (11)	S137
Figure S61. Thermal-ellipsoid representation of 11	S137
Table S31. Crystal data and structure refinement for 11	S138
Table S32. Atomic coordinates and equivalent isotropic displacement parameters	
$(Å^2)$ for 11	S139
Table S33. Anisotropic displacement parameters ($Å^2$) for 11	S142
Table S34. Distances [Å] for 11	S144
Table S35. Angles [°] for 11	S146
4.8 Crystal data for $[PC(H)P]Pd(GePh_3)$ (12)	S149
Figure S62. Thermal-ellipsoid representation of 12	S149
Table S36. Crystal data and structure refinement for 12	S150
Table S37. Atomic coordinates and equivalent isotropic displacement parameters	
(A^2) for 12	S151
Table S38. Anisotropic displacement parameters (A ²) for 12 Table S38. Anisotropic displacement parameters (A ²) for 12	S154
Table S39. Distances [A] for 12	S156
Table S40. Angles [°] for 12	S158
4.9 Crystal data for $[PC(H)P]Pd(PMe_3)(GeHPh_2) \cdot 0.5C_5H_{12}$ (13.0.5C ₅ H ₁₂)	S161
Figure S63. Thermal-ellipsoid representation of $13 \cdot C_5 H_{12}$	S161
Table S41. Crystal data and structure refinement for $13 \cdot C_5 H_{12}$	S162

Table S42. Atomic coordinates and equivalent isotropic displacement parameters	
$(Å^2)$ for 13 · C ₅ H ₁₂	S163
Table S43. Anisotropic displacement parameters ($Å^2$) for $13 \cdot C_5 H_{12}$	S166
Table S44. Distances [Å] for $13 \cdot C_5 H_{12}$	S168
Table S45. Angles [°] for $13 \cdot C_5 H_{12}$	S170

1 Experimental

1.1 General remarks

All experiments are performed under an inert atmosphere of N_2 using standard glovebox techniques. Hexanes, *n*-pentane and diethylether were dried by passing through a column of activated alumina and stored in the glovebox. THF was dried over LiAlH₄ followed by vacuum transfer and stored in the glovebox. C_6D_6 was dried over CaH₂ followed by vacuum transfer, and stored in the glovebox. $[PC(sp^2)P]Pd(PMe_3)$ (1) and $[PC(sp^2)P]Pd(PPh_3)$ (2) were prepared according to literature procedures.¹ All other materials were used as received. ¹H, ¹³C{¹H}, ³¹P{¹H} and ²⁹Si{¹H}NMR spectra were recorded on Bruker DRX 400 or 500 spectrometer. All chemical shifts were reported in δ units with references to the residual solvent resonance of the deuterated solvents for proton and carbon chemical shifts or to external H₃PO₄ for ³¹P{¹H} NMR. CHN analyses were performed on a CE-440 Elemental Analyzer or by Midwest Microlab. Gaussian 03 (revision D.02) was used for all reported calculations.² The B3LYP (DFT) method was used to carry out the geometry optimizations on model compounds specified in text using the LANL2DZ basis set. The validity of the true minima was checked by the absence of negative frequencies in the energy Hessian.

1.2 References

- 1. C.C. Comanescu and V. M. Iluc, Organometallics, 2014, 33(21), 6059-6064.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, *Gaussian, Inc.*, Wallingford CT, 2004.

1.3 Synthesis of [PC(SiH₂Ph)P]PdH (3)

In a 20 mL scintillation vial, 76.7 mg of [PC(sp²)P]Pd(PPh₃) (2, 0.1 mmol) was stirred in 5 mL of THF prior to the addition of a 1 mL solution of PhSiH₃ (0.1 M in THF) at room temperature. The color became off-white within 3 min. The ¹H and ³¹P{¹H} NMR spectra of the crude mixture showed the formation of the product, [PC(SiH₂Ph)P]PdH (3), and PPh₃. The volatiles were removed under reduced pressure and the resulted solid was extracted with *n*-pentane and filtered. After removing the volatiles under reduced pressure again, the product was obtained as an offwhite solid. Recrystallization was performed at -35 °C from a concentrated Et₂O solution, in order to remove PPh₃, yielding after 3 recrystallizations an analytically pure product in moderate yield (60%, 36.8 mg). For 3: ¹H NMR $(500 \text{ MHz}, C_6D_6, 298 \text{ K}) \delta 7.76 \text{ (dd, } J = 8.1, 1.0 \text{ Hz}, 2\text{ H}, \text{Ar}H)$, 7.24 (dtd, J = 5.4, 4.1, 1.4 Hz, 2H, ArH), 7.22 – 7.19 (m, 2H, ArH), 7.14 – 7.02 (m, 5H, ArH), 3.4 Hz, 2H, $-CH(CH_3)_2$), 2.06 (ddq, J = 10.7, 6.7, 4.0 Hz, 2H, $-CH(CH_3)_2$), 1.33 (q, J = 7.2 Hz, $6H, -CH(CH_3)_2), 1.25 - 1.16 (m, 6H, -CH(CH_3)_2), 1.20 - 1.11 (m, 6H, -CH(CH_3)_2), 0.68 (dt, J)$ = 7.8, 7.0 Hz, 6H, $-CH(CH_3)_2$), -5.32 (t, ${}^2J_{HP}$ = 11.9 Hz, 1H, Pd-H). ${}^{31}P{}^{1}H$ NMR (202 MHz, C_6D_6 , 298 K) δ 61.12 (s). ¹³C{¹H} NMR (126 MHz, C_6D_6 , 298 K) δ 159.48 (t, J = 13.5 Hz, ArC), 137.51 (t, J = 17.1 Hz, ArC), 136.80 (s, ArC), 135.90 (s, ArC), 132.71 (s, ArC), 129.65 (s, ArC), 128.95 (t, J = 7.5 Hz, ArC), 128.78 (s, ArC), 127.57 (s, ArC), 123.16 (t, J = 3.3 Hz, ArC), 60.40 (s, Ar_2C -SiPhH₂), 26.41 (t, J = 11.6 Hz, $-CH(CH_3)_2$), 26.26 (t, J = 13.1 Hz, $-CH(CH_3)_2$), 21.97 $(t, J = 4.0 \text{ Hz}, -CH(CH_3)_2), 19.38 (t, J = 3.8 \text{ Hz}, -CH(CH_3)_2), 19.31 (t, J = 1.8 \text{ Hz}, -CH(CH_3)_2), 19.31 (t,$ 19.10 (t, J = 1.5 Hz, $-CH(CH_3)_2$). ²⁹Si{¹H} NMR (79 MHz, C₆D₆, 298 K) δ -31.20 (s). Anal. Calcd. for C₃₁H₄₄P₂PdSi: C, 60.73; H, 7.23. Found: C, 60.91; H, 7.05.

1.4 Synthesis of [PC(SiHPh₂)P]PdH (4)

76.7 mg of [PC(sp²)P]Pd(PPh₃) (2, 0.1 mmol) was dissolved in 5 mL of THF in a 20 mL scintillation vial. To this mixture, 1 mL of Ph₂SiH₂ (0.1 M solution in THF) was added at room temperature. After 30 minutes, the volatiles were removed under reduced pressure to generate a cream powder. The ¹H and ³¹P{¹H} NMR spectra of the crude mixture showed the formation of the product, [PC(SiHPh₂)P]PdH (4), and PPh₃. Analytically pure [PC(SiHPh₂)P]PdH (4) was isolated after several recrystallizations from a concentrated Et₂O solution at -35 °C in 67% yield, (46.2 mg). For 4: ¹H NMR (500 MHz, C₆D₆, 298 K) δ 7.72 (dd, J = 8.1, 1.4 Hz, 2H, ArH), 7.23 (dtd, J = 7.8, 4.0, 1.5 Hz, 2H, ArH), 7.13 (d, J = 1.7 Hz, 2H, ArH), 7.12 (d, J = 1.9 Hz, 2H, ArH), 7.11 – 7.07 (m, 2H, ArH), 7.06 – 7.01 (m, 6H, ArH), 6.96 (t, J = 7.5 Hz, 2H, ArH), 6.00 $(t, J = 4.29 \text{ Hz}, 1\text{H}, \text{C}-\text{Si}H\text{Ph}_2), 2.13 \text{ (ddh}, J = 10.7, 7.2, 3.5 \text{ Hz}, 2\text{H}, -\text{C}H(\text{CH}_3)_2), 1.99 \text{ (ttd}, J$ = 9.6, 5.5, 4.8, 2.9 Hz, 2H, $-CH(CH_3)_2$), 1.21 (q, J = 6.9 Hz, 6H, $-CH(CH_3)_2$), 1.10 (td, J = 8.3, 6.7 Hz, 6H, $-CH(CH_3)_2$), 1.03 (td, J = 9.0, 7.4 Hz, 6H, $-CH(CH_3)_2$), 0.59 (td, J = 7.7, 6.9 Hz, 6H, $-CH(CH_3)_2$), -5.71 (t, ${}^2J_{HP} = 11.7$ Hz, 1H, Pd-H). ${}^{31}P{}^{1}H$ NMR (202 MHz, C₆D₆, 298 K) δ 60.32(s). ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K) δ 158.87 (t, J = 13.5 Hz, ArC), 139.00 (t, J = 16.8 Hz, ArC), 138.16 (s, ArC), 136.21(s, ArC), 132.94 (s, ArC), 129.83 (s, ArC), 129.59 (t, J = 7.4 Hz, ArC), 128.87 (s, ArC), 127.80 (s, ArC), 123.48 (t, J = 3.2 Hz, ArC), 62.22 (s, $Ar_2C-SiHPh_2$), 26.21 (t, J = 11.1 Hz, $-CH(CH_3)_2$), 25.98 (t, J = 12.8 Hz, $-CH(CH_3)_2$), 22.76 (t, J = 4.9 Hz, $-CH(CH_3)_2$), 19.60 (t, J = 4.0 Hz, $-CH(CH_3)_2$), 19.31 (s, $-CH(CH_3)_2$), 18.79 (s, $-CH(CH_3)_2$), 19.81 (s, $-CH(CH_3)_2$), 18.79 (s, $-CH(CH_3)_2$), 19.81 (s, $-CH(CH_3)_2$), 19.81 (s, $-CH(CH_3)_2$), 18.79 (s, $-CH(CH_3)_2$), CH(CH₃)₂). ²⁹Si{¹H} NMR (79 MHz, C₆D₆, 298 K) δ –20.72 (s). Anal. Calcd. for C₃₇H₄₈P₂PdSi: C, 64.48; H, 7.02. Found: C, 64.19; H, 6.72.

1.5 Synthesis of [PC(SiPh₃)P]PdH (5)

61.4 mg of [PC(sp²)P]Pd(PPh₃) (2, 0.08 mmol) was dissolved in 5 mL of THF and then 0.8 mL of Ph₃SiH (0.1 M solution in Et₂O) was added. The reaction mixture was stirred at room temperature. The reaction mixture remained brown for 36 hours but became progressively lighter afterwards and, after 72 hours, the solution was light yellow. In a separate experiment heating the reaction mixture to 70 °C did not lead to an increase in yield and produced side-products. After 72 hours, the volatiles were removed under reduced pressure and the residue was triturated 3 times with 5 mL of *n*-pentane. ¹H and ³¹P{¹H} NMR spectra of this residue showed the reaction to be complete, and to contain the product, [PC(SiPh₃)P]PdH (5) and PPh₃. Successive recrystallizations from a concentrated *n*-pentane solution afforded 5, as a light yellow solid, in good yield (38.5 mg, 63%). For 5: ¹H NMR (400 MHz, C₆D₆, 298 K) δ 7.87 (d, J = 8.1 Hz, 2H, ArH), 7.41 – 7.35 (m, 6H, ArH), 7.22 – 7.17 (m, 2H, ArH), 7.09 – 7.04 (m, 9H, ArH), 6.97 (m, 4H, ArH), 2.09 – 1.94 (m, 2H, $-CH(CH_3)_2$), 1.36 (dd, J = 7.0, 3.4 Hz, 2H, $-CH(CH_3)_2$), 1.29 - 1.19 (m, 6H, $-CH(CH_3)_2$), 1.16 - 1.08 (m, 6H, $-CH(CH_3)_2$), 1.05 (q, J = 6.8 Hz, 6H, $-CH(CH_3)_2$), 0.60 - 0.45 (m, 6H, $-CH(CH_3)_2$, -5.84 (t, ${}^2J_{HP} = 9.1$ Hz, 1H, Pd-H). ${}^{31}P{}^{1}H$ NMR (162 MHz, C₆D₆, 298 K) δ 58.61(s). ¹³C{¹H} NMR (101 MHz, C₆D₆, 298 K) δ 160.52 (t, J = 14.2 Hz, ArC), 140.25 (t, J = 17.1 Hz, ArC), 139.36 (s, ArC), 138.30 (s, ArC), 134.29 (d, J = 18.1 Hz, ArC), 132.97 (s, ArC), 132.48 (t, J = 7.6 Hz, ArC), 129.12 (s, ArC), 128.48 (s, ArC), 127.27 (s, ArC), 123.67 (t, J =3.2 Hz, ArC), 65.45 (s, Ar₂C–SiPh₃), 26.88 (t, J = 10.9 Hz, $-CH(CH_3)_2$), 25.88 (t, J = 13.3 Hz, $-CH(CH_3)_2$, 23.33 (t, J = 4.1 Hz, $-CH(CH_3)_2$), 20.25 (t, J = 4.0 Hz, $-CH(CH_3)_2$), 19.96 (t, J = 4.0 Hz, -CH(C2.0 Hz, $-CH(CH_3)_2$, 18.42 (s, $-CH(CH_3)_2$). ²⁹Si{¹H} NMR (79 MHz, C₆D₆, 298 K) δ -9.01 (s). Anal. Calcd. For C₄₃H₅₂P₂PdSi C, 67.48; H, 6.85; Found: C, 67.41; H, 6.98.

1.6 Reaction of of [PC(sp²)P]Pd(PMe₃) (1) with PhSiH₃

Starting from 58.1 mg of $[PC(sp^2)P]Pd(PMe_3)$ (1, 0.1 mmol) and following the procedure used for the reaction of $[PC(sp^2)P]Pd(PPh_3)$ (2) with PhSiH₃, $[PC(SiH_2Ph)P]PdH$ (3) was obtained in 90% yield (as assessed by ¹H and ³¹P{¹H} NMR spectroscopy), and small traces (less than 5%) of the other isomer, $[PC(H)P]Pd(SiH_2Ph)$ (6) could be detected in the crude mixture. Crystallization from a concentrated *n*-pentane solution yielded an analytically pure sample of $[PC(SiH_2Ph)P]PdH$ (3), isolated in 82% yield (50.3 mg). For 6: ¹H NMR (500 MHz, C₆D₆, 298 K) δ 6.18 (s, Ar₂CH-Pd). ³¹P{¹H} NMR (202 MHz, C₆D₆, 298 K) δ 53.51 (s).

1.7 Reaction of of $[PC(sp^2)P]Pd(PMe_3)$ (1) with Ph_2SiH_2

In a 20 mL scintillation vial, 58.1 mg of $[PC(sp^2)P]Pd(PMe_3)$ (1, 0.1 mmol) was dissolved in 5 mL of THF and cooled to -78 °C. To this solution, 1 mL of Ph₂SiH₂ (0.1 M solution in THF) was added at -78 °C and the reaction mixture was stirred for 2 hours at this temperature. The mixture turned light orange. The volatiles were removed under reduced pressure, and a 2:1 molar ratio formed as indicated by ¹H and ³¹P{¹H} NMR spectroscopy, the major component being $[PC(SiHPh_2)P]PdH$ (4), while the minor product was its isomer, $[PC(H)P]Pd(SiHPh_2)$ (7). Running the reaction at room temperature for 2 hours resulted in a $[PC(SiHPh_2)P]PdH$ (4) to $[PC(H)P]Pd(SiHPh_2)$ (7) molar ratio of 1:2. No other intermediates were identified in the crude reaction mixture. Recrystallization at -35 °C from a concentrated Et₂O solution of either reaction mixture only afforded the $[PC(SiHPh_2)P]PdH$ (4) isomer, as an off-white solid, in 53% (from the reaction ran at room temperature, 36.5 mg), and 26.2% (from the reaction ran at -78 °C, 18.1 mg) yield, respectively. After successive crystallizations, the major component of the mother liquor by ¹H and ³¹P{¹H} NMR spectroscopy was $[PC(H)P]Pd(SiHPh_2)$ (7) but it still contained the hydride isomer $[PC(SiHPh_2)P]PdH$ (4) as an impurity. Isolated yield for 7: 15% (-78 °C reaction, 10.3 mg) and 32% (room temperature reaction, 22.1 mg). For 7: ¹H NMR (500 MHz, C₆D₆, 298 K) δ 7.93 (dd,

J = 7.9, 1.3 Hz, 4H, Ar*H*), 7.53 (d, J = 7.9 Hz, 2H, Ar*H*), 7.22 (t, J = 7.3 Hz, 4H, Ar*H*), 7.20 – 7.16 (m, 2H, Ar*H*), 7.14 – 7.12 (m, 2H, Ar*H*), 7.04 – 7.00 (m, 2H, Ar*H*), 6.88 (t, J = 7.4 Hz, 2H, Ar*H*), 5.86 (s, 1H, Ar₂C*H*–Pd), 5.71 (t, ${}^{3}J_{HP}$ = 9.1 Hz, 1H, Pd–Si*H*Ph₂), 2.27 – 2.18 (m, 2H, -C*H*(CH₃)₂), 2.18 – 2.13 (m, 2H, -C*H*(CH₃)₂), 1.01 (dd, J = 16.0, 7.8 Hz, 12H, -CH(CH₃)₂), 0.88 (dd, J = 14.3, 7.1 Hz, 9H, -CH(CH₃)₂), 0.84 (dd, J = 13.2, 6.5 Hz, 3H, -CH(CH₃)₂). ${}^{31}P{}^{1}H{}$ NMR (202 MHz, C₆D₆, 298 K) δ 54.78 (s). ${}^{13}C{}^{1}H{}$ NMR (126 MHz, C₆D₆, 298 K) δ 159.09 (t, J = 13.9 Hz, ArC), 146.64 (s, ArC), 137.37 (s, ArC), 136.98 (s, ArC), 132.33 (s, ArC), 130.11 (s, ArC), 127.98 (s, ArC), 127.35 (s, ArC), 127.30 (s, ArC), 123.92 (t, J = 3.2 Hz, ArC), 67.33 (s, Ar₂CH–Pd), 26.41 (t, J = 11.2 Hz, -CH(CH₃)₂), 25.98 (t, J = 13.1 Hz, -CH(CH₃)₂), 19.86 (t, J = 2.9 Hz, -CH(CH₃)₂), 19.64 (t, J = 2.4 Hz, -CH(CH₃)₂), 18.32 (s, -CH(CH₃)₂), 18.17(s, -CH(CH₃)₂). ${}^{29}Si{}^{1}H{}$ NMR (99 MHz, C₆D₆, 298 K) δ -10.06 (t, ${}^{2}J_{SiP}$ = 45.0, 21.7 Hz).

1.8 Reaction of of [PC(sp²)P]Pd(PMe₃) (1) with Ph₃SiH

In a 20 mL scintillation vial, 58.1 mg of $[PC(sp^2)P]Pd(PMe_3)$ (1, 0.1 mmol) was stirred in 5 mL of toluene with 26.8 mg of Ph₃SiH. Aliquots taken from the reaction mixture (after 1, 3, and 6 hours) showed that no reaction occurred at room temperature. The mixture was then transferred to a Schlenk flask, brought outside of the box, heated at 72 °C and the aliquots of the reaction mixture were checked by ¹H and ³¹P{¹H} NMR spectroscopy every 12 hours. The intermediate $[PC(H)P]Pd(PMe_3)(SiPh_3)$ (14) was also observed in the ³¹P{¹H} NMR spectrum. Complete conversion occurred after 6 days at 72 °C. ¹H and ³¹P{¹H} NMR data showed that all carbene converted to the product, along with PMe₃ and small amounts of the isomer $[PC(SiPh_3)P]PdH$ (5). Multiple recrystallizations from a concentrated *n*-pentane solution at -35 °C were necessary to isolate analytically pure **8** as a yellow solid. Yield: 47% yield (36.0 mg). For **8**: ¹H NMR (400 MHz, C₆D₆, 298 K) δ 7.99 (dd, *J* = 8.0, 1.4 Hz, 6H, Ar*H*), 7.43 (d, *J* = 7.9 Hz, 2H, Ar*H*), 7.23 – 7.07 (m, 13H, Ar*H*), 6.85 (t, *J* = 7.4 Hz, 2H, Ar*H*), 6.04 (s, 1H, Ar₂CH–Pd), 2.00 – 1.85 (m, 2H, –CH(CH₃)₂), 0.83

(q, J = 6.9 Hz, 6H, $-CH(CH_3)_2$). ³¹P{¹H} NMR (162 MHz, C₆D₆, 298 K) δ 53.11 (s). ¹³C{¹H} NMR (101 MHz, C₆D₆, 298 K) δ 158.82 (t, J = 13.7 Hz, ArC), 148.40 (s, ArC), 138.03 (s, ArC), 136.93 (t, J = 17.4 Hz, ArC), 132.90 (s, ArC), 130.03 (s, ArC), 127.85 (t, J = 8.2 Hz, ArC), 127.31 (s, ArC), 127.12 (s, ArC), 123.69 (t, J = 3.2 Hz, ArC), 67.22 (s, Ar₂CH–Pd), 26.04 (t, J = 12.3 Hz, $-CH(CH_3)_2$), 26.05 - 25.80 (m, $-CH(CH_3)_2$), 21.37 (t, J = 3.6 Hz, $-CH(CH_3)_2$), 20.22 (t, J = 2.5 Hz, $-CH(CH_3)_2$), 18.50 (s, $-CH(CH_3)_2$), 18.21 (s, $-CH(CH_3)_2$). ²⁹Si{¹H} NMR (79 MHz, C₆D₆, 298 K) δ 2.20 (t, ² $J_{SIP} = 20.7$ Hz). Anal. Calcd. for C₄₃H₅₂P₂PdSi: C, 67.48; H, 6.85. Found: 67.12; H, 7.16. For 14: ³¹P{¹H} NMR (162 MHz, C₆D₆) δ 25.93 (d, ² $J_{PP} = 97.2$ Hz, Pd–*P*^{*i*}Pr₂), -38.58 (t, ² $J_{PP} = 97.2$ Hz, Pd–*P*(CH₃)₃).

1.9 Thermolysis of the hydrides 3-5

A solution of the corresponding hydride (3: 6.1 mg, 4: 6.9 mg, 5: 7.6 mg) in 0.7 mL of C_6D_6 was monitored at room temperature for 5 days. No decomposition was observed. At 72 °C, the hydrides decomposed into several unidentified products over the course of 48 hours. No silyl isomers were observed. The experiment was repeated in the presence of one equivalent of PMe₃ or PPh₃. In all cases no reaction was observed at room temperature. At 72 °C, in the presence of phosphines the hydrides decompose. No isomerisation to the corresponding silyl isomers was observed.

1.10 Synthesis of [PC(Bpin)P]PdH (9)

In a 20 mL scintillation vial, 58.1 mg of $[PC(sp^2)P]Pd(PMe_3)$ (1, 0.1 mmol) was dissolved in 5 mL of THF prior to the addition of a 1 mL solution of 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (pinacolborane, 0.1 M in THF). The solution turned immediately lighter in color (from dark brown to yellow). After 5 additional minutes, the reaction mixture was light yellow. The volatiles were removed under reduced pressure and the solids were triturated 3 times with *n*-pentane, yielding 58.9 mg of a cream powder of [PC(Bpin)P]PdH (9) in 93% yield (0.093 mmol). The ¹H and ³¹P{¹H} NMR spectra showed this product to be pure. An analytically pure sample was obtained by crystallization from a saturated *n*-pentane solution at -35 °C. Alternatively, starting from 76.7 mg of $[PC(sp^2)P]Pd(PPh_3)$ (2, 0.1 mmol) and following the same procedure, the same product [PC(Bpin)P]PdH (9) was obtained within 1 min, and was isolated in moderate yield (51%, 32.3 mg)

by repeated recrystallizations from a concentrated Et₂O solution. For 9: ¹H NMR (400 MHz, C₆D₆, 298 K) δ 7.88 (d, J = 8.1 Hz, 2H, Ar*H*), 7.28 (dtd, J = 5.2, 4.1, 1.2 Hz, 2H, Ar*H*), 7.22 (t, J = 7.5 Hz, 2H, Ar*H*), 6.91 (t, J = 7.3 Hz, 2H, Ar*H*), 3.08 – 2.89 (m, 2H, –C*H*(CH₃)₂), 2.25 – 2.04 (m, 2H, –C*H*(CH₃)₂), 1.43 – 1.33 (m, 12H, –CH(CH₃)₂), 1.19 (dt, J = 8.0, 6.9 Hz, 6H, –CH(CH₃)₂), 0.98 (s, 12H, B–OC(CH₃)₂), 0.72 (dd, J = 15.1, 7.1 Hz, 6H, –CH(CH₃)₂), -5.71 (t, ²J_{HP} = 10.8 Hz, 1H, Pd–*H*). ³¹P{¹H} NMR (162 MHz, C₆D₆, 298 K) δ 60.11 (s). ¹³C{¹H} NMR (101 MHz, C₆D₆, 298 K) δ 160.18 (t, ¹J_{CP} = 14.2 Hz, Ar*C*), 138.45 (t, ²J_{CP} = 17.9 Hz, Ar*C*), 131.98 (s, Ar*C*), 129.53 (s, Ar*C*), 128.75 (t, ²J_{CP} = 7.6 Hz, Ar*C*), 122.84 (t, ³J_{CP} = 3.3 Hz, Ar*C*), 81.72 (s, –OC(CH₃)₂), 26.07 (t, ¹J_{CP} = 11.2 Hz, –CH(CH₃)₂), 25.29 (t, ¹J_{CP} = 13.0 Hz, –CH(CH₃)₂), 25.01 (s, –OC(CH₃)₂), 22.58 (t, ²J_{CP} = 4.6 Hz, –CH(CH₃)₂), 19.60 (t, ²J_{CP} = 1.5 Hz, –CH(CH₃)₂), 19.51 (t, ²J_{CP} = 3.8 Hz, –CH(CH₃)₂), 18.69 (s, –CH(CH₃)₂). ¹¹B NMR (128 MHz, C₆D₆, 298 K) δ 30.89 (s). Anal. Calcd. for C₃₁H₄₉BO₂P₂Pd: C, 58.83; H, 7.80. Found: C, 58.61; H, 7.55.

1.11 Synthesis of [PC(H)P]Pd(GeH₂Ph) (10)

58.1 mg of $[PC(sp^2)P]Pd(PMe_3)$ (1, 0.1 mmol) was dissolved in 5 mL of THF in a scintillation vial. To this mixture, a solution of PhGeH₃ (1 mL, 0.1 M in Et₂O) was added dropwise. After 10 minutes of stirring at room temperature, a slight color change was observed. After 30 min this deep red reaction mixture turned yellow. The volatiles were removed under reduced pressure and the residue was triturated 3 times with 5 mL of *n*-pentane. 55.2 mg (0.084 mmol) of $[PC(H)P]Pd(GeH_2Ph)$ (10) was obtained as a cream powder in 84% yield. The ¹H and ³¹P{¹H} NMR showed the product to be pure. An analytically pure sample was obtained by recrystallization at -35 °C from a concentrated Et₂O solution. The ³¹P{¹H} NMR of the aliquot of the reaction mixture taken after 10 minutes showed the presence of [PC(H)P]Pd(PMe₃)(GeH₂Ph) (15). This intermediate was not observed in the final crude reaction mixture. For 10: ¹H NMR (400 MHz, C_6D_6 , 298 K) δ 8.01 (ddd, J = 7.4, 2.6, 1.4 Hz, 2H, ArH), 7.49 7.45 (m, 2H, ArH), 7.24 (t, J =7.3 Hz, 2H, ArH), 7.16 (dtd, J = 9.0, 3.9, 1.5 Hz, 2H, ArH,), 7.13 – 7.08 (m, 3H, ArH), 6.88 (tdt, J = 7.3, 1.9, 1.1 Hz, 2H, ArH), 6.04 (s, 1H, Ar₂CH–Pd), 4.66 (t, J = 5.4 Hz, 2H, Pd–GeH₂Ph), 2.54 2.26 (m, 4H, -CH(CH₃)₂), 1.12 (dq, J = 8.1, 7.2 Hz, 12H, -CH(CH₃)₂), 0.97 (dd, J = 14.0, 7.0 Hz, 6H, $-CH(CH_3)_2$), 0.89 (dd, J = 15.5, 7.1 Hz, 6H, $-CH(CH_3)_2$). ³¹P{¹H} NMR (202 MHz, C_6D_6 , 298 K) δ 57.07 (s). ¹³C{¹H} NMR (101 MHz, C_6D_6 , 298 K) δ 159.13 (t, J = 14.3 Hz, ArC), 147.66 (s, ArC), 137.36 (s, ArC), 137.07 (t, J = 16.9 Hz, ArC), 132.38 (s, ArC), 130.22 (s, ArC), 128.00 - 127.77 (m, ArC), 127.51 (s, ArC), 126.55 (s, ArC), 124.28 (s, ArC), 64.74 (s, Ar₂CH-Pd), 26.74 – 26.44 (m, –CH(CH₃)₂), 26.47 – 26.15 (m, –CH(CH₃)₂), 19.94 (s, –CH(CH₃)₂), 19.06 $(s, -CH(CH_3)_2)$, 18.70 $(s, -CH(CH_3)_2)$, 18.05 $(s, -CH(CH_3)_2)$. Anal. Calcd. for $C_{31}H_{44}GeP_2Pd$: C, 56.61; H, 6.74. Found: C, 56.33; H, 6.52. For 15: ${}^{31}P{}^{1}H$ NMR (202 MHz, C₆D₆, 298 K) δ 32.09 (d, ${}^{2}J_{PP} = 32.0$ Hz, Pd– $P^{i}Pr_{2}$), -21.13 (t, ${}^{2}J_{PP} = 32.0$ Hz, Pd– $P(CH_{3})_{3}$).

1.12 Synthesis of [PC(H)P]Pd(GeHPh₂) (11)

58.1 mg of [PC(sp²)P]Pd(PMe₃) (1, 0.1 mmol) was added to a scintillation vial and dissolved in 5 mL of THF. To this mixture, 1 mL of a 0.1 M solution of Ph₂GeH₂ in THF was added afterwards and the reaction mixture was stirred at room temperature for 2 hours, during which time the color changed to light orange. The volatiles were removed under reduced pressure and the oily residue was triturated three times with *n*-pentane, yielding $[PC(H)P]Pd(GeHPh_2)$ (11) as a waxy solid in 71% yield (53.6 mg). An analytically pure sample was obtained by cooling a concentrated Et₂O solution at -35 °C. The ³¹P{¹H} NMR of an aliquot of the reaction mixture confirmed the presence of the intermediate [PC(H)P]Pd(PMe₃)(GeHPh₂) (13). This intermediate (13) undergoes a rapid conversion to the final product, 11, in solution, but is stable at -35 °C in the solid state. For 11: ¹H NMR (500 MHz, C_6D_6 , 298 K) δ 7.94 (dd, J = 7.9, 1.4 Hz, 4H, ArH), 7.49 (d, J = 7.8 Hz, 2H, ArH), 7.25 – 7.21 (m, 4H, ArH), 7.19 – 7.16 (m, 1H, ArH), 7.15 – 7.09 (m, 5H, ArH), 6.88 (t, J = 7.4 Hz, 2H, ArH), 6.03 (s, 1H, Ar₂CH–Pd), 5.59 (t, J = 7.2 Hz, 1H, Pd–GeHPh₂), 2.27 (dqd, J = 11.6, 4.6, 2.5 Hz, 2H, $-CH(CH_3)_2$, 2.18 (dddd, J = 14.0, 9.2, 4.7, 2.2 Hz, 2H, $-CH(CH_3)_2$), 1.03 (dtd, J = 13.0, 8.3, 7.3 Hz, 12H, $-CH(CH_3)_2$), 0.96 (dd, J = 14.2, 7.1 Hz, 6H, $-CH(CH_3)_2$), 0.87 (dd, J = 14.5, 7.1 Hz, 6H, -CH(CH₃)₂). ³¹P{¹H} NMR (202 MHz, C₆D₆, 298 K) δ 55.93 (s). ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K) δ 158.91 (t, J = 14.1 Hz, ArC), 149.90 (s, ArC), 137.18 (s, ArC), 137.00 (t, J = 17.2 Hz, ArC), 132.36 (s, ArC), 130.18 (s, ArC), 127.84 127.67 (m, ArC), 127.50 (s, ArC), 126.78 (s, ArC), 124.29 (t, J = 3.2 Hz, ArC), 65.64 (t, ${}^{2}J_{CP} = 1.7$ Hz, Ar₂CH–Pd), 26.33 (t, ${}^{1}J_{CP} = 11.1$ Hz, $-CH(CH_{3})_{2}$), 26.08 (t, ${}^{1}J_{CP} = 13.2$ Hz, $-CH(CH_{3})_{2}$), 19.87 $(t, {}^{2}J_{CP} = 3.0 \text{ Hz}, -CH(CH_{3})_{2}), 19.55 (t, {}^{2}J_{CP} = 2.4 \text{ Hz}, -CH(CH_{3})_{2}), 18.39 (s, -CH(CH_{3})_{2}), 18.14$ (s, -CH(CH₃)₂). Anal. Calcd. for C₃₇H₄₈GeP₂Pd: C, 60.56; H, 6.59. Found: C, 60.44; H, 6.21. **For 13**: ¹H NMR (400 MHz, C₆D₆) 7.77 – 7.70 (m, 4H, ArH), 7.17 – 7.14 (m, 7H, ArH), 7.12 – 7.08 (m, 2H, ArH), 6.95-6.88 (m, 1H, ArH), 6.88-6.84 (m, 2H, ArH), 6.80 – 6.75 (m, 2H, ArH), 5.33 (dt, J = 18.9, 14.8 Hz, 1H, Ar₂CH–Pd), 4.92 (dt, J = 10.2, 4.2 Hz, 1H, Pd–GeHPh₂), 2.11 – 2.01 (m, 2H, $-CH(CH_3)_2$), 1.96 (m, 2H, $-CH(CH_3)_2$), 1.29 (d, J = 7.9 Hz, 9H, Pd $-P(CH_3)_3$), 1.27 -1.19 (m, 3H, $-CH(CH_3)_2$), 1.15 1.09 (m, 6H, $-CH(CH_3)_2$), 1.09 -1.01 (m, 3H, $-CH(CH_3)_2$), 0.93 - 0.86 (m, 6H, $-CH(CH_3)_2$), 0.82 - 0.77 (m, 6H, $-CH(CH_3)_2$). ³¹P{¹H} NMR (162 MHz, C_6D_6 , 298 K) δ 30.50 (d, J = 31.2 Hz, Pd– $P(^iPr_2)$), -21.73 (t, J = 31.1 Hz, Pd– $P(CH_3)_3$).

1.13 Synthesis of [PC(H)P]Pd(GePh₃) (12)

In a 20 mL scintillation vial, 58.1 mg of [PC(sp²)P]Pd(PMe₃) (1, 0.1 mmol) and 30.5 mg of Ph₃GeH (0.1 mmol) were stirred in 5 mL of THF for 3 days at room temperature. The color became lighter brown and finally light yellow. The ¹H and ³¹P{¹H} NMR spectra of an aliquot taken after 1 and 2 days showed the reaction to be incomplete. After three days, the volatiles were removed under reduced pressure and the residue was triturated 3 times with 5 mL of npentane. The solid product $[PC(H)P]Pd(GePh_3)$ (12) was obtained in high yield (87%, 70.4 mg) as an off-white powder. An analytically pure sample was obtained by crystallization at -35 °C from a concentrated Et_2O solution. The [PC(H)P]Pd(PMe_3)(GePh_3) (16) intermediate was not observed in aliquots of the reaction mixture. For 12: ¹H NMR (500 MHz, C_6D_6 , 298 K) δ 7.97 (dd, J = 8.0, 1.4 Hz, 6H, ArH), 7.41 (d, J = 7.9 Hz, 2H, ArH), 7.24 – 7.17 (m, 6H, ArH), 7.16 – 7.08 (m, 7H, ArH), 6.86 (t, J = 7.4 Hz, 2H, ArH), 6.16 (s, 1H, Ar₂CH–Pd), 2.03 (m, 2H, $-CH(CH_3)_2$), 1.72 $(m, 2H, -CH(CH_3)_2), 0.96 (dd, J = 15.8, 8.6 Hz, 12H, -CH(CH_3)_2), 0.88 (dd, J = 13.5, 6.7 Hz, -CH(CH_3)_2)$ 6H, -CH(CH₃)₂), 0.84 (m, 6H, -CH(CH₃)₂). ³¹P{¹H} NMR (202 MHz, C₆D₆, 298 K) δ 55.00 (s). ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K) δ 158.62 (t, J = 13.9 Hz, ArC), 152.15 (s, ArC), 137.21 (s, ArC), 136.68 (t, J = 17.3 Hz, ArC), 132.67 (s, ArC), 130.12 (s, ArC), 127.66 (t, J = 8.5 Hz, ArC), 127.33 (s, ArC), 126.85 (s, ArC), 124.16 (t, J = 3.1 Hz, ArC), 65.95 (s, Ar₂CH–Pd), 26.22 (t, J = 12.7 Hz, $-CH(CH_3)_2$), 25.94 (t, J = 10.5 Hz, $-CH(CH_3)_2$), 20.96 (t, J = 3.5 Hz, $-CH(CH_3)_2$, 20.01 (t, J = 2.5 Hz, $-CH(CH_3)_2$), 18.52 (s, $-CH(CH_3)_2$), 17.94 (s, $-CH(CH_3)_2$). Anal. Calcd. for C₄₃H₅₂GeP₂Pd: C, 63.77; H, 6.47. Found: C, 64.18; H, 6.51.

1.14 Reaction of [PC(sp²)P]Pd(PPh₃) (2) with PhGeH₃

Starting from 76.7 mg of $[PC(sp^2)P]Pd(PPh_3)$ (2, 0.1 mmol) and following the same procedure as that described above for the reaction of $[PC(sp^2)P]Pd(PMe_3)$ (1) with PhGeH₃ above, the product

 $[PC(H)P]Pd(GeH_2Ph)$ (10) was obtained after 1 min. It was isolated in moderate yield (53%, 34.8 mg) due to multiple recrystallizations needed to remove the byproduct (PPh₃).

1.15 Reaction of [PC(sp²)P]Pd(PPh₃) (2) with Ph₂GeH₂

Starting from 76.7 mg of $[PC(sp^2)P]Pd(PPh_3)$ (2, 0.1 mmol) and following the same procedure as that described above for the reaction of $[PC(sp^2)P]Pd(PMe_3)$ (1) with Ph_2GeH_2 , the product $[PC(H)P]Pd(GeHPh_2)$ (11) was obtained after 30 min. It was isolated in moderate yield (57%, 41.8 mg) due to multiple recrystallizations needed to remove the byproduct (PPh_3).

1.16 Reaction of [PC(sp²)P]Pd(PPh₃) (2) with Ph₃GeH

Starting from 76.7 mg of $[PC(sp^2)P]Pd(PPh_3)$ (2, 0.1 mmol) and following the same procedure as that described above for the reaction of $[PC(sp^2)P]Pd(PMe_3)$ (1) with Ph₃GeH, the product $[PC(H)P]Pd(GePh_3)$ (12) was obtained after 1 day. It was isolated in moderate yield (48%, 38.9 mg) due to multiple recrystallizations needed to remove the byproduct (PPh₃).

1.17 X-ray data for compounds 3-5, 8-13

X–**Ray crystal structure of [PC(SiH₂Ph)P]PdH (3).** Single crystals were obtained from a concentrated solution of diethyl ether at -35 °C in the glovebox. Crystal and refinement data for **3**: C₃₁H₄₄P₂PdSi; M_r =613.09; Orthorhombic; space group *Pbca*; *a* = 17.0258(7) Å; *b* = 18.6108(8) Å; *c* = 19.0877(8) Å; $\alpha = 90^{\circ}$; $\beta = 90^{\circ}$; $\gamma = 90^{\circ}$; V = 6048.2(4) Å³; Z = 8; T = 120(2) K; $\lambda = 0.71073$ Å; $\mu = 0.777$ mm⁻¹; d_{calc} = 1.347 g·cm⁻³; 135804 reflections collected; 5331 unique (R_{int} = 0.0258); giving R₁ = 0.0235, wR₂ = 0.0574 for 5118 data with [I>2 σ (I)] and R₁ = 0.0249, wR₂ = 0.0580 for all 5331 data. Residual electron density (e⁻·Å⁻³) max/min: 0.449/-0.442.

X–Ray crystal structure of [PC(SiHPh₂)P]PdH (4). Single crystals were obtained from a concentrated solution of diethyl ether layered with *n*-pentane at -35 °C in the glovebox. Crystal and refinement data for **4**: C₃₇H₄₈P₂PdSi; M_r =689.18; Monoclinic; space group *P*2₁/*n*; *a* = 9.402(3) Å; *b* = 19.186(5) Å; *c* = 19.053(5) Å; α = 90°; β = 93.284(5)°; γ = 90°; V = 3431.3(16) Å³; Z = 4; T = 120(2) K; λ = 0.71073 Å; μ = 0.693 mm⁻¹; d_{calc} = 1.334 g·cm⁻³; 37894 reflections collected; 6047 unique (R_{int} = 0.0665); giving R₁ = 0.0316, wR₂ = 0.0656 for 4806 data with [I>2 σ (I)] and R₁ = 0.0495, wR₂ = 0.0694 for all 6047 data. Residual electron density (e⁻·Å⁻³) max/min: 0.411/-0.400.

X-Ray crystal structure of [**PC**(**SiPh**₃)**P**]**PdH** (5). Single crystals were obtained from a concentrated solution of diethyl ether at -35 °C in the glovebox. Crystal and refinement data for **5**: $C_{43}H_{52}P_2PdSi$; $M_r = 765.28$; Triclinic; space group $P\bar{1}$; a = 9.5894(6) Å; b = 10.6642(7) Å; c = 19.5486(13) Å; $\alpha = 78.851(3)^{\circ}$; $\beta = 76.192(3)^{\circ}$; $\gamma = 76.697(2)^{\circ}$; V = 1868.9(2) Å³; Z = 2; T = 120(2) K; $\lambda = 0.71073$ Å; $\mu = 0.644$ mm⁻¹; $d_{calc} = 1.360$ g·cm⁻³; 56344 reflections collected; 9370 unique ($R_{int} = 0.0469$); giving $R_1 = 0.0333$, w $R_2 = 0.0732$ for 7945 data with [I>2 σ (I)] and $R_1 = 0.0443$, w $R_2 = 0.0772$ for all 9370 data. Residual electron density (e^- ·Å⁻³) max/min: 1.946/-1.739.

X–**Ray crystal structure of [PC(H)P]Pd(SiPh₃)·C₅H₁₂ (8·C₅H₁₂).** Single crystals were obtained from a concentrated solution of diethyl ether layered with *n*-pentane at -35 °C in the glovebox. Crystal and refinement data for 8·C₅H₁₂: C₄₈H₆₄P₂PdSi; M_r =837.42; Monoclinic; space group *P*2₁/*c*; *a* = 11.401(2) Å; *b* = 12.592(2) Å; *c* = 30.423(5) Å; *a* = 90°; β = 97.666(3)°; γ = 90°; V = 4328.5(13) Å³; Z = 4; T = 120(2) K; λ = 0.71073 Å; μ = 0.562 mm⁻¹; d_{calc} = 1.285 g·cm⁻³; 126183 reflections collected; 10820 unique (R_{int} = 0.0937); giving R₁ = 0.0412, wR₂ = 0.0852 for 8147 data with [I>2\sigma(I)] and R₁ = 0.0684, wR₂ = 0.0983 for all 10820 data. Residual electron density (e⁻·Å⁻³) max/min: 1.455/–0.960.

X–**Ray crystal structure of [PC(Bpin)P]PdH (9).** Single crystals were obtained from a concentrated solution of diethyl ether at -35 °C in the glovebox. Crystal and refinement data for **9**: C₃₁H₄₉BO₂P₂Pd; M_r =632.85; Monoclinic; space group *P*2₁/*c*; *a* = 17.3966(10) Å; *b* = 10.0819(6) Å; *c* = 19.8141(11) Å; $\alpha = 90^{\circ}$; $\beta = 115.8960(18)^{\circ}$; $\gamma = 90^{\circ}$; V = 3126.3(3) Å³; Z = 4; T = 120(2) K; $\lambda = 0.71073$ Å; $\mu = 0.721$ mm⁻¹; d_{calc} = 1.345 g·cm⁻³; 71734 reflections collected; 5509 unique (R_{int} = 0.0279); giving R₁ = 0.0203, wR₂ = 0.0513 for 4985 data with [I>2\sigma(I)] and R₁ = 0.0237, wR₂ = 0.0528 for all 5509 data. Residual electron density (e⁻·Å⁻³) max/min: 0.781/-0.667.

X–Ray crystal structure of [PC(H)P]Pd(GeH₂Ph) (10). Single crystals were obtained from a concentrated solution of diethyl ether at -35 °C in the glovebox. Crystal and refinement data for **10**: C₃₁H₄₄GeP₂Pd; M_r =657.59; Triclinic; space group *P* $\overline{1}$; *a* = 8.3636(3) Å; *b* = 10.0092(4) Å;

c = 18.4078(7) Å; $\alpha = 94.2185(11)^{\circ}$; $\beta = 93.3363(11)^{\circ}$; $\gamma = 100.7761(11)^{\circ}$; V = 1505.62(10) Å³; Z = 2; T = 120(2) K; $\lambda = 0.71073$ Å; $\mu = 1.719$ mm⁻¹; $d_{calc} = 1.451$ g·cm⁻³; 32263 reflections collected; 5270 unique (R_{int} = 0.0429); giving R₁ = 0.0340, wR₂ = 0.0693 for 4607 data with [I>2\sigma(I)] and R₁ = 0.0412, wR₂ = 0.0725 for all 5270 data. Residual electron density (e⁻·Å⁻³) max/min: 1.013/-1.472.

X–**Ray crystal structure of [PC(H)P]Pd(GeHPh₂) (11).** Single crystals were obtained from a concentrated solution of diethyl ether at -35 °C in the glovebox. Crystal and refinement data for **11**: C₃₇H₄₈GeP₂Pd; M_r =733.68; Monoclinic; space group *I2/a*; *a* = 22.9918(15) Å; *b* = 12.0605(7) Å; *c* = 25.6249(17) Å; $\alpha = 90^{\circ}$; $\beta = 105.728(4)^{\circ}$; $\gamma = 90^{\circ}$; V = 6839.6(7) Å³; Z = 8; T = 120(2) K; $\lambda = 0.71073$ Å; $\mu = 1.522$ mm⁻¹; d_{calc} = 1.425 g·cm⁻³; 48072 reflections collected; 6020 unique (R_{int} = 0.0538); giving R₁ = 0.0337, wR₂ = 0.0735 for 4867 data with [I>2 σ (I)] and R₁ = 0.0495, wR₂ = 0.0776 for all 6020 data. Residual electron density (e⁻·Å⁻³) max/min: 0.744/-0.722.

X–**Ray crystal structure of [PC(H)P]Pd(GePh₃) (12).** Single crystals were obtained from a concentrated solution of diethyl ether layered at -35 °C in the glovebox. Crystal and refinement data for **12**: C₄₃H₅₂GeP₂Pd; M_r =809.78; Monoclinic; space group $P2_1/c$; a = 11.6399(15) Å; b = 19.396(3) Å; c = 17.6306(18) Å; $\alpha = 90^{\circ}$; $\beta = 105.713(2)^{\circ}$; $\gamma = 90^{\circ}$; V = 3831.6(8) Å³; Z = 4; T = 120(2) K; $\lambda = 0.71073$ Å; $\mu = 1.366$ mm⁻¹; d_{calc} = 1.404 g·cm⁻³; 28856 reflections collected; 6706 unique (R_{int} = 0.1035); giving R₁ = 0.0499, wR₂ = 0.0946 for 4441 data with [I>2 σ (I)] and R₁ = 0.0976, wR₂ = 0.1041 for all 6706 data. Residual electron density (e⁻·Å⁻³) max/min: 1.045/-1.175.

X-Ray crystal structure of [PC(H)P]Pd(PMe₃)(GeHPh₂)·0.5C₅H₁₂ (13·0.5C₅H₁₂). Single crystals were obtained from a concentrated solution of diethyl ether of the crude reaction mixture layered with *n*-pentane at -35 °C in the glovebox. Crystal and refinement data for 13·C₅H₁₂: C₈₅H₁₁₄Ge₂P₆Pd₂; M_r =1679.56; Monoclinic; space group $P2_1/c$; a = 9.5430(4) Å; b = 20.3870(10) Å; c = 21.3674(11) Å; $\alpha = 90^{\circ}$; $\beta = 99.3602(14)^{\circ}$; $\gamma = 90^{\circ}$; V = 4101.7(3) Å³; Z = 2; T = 120(2) K; $\lambda = 0.71073$ Å; $\mu = 1.316$ mm⁻¹; d_{calc} = 1.360 g·cm⁻³; 98578 reflections collected; 7227 unique (R_{int} = 0.0462); giving R₁ = 0.0296, wR₂ = 0.0661 for 6323 data with [I>2\sigma(I)] and R₁ = 0.0369, wR₂ = 0.0681 for all 7227 data. Residual electron density (e⁻·Å⁻³) max/min: 0.761/-0.551.

2 DFT results

Figure S1. Calculated mechanism and reaction profile for the formation of the hydride products from [PC(sp²)P]Pd(PMe₃) (1).

Figure S3. Calculated mechanism and reaction profile for the formation of the silvl products from $[PC(sp^2)P]Pd(PMe_3)$ (1).

Figure S4. Calculated mechanism and reaction profile for the formation of the silvl products from [PC(sp²)P]Pd(PPh₃) (2).

Figure S5. Calculated mechanism and reaction profile for the formation of the silyls from $[PC(sp^2)P]Pd(PMe_3)$ (1) by a deprotonation mechanism.

Figure S6. Calculated mechanism and reaction profile for the formation of the silyls from $[PC(sp^2)P]Pd(PPh_3)$ (2) by a deprotonation mechanism.

3 NMR Spectra

3.1 NMR Spectra for [PC(SiH₂Ph)P]PdH (3)

72	.20 92		45 44 43 41 41	06 13 13	.70 .68 .67	5.30
	N N 9	ບບບບບບບ	0 0 0 0 0 0		0000	
\triangleleft						

- - - -

Figure S7. ¹H NMR spectrum for [PC(SiH₂Ph)P]PdH (**3**).

Figure S8. ${}^{31}P{}^{1}H$ NMR spectrum for [PC(SiH₂Ph)P]PdH (3).

Figure S9. ${}^{13}C{}^{1}H$ NMR spectrum for [PC(SiH₂Ph)P]PdH (3).

Figure S10. 29 Si{ 1 H} NMR spectrum for [PC(SiH₂Ph)P]PdH (3).

Figure S11. ¹H-¹³C HSQC NMR spectrum for [PC(SiH₂Ph)P]PdH (**3**).

3.2 NMR Spectra for [PC(SiHPh₂)P]PdH (4)

Figure S12. ¹H NMR spectrum for [PC(SiHPh₂)P]PdH (4).

Figure S13. ³¹P{¹H} NMR spectrum for [PC(SiHPh₂)P]PdH (4).

Figure S14. ¹³C{¹H} NMR spectrum for [PC(SiHPh₂)P]PdH (4).

Figure S15. 29 Si{ 1 H} NMR spectrum for [PC(SiHPh₂)P]PdH (4).

3.3 NMR Spectra for [PC(SiPh₃)P]PdH (5)

Figure S16. ¹H NMR spectrum for [PC(SiPh₃)P]PdH (5).

Figure S17. ${}^{31}P{}^{1}H$ NMR spectrum for [PC(SiPh₃)P]PdH (5).

Figure S18. ¹³C{¹H} NMR spectrum for [PC(SiPh₃)P]PdH (**5**).

Figure S19. ²⁹Si{¹H} NMR spectrum for [PC(SiPh₃)P]PdH (5).

Figure S20. ¹H-¹³C HSQC NMR spectrum for [PC(SiPh₃)P]PdH (**5**).

Figure S21. ¹H-¹H COSY NMR spectrum for [PC(SiPh₃)P]PdH (5).

3.4 NMR Spectra for [PC(H)P]Pd(SiHPh₂) (7)

Figure S22. ¹H NMR spectrum for the mixture of [PC(H)P]Pd(SiHPh₂) (7) and [PC(SiHPh₂)P]PdH (4).

Figure S23. ³¹P{¹H} NMR spectrum for the mixture of [PC(H)P]Pd(SiHPh₂) (7) and [PC(SiHPh₂)P]PdH (4)

Figure S24. ${}^{13}C{}^{1}H$ NMR spectrum for the mixture of $[PC(H)P]Pd(SiHPh_2)$ (7) and $[PC(SiHPh_2)P]PdH$ (4).

Figure S25. ²⁹Si{¹H} NMR spectrum for the mixture of [PC(H)P]Pd(SiHPh₂) (7) and [PC(SiHPh₂)P]PdH (4).

3.5 NMR Spectra for [PC(H)P]Pd(SiPh₃) (8)

Figure S26. ¹H NMR spectrum for [PC(H)P]Pd(SiPh₃) (8).

Figure S27. ${}^{31}P{}^{1}H$ NMR spectrum for [PC(H)P]Pd(SiPh₃) (8).

Figure S28. ${}^{13}C{}^{1}H$ NMR spectrum for [PC(H)P]Pd(SiPh₃) (8).

-2.46 -2.20 -1.94

Figure S29. 29 Si{ 1 H} NMR spectrum for [PC(H)P]Pd(SiPh₃) (8).

Figure S30. ¹H-¹³C HSQC NMR spectrum for [PC(H)P]Pd(SiPh₃) (8).

Figure S31. ³¹P{¹H} NMR spectrum for [PC(H)P]Pd(PMe₃)(SiPh₃) (14).

3.6 NMR Spectra for [PC(Bpin)P]PdH (9)

Figure S32. ¹H NMR spectrum for [PC(Bpin)P]PdH (9).

Figure S33. ³¹P{¹H} NMR spectrum for [PC(Bpin)P]PdH (9).

Figure S34. ¹³C{¹H} NMR spectrum for [PC(Bpin)P]PdH (9).

Figure S35. ¹¹B NMR spectrum for [PC(Bpin)P]PdH (9).

Figure S36. ¹H-¹³C HSQC NMR spectrum for [PC(Bpin)P]PdH (9).

Figure S37. ¹H-¹H COSY NMR spectrum for [PC(Bpin)P]PdH (9).

3.7 NMR Spectra for [PC(H)P]Pd(GeH₂Ph) (10)

Figure S38. ¹H NMR spectrum for [PC(H)P]Pd(GeH₂Ph) (10).

Figure S39. ${}^{31}P{}^{1}H$ NMR spectrum for [PC(H)P]Pd(GeH₂Ph) (10).

Figure S40. ${}^{13}C{}^{1}H$ NMR spectrum for [PC(H)P]Pd(GeH₂Ph) (10).

Figure S41. ¹H-¹³C HSQC NMR spectrum for [PC(H)P]Pd(GeH₂Ph) (10).

Figure S42. ¹H-¹H COSY NMR spectrum for [PC(H)P]Pd(GeH₂Ph) (10).

3.8 NMR Spectra for [PC(H)P]Pd(GeHPh₂) (11)

Figure S43. ¹H NMR spectrum for [PC(H)P]Pd(GeHPh₂) (11).

Figure S44. ³¹P{¹H} NMR spectrum for [PC(H)P]Pd(GeHPh₂) (11).

Figure S45. ${}^{13}C{}^{1}H$ NMR spectrum for [PC(H)P]Pd(GeHPh₂) (11).

Figure S46. ¹H-¹³C HSQC NMR spectrum for [PC(H)P]Pd(GeHPh₂) (11).

3.9 NMR Spectra for [PC(H)P]Pd(GePh₃) (12)

Figure S47. ¹H NMR spectrum for [PC(H)P]Pd(GePh₃) (**12**).

Figure S48. ${}^{31}P{}^{1}H$ NMR spectrum for [PC(H)P]Pd(GePh₃) (12).

Figure S49. ${}^{13}C{}^{1}H$ NMR spectrum for [PC(H)P]Pd(GePh₃) (12).

Figure S50. ¹H-¹³C HSQC NMR spectrum for [PC(H)P]Pd(GePh₃) (12).

Figure S51. ¹H-¹H COSY NMR spectrum for [PC(H)P]Pd(GePh₃) (12).

3.10 NMR Spectra for [PC(H)P]Pd(PMe₃)(GeH₂Ph) (15)

Figure S52. ${}^{31}P{}^{1}H$ NMR spectrum for the mixture of [PC(H)P]Pd(GeH₂Ph) (10) and [PC(H)P]Pd(PMe₃)(GeH₂Ph) (15).

3.11 NMR Spectra for [PC(H)P]Pd(PMe₃)(GeHPh₂) (13)

Figure S53. ¹H NMR spectrum for the mixture of $[PC(H)P]Pd(PMe_3)(GeHPh_2)$ (13) and $[PC(H)P]Pd(GeHPh_2)$ (11).

Figure S54. ${}^{31}P{}^{1}H$ NMR spectrum for the mixture of $[PC(H)P]Pd(PMe_3)(GeHPh_2)$ (13) and $[PC(H)P]Pd(GeHPh_2)$ (11).
4 Crystallographic Tables

4.1 Crystal data for [PC(SiH₂Ph)P]PdH (3)

Figure S55. Thermal-ellipsoid representation of $[PC(SiH_2Ph)P]PdH$ (3) at 50% probability. Most hydrogen atoms were omitted for clarity.

Identification code:	cc180b	
Empirical formula:	$C_{31}H_{44}P_2PdSi$	
Formula weight:	613.09	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Orthorhombic	
Space group:	Pbca	
Unit cell dimensions:	a = 17.0258(7) Å	$\alpha = 90^{\circ}$
	b = 18.6108(8) Å	$\beta = 90^{\circ}$
	c = 19.0877(8) Å	$\gamma = 90^{\circ}$
Volume:	6048.2(4) Å ³	
Z:	8	
Density (calculated):	$1.347 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (μ):	0.777 mm^{-1}	
F(000):	2560	
Crystal size:	$0.03 \times 0.02 \times 0.02 \text{ mm}^3$	
θ range for data collection:	1.94 to 25.00°	
Index ranges:	$-20 \le h \le 20, -22 \le k \le 22, -22 \le l \le 22$	
Reflections collected:	135804	
Independent reflections:	5331 [$R_{int} = 0.0258$]	
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.7458 and 0.6519	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	5331 / 0 / 336	
Goodness-of-fit on F ² :	1.194	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0235, wR_2 = 0.0574$	
R indices (all data):	$R_1 = 0.0249, wR_2 = 0.0580$	
Largest diff. peak and hole:	0.449 and $-0.442 \text{ e}^{-1} \text{Å}^{-3}$	

Table S1. Crystal data and structure refinement for $[PC(SiH_2Ph)P]PdH$ (3).

-

atom	X	V	Z	U(eq)
Pd	0.76612(1)	0.17341(1)	0.60829(1)	0.016(1)
С	0.66150(12)	0.12101(11)	0.56822(11)	0.015(1)
P(1)	0.69098(3)	0.20226(3)	0.70009(3)	0.017(1)
Si	0.64397(4)	0.18335(3)	0.49250(3)	0.019(1)
P(2)	0.83150(3)	0.10459(3)	0.52793(3)	0.016(1)
C(11)	0.59369(12)	0.16927(11)	0.67716(11)	0.016(1)
C(12)	0.58896(13)	0.13009(11)	0.61458(11)	0.017(1)
C(13)	0.51360(13)	0.10732(12)	0.59337(12)	0.022(1)
C(14)	0.44772(13)	0.12073(13)	0.63390(13)	0.025(1)
C(15)	0.45400(13)	0.15858(13)	0.69620(13)	0.024(1)
C(16)	0.52652(13)	0.18366(12)	0.71722(12)	0.022(1)
C(31)	0.58580(13)	0.14491(12)	0.41717(12)	0.021(1)
C(26)	0.78074(13)	0.03744(12)	0.49826(12)	0.021(1)
C(25)	0.72971(14)	-0.09474(13)	0.50529(12)	0.025(1)
C(24)	0.65711(14)	-0.08276(13)	0.53572(13)	0.025(1)
C(23)	0.63476(13)	-0.01458(12)	0.55647(12)	0.022(1)
C(22)	0.68426(13)	0.04528(11)	0.54831(10)	0.015(1)
C(21)	0.76022(13)	0.03150(11)	0.52073(11)	0.016(1)
C(32)	0.51744(14)	0.17858(14)	0.39327(13)	0.028(1)
C(33)	0.47649(15)	0.15286(16)	0.33562(14)	0.036(1)
C(34)	0.50274(17)	0.09242(16)	0.30113(14)	0.039(1)
C(35)	0.56994(18)	0.05792(14)	0.32339(13)	0.035(1)
C(36)	0.61091(16)	0.08389(13)	0.38100(12)	0.028(1)
C(41)	0.67668(16)	0.29557(13)	0.72833(14)	0.033(1)
C(42)	0.71978(14)	0.15152(15)	0.77919(12)	0.030(1)
C(43)	0.6452(3)	0.33882(15)	0.66632(18)	0.063(1)
C(44)	0.7531(2)	0.3265(2)	0.7575(2)	0.072(1)
C(45)	0.66651(18)	0.16416(19)	0.84214(13)	0.044(1)
C(46)	0.7247(2)	0.07146(16)	0.76240(16)	0.048(1)
C(51)	0.85360(16)	0.13393(13)	0.43714(12)	0.027(1)
C(52)	0.92070(13)	0.05978(12)	0.56145(12)	0.022(1)
C(53)	0.90241(19)	0.08115(16)	0.39383(14)	0.042(1)
C(54)	0.88819(17)	0.20995(14)	0.43551(15)	0.038(1)
C(55)	0.90424(15)	0.03167(14)	0.63509(13)	0.031(1)
C(56)	0.99116(14)	0.11027(15)	0.56324(16)	0.036(1)
H(1)	0.8391(18)	0.2116(17)	0.6388(16)	0.051(9)
H(2)	0.6029(15)	0.2427(14)	0.5170(13)	0.029(7)
H(3)	0.7124(15)	0.2092(14)	0.4637(13)	0.026(7)
H(13)	0.5079	0.0822	0.5503	0.026
H(14)	0.3978	0.1038	0.6189	0.031
			Continue	ed on next nage

Table S2. Atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for [PC(SiH₂Ph)P]PdH (**3**). U(eq) is defined as one third of the trace of the orthogonalized U_{ii} tensor

atom	X	y	X	U(eq)
H(15)	0.4088	0.1672	0.7241	0.029
H(16)	0.5310	0.2109	0.7591	0.026
H(26)	0.8309	-0.0451	0.4777	0.025
H(25)	0.7442	-0.1413	0.4896	0.029
H(24)	0.6221	-0.1219	0.5424	0.030
H(23)	0.5844	-0.0080	0.5769	0.026
H(32)	0.4986	0.2200	0.4170	0.033
H(33)	0.4305	0.1769	0.3200	0.044
H(34)	0.4745	0.0745	0.2619	0.046
H(35)	0.5882	0.0165	0.2993	0.042
H(36)	0.6570	0.0596	0.3961	0.034
H(41)	0.6363	0.2962	0.7664	0.039
H(42)	0.7737	0.1678	0.7926	0.035
H(43A)	0.6844	0.3392	0.6287	0.095
H(43B)	0.6346	0.3882	0.6813	0.095
H(43C)	0.5966	0.3168	0.6492	0.095
H(44A)	0.7937	0.3250	0.7212	0.108
H(44B)	0.7700	0.2979	0.7979	0.108
H(44C)	0.7444	0.3764	0.7721	0.108
H(45A)	0.6651	0.2156	0.8531	0.066
H(45B)	0.6869	0.1376	0.8826	0.066
H(45C)	0.6133	0.1474	0.8312	0.066
H(46A)	0.6720	0.0530	0.7521	0.072
H(46B)	0.7466	0.0457	0.8027	0.072
H(46C)	0.7587	0.0642	0.7216	0.072
H(51)	0.8017	0.1374	0.4129	0.033
H(52)	0.9334	0.0181	0.5303	0.027
H(53A)	0.8769	0.0340	0.3939	0.062
H(53B)	0.9550	0.0769	0.4142	0.062
H(53C)	0.9066	0.0987	0.3456	0.062
H(54A)	0.8896	0.2273	0.3871	0.057
H(54B)	0.9416	0.2090	0.4546	0.057
H(54C)	0.8555	0.2421	0.4638	0.057
H(55A)	0.8576	0.0008	0.6342	0.046
H(55B)	0.8950	0.0722	0.6668	0.046
H(55C)	0.9495	0.0039	0.6516	0.046
H(56A)	1.0040	0.1255	0.5154	0.054
H(56B)	1.0363	0.0852	0.5837	0.054
H(56C)	0.9785	0.1525	0.5917	0.054

Table S2. – continued from previous page

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pd	0.0152(1)	0.0154(1)	0.0159(1)	-0.0025(1)	0.0038(1)	-0.0018(1)
С	0.0144(10)	0.0171(10)	0.0149(10)	-0.0010(8)	0.0002(8)	-0.0005(8)
P(1)	0.0141(3)	0.0203(3)	0.0154(3)	-0.0033(2)	0.0026(2)	-0.0015(2)
Si	0.0205(3)	0.0180(3)	0.0181(3)	0.0015(2)	-0.0005(2)	0.0025(2)
P(2)	0.0160(3)	0.0153(3)	0.0161(3)	-0.0008(2)	0.0042(2)	-0.0004(2)
C(11)	0.0127(10)	0.0178(11)	0.0175(11)	0.0034(8)	-0.0007(8)	0.0023(8)
C(12)	0.0160(10)	0.0158(10)	0.0190(11)	0.0037(8)	0.0016(9)	0.0029(8)
C(13)	0.0173(11)	0.0236(12)	0.0244(12)	-0.0010(9)	-0.0033(9)	0.0000(9)
C(14)	0.0134(11)	0.0291(13)	0.0341(13)	0.0045(11)	-0.0026(10)	0.0000(10)
C(15)	0.0133(11)	0.0332(13)	0.0266(12)	0.0050(10)	0.0025(9)	0.0055(10)
C(16)	0.0201(11)	0.0261(12)	0.0184(11)	0.0016(9)	0.0010(9)	0.0047(9)
C(31)	0.0226(12)	0.0239(12)	0.0169(11)	0.0059(9)	0.0008(9)	-0.0017(10)
C(26)	0.0209(11)	0.0214(12)	0.0204(11)	-0.0046(9)	0.0024(9)	0.0009(9)
C(25)	0.0297(13)	0.0179(11)	0.0262(12)	-0.0060(9)	0.0006(10)	-0.0007(10)
C(24)	0.0268(12)	0.0209(12)	0.0277(13)	-0.0032(10)	-0.0003(10)	-0.0074(10)
C(23)	0.0184(11)	0.0236(12)	0.0226(11)	-0.0028(9)	0.0013(9)	-0.0032(9)
C(22)	0.0194(11)	0.0167(10)	0.0102(9)	0.0003(8)	-0.0024(8)	0.0004(9)
C(21)	0.0185(11)	0.0180(11)	0.0118(10)	0.0004(8)	0.0003(8)	-0.0020(9)
C(32)	0.0223(12)	0.0330(14)	0.0274(13)	0.0082(11)	0.0010(10)	0.0003(10)
C(33)	0.0218(13)	0.0533(17)	0.0345(15)	0.0185(13)	-0.0052(11)	-0.0038(12)
C(34)	0.0449(17)	0.0472(17)	0.0238(13)	0.0078(12)	-0.0117(12)	-0.0179(14)
C(35)	0.0553(18)	0.0291(13)	0.0213(12)	0.0018(11)	-0.0033(12)	-0.0059(13)
C(36)	0.0360(14)	0.0273(13)	0.0210(12)	0.0033(10)	-0.0043(10)	0.0026(11)
C(41)	0.0363(15)	0.0243(12)	0.0374(15)	-0.0132(11)	0.0201(12)	-0.0072(11)
C(42)	0.0174(11)	0.0522(16)	0.0189(12)	0.0051(11)	-0.0022(10)	0.0036(11)
C(43)	0.114(3)	0.0206(14)	0.055(2)	0.0076(14)	0.040(2)	0.0129(17)
C(44)	0.0435(19)	0.067(2)	0.106(3)	-0.065(2)	0.036(2)	-0.0294(17)
C(45)	0.0385(16)	0.076(2)	0.0174(13)	0.0099(13)	0.0014(12)	0.0152(15)
C(46)	0.0549(19)	0.0495(18)	0.0396(17)	0.0228(14)	0.0130(15)	0.0205(15)
C(51)	0.0369(14)	0.0243(12)	0.0210(12)	0.0039(10)	0.0113(11)	0.0030(11)
C(52)	0.0174(11)	0.0201(11)	0.0288(12)	-0.0042(10)	0.0012(10)	0.0019(9)
C(53)	0.0606(19)	0.0382(16)	0.0261(14)	0.0019(12)	0.0230(14)	0.0095(14)
C(54)	0.0437(16)	0.0298(14)	0.0403(15)	0.0109(12)	0.0189(13)	-0.0025(12)
C(55)	0.0307(14)	0.0335(14)	0.0287(13)	0.0012(11)	-0.0049(11)	0.0077(11)
C(56)	0.0170(12)	0.0324(14)	0.0586(18)	-0.0076(13)	0.0009(12)	-0.0031(11)

Table S3. Anisotropic displacement parameters (Å²) for [PC(SiH₂Ph)P]PdH (**3**). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U₁₁ + ... + 2hka^{*}b^{*}U₁₂].

atom – atom	distance	atom – atom	distance
Pd-C	2.170(2)	Pd-P(1)	2.2350(6)
Pd-P(2)	2.2876(6)	Pd-Si	3.0404(6)
Pd-H(1)	1.54(3)	C - C(22)	1.510(3)
C - C(12)	1.529(3)	C–Si	1.877(2)
P(1) - C(11)	1.820(2)	P(1) - C(41)	1.835(2)
P(1) - C(42)	1.847(2)	Si - C(31)	1.887(2)
Si-H(2)	1.39(3)	Si-H(3)	1.37(3)
P(2) - C(21)	1.828(2)	P(2) - C(52)	1.847(2)
P(2) - C(51)	1.855(2)	C(11) - C(16)	1.402(3)
C(11) - C(12)	1.402(3)	C(12) - C(13)	1.411(3)
C(13) - C(14)	1.385(3)	C(13) - H(13)	0.9500
C(14) - C(15)	1.386(4)	C(14) - H(14)	0.9500
C(15) - C(16)	1.380(3)	C(15) - H(15)	0.9500
C(16) - H(16)	0.9500	C(31) - C(36)	1.396(3)
C(31) - C(32)	1.398(3)	C(26) - C(25)	1.382(3)
C(26) - C(21)	1.397(3)	C(26) - H(26)	0.9500
C(25) - C(24)	1.384(3)	C(25) - H(25)	0.9500
C(24) - C(23)	1.383(3)	C(24) - H(24)	0.9500
C(23) - C(22)	1.406(3)	C(23) - H(23)	0.9500
C(22) - C(21)	1.420(3)	C(32) - C(33)	1.388(4)
C(32) - H(32)	0.9500	C(33) - C(34)	1.378(4)
C(33) - H(33)	0.9500	C(34) - C(35)	1.379(4)
C(34) - H(34)	0.9500	C(35) - C(36)	1.389(4)
C(35) - H(35)	0.9500	C(36) - H(36)	0.9500
C(41) - C(44)	1.527(4)	C(41) - C(43)	1.528(4)
C(41) - H(41)	1.0000	C(42) - C(45)	1.524(3)
C(42) - C(46)	1.526(4)	C(42) - H(42)	1.0000
C(43) - H(43A)	0.9800	C(43) - H(43B)	0.9800
C(43) - H(43C)	0.9800	C(44) - H(44A)	0.9800
C(45) - H(45A)	0.9800	C(45) - H(45B)	0.9800
C(45) - H(45C)	0.9800	C(46) - H(46A)	0.9800
C(46) - H(46B)	0.9800	C(46) - H(46C)	0.9800
C(51) - C(53)	1.529(3)	C(51) - C(54)	1.533(4)
C(51) - H(51)	1.0000	C(52) - C(56)	1.524(3)
C(52) - C(55)	1.526(3)	C(52) - H(52)	1.0000
C(53)-H(53A)	0.9800	C(53) - H(53B)	0.9800
C(53)-H(53C)	0.9800	C(54) - H(54A)	0.9800
C(54)-H(54B)	0.9800	C(54) - H(54C)	0.9800
C(55)-H(55A)	0.9800	C(55) - H(55B)	0.9800
C(55)-H(55C)	0.9800	C(56) - H(56A)	0.9800
C(56)-H(56B)	0.9800	C(56) - H(56C)	0.9800

 Table S4. Distances [Å] for [PC(SiH₂Ph)P]PdH (3).

Table S5. Angles [°] for [PC	$C(SiH_2Ph)P PdH(3).$
-------------------------------------	-----------------------

atom – atom – atom	angle	atom – atom – atom	angle
C-Pd-P(1)	85.10(6)	C-Pd-P(2)	84.92(6)
P(1) - Pd - P(2)	159.85(2)	C-Pd-Si	37.78(6)
P(1) - Pd - Si	99.43(2)	P(2) - Pd - Si	83.079(19)
C - Pd - H(1)	178.2(12)	P(1) - Pd - H(1)	93.1(12)
P(2) - Pd - H(1)	96.8(12)	Si - Pd - H(1)	142.8(12)
C(22) - C - C(12)	117.14(18)	C(22)-C-Si	115.08(14)
C(12) - C - Si	104.41(14)	C(22)-C-Pd	107.30(14)
C(12) - C - Pd	114.17(14)	Si-C-Pd	97.13(9)
C(11) - P(1) - C(41)	105.62(11)	C(11) - P(1) - C(42)	105.41(11)
C(41) - P(1) - C(42)	106.20(13)	C(11) - P(1) - Pd	104.55(7)
C(41) - P(1) - Pd	122.25(8)	C(42) - P(1) - Pd	111.48(8)
C - Si - C(31)	115.84(10)	C-Si-Pd	45.09(6)
C(31)-Si-Pd	152.86(8)	C-Si-H(2)	108.2(11)
C(31) - Si - H(2)	107.1(10)	Pd-Si-H(2)	98.5(10)
C-Si-H(3)	112.9(11)	C(31) - Si - H(3)	105.8(10)
Pd-Si-H(3)	74.5(10)	H(2) - Si - H(3)	106.5(15)
C(21) - P(2) - C(52)	103.65(10)	C(21) - P(2) - C(51)	106.46(11)
C(52) - P(2) - C(51)	106.84(11)	C(21) - P(2) - Pd	98.28(7)
C(52) - P(2) - Pd	114.87(8)	C(51) - P(2) - Pd	124.07(8)
C(16) - C(11) - C(12)	121.2(2)	C(16) - C(11) - P(1)	123.15(17)
C(12) - C(11) - P(1)	115.64(16)	C(11) - C(12) - C(13)	116.9(2)
C(11) - C(12) - C	120.29(19)	C(13) - C(12) - C	122.38(19)
C(14) - C(13) - C(12)	121.5(2)	C(14) - C(13) - H(13)	119.3
C(12) - C(13) - H(13)	119.3	C(13) - C(14) - C(15)	120.5(2)
C(13) - C(14) - H(14)	119.7	C(15) - C(14) - H(14)	119.7
C(16) - C(15) - C(14)	119.4(2)	C(16) - C(15) - H(15)	120.3
C(14) - C(15) - H(15)	120.3	C(15) - C(16) - C(11)	120.5(2)
C(15) - C(16) - H(16)	119.8	C(11) - C(16) - H(16)	119.8
C(36) - C(31) - C(32)	117.3(2)	C(36) - C(31) - Si	121.63(18)
C(32) - C(31) - Si	121.04(19)	C(25) - C(26) - C(21)	121.4(2)
C(25) - C(26) - H(26)	119.3	C(21) - C(26) - H(26)	119.3
C(26) - C(25) - C(24)	118.6(2)	C(26) - C(25) - H(25)	120.7
C(24) - C(25) - H(25)	120.7	C(23) - C(24) - C(25)	120.9(2)
C(23) - C(24) - H(24)	119.5	C(25) - C(24) - H(24)	119.5
C(24) - C(23) - C(22)	122.0(2)	C(24) - C(23) - H(23)	119.0
C(22) - C(23) - H(23)	119.0	C(23) - C(22) - C(21)	116.37(19)
C(23) - C(22) - C	123.91(19)	C(21) - C(22) - C	119.71(19)
C(26) - C(21) - C(22)	120.5(2)	C(26) - C(21) - P(2)	122.71(17)
C(22) - C(21) - P(2)	116.26(16)	C(33) - C(32) - C(31)	121.5(3)
C(33) - C(32) - H(32)	119.3	C(31) - C(32) - H(32)	119.3
C(34) - C(33) - C(32)	119.8(2)	C(34) - C(33) - H(33)	120.1
		Continu	ed on next page

atom – atom – atom	angle	atom – atom – atom	angle
C(32) - C(33) - H(33)	120.1	C(33) - C(34) - C(35)	120.1(2)
C(33) - C(34) - H(34)	119.9	C(35) - C(34) - H(34)	119.9
C(34) - C(35) - C(36)	119.9(3)	C(34) - C(35) - H(35)	120.0
C(36) - C(35) - H(35)	120.0	C(35) - C(36) - C(31)	121.4(2)
C(35) - C(36) - H(36)	119.3	C(31) - C(36) - H(36)	119.3
C(44) - C(41) - C(43)	112.5(3)	C(44) - C(41) - P(1)	110.5(2)
C(43) - C(41) - P(1)	108.51(19)	C(44) - C(41) - H(41)	108.4
C(43) - C(41) - H(41)	108.4	P(1) - C(41) - H(41)	108.4
C(45) - C(42) - C(46)	110.4(2)	C(45) - C(42) - P(1)	114.06(18)
C(46) - C(42) - P(1)	109.99(18)	C(45) - C(42) - H(42)	107.4
C(46) - C(42) - H(42)	107.4	P(1) - C(42) - H(42)	107.4
C(41) - C(43) - H(43A)	109.5	C(41) - C(43) - H(43B)	109.5
H(43A) - C(43) - H(43B)	109.5	C(41) - C(43) - H(43C)	109.5
H(43A) - C(43) - H(43C)	109.5	H(43B) - C(43) - H(43C)	109.5
C(41) - C(44) - H(44A)	109.5	C(41) - C(44) - H(44B)	109.5
H(44A) - C(44) - H(44B)	109.5	C(41) - C(44) - H(44C)	109.5
H(44A) - C(44) - H(44C)	109.5	H(44B) - C(44) - H(44C)	109.5
C(42) - C(45) - H(45A)	109.5	C(42) - C(45) - H(45B)	109.5
H(45A) - C(45) - H(45B)	109.5	C(42) - C(45) - H(45C)	109.5
H(45A) - C(45) - H(45C)	109.5	H(45B) - C(45) - H(45C)	109.5
C(42) - C(46) - H(46A)	109.5	C(42) - C(46) - H(46B)	109.5
H(46A) - C(46) - H(46B)	109.5	C(42) - C(46) - H(46C)	109.5
H(46A) - C(46) - H(46C)	109.5	H(46B) - C(46) - H(46C)	109.5
C(53) - C(51) - C(54)	111.9(2)	C(53) - C(51) - P(2)	115.21(17)
C(54) - C(51) - P(2)	111.62(18)	C(53) - C(51) - H(51)	105.8
C(54) - C(51) - H(51)	105.8	P(2) - C(51) - H(51)	105.8
C(56) - C(52) - C(55)	109.6(2)	C(56) - C(52) - P(2)	112.12(17)
C(55) - C(52) - P(2)	108.84(16)	C(56) - C(52) - H(52)	108.7
C(55) - C(52) - H(52)	108.7	P(2) - C(52) - H(52)	108.7
C(51) - C(53) - H(53A)	109.5	C(51) - C(53) - H(53B)	109.5
H(53A) - C(53) - H(53B)	109.5	C(51) - C(53) - H(53C)	109.5
H(53A) - C(53) - H(53C)	109.5	H(53B) - C(53) - H(53C)	109.5
C(51) - C(54) - H(54A)	109.5	C(51) - C(54) - H(54B)	109.5
H(54A) - C(54) - H(54B)	109.5	C(51) - C(54) - H(54C)	109.5
H(54A) - C(54) - H(54C)	109.5	H(54B) - C(54) - H(54C)	109.5
C(52) - C(55) - H(55A)	109.5	C(52) - C(55) - H(55B)	109.5
H(55A) - C(55) - H(55B)	109.5	C(52) - C(55) - H(55C)	109.5
H(55A) - C(55) - H(55C)	109.5	H(55B) - C(55) - H(55C)	109.5
C(52) - C(56) - H(56A)	109.5	C(52) - C(56) - H(56B)	109.5
H(56A) - C(56) - H(56B)	109.5	C(52) - C(56) - H(56C)	109.5
H(56A) - C(56) - H(56C)	109.5	H(56B) - C(56) - H(56C)	109.5

Table S5. – continued from previous page

4.2 Crystal data for [PC(SiHPh₂)P]PdH (4)

Figure S56. Thermal-ellipsoid representation of $[PC(SiHPh_2)P]PdH$ (4) at 50% probability. Most hydrogen atoms were omitted for clarity.

Identification code:	cc170b	
Empirical formula:	$C_{37}H_{48}P_2PdSi$	
Formula weight:	689.18	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Monoclinic	
Space group:	$P2_{1}/n$	
Unit cell dimensions:	a = 9.402(3) Å	$\alpha = 90^{\circ}$
	b = 19.186(5) Å	$\beta = 93.284(5)^{\circ}$
	c = 19.053(5) Å	$\gamma = 90^{\circ}$
Volume:	3431.3(16) Å ³	
Z:	4	
Density (calculated):	$1.334 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (μ):	0.693 mm^{-1}	
F(000):	1440	
Crystal size:	$0.23 \times 0.16 \times 0.10 \text{ mm}^3$	
θ range for data collection:	1.51 to 25.00°	
Index ranges:	$-11 \le h \le 9, -22 \le k \le 22, -22 \le l \le 22$	
Reflections collected:	37894	
Independent reflections:	$6047 [R_{int} = 0.0665]$	
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.7454 and 0.6944	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	6047 / 0 / 386	
Goodness-of-fit on F ² :	1.026	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0316, wR_2 = 0.0656$	
R indices (all data):	$R_1 = 0.0495, wR_2 = 0.0694$	
Largest diff. peak and hole:	0.411 and $-0.400 \text{ e}^{-1} \text{Å}^{-3}$	

Table S6. Crystal data and structure refinement for $[PC(SiHPh_2)P]PdH$ (4).

-

atom	X	У	Z	U(eq)
Pd	0.26540(2)	0.84763(1)	0.22427(1)	0.012(1)
P(1)	0.28267(8)	0.80114(4)	0.33229(4)	0.015(1)
P(2)	0.16878(8)	0.86909(4)	0.11370(4)	0.014(1)
С	0.0811(3)	0.90247(14)	0.26035(14)	0.013(1)
C(11)	0.1538(3)	0.85018(15)	0.37998(14)	0.016(1)
C(12)	0.0582(3)	0.89195(14)	0.33844(14)	0.014(1)
C(13)	-0.0467(3)	0.92831(15)	0.37303(15)	0.019(1)
C(14)	-0.0552(3)	0.92503(16)	0.44530(16)	0.025(1)
C(15)	0.0412(4)	0.88512(16)	0.48549(16)	0.027(1)
C(16)	0.1444(3)	0.84799(16)	0.45323(15)	0.024(1)
C(21)	-0.0169(3)	0.87844(14)	0.13588(15)	0.016(1)
C(22)	-0.0419(3)	0.88591(14)	0.20847(14)	0.014(1)
C(23)	-0.1835(3)	0.87702(15)	0.22702(16)	0.021(1)
C(24)	-0.2947(3)	0.86612(16)	0.17730(17)	0.027(1)
C(25)	-0.2693(4)	0.86384(17)	0.10647(18)	0.031(1)
C(26)	-0.1310(3)	0.86945(17)	0.08682(17)	0.027(1)
C(31)	0.4488(3)	0.79580(15)	0.38836(15)	0.020(1)
C(32)	0.2126(3)	0.71068(15)	0.32865(16)	0.022(1)
C(33)	0.5176(3)	0.86714(16)	0.39439(18)	0.028(1)
Si	0.14726(8)	0.99462(4)	0.25230(4)	0.013(1)
C(34)	0.5514(3)	0.74417(16)	0.35678(17)	0.027(1)
C(35)	0.2147(4)	0.67306(17)	0.39917(19)	0.041(1)
C(36)	0.0627(3)	0.71033(16)	0.29339(18)	0.029(1)
C(41)	0.2078(3)	0.94387(15)	0.05609(15)	0.018(1)
C(42)	0.1680(3)	0.79170(15)	0.05613(16)	0.022(1)
C(43)	0.1510(4)	0.93784(17)	-0.02069(15)	0.031(1)
C(44)	0.3671(3)	0.96207(17)	0.06112(17)	0.031(1)
C(45)	0.3166(4)	0.77619(17)	0.03171(17)	0.032(1)
C(46)	0.1101(4)	0.72806(16)	0.09406(18)	0.037(1)
C(51)	0.0044(3)	1.06303(14)	0.26150(15)	0.016(1)
C(52)	0.0134(3)	1.11776(15)	0.31060(15)	0.020(1)
C(53)	-0.0938(3)	1.16647(15)	0.31482(16)	0.022(1)
C(54)	-0.2137(3)	1.16330(15)	0.26908(16)	0.023(1)
C(55)	-0.2246(3)	1.11057(16)	0.21922(16)	0.023(1)
C(56)	-0.1178(3)	1.06115(15)	0.21592(15)	0.020(1)
C(61)	0.3008(3)	1.01432(14)	0.31671(15)	0.015(1)
C(62)	0.4381(3)	1.02243(15)	0.29368(16)	0.023(1)
C(63)	0.5525(3)	1.04038(16)	0.33945(18)	0.030(1)
C(64)	0.5316(4)	1.05087(16)	0.40946(19)	0.031(1)
C(65)	0.3973(4)	1.04246(15)	0.43418(17)	0.025(1)

Table S7. Atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for [PC(SiHPh₂)P]PdH (**4**). U(eq) is defined as one third of the trace of the orthogonalized U_{ii} tensor

atom	X	<u>v</u>	X	U(eq)
C(66)	0.2840(3)	1.02418(14)	0.38859(15)	0.019(1)
H(13)	-0.1137	0.9559	0.3462	0.023
H(14)	-0.1273	0.9502	0.4673	0.030
H(15)	0.0362	0.8834	0.5351	0.032
H(16)	0.2102	0.8205	0.4809	0.029
H(23)	-0.2036	0.8785	0.2753	0.025
H(24)	-0.3889	0.8602	0.1919	0.033
H(25)	-0.3457	0.8585	0.0721	0.037
H(26)	-0.1129	0.8671	0.0383	0.033
H(31)	0.4261	0.7794	0.4363	0.023
H(32)	0.2746	0.6834	0.2977	0.027
H(33A)	0.5386	0.8838	0.3475	0.042
H(33B)	0.6064	0.8640	0.4238	0.042
H(33C)	0.4525	0.8997	0.4158	0.042
H(2)	0.196(3)	1.0058(14)	0.1866(15)	0.020(8)
H(1)	0.390(3)	0.8037(15)	0.2010(15)	0.024(8)
H(34A)	0.5709	0.7590	0.3090	0.041
H(34B)	0.5083	0.6976	0.3552	0.041
H(34C)	0.6407	0.7428	0.3859	0.041
H(35A)	0.1740	0.6263	0.3925	0.062
H(35B)	0.1583	0.6995	0.4317	0.062
H(35C)	0.3132	0.6692	0.4186	0.062
H(36A)	0.0624	0.7365	0.2492	0.043
H(36B)	-0.0035	0.7321	0.3247	0.043
H(36C)	0.0330	0.6622	0.2836	0.043
H(41)	0.1580	0.9849	0.0758	0.022
H(42)	0.1035	0.8014	0.0137	0.027
H(43A)	0.1707	0.9812	-0.0456	0.046
H(43B)	0.0480	0.9296	-0.0224	0.046
H(43C)	0.1981	0.8989	-0.0432	0.046
H(44A)	0.4206	0.9254	0.0385	0.046
H(44B)	0.4003	0.9658	0.1107	0.046
H(44C)	0.3819	1.0066	0.0374	0.046
H(45A)	0.3147	0.7323	0.0053	0.048
H(45B)	0.3840	0.7721	0.0727	0.048
H(45C)	0.3466	0.8141	0.0014	0.048
H(46A)	0.1070	0.6879	0.0623	0.056
H(46B)	0.0138	0.7381	0.1084	0.056
H(46C)	0.1723	0.7175	0.1357	0.056
H(52)	0.0957	1.1213	0.3418	0.024
H(53)	-0.0854	1.2023	0.3492	0.027
H(54)	-0.2875	1.1968	0.2718	0.028
			Con	tinued on next page

Table S7. – continued from previous page

atom	X	y	X	U(eq)
H(55)	-0.3058	1.1083	0.1872	0.028
H(56)	-0.1276	1.0251	0.1819	0.024
H(62)	0.4538	1.0155	0.2454	0.028
H(63)	0.6450	1.0454	0.3224	0.036
H(64)	0.6093	1.0639	0.4408	0.038
H(65)	0.3829	1.0493	0.4826	0.031
H(66)	0.1925	1.0181	0.4064	0.023

Table S7. – continued from previous page

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{ccccc} C(31) & 0.0231(17) & 0.0221(16) & 0.0129(16) & -0.0005(12) & -0.0051(13) & 0.0053(14) \\ C(32) & 0.034(2) & 0.0119(15) & 0.0212(17) & 0.0012(12) & -0.0017(14) & -0.0033(14) \\ \end{array}$
C(32) 0.034(2) 0.0119(15) 0.0212(17) 0.0012(12) -0.0017(14) -0.0033(14)
$C(33) \qquad 0.0219(18) \qquad 0.0274(18) \qquad 0.033(2) \qquad -0.0086(14) -0.0114(15) \qquad 0.0064(14)$
Si 0.0152(4) 0.0136(4) 0.0108(4) -0.0004(3) 0.0014(3) -0.0004(3)
$C(34) \qquad 0.0290(19) \qquad 0.0268(18) \qquad 0.0245(18) -0.0024(14) -0.0061(15) \qquad 0.0118(15)$
$C(35) \qquad 0.063(3) \qquad 0.0251(19) \qquad 0.035(2) \qquad 0.0134(16) -0.0056(19) -0.0125(18)$
$C(36) \qquad 0.032(2) \qquad 0.0217(17) \qquad 0.033(2) \qquad -0.0018(14) \qquad 0.0020(15) -0.0115(15)$
$C(41) \qquad 0.0258(17) \qquad 0.0167(15) \qquad 0.0131(16) \qquad 0.0011(12) \qquad 0.0044(13) \qquad 0.0027(13)$
$C(42) \qquad 0.0318(19) \qquad 0.0176(16) \qquad 0.0165(17) -0.0049(13) -0.0067(14) \qquad 0.0024(14)$
$C(43) \qquad 0.050(2) \qquad 0.0280(18) \qquad 0.0143(17) \qquad 0.0048(14) \qquad 0.0033(15) \qquad 0.0103(17)$
$C(44) \qquad 0.030(2) \qquad 0.0319(19) \qquad 0.031(2) \qquad 0.0048(15) \qquad 0.0126(15) -0.0006(16)$
$C(45) \qquad 0.042(2) \qquad 0.0318(19) \qquad 0.0220(19) -0.0084(15) -0.0034(16) \qquad 0.0185(17)$
$C(46) \qquad 0.063(3) \qquad 0.0163(17) \qquad 0.032(2) \qquad -0.0059(15) -0.0028(19) -0.0016(17)$
$C(51) \qquad 0.0186(16) \qquad 0.0159(15) \qquad 0.0143(15) \qquad 0.0033(12) \qquad 0.0038(12) \qquad 0.0010(13)$
C(52) 0.0243(18) 0.0177(16) 0.0183(17) 0.0013(13) 0.0021(13) -0.0016(14)
C(53) = 0.0284(18) = 0.0159(16) = 0.0227(17) = 0.0009(13) = 0.0065(14) = 0.0014(14)
C(54) 0.0203(16) 0.0191(17) 0.0319(19) 0.0047(14) 0.0083(14) 0.0070(14)
$C(55) \qquad 0.0160(16) \qquad 0.0299(18) \qquad 0.0238(17) \qquad 0.0041(14) \qquad 0.0009(13) \qquad 0.0007(15) \\ C(55) \qquad 0.0240(10) \qquad 0.0122(16) \qquad 0.00238(17) \qquad 0.0041(14) \qquad 0.0009(13) \qquad 0.0007(15) \\ C(55) \qquad 0.0160(16) \qquad 0.0122(16) \qquad 0.0023(17) \qquad 0.0009(13) \qquad 0.0007(15) \\ C(55) \qquad 0.0160(16) \qquad 0.0122(16) \qquad 0.0009(13) \qquad 0.0007(15) \\ C(55) \qquad 0.0160(16) \qquad 0.0122(16) \qquad 0.0009(13) \qquad 0.0007(15) \\ C(55) \qquad 0.0009(13) \qquad 0.0007(15) \qquad 0.0009(13) \qquad 0.0007(15) \\ C(55) \qquad 0.0160(16) \qquad 0.0009(13) \qquad 0.0007(15) \qquad 0.0007(15) \\ C(55) \qquad 0.0009(13) \qquad 0.0007(15) \qquad 0.0009(13) \qquad 0.0007(15) \\ C(55) \qquad 0.0009(13) \qquad 0.0007(15) \qquad 0.0009(13) \qquad 0.0007(15) \qquad 0.0007(1$
C(56) 0.0248(18) 0.0192(16) 0.0162(16) 0.0009(13) 0.0042(13) 0.0028(14)
$C(61) \qquad 0.0165(16) \qquad 0.0107(14) \qquad 0.0186(16) \qquad 0.0028(12) = -0.0013(12) \qquad 0.0006(12) = -0.0013(12) \qquad 0.0006(12) = -0.0013(12) \qquad 0.0006(12) = -0.0013(12) = -0.0006(12) =$
C(62) = 0.0268(19) = 0.0217(17) = 0.0205(17) = 0.0070(13) = 0.0020(14) = -0.0027(14) = 0.00272(15)
$C(63) \qquad 0.0191(18) \qquad 0.0282(18) \qquad 0.042(2) \qquad 0.0138(16) -0.0014(16) -0.0073(15) \\ C(4) \qquad 0.020(2) \qquad 0.0104(17) \qquad 0.042(2) \qquad 0.0201(17) \qquad 0.0201(17) \\ C(5) \qquad 0.020(2) \qquad 0.0104(17) \qquad 0.020(2) \qquad 0.0104(16) -0.0073(15) \\ C(5) \qquad 0.020(2) \qquad 0.0104(17) \qquad 0.0104(17) \qquad 0.020(2) \\ C(5) \qquad 0.0104(17) \qquad 0.0104(17) \qquad 0.0104(17) \qquad 0.0104(17) \qquad 0.000(14)(16) -0.0073(15) \\ C(5) \qquad 0.0104(17) \qquad 0.0104(17) \qquad 0.0104(17) \qquad 0.0104(17) \qquad 0.000(14)(16) -0.0014(16) -0.0073(15) \\ C(5) \qquad 0.0104(17) \qquad 0.0104(17) \qquad 0.0104(17) \qquad 0.0104(17) \qquad 0.000(14)(17) \qquad 0.000(1$
C(64) $U.U3U(2)$ $U.U194(17)$ $U.U42(2)$ $U.U062(15)$ $-0.0201(17)$ $-0.0064(15)$
$\frac{C(05)}{0.038(2)} = \frac{0.0144(16)}{0.0232(18)} = \frac{0.0054(13)}{-0.0100(15)} = \frac{0.0037(15)}{0.0037(15)}$

Table S8. Anisotropic displacement parameters (Å²) for [PC(SiHPh₂)P]PdH (**4**). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U₁₁ + ...+ 2hka^{*}b^{*}U₁₂].

Table S8. – continued from previous page

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(66)	0.0231(17)	0.0139(15)	0.0194(17)	-0.0007(12)	-0.0018(13)	0.0011(13)

atom – atom	distance	atom – atom	distance
Pd-C	2.173(3)	Pd-P(1)	2.2402(9)
Pd-P(2)	2.2834(9)	Pd-H(1)	1.53(3)
P(1) - C(11)	1.818(3)	P(1) - C(31)	1.844(3)
P(1) - C(32)	1.856(3)	P(2) - C(21)	1.828(3)
P(2) - C(42)	1.846(3)	P(2) - C(41)	1.856(3)
C - C(22)	1.511(4)	C - C(12)	1.529(4)
C-Si	1.884(3)	C(11) - C(16)	1.404(4)
C(11) - C(12)	1.412(4)	C(12) - C(13)	1.403(4)
C(13) - C(14)	1.385(4)	C(13) - H(13)	0.9500
C(14) - C(15)	1.384(4)	C(14) - H(14)	0.9500
C(15) - C(16)	1.377(4)	C(15) - H(15)	0.9500
C(16) - H(16)	0.9500	C(21) - C(26)	1.392(4)
C(21) - C(22)	1.423(4)	C(22) - C(23)	1.407(4)
C(23) - C(24)	1.386(4)	C(23) - H(23)	0.9500
C(24) - C(25)	1.385(5)	C(24) - H(24)	0.9500
C(25) - C(26)	1.378(5)	C(25) - H(25)	0.9500
C(26) - H(26)	0.9500	C(31) - C(33)	1.515(4)
C(31) - C(34)	1.530(4)	C(31) - H(31)	1.0000
C(32) - C(35)	1.524(4)	C(32) - C(36)	1.526(4)
C(32) - H(32)	1.0000	C(33)-H(33A)	0.9800
C(33) - H(33B)	0.9800	C(33)-H(33C)	0.9800
Si - C(61)	1.879(3)	Si-C(51)	1.893(3)
Si-H(2)	1.38(3)	C(34) - H(34A)	0.9800
C(34) - H(34B)	0.9800	C(34) - H(34C)	0.9800
C(35) - H(35A)	0.9800	C(35) - H(35B)	0.9800
C(35) - H(35C)	0.9800	C(36) - H(36A)	0.9800
C(36) - H(36B)	0.9800	C(36) - H(36C)	0.9800
C(41) - C(43)	1.533(4)	C(41) - C(44)	1.535(4)
C(41) - H(41)	1.0000	C(42) - C(45)	1.527(5)
C(42) - C(46)	1.535(4)	C(42) - H(42)	1.0000
C(43) - H(43A)	0.9800	C(43) - H(43B)	0.9800
C(43) - H(43C)	0.9800	C(44) - H(44A)	0.9800
C(44) - H(44B)	0.9800	C(44) - H(44C)	0.9800
C(45) - H(45A)	0.9800	C(45) - H(45B)	0.9800
C(45) - H(45C)	0.9800	C(46) - H(46A)	0.9800
C(46) - H(46B)	0.9800	C(46) - H(46C)	0.9800
C(51) - C(56)	1.400(4)	C(51) - C(52)	1.406(4)
C(52) - C(53)	1.380(4)	C(52) - H(52)	0.9500
C(53) - C(54)	1.386(4)	C(53) - H(53)	0.9500
C(54) - C(55)	1.388(4)	C(54) - H(54)	0.9500
C(55) - C(56)	1.386(4)	C(55) - H(55)	0.9500
			Continued on next page

 Table S9. Distances [Å] for [PC(SiHPh₂)P]PdH (4).

atom – atom	distance	atom – atom	distance
C(56)-H(56)	0.9500	C(61)-C(62)	1.396(4)
C(61) - C(66)	1.400(4)	C(62) - C(63)	1.388(4)
C(62) - H(62)	0.9500	C(63) - C(64)	1.374(5)
C(63) - H(63)	0.9500	C(64) - C(65)	1.382(5)
C(64) - H(64)	0.9500	C(65) - C(66)	1.380(4)
C(65) - H(65)	0.9500	C(66) – H(66)	0.9500

Table S9. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C-Pd-P(1)	85.37(7)	C - Pd - P(2)	85.53(7)
P(1) - Pd - P(2)	157.43(3)	C-Pd-H(1)	175.5(11)
P(1) - Pd - H(1)	91.8(10)	P(2) - Pd - H(1)	95.9(10)
C(11) - P(1) - C(31)	107.81(13)	C(11) - P(1) - C(32)	104.91(14)
C(31) - P(1) - C(32)	104.88(13)	C(11) - P(1) - Pd	103.76(9)
C(31) - P(1) - Pd	124.66(11)	C(32) - P(1) - Pd	109.33(10)
C(21) - P(2) - C(42)	104.19(14)	C(21) - P(2) - C(41)	106.54(13)
C(42) - P(2) - C(41)	105.34(14)	C(21) - P(2) - Pd	98.00(9)
C(42) - P(2) - Pd	113.02(10)	C(41) - P(2) - Pd	127.11(10)
C(22) - C - C(12)	117.6(2)	C(22)-C-Si	112.83(18)
C(12) - C - Si	105.58(18)	C(22)-C-Pd	106.61(18)
C(12) - C - Pd	113.77(18)	Si-C-Pd	98.94(12)
C(16) - C(11) - C(12)	120.0(3)	C(16) - C(11) - P(1)	124.3(2)
C(12) - C(11) - P(1)	115.8(2)	C(13) - C(12) - C(11)	117.5(3)
C(13) - C(12) - C	122.2(3)	C(11) - C(12) - C	120.0(2)
C(14) - C(13) - C(12)	121.8(3)	C(14) - C(13) - H(13)	119.1
C(12) - C(13) - H(13)	119.1	C(15) - C(14) - C(13)	120.1(3)
C(15) - C(14) - H(14)	119.9	C(13) - C(14) - H(14)	119.9
C(16) - C(15) - C(14)	119.7(3)	C(16) - C(15) - H(15)	120.2
C(14) - C(15) - H(15)	120.2	C(15) - C(16) - C(11)	121.0(3)
C(15) - C(16) - H(16)	119.5	C(11) - C(16) - H(16)	119.5
C(26) - C(21) - C(22)	120.1(3)	C(26) - C(21) - P(2)	122.8(2)
C(22) - C(21) - P(2)	116.6(2)	C(23) - C(22) - C(21)	116.3(3)
C(23) - C(22) - C	124.1(3)	C(21) - C(22) - C	119.6(2)
C(24) - C(23) - C(22)	122.3(3)	C(24) - C(23) - H(23)	118.9
C(22) - C(23) - H(23)	118.9	C(25) - C(24) - C(23)	120.4(3)
C(25) - C(24) - H(24)	119.8	C(23) - C(24) - H(24)	119.8
C(26) - C(25) - C(24)	118.7(3)	C(26) - C(25) - H(25)	120.6
C(24) - C(25) - H(25)	120.6	C(25) - C(26) - C(21)	122.0(3)
C(25) - C(26) - H(26)	119.0	C(21) - C(26) - H(26)	119.0
C(33) - C(31) - C(34)	109.8(3)	C(33) - C(31) - P(1)	109.7(2)
C(34) - C(31) - P(1)	109.9(2)	C(33) - C(31) - H(31)	109.1
C(34) - C(31) - H(31)	109.1	P(1) - C(31) - H(31)	109.1
C(35) - C(32) - C(36)	110.6(3)	C(35) - C(32) - P(1)	115.0(2)
C(36) - C(32) - P(1)	109.7(2)	C(35) - C(32) - H(32)	107.0
C(36) - C(32) - H(32)	107.0	P(1) - C(32) - H(32)	107.0
C(31) - C(33) - H(33A)	109.5	C(31) - C(33) - H(33B)	109.5
H(33A) - C(33) - H(33B)	109.5	C(31) - C(33) - H(33C)	109.5
H(33A) - C(33) - H(33C)	109.5	H(33B) - C(33) - H(33C)	109.5
C(61)-Si-C	112.39(12)	C(61) - Si - C(51)	108.82(13)
C - Si - C(51)	113.80(13)	C(61) - Si - H(2)	106.1(12)
		Continue	d on next page

Table S10. Angles [°] for [PC(SiHPh₂)P]PdH (4).

atom – atom – atom	angle	atom – atom – atom	angle
C-Si-H(2)	110.5(11)	C(51) - Si - H(2)	104.7(11)
C(31) - C(34) - H(34A)	109.5	C(31) - C(34) - H(34B)	109.5
H(34A) - C(34) - H(34B)	109.5	C(31) - C(34) - H(34C)	109.5
H(34A) - C(34) - H(34C)	109.5	H(34B) - C(34) - H(34C)	109.5
C(32) - C(35) - H(35A)	109.5	C(32) - C(35) - H(35B)	109.5
H(35A) - C(35) - H(35B)	109.5	C(32) - C(35) - H(35C)	109.5
H(35A) - C(35) - H(35C)	109.5	H(35B) - C(35) - H(35C)	109.5
C(32) - C(36) - H(36A)	109.5	C(32) - C(36) - H(36B)	109.5
H(36A) - C(36) - H(36B)	109.5	C(32) - C(36) - H(36C)	109.5
H(36A) - C(36) - H(36C)	109.5	H(36B) - C(36) - H(36C)	109.5
C(43) - C(41) - C(44)	111.2(3)	C(43) - C(41) - P(2)	115.9(2)
C(44) - C(41) - P(2)	111.4(2)	C(43) - C(41) - H(41)	105.9
C(44) - C(41) - H(41)	105.9	P(2) - C(41) - H(41)	105.9
C(45) - C(42) - C(46)	110.1(3)	C(45) - C(42) - P(2)	111.4(2)
C(46) - C(42) - P(2)	110.5(2)	C(45) - C(42) - H(42)	108.2
C(46) - C(42) - H(42)	108.2	P(2) - C(42) - H(42)	108.2
C(41) - C(43) - H(43A)	109.5	C(41) - C(43) - H(43B)	109.5
H(43A) - C(43) - H(43B)	109.5	C(41) - C(43) - H(43C)	109.5
H(43A) - C(43) - H(43C)	109.5	H(43B) - C(43) - H(43C)	109.5
C(41) - C(44) - H(44A)	109.5	C(41) - C(44) - H(44B)	109.5
H(44A) - C(44) - H(44B)	109.5	C(41) - C(44) - H(44C)	109.5
H(44A) - C(44) - H(44C)	109.5	H(44B) - C(44) - H(44C)	109.5
C(42) - C(45) - H(45A)	109.5	C(42) - C(45) - H(45B)	109.5
H(45A) - C(45) - H(45B)	109.5	C(42) - C(45) - H(45C)	109.5
H(45A) - C(45) - H(45C)	109.5	H(45B) - C(45) - H(45C)	109.5
C(42) - C(46) - H(46A)	109.5	C(42) - C(46) - H(46B)	109.5
H(46A) - C(46) - H(46B)	109.5	C(42) - C(46) - H(46C)	109.5
H(46A) - C(46) - H(46C)	109.5	H(46B) - C(46) - H(46C)	109.5
C(56) - C(51) - C(52)	116.6(3)	C(56) - C(51) - Si	119.1(2)
C(52) - C(51) - Si	124.3(2)	C(53) - C(52) - C(51)	121.9(3)
C(53) - C(52) - H(52)	119.1	C(51) - C(52) - H(52)	119.1
C(52) - C(53) - C(54)	120.3(3)	C(52) - C(53) - H(53)	119.9
C(54) - C(53) - H(53)	119.9	C(53) - C(54) - C(55)	119.2(3)
C(53) - C(54) - H(54)	120.4	C(55) - C(54) - H(54)	120.4
C(56) - C(55) - C(54)	120.3(3)	C(56) - C(55) - H(55)	119.9
C(54) - C(55) - H(55)	119.9	C(55) - C(56) - C(51)	121.7(3)
C(55) - C(56) - H(56)	119.1	C(51) - C(56) - H(56)	119.1
C(62) - C(61) - C(66)	116.8(3)	C(62) - C(61) - Si	120.5(2)
C(66) - C(61) - Si	122.7(2)	C(63) - C(62) - C(61)	121.8(3)
C(63) - C(62) - H(62)	119.1	C(61) - C(62) - H(62)	119.1
C(64) - C(63) - C(62)	119.8(3)	C(64) - C(63) - H(63)	120.1
C(62) - C(63) - H(63)	120.1	C(63) - C(64) - C(65)	119.9(3)
		Continue	d on next page

Table S10. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(63) - C(64) - H(64)	120.1	C(65) - C(64) - H(64)	120.1
C(66) - C(65) - C(64)	120.1(3)	C(66) - C(65) - H(65)	119.9
C(64) - C(65) - H(65)	119.9	C(65) - C(66) - C(61)	121.6(3)
C(65) - C(66) - H(66)	119.2	C(61) - C(66) - H(66)	119.2

Table S10. – continued from previous page

Figure S57. Thermal-ellipsoid representation of $[PC(SiPh_3)P]PdH$ (5) at 50% probability. Most hydrogen atoms were omitted for clarity.

Identification code:	cc231	
Empirical formula:	$C_{43}H_{52}P_2PdSi$	
Formula weight:	765.28	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Triclinic	
Space group:	$P\bar{1}$	
Unit cell dimensions:	a = 9.5894(6) Å	$\alpha = 78.851(3)^{\circ}$
	b = 10.6642(7) Å	$\beta = 76.192(3)^{\circ}$
	c = 19.5486(13) Å	$\gamma = 76.697(2)^{\circ}$
Volume:	1868.9(2) Å ³	
Z:	2	
Density (calculated):	$1.360 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (μ):	0.644 mm^{-1}	
F(000):	800	
Crystal size:	$0.12 \times 0.10 \times 0.09 \text{ mm}^3$	
θ range for data collection:	1.98 to 28.45°	
Index ranges:	$-12 \le h \le 12, -14 \le k \le 14, -26 \le l \le 26$	
Reflections collected:	56344	
Independent reflections:	9370 [$R_{int} = 0.0469$]	
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.7457 and 0.6829	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	9370 / 0 / 435	
Goodness-of-fit on F ² :	1.049	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0333, wR_2 = 0.0732$	
R indices (all data):	$R_1 = 0.0443, wR_2 = 0.0772$	
Largest diff. peak and hole:	1.946 and $-1.739 e^{-1} \dot{A}^{-3}$	

Table S11. Crystal data and structure refinement for $[PC(SiPh_3)P]PdH(5)$.

-

Table S12. Atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for [PC(SiPh₃)P]PdH (**5**). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor

atom	X	у	Z	U(eq)
Pd	0.26115(2)	0.07611(2)	0.32212(1)	0.012(1)
P(1)	0.31475(6)	0.27875(5)	0.28653(3)	0.012(1)
C(21)	0.5405(2)	-0.1405(2)	0.30667(11)	0.013(1)
C(22)	0.4397(2)	-0.2145(2)	0.35149(11)	0.014(1)
C(23)	0.4836(3)	-0.3474(2)	0.37531(12)	0.020(1)
C(24)	0.6285(3)	-0.4082(2)	0.35847(13)	0.022(1)
C(25)	0.7295(3)	-0.3374(2)	0.31549(13)	0.021(1)
C(26)	0.6856(2)	-0.2079(2)	0.28869(12)	0.016(1)
C(31)	0.2590(2)	0.3873(2)	0.35633(11)	0.017(1)
C(32)	0.2741(2)	0.3816(2)	0.20287(12)	0.016(1)
C(33)	0.3237(3)	0.3232(3)	0.42174(13)	0.027(1)
C(34)	0.0922(3)	0.4234(3)	0.37895(14)	0.028(1)
C(35)	0.1100(3)	0.4228(3)	0.20342(15)	0.030(1)
C(36)	0.3494(3)	0.4988(2)	0.17817(13)	0.026(1)
C(41)	0.1272(2)	-0.2233(2)	0.37531(12)	0.017(1)
C(42)	0.2432(3)	-0.1316(2)	0.47842(11)	0.017(1)
C(43)	0.1262(3)	-0.2204(2)	0.29691(13)	0.026(1)
C(44)	-0.0266(3)	-0.1733(2)	0.41666(13)	0.024(1)
C(45)	0.2502(3)	-0.2675(2)	0.52236(12)	0.024(1)
C(46)	0.3602(3)	-0.0665(2)	0.49020(13)	0.024(1)
C(51)	0.3137(2)	-0.0127(2)	0.15517(11)	0.016(1)
C(52)	0.1877(2)	0.0811(2)	0.17219(12)	0.018(1)
C(53)	0.0574(2)	0.0812(2)	0.15265(12)	0.020(1)
C(54)	0.0496(3)	-0.0159(3)	0.11656(14)	0.026(1)
C(55)	0.1723(3)	-0.1102(3)	0.09901(15)	0.030(1)
C(56)	0.3026(3)	-0.1073(2)	0.11742(13)	0.023(1)
C(61)	0.5537(2)	0.1468(2)	0.11557(11)	0.014(1)
C(62)	0.6791(2)	0.1878(2)	0.12060(11)	0.015(1)
C(63)	0.7299(3)	0.2908(2)	0.07377(12)	0.019(1)
C(64)	0.6559(3)	0.3564(2)	0.02083(12)	0.023(1)
C(65)	0.5332(3)	0.3167(2)	0.01336(12)	0.022(1)
C(66)	0.4832(2)	0.2124(2)	0.05997(12)	0.018(1)
C(71)	0.6274(2)	-0.1450(2)	0.13600(11)	0.015(1)
C(72)	0.6159(2)	-0.2754(2)	0.16224(12)	0.019(1)
C(73)	0.7111(3)	-0.3782(2)	0.13158(13)	0.023(1)
C(74)	0.8205(3)	-0.3538(2)	0.07291(14)	0.027(1)
C(76)	0.8332(3)	-0.2267(2)	0.04468(14)	0.027(1)
C(77)	0.7376(2)	-0.1239(2)	0.07577(12)	0.019(1)
P(2)	0.25695(6)	-0.12495(5)	0.38185(3)	0.013(1)
			Conti	nued on next page

atom	X	y y	X	U(eq)
Si	0.49393(6)	-0.00202(5)	0.17528(3)	0.012(1)
С	0.4899(2)	0.00090(19)	0.27439(11)	0.012(1)
C(11)	0.5743(2)	0.0987(2)	0.28454(10)	0.011(1)
C(12)	0.5124(2)	0.2344(2)	0.27727(11)	0.012(1)
C(13)	0.5959(2)	0.3270(2)	0.27533(11)	0.016(1)
C(14)	0.7391(2)	0.2901(2)	0.28428(12)	0.017(1)
C(15)	0.7958(2)	0.1584(2)	0.29963(11)	0.018(1)
C(16)	0.7150(2)	0.0658(2)	0.30034(11)	0.015(1)
H(23)	0.4130	-0.3961	0.4033	0.024
H(24)	0.6585	-0.4974	0.3762	0.027
H(25)	0.8296	-0.3780	0.3043	0.025
H(26)	0.7560	-0.1629	0.2570	0.020
H(31)	0.2974	0.4693	0.3363	0.020
H(32)	0.3144	0.3244	0.1650	0.019
H(33A)	0.2816	0.2461	0.4442	0.040
H(33B)	0.3010	0.3851	0.4558	0.040
H(33C)	0.4301	0.2971	0.4072	0.040
Н	0.065(3)	0.132(3)	0.3851(16)	0.040
H(34A)	0.0515	0.4764	0.3388	0.042
H(34B)	0.0669	0.4731	0.4189	0.042
H(34C)	0.0515	0.3437	0.3936	0.042
H(35A)	0.0948	0.4435	0.1543	0.045
H(35B)	0.0699	0.4999	0.2274	0.045
H(35C)	0.0604	0.3515	0.2289	0.045
H(36A)	0.3157	0.5507	0.1359	0.039
H(36B)	0.4556	0.4685	0.1663	0.039
H(36C)	0.3253	0.5525	0.2163	0.039
H(41)	0.1609	-0.3154	0.3964	0.020
H(42)	0.1460	-0.0782	0.4971	0.020
H(43A)	0.0895	-0.1312	0.2760	0.038
H(43B)	0.0626	-0.2777	0.2932	0.038
H(43C)	0.2259	-0.2505	0.2713	0.038
H(44A)	-0.0581	-0.0811	0.3988	0.035
H(44B)	-0.0250	-0.1831	0.4674	0.035
H(44C)	-0.0949	-0.2236	0.4102	0.035
H(45A)	0.1802	-0.3109	0.5114	0.036
H(45B)	0.2255	-0.2598	0.5732	0.036
H(45C)	0.3492	-0.3189	0.5107	0.036
H(46A)	0.4573	-0.1195	0.4756	0.036
H(46B)	0.3438	-0.0585	0.5407	0.036
H(46C)	0.3546	0.0203	0.4618	0.036
H(52)	0.1911	0.1469	0.1979	0.021
			Cont	inued on next page

Table S12. – continued from previous page

	r in the second p	r .8-		
atom	X	У	X	U(eq)
H(53)	-0.0258	0.1475	0.1640	0.024
H(54)	-0.0396	-0.0176	0.1039	0.031
H(55)	0.1675	-0.1770	0.0743	0.036
H(56)	0.3866	-0.1715	0.1039	0.027
H(62)	0.7307	0.1440	0.1570	0.018
H(63)	0.8157	0.3162	0.0782	0.023
H(64)	0.6890	0.4285	-0.0104	0.027
H(65)	0.4832	0.3607	-0.0236	0.026
H(66)	0.3997	0.1853	0.0540	0.021
H(72)	0.5408	-0.2937	0.2021	0.023
H(73)	0.7013	-0.4654	0.1508	0.027
H(74)	0.8865	-0.4241	0.0522	0.032
H(76)	0.9072	-0.2094	0.0040	0.032
H(77)	0.7473	-0.0371	0.0556	0.023
H(13)	0.5534	0.4170	0.2677	0.019
H(14)	0.7973	0.3534	0.2800	0.021
H(15)	0.8912	0.1314	0.3098	0.021
H(16)	0.7563	-0.0236	0.3120	0.018

T 11 014	1	C	•	
Table N12 -	- confinited	trom	previous	nage
Iubic DIZ.	continueu	nom	previous	puse

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pd	0.0116(1)	0.0094(1)	0.0153(1)	-0.0002(1)	-0.0025(1)	-0.0030(1)
P(1)	0.0113(2)	0.0089(2)	0.0144(3)	-0.0011(2)	-0.0020(2)	-0.0019(2)
C(21)	0.0158(10)	0.0116(9)	0.0115(10)	-0.0020(7)	-0.0044(8)	-0.0028(8)
C(22)	0.0171(10)	0.0121(9)	0.0129(10)	-0.0029(8)	-0.0054(8)	-0.0012(8)
C(23)	0.0289(13)	0.0123(10)	0.0182(11)	-0.0005(8)	-0.0061(10)	-0.0046(9)
C(24)	0.0317(13)	0.0110(10)	0.0232(12)	-0.0017(9)	-0.0122(10)	0.0033(9)
C(25)	0.0201(11)	0.0165(11)	0.0261(12)	-0.0069(9)	-0.0107(10)	0.0053(9)
C(26)	0.0165(10)	0.0168(10)	0.0167(11)	-0.0037(8)	-0.0054(9)	-0.0013(8)
C(31)	0.0209(11)	0.0120(10)	0.0154(10)	-0.0023(8)	0.0004(9)	-0.0044(8)
C(32)	0.0179(11)	0.0133(10)	0.0155(10)	-0.0016(8)	-0.0031(8)	-0.0007(8)
C(33)	0.0300(14)	0.0321(14)	0.0169(12)	-0.0064(10)	-0.0032(10)	-0.0035(11)
C(34)	0.0218(12)	0.0259(13)	0.0309(14)	-0.0111(11)	0.0026(10)	0.0020(10)
C(35)	0.0217(13)	0.0329(14)	0.0312(14)	0.0014(11)	-0.0099(11)	0.0031(11)
C(36)	0.0387(15)	0.0200(12)	0.0200(12)	0.0059(9)	-0.0076(11)	-0.0119(11)
C(41)	0.0220(11)	0.0144(10)	0.0168(11)	-0.0002(8)	-0.0055(9)	-0.0091(9)
C(42)	0.0222(11)	0.0175(10)	0.0121(10)	-0.0034(8)	-0.0027(9)	-0.0055(9)
C(43)	0.0324(14)	0.0282(13)	0.0220(12)	-0.0035(10)	-0.0077(10)	-0.0152(11
C(44)	0.0188(11)	0.0275(12)	0.0265(13)	-0.0013(10)	-0.0043(10)	-0.0108(10)
C(45)	0.0351(14)	0.0231(12)	0.0148(11)	0.0012(9)	-0.0056(10)	-0.0104(10)
C(46)	0.0336(14)	0.0240(12)	0.0197(12)	-0.0030(9)	-0.0101(10)	-0.0113(10)
C(51)	0.0152(10)	0.0198(11)	0.0128(10)	-0.0010(8)	-0.0041(8)	-0.0054(8)
C(52)	0.0181(11)	0.0211(11)	0.0154(11)	-0.0049(9)	-0.0048(9)	-0.0045(9)
C(53)	0.0141(11)	0.0263(12)	0.0201(12)	-0.0063(9)	-0.0044(9)	0.0003(9)
C(54)	0.0145(11)	0.0383(14)	0.0304(14)	-0.0106(11)	-0.0091(10)	-0.0054(10)
C(55)	0.0252(13)	0.0356(14)	0.0354(15)	-0.0201(12)	-0.0101(11)	-0.0041(11)
C(56)	0.0174(11)	0.0275(12)	0.0261(13)	-0.0127(10)	-0.0064(10)	-0.0009(9)
C(61)	0.0144(10)	0.0135(10)	0.0123(10)	-0.0024(8)	-0.0005(8)	-0.0003(8)
C(62)	0.0162(10)	0.0153(10)	0.0117(10)	-0.0031(8)	-0.0018(8)	0.0002(8)
C(63)	0.0222(11)	0.0177(11)	0.0176(11)	-0.0049(9)	0.0009(9)	-0.0059(9)
C(64)	0.0325(13)	0.0145(11)	0.0162(11)	0.0008(9)	0.0016(10)	-0.0050(9)
C(65)	0.0268(12)	0.0214(12)	0.0139(11)	-0.0008(9)	-0.0049(9)	0.0017(9)
C(66)	0.0190(11)	0.0183(11)	0.0153(11)	-0.0044(8)	-0.0042(9)	0.0001(9)
C(71)	0.0137(10)	0.0175(10)	0.0153(10)	-0.0049(8)	-0.0054(8)	-0.0019(8)
C(72)	0.0189(11)	0.0192(11)	0.0193(11)	-0.0042(9)	-0.0038(9)	-0.0049(9)
C(73)	0.0274(13)	0.0167(11)	0.0248(12)	-0.0048(9)	-0.0068(10)	-0.0030(9)
C(74)	0.0260(13)	0.0222(12)	0.0308(14)	-0.0124(10)	-0.0023(11)	0.0018(10)
C(76)	0.0232(13)	0.0286(13)	0.0244(13)	-0.0080(10)	0.0039(10)	-0.0035(10)
C(77)	0.0197(11)	0.0191(11)	0.0197(11)	-0.0036(9)	-0.0036(9)	-0.0041(9)
P(2)	0.0155(3)	0.0104(2)	0.0126(3)	-0.0004(2)	-0.0030(2)	-0.0048(2)
Si	0.0111(3)	0.0130(3)	0.0129(3)	-0.0015(2)	-0.0029(2)	-0.0027(2)
					Continue	d on next page

Table S13. Anisotropic displacement parameters (Å²) for [PC(SiPh₃)P]PdH (**5**). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U₁₁ + ... + 2hka^{*}b^{*}U₁₂].

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
С	0.0123(10)	0.0100(9)	0.0133(10)	-0.0008(7)	-0.0025(8)	-0.0021(7)
C(11)	0.0134(10)	0.0138(10)	0.0067(9)	-0.0012(7)	-0.0006(7)	-0.0039(8)
C(12)	0.0116(10)	0.0148(10)	0.0102(9)	-0.0023(8)	-0.0011(8)	-0.0021(8)
C(13)	0.0180(11)	0.0143(10)	0.0150(10)	-0.0029(8)	-0.0009(8)	-0.0051(8)
C(14)	0.0161(11)	0.0216(11)	0.0169(11)	-0.0063(9)	-0.0003(9)	-0.0088(9)
C(15)	0.0132(10)	0.0261(12)	0.0153(11)	-0.0058(9)	-0.0032(8)	-0.0047(9)
C(16)	0.0145(10)	0.0155(10)	0.0132(10)	-0.0018(8)	-0.0034(8)	-0.0013(8)

Table S13. – continued from previous page

atom – atom	distance	atom – atom	distance
Pd-C	2.198(2)	Pd - P(2)	2.2386(5)
Pd-P(1)	2.2753(5)	Pd-H	2.02(3)
P(1) - C(12)	1.819(2)	P(1) - C(32)	1.856(2)
P(1) - C(31)	1.862(2)	C(21) - C(26)	1.407(3)
C(21) - C(22)	1.416(3)	C(21) - C	1.533(3)
C(22) - C(23)	1.402(3)	C(22) - P(2)	1.813(2)
C(23) - C(24)	1.382(3)	C(23) - H(23)	0.9500
C(24) - C(25)	1.384(3)	C(24) - H(24)	0.9500
C(25) - C(26)	1.385(3)	C(25) - H(25)	0.9500
C(26)-H(26)	0.9500	C(31) - C(33)	1.528(3)
C(31) - C(34)	1.532(3)	C(31) - H(31)	1.0000
C(32) - C(36)	1.528(3)	C(32) - C(35)	1.531(3)
C(32)-H(32)	1.0000	C(33) - H(33A)	0.9800
C(33)-H(33B)	0.9800	C(33) - H(33C)	0.9800
C(34)-H(34A)	0.9800	C(34) - H(34B)	0.9800
C(34) - H(34C)	0.9800	C(35) - H(35A)	0.9800
C(35)-H(35B)	0.9800	C(35) - H(35C)	0.9800
C(36)-H(36A)	0.9800	C(36) - H(36B)	0.9800
C(36)-H(36C)	0.9800	C(41) - C(43)	1.529(3)
C(41) - C(44)	1.532(3)	C(41) - P(2)	1.842(2)
C(41) - H(41)	1.0000	C(42) - C(46)	1.529(3)
C(42) - C(45)	1.531(3)	C(42) - P(2)	1.849(2)
C(42) - H(42)	1.0000	C(43) - H(43A)	0.9800
C(43) - H(43B)	0.9800	C(43) - H(43C)	0.9800
C(44) - H(44A)	0.9800	C(44) - H(44B)	0.9800
C(44) - H(44C)	0.9800	C(45) - H(45A)	0.9800
C(45) - H(45B)	0.9800	C(45) - H(45C)	0.9800
C(46) - H(46A)	0.9800	C(46) - H(46B)	0.9800
C(46) - H(46C)	0.9800	C(51) - C(56)	1.395(3)
C(51) - C(52)	1.397(3)	C(51) - Si	1.894(2)
C(52) - C(53)	1.390(3)	C(52) - H(52)	0.9500
C(53) - C(54)	1.385(3)	C(53) - H(53)	0.9500
C(54) - C(55)	1.382(4)	C(54) - H(54)	0.9500
C(55) - C(56)	1.388(3)	C(55) - H(55)	0.9500
C(56)-H(56)	0.9500	C(61) - C(62)	1.401(3)
C(61) - C(66)	1.403(3)	C(61) - Si	1.895(2)
C(62) - C(63)	1.388(3)	C(62) - H(62)	0.9500
C(63) - C(64)	1.380(3)	C(63) - H(63)	0.9500
C(64) - C(65)	1.385(3)	C(64) - H(64)	0.9500
C(65) - C(66)	1.394(3)	C(65) - H(65)	0.9500
C(66) – H(66)	0.9500	C(71) - C(77)	1.402(3)
			Continued on next page

 Table S14. Distances [Å] for [PC(SiPh₃)P]PdH (5).

atom – atom	distance	atom – atom	distance
C(71)-C(72)	1.407(3)	C(71)-Si	1.907(2)
C(72) - C(73)	1.388(3)	C(72) - H(72)	0.9500
C(73) - C(74)	1.385(4)	C(73) - H(73)	0.9500
C(74) - C(76)	1.383(4)	C(74) - H(74)	0.9500
C(76) - C(77)	1.393(3)	C(76) - H(76)	0.9500
C(77) - H(77)	0.9500	Si-C	1.935(2)
C - C(11)	1.526(3)	C(11) - C(16)	1.406(3)
C(11) - C(12)	1.425(3)	C(12) - C(13)	1.397(3)
C(13) - C(14)	1.383(3)	C(13) - H(13)	0.9500
C(14) - C(15)	1.386(3)	C(14) - H(14)	0.9500
C(15) - C(16)	1.385(3)	C(15) - H(15)	0.9500
C(16) – H(16)	0.9500		

Table S14. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C - Pd - P(2)	86.58(5)	C-Pd-P(1)	86.80(5)
P(2) - Pd - P(1)	160.92(2)	C - Pd - H	168.1(8)
P(2) - Pd - H	87.0(8)	P(1)-Pd-H	96.2(8)
C(12) - P(1) - C(32)	108.19(10)	C(12) - P(1) - C(31)	103.15(10)
C(32) - P(1) - C(31)	106.59(10)	C(12) - P(1) - Pd	98.55(7)
C(32) - P(1) - Pd	122.63(7)	C(31) - P(1) - Pd	115.44(7)
C(26) - C(21) - C(22)	116.06(19)	C(26) - C(21) - C	122.45(18)
C(22) - C(21) - C	121.24(18)	C(23) - C(22) - C(21)	121.2(2)
C(23) - C(22) - P(2)	122.42(17)	C(21) - C(22) - P(2)	116.21(15)
C(24) - C(23) - C(22)	120.7(2)	C(24) - C(23) - H(23)	119.7
C(22) - C(23) - H(23)	119.7	C(23) - C(24) - C(25)	119.2(2)
C(23) - C(24) - H(24)	120.4	C(25) - C(24) - H(24)	120.4
C(24) - C(25) - C(26)	120.5(2)	C(24) - C(25) - H(25)	119.7
C(26) - C(25) - H(25)	119.7	C(25) - C(26) - C(21)	122.3(2)
C(25) - C(26) - H(26)	118.8	C(21) - C(26) - H(26)	118.8
C(33) - C(31) - C(34)	109.20(19)	C(33) - C(31) - P(1)	110.90(16)
C(34) - C(31) - P(1)	111.67(16)	C(33) - C(31) - H(31)	108.3
C(34) - C(31) - H(31)	108.3	P(1) - C(31) - H(31)	108.3
C(36) - C(32) - C(35)	110.7(2)	C(36) - C(32) - P(1)	115.37(16)
C(35) - C(32) - P(1)	113.18(16)	C(36) - C(32) - H(32)	105.5
C(35) - C(32) - H(32)	105.5	P(1) - C(32) - H(32)	105.5
C(31) - C(33) - H(33A)	109.5	C(31) - C(33) - H(33B)	109.5
H(33A) - C(33) - H(33B)	109.5	C(31) - C(33) - H(33C)	109.5
H(33A) - C(33) - H(33C)	109.5	H(33B) - C(33) - H(33C)	109.5
C(31) - C(34) - H(34A)	109.5	C(31) - C(34) - H(34B)	109.5
H(34A) - C(34) - H(34B)	109.5	C(31) - C(34) - H(34C)	109.5
H(34A) - C(34) - H(34C)	109.5	H(34B) - C(34) - H(34C)	109.5
C(32) - C(35) - H(35A)	109.5	C(32) - C(35) - H(35B)	109.5
H(35A) - C(35) - H(35B)	109.5	C(32) - C(35) - H(35C)	109.5
H(35A) - C(35) - H(35C)	109.5	H(35B) - C(35) - H(35C)	109.5
C(32) - C(36) - H(36A)	109.5	C(32) - C(36) - H(36B)	109.5
H(36A) - C(36) - H(36B)	109.5	C(32) - C(36) - H(36C)	109.5
H(36A) - C(36) - H(36C)	109.5	H(36B) - C(36) - H(36C)	109.5
C(43) - C(41) - C(44)	110.9(2)	C(43) - C(41) - P(2)	109.36(15)
C(44) - C(41) - P(2)	110.79(15)	C(43) - C(41) - H(41)	108.6
C(44) - C(41) - H(41)	108.6	P(2) - C(41) - H(41)	108.6
C(46) - C(42) - C(45)	110.32(19)	C(46) - C(42) - P(2)	109.55(15)
C(45) - C(42) - P(2)	115.53(15)	C(46) - C(42) - H(42)	107.0
C(45) - C(42) - H(42)	107.0	P(2) - C(42) - H(42)	107.0
C(41) - C(43) - H(43A)	109.5	C(41) - C(43) - H(43B)	109.5
H(43A) - C(43) - H(43B)	109.5	C(41) - C(43) - H(43C)	109.5

Table S15. Angles [°] for $[PC(SiPh_3)P]PdH$ (5).

Continued on next page

atom – atom – atom	angle	atom – atom – atom	angle
H(43A) - C(43) - H(43C)	109.5	H(43B) - C(43) - H(43C)	109.5
C(41) - C(44) - H(44A)	109.5	C(41) - C(44) - H(44B)	109.5
H(44A) - C(44) - H(44B)	109.5	C(41) - C(44) - H(44C)	109.5
H(44A) - C(44) - H(44C)	109.5	H(44B) - C(44) - H(44C)	109.5
C(42) - C(45) - H(45A)	109.5	C(42) - C(45) - H(45B)	109.5
H(45A) - C(45) - H(45B)	109.5	C(42) - C(45) - H(45C)	109.5
H(45A) - C(45) - H(45C)	109.5	H(45B) - C(45) - H(45C)	109.5
C(42) - C(46) - H(46A)	109.5	C(42) - C(46) - H(46B)	109.5
H(46A) - C(46) - H(46B)	109.5	C(42) - C(46) - H(46C)	109.5
H(46A) - C(46) - H(46C)	109.5	H(46B) - C(46) - H(46C)	109.5
C(56) - C(51) - C(52)	116.6(2)	C(56) - C(51) - Si	122.00(17)
C(52) - C(51) - Si	121.18(16)	C(53) - C(52) - C(51)	122.1(2)
C(53) - C(52) - H(52)	118.9	C(51) - C(52) - H(52)	118.9
C(54) - C(53) - C(52)	119.7(2)	C(54) - C(53) - H(53)	120.2
C(52) - C(53) - H(53)	120.2	C(55) - C(54) - C(53)	119.6(2)
C(55) - C(54) - H(54)	120.2	C(53) - C(54) - H(54)	120.2
C(54) - C(55) - C(56)	120.1(2)	C(54) - C(55) - H(55)	120.0
C(56) - C(55) - H(55)	120.0	C(55) - C(56) - C(51)	121.9(2)
C(55) - C(56) - H(56)	119.0	C(51) - C(56) - H(56)	119.0
C(62) - C(61) - C(66)	117.07(19)	C(62) - C(61) - Si	121.21(16)
C(66) - C(61) - Si	121.42(16)	C(63) - C(62) - C(61)	121.7(2)
C(63) - C(62) - H(62)	119.2	C(61) - C(62) - H(62)	119.2
C(64) - C(63) - C(62)	120.1(2)	C(64) - C(63) - H(63)	120.0
C(62) - C(63) - H(63)	120.0	C(63) - C(64) - C(65)	119.8(2)
C(63) - C(64) - H(64)	120.1	C(65) - C(64) - H(64)	120.1
C(64) - C(65) - C(66)	120.1(2)	C(64) - C(65) - H(65)	120.0
C(66) - C(65) - H(65)	120.0	C(65) - C(66) - C(61)	121.2(2)
C(65) - C(66) - H(66)	119.4	C(61) - C(66) - H(66)	119.4
C(77) - C(71) - C(72)	116.4(2)	C(77) - C(71) - Si	120.82(16)
C(72) - C(71) - Si	122.65(17)	C(73) - C(72) - C(71)	121.9(2)
C(73) - C(72) - H(72)	119.0	C(71) - C(72) - H(72)	119.0
C(74) - C(73) - C(72)	120.1(2)	C(74) - C(73) - H(73)	120.0
C(72) - C(73) - H(73)	120.0	C(76) - C(74) - C(73)	119.7(2)
C(76) - C(74) - H(74)	120.2	C(73) - C(74) - H(74)	120.2
C(74) - C(76) - C(77)	120.0(2)	C(74) - C(76) - H(76)	120.0
C(77) - C(76) - H(76)	120.0	C(76) - C(77) - C(71)	121.9(2)
C(76) - C(77) - H(77)	119.1	C(71) - C(77) - H(77)	119.1
C(22) - P(2) - C(41)	107.16(10)	C(22) - P(2) - C(42)	104.08(10)
C(41) - P(2) - C(42)	105.11(10)	C(22) - P(2) - Pd	103.58(7)
C(41) - P(2) - Pd	122.97(7)	C(42) - P(2) - Pd	112.35(7)
C(51) - Si - C(61)	106.62(9)	C(51) - Si - C(71)	103.35(9)
C(61) - Si - C(71)	104.03(9)	C(51)-Si-C	115.04(9)
		Continue	ed on next page

Table S15. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(61)-Si-C	112.12(9)	C(71)-Si-C	114.64(9)
C(11) - C - C(21)	115.47(17)	C(11)-C-Si	112.86(13)
C(21)-C-Si	106.28(13)	C(11)-C-Pd	104.43(13)
C(21) - C - Pd	111.43(13)	Si-C-Pd	106.06(9)
C(16) - C(11) - C(12)	115.08(18)	C(16) - C(11) - C	124.56(18)
C(12) - C(11) - C	120.36(18)	C(13) - C(12) - C(11)	121.19(19)
C(13) - C(12) - P(1)	121.23(16)	C(11) - C(12) - P(1)	116.71(15)
C(14) - C(13) - C(12)	121.2(2)	C(14) - C(13) - H(13)	119.4
C(12) - C(13) - H(13)	119.4	C(13) - C(14) - C(15)	118.3(2)
C(13) - C(14) - H(14)	120.8	C(15) - C(14) - H(14)	120.8
C(16) - C(15) - C(14)	120.8(2)	C(16) - C(15) - H(15)	119.6
C(14) - C(15) - H(15)	119.6	C(15) - C(16) - C(11)	122.6(2)
C(15) - C(16) - H(16)	118.7	C(11) - C(16) - H(16)	118.7

Table S15. – continued from previous page

4.4 Crystal data for $[PC(H)P]Pd(SiPh_3) \cdot C_5H_{12} (8 \cdot C_5H_{12})$

Figure S58. Thermal-ellipsoid representation of $[PC(H)P]Pd(SiPh_3)\cdot C_5H_{12}$ (8·C₅H₁₂) at 50% probability. Most hydrogen atoms and the solvent were omitted for clarity.

Identification code:	cc243	
Empirical formula:	$C_{48}H_{64}P_2PdSi$	
Formula weight:	837.42	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Monoclinic	
Space group:	$P2_{1}/c$	
Unit cell dimensions:	a = 11.401(2) Å	$\alpha = 90^{\circ}$
	b = 12.592(2) Å	$\beta = 97.666(3)^{\circ}$
	c = 30.423(5) Å	$\gamma = 90^{\circ}$
Volume:	4328.5(13) Å ³	
Z:	4	
Density (calculated):	$1.285 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (μ):	0.562 mm^{-1}	
F(000):	1768	
Crystal size:	$0.11 \times 0.10 \times 0.09 \text{ mm}^3$	
θ range for data collection:	1.35 to 28.37°	
Index ranges:	$-15 \le h \le 15, -16 \le k \le 16, -40 \le l \le 40$	
Reflections collected:	126183	
Independent reflections:	$10820 [R_{int} = 0.0937]$	
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.7457 and 0.6854	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	10820 / 60 / 527	
Goodness-of-fit on F ² :	1.066	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0412, wR_2 = 0.0852$	
R indices (all data):	$R_1 = 0.0684, wR_2 = 0.0983$	
Largest diff. peak and hole:	1.455 and $-0.960 e^{-1} \dot{A}^{-3}$	

Table S16. Crystal data and structure refinement for $[PC(H)P]Pd(SiPh_3) \cdot C_5H_{12}$ (8 · C₅H₁₂).

_

atom	X	у	Z	U(eq)
С	1.0992(2)	0.6051(2)	0.39512(9)	0.020(1)
Pd	0.93031(2)	0.53825(2)	0.36794(1)	0.016(1)
Si	0.75463(7)	0.42896(6)	0.35192(2)	0.017(1)
C(21)	1.0950(3)	0.6955(2)	0.42711(10)	0.023(1)
C(22)	0.9875(2)	0.7440(2)	0.43210(9)	0.018(1)
C(23)	0.9867(3)	0.8354(2)	0.45866(10)	0.027(1)
C(24)	1.0902(3)	0.8736(3)	0.48146(10)	0.032(1)
C(25)	1.1954(3)	0.8201(3)	0.47963(10)	0.031(1)
C(26)	1.1982(3)	0.7332(3)	0.45269(10)	0.029(1)
C(31)	1.0080(2)	0.4418(2)	0.26257(9)	0.020(1)
C(32)	1.1178(2)	0.3217(2)	0.34024(9)	0.021(1)
C(33)	0.9184(3)	0.3548(2)	0.24965(10)	0.025(1)
C(81)	0.2131(10)	0.0087(9)	0.3894(4)	0.055(3)
C(83)	0.3965(11)	0.0651(10)	0.4316(4)	0.085(4)
C(85)	0.6173(10)	0.0540(10)	0.4139(4)	0.077(3)
C(84)	0.5284(9)	0.0470(9)	0.4459(4)	0.078(3)
C(82)	0.3512(7)	-0.0094(7)	0.3944(3)	0.048(2)
C(91)	0.2253(9)	0.0030(8)	0.3774(3)	0.038(2)
C(92)	0.3348(15)	0.0233(14)	0.4117(6)	0.105(5)
C(93)	0.4256(10)	0.0919(10)	0.4032(4)	0.077(4)
C(94)	0.5526(14)	0.0989(13)	0.4138(5)	0.104(5)
C(95)	0.6095(10)	-0.0002(9)	0.4324(4)	0.064(3)
C(34)	0.9649(3)	0.5501(2)	0.24422(10)	0.026(1)
C(35)	1.1716(3)	0.3263(2)	0.38907(10)	0.028(1)
C(36)	1.2105(3)	0.2825(2)	0.31182(11)	0.031(1)
C(41)	0.7763(2)	0.6379(2)	0.45357(9)	0.019(1)
C(42)	0.7718(3)	0.7746(2)	0.37395(10)	0.023(1)
C(43)	0.8521(3)	0.5611(2)	0.48422(10)	0.028(1)
C(44)	0.7339(3)	0.7310(3)	0.47981(10)	0.030(1)
C(45)	0.6423(3)	0.7437(2)	0.36029(10)	0.028(1)
C(46)	0.8332(3)	0.7994(3)	0.33322(10)	0.031(1)
C(51)	0.8078(2)	0.2854(2)	0.35759(9)	0.019(1)
C(52)	0.8829(2)	0.2563(2)	0.39621(10)	0.023(1)
C(53)	0.9278(3)	0.1545(2)	0.40246(10)	0.028(1)
C(54)	0.9000(3)	0.0775(2)	0.37038(11)	0.030(1)
C(55)	0.8274(3)	0.1038(2)	0.33195(11)	0.030(1)
C(56)	0.7821(3)	0.2062(2)	0.32586(9)	0.023(1)
C(61)	0.6518(2)	0.4422(2)	0.29727(9)	0.021(1)
C(62)	0.5595(2)	0.3703(2)	0.28566(9)	0.023(1)
			Continue	ed on next page

Table S17. Atomic coordinates and equivalent isotropic displacement parameters (Å²) for $[PC(H)P]Pd(SiPh_3)\cdot C_5H_{12}$ (8·C₅H₁₂). U(eq) is defined as one third of the trace of the orthogonalized U_{ii} tensor

atom	X	<u> </u>	X	U(eq)
C(63)	0.4796(3)	0.3825(3)	0.24755(10)	0.027(1)
C(64)	0.4884(3)	0.4688(3)	0.22012(10)	0.030(1)
C(65)	0.5774(3)	0.5420(3)	0.23074(10)	0.028(1)
C(66)	0.6578(3)	0.5285(2)	0.26888(9)	0.023(1)
C(71)	0.6376(2)	0.4325(2)	0.39180(9)	0.018(1)
C(72)	0.6472(3)	0.3766(2)	0.43181(9)	0.023(1)
C(73)	0.5607(3)	0.3829(3)	0.45988(10)	0.030(1)
C(74)	0.4626(3)	0.4464(3)	0.44901(10)	0.029(1)
C(75)	0.4495(3)	0.5017(2)	0.40955(10)	0.024(1)
C(76)	0.5349(2)	0.4937(2)	0.38133(9)	0.021(1)
P(1)	1.05226(6)	0.45229(6)	0.32326(2)	0.016(1)
P(2)	0.85747(6)	0.67189(6)	0.40682(2)	0.016(1)
C(11)	1.1729(2)	0.6267(2)	0.35802(9)	0.020(1)
C(12)	1.1744(2)	0.5472(2)	0.32543(9)	0.019(1)
C(13)	1.2555(2)	0.5515(2)	0.29512(9)	0.022(1)
C(14)	1.3296(3)	0.6392(3)	0.29408(10)	0.026(1)
C(15)	1.3200(3)	0.7223(2)	0.32294(10)	0.026(1)
C(16)	1.2441(2)	0.7159(2)	0.35478(10)	0.024(1)
Н	1.1415	0.5466	0.4130	0.023
H(23)	0.9142	0.8709	0.4608	0.033
H(24)	1.0896	0.9367	0.4985	0.039
H(25)	1.2659	0.8437	0.4971	0.037
H(26)	1.2712	0.6979	0.4513	0.035
H(31)	1.0807	0.4237	0.2490	0.024
H(32)	1.0522	0.2685	0.3376	0.025
H(33A)	0.8438	0.3725	0.2606	0.038
H(33B)	0.9486	0.2874	0.2627	0.038
H(33C)	0.9048	0.3482	0.2173	0.038
H(81A)	0.1949	0.0818	0.3797	0.083
H(81B)	0.1851	-0.0033	0.4181	0.083
H(81C)	0.1737	-0.0410	0.3675	0.083
H(83A)	0.3527	0.0530	0.4572	0.102
H(83B)	0.3831	0.1395	0.4217	0.102
H(85A)	0.6974	0.0503	0.4301	0.116
H(85B)	0.6073	0.1214	0.3977	0.116
H(85C)	0.6053	-0.0051	0.3928	0.116
H(84A)	0.5535	0.0985	0.4700	0.093
H(84B)	0.5366	-0.0245	0.4595	0.093
H(82A)	0.3718	-0.0840	0.4022	0.058
H(82B)	0.3833	0.0093	0.3667	0.058
H(91A)	0.1702	-0.0437	0.3903	0.057
H(91B)	0.2498	-0.0308	0.3511	0.057
			Cont	inued on next page

Table S17. – continued from previous page
atom	X	y	X	U(eq)
H(91C)	0.1861	0.0707	0.3690	0.057
H(92A)	0.3055	0.0497	0.4389	0.126
H(92B)	0.3717	-0.0467	0.4192	0.126
H(93A)	0.3987	0.1613	0.4134	0.092
H(93B)	0.4139	0.0964	0.3704	0.092
H(94A)	0.5718	0.1570	0.4356	0.125
H(94B)	0.5866	0.1179	0.3866	0.125
H(95A)	0.6019	-0.0554	0.4095	0.076
H(95B)	0.5708	-0.0239	0.4576	0.076
H(95C)	0.6935	0.0132	0.4424	0.076
H(34A)	1.0294	0.6018	0.2497	0.039
H(34B)	0.8980	0.5735	0.2590	0.039
H(34C)	0.9396	0.5442	0.2122	0.039
H(35A)	1.1948	0.2547	0.3994	0.041
H(35B)	1.1130	0.3547	0.4068	0.041
H(35C)	1.2414	0.3725	0.3923	0.041
H(36A)	1.2378	0.2116	0.3218	0.046
H(36B)	1.2778	0.3317	0.3148	0.046
H(36C)	1.1751	0.2792	0.2807	0.046
H(41)	0.7040	0.5978	0.4408	0.023
H(42)	0.7734	0.8404	0.3924	0.027
H(43A)	0.8069	0.5362	0.5074	0.041
H(43B)	0.9237	0.5976	0.4979	0.041
H(43C)	0.8743	0.5003	0.4670	0.041
H(44A)	0.8019	0.7638	0.4979	0.044
H(44B)	0.6780	0.7049	0.4992	0.044
H(44C)	0.6946	0.7837	0.4592	0.044
H(45A)	0.6048	0.7296	0.3869	0.042
H(45B)	0.6384	0.6798	0.3418	0.042
H(45C)	0.6008	0.8020	0.3435	0.042
H(46A)	0.9160	0.8183	0.3428	0.046
H(46B)	0.7929	0.8590	0.3169	0.046
H(46C)	0.8298	0.7368	0.3140	0.046
H(52)	0.9034	0.3081	0.4186	0.027
H(53)	0.9780	0.1374	0.4290	0.034
H(54)	0.9305	0.0076	0.3747	0.036
H(55)	0.8082	0.0518	0.3095	0.036
H(56)	0.7321	0.2225	0.2992	0.028
H(62)	0.5513	0.3114	0.3045	0.028
H(63)	0.4187	0.3316	0.2402	0.032
H(64)	0.4334	0.4775	0.1940	0.036
H(65)	0.5837	0.6016	0.2121	0.034
			Continue	ed on next page

Table S17. – continued from previous page

atom	X	y	X	U(eq)
H(66)	0.7188	0.5797	0.2758	0.028
H(72)	0.7148	0.3332	0.4401	0.028
H(73)	0.5692	0.3433	0.4867	0.036
H(74)	0.4045	0.4520	0.4686	0.035
H(75)	0.3819	0.5453	0.4017	0.029
H(76)	0.5235	0.5309	0.3539	0.025
H(13)	1.2604	0.4943	0.2751	0.026
H(14)	1.3859	0.6418	0.2737	0.032
H(15)	1.3661	0.7846	0.3210	0.031
H(16)	1.2404	0.7733	0.3748	0.029

Table S17. – continued from previous page

atom	<u>U₁₁</u>	<u> </u>	U ₃₃	U23	U ₁₃	<u>U12</u>
C	0.0171(13)	0.0220(14)	0.0181(13)	$\frac{0.0004(11)}{0.0004(11)}$	-0.0020(10)	$\frac{0.0012(11)}{0.0012(11)}$
Pd	0.0155(1)	0.0162(1)	0.0157(1)	-0.0040(1)	0.0030(1)	-0.0013(1)
Si	0.0178(4)	0.0164(4)	0.0164(4)	-0.0003(3)	0.0011(3)	-0.0005(3)
C(21)	0.0249(15)	0.0204(14)	0.0240(15)	-0.0047(12)	0.0034(12)	-0.0052(12)
C(22)	0.0223(14)	0.0168(13)	0.0162(13)	-0.0024(11)	0.0034(11)	-0.0025(11)
C(23)	0.0273(16)	0.0266(16)	0.0291(16)	-0.0110(13)	0.0083(13)	-0.0026(13)
C(24)	0.0399(19)	0.0321(18)	0.0251(16)	-0.0147(14)	0.0065(14)	-0.0097(14)
C(25)	0.0322(17)	0.0365(19)	0.0221(15)	-0.0045(13)	-0.0053(13)	-0.0103(14)
C(26)	0.0233(15)	0.0280(17)	0.0345(17)	-0.0040(14)	-0.0008(13)	-0.0002(13)
C(31)	0.0210(13)	0.0225(15)	0.0166(13)	-0.0029(11)	0.0031(11)	0.0004(11)
C(32)	0.0221(14)	0.0188(14)	0.0226(14)	0.0019(11)	0.0027(11)	0.0005(11)
C(33)	0.0282(16)	0.0256(16)	0.0212(14)	-0.0053(12)	0.0028(12)	-0.0035(12)
C(81)	0.056(3)	0.055(3)	0.056(3)	0.0004(10)	0.0073(11)	0.0005(10)
C(83)	0.085(4)	0.085(4)	0.084(4)	-0.0007(10)	0.0112(11)	0.0004(10)
C(85)	0.077(3)	0.078(3)	0.077(3)	-0.0013(10)	0.0108(11)	-0.0004(10)
C(84)	0.077(4)	0.079(4)	0.078(4)	-0.0005(10)	0.0096(11)	-0.0004(10)
C(82)	0.049(2)	0.048(2)	0.048(2)	-0.0007(10)	0.0064(10)	-0.0009(10)
C(91)	0.038(3)	0.038(3)	0.038(3)	0.0005(10)	0.0047(10)	0.0007(10)
C(92)	0.105(5)	0.105(5)	0.105(5)	0.0000(10)	0.0139(12)	-0.0002(10)
C(93)	0.077(4)	0.077(4)	0.077(4)	0.0008(10)	0.0099(11)	0.0000(10)
C(94)	0.104(5)	0.104(5)	0.105(5)	0.0000(10)	0.0130(12)	0.0002(10)
C(95)	0.064(3)	0.063(3)	0.064(3)	-0.0010(10)	0.0077(11)	0.0003(10)
C(34)	0.0256(15)	0.0255(16)	0.0272(15)	0.0063(13)	0.0016(12)	-0.0006(12)
C(35)	0.0297(16)	0.0251(16)	0.0262(16)	0.0041(13)	-0.0031(13)	-0.0025(13)
C(36)	0.0330(17)	0.0207(16)	0.0400(19)	0.0029(13)	0.0105(14)	0.0080(13)
C(41)	0.0196(14)	0.0222(14)	0.0166(13)	-0.0003(11)	0.0039(11)	0.0001(11)
C(42)	0.0263(15)	0.0158(14)	0.0249(15)	0.0019(11)	-0.0001(12)	-0.0011(11)
C(43)	0.0285(16)	0.0332(18)	0.0203(14)	0.0055(12)	0.0010(12)	0.0028(13)
C(44)	0.0361(18)	0.0285(17)	0.0269(16)	-0.0059(13)	0.0143(13)	0.0011(14)
C(45)	0.0295(16)	0.0231(16)	0.0303(16)	0.0063(13)	-0.0035(13)	0.0022(13)
C(46)	0.0411(19)	0.0246(16)	0.0252(16)	0.0060(13)	0.0016(14)	-0.0072(14)
C(51)	0.0194(14)	0.0175(14)	0.0208(14)	-0.0007(11)	0.0061(11)	-0.0011(11)
C(52)	0.0230(15)	0.0221(15)	0.0233(15)	-0.0004(12)	0.0054(11)	0.0003(12)
C(53)	0.0295(16)	0.0286(17)	0.0266(16)	0.0064(13)	0.0040(13)	0.0035(13)
C(54)	0.0376(18)	0.0165(14)	0.0373(18)	0.0043(13)	0.0093(15)	0.0037(13)
C(55)	0.0400(18)	0.0183(15)	0.0321(17)	-0.0055(13)	0.0103(14)	-0.0040(13)
C(56)	0.0280(16)	0.0210(15)	0.0206(14)	0.0009(11)	0.0040(12)	-0.0014(12)
C(61)	0.0206(14)	0.0224(15)	0.0179(13)	-0.0024(11)	0.0009(11)	0.0032(11)
C(62)	0.0232(14)	0.0263(16)	0.0210(14)	0.0005(12)	0.0039(11)	0.0002(12)
C(63)	0.0237(15)	0.0337(17)	0.0221(14)	-0.0056(13)	0.0011(12)	-0.0033(13)
					Continue	d on next page

Table S18. Anisotropic displacement parameters (Å²) for [PC(H)P]Pd(SiPh₃)·C₅H₁₂ (8·C₅H₁₂). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(64)	0.0313(16)	0.0375(18)	0.0199(14)	-0.0030(14)	-0.0014(12)	0.0093(15)
C(65)	0.0316(16)	0.0280(16)	0.0245(15)	0.0040(13)	0.0048(12)	0.0074(14)
C(66)	0.0232(14)	0.0238(15)	0.0221(14)	0.0006(12)	0.0039(11)	-0.0004(12)
C(71)	0.0169(13)	0.0170(13)	0.0202(13)	-0.0010(10)	0.0001(10)	-0.0023(10)
C(72)	0.0202(14)	0.0270(16)	0.0220(14)	0.0017(12)	0.0010(11)	0.0015(12)
C(73)	0.0289(16)	0.0408(19)	0.0218(15)	0.0069(14)	0.0050(12)	0.0028(14)
C(74)	0.0199(14)	0.041(2)	0.0272(15)	-0.0022(14)	0.0078(12)	-0.0010(13)
C(75)	0.0167(14)	0.0269(15)	0.0283(15)	-0.0015(12)	0.0009(12)	0.0011(11)
C(76)	0.0182(13)	0.0207(14)	0.0228(14)	0.0017(11)	0.0005(11)	-0.0023(11)
P(1)	0.0177(3)	0.0155(3)	0.0165(3)	-0.0024(3)	0.0035(3)	-0.0011(3)
P(2)	0.0177(3)	0.0164(3)	0.0146(3)	-0.0021(3)	0.0026(3)	-0.0005(3)
C(11)	0.0145(13)	0.0189(14)	0.0257(15)	-0.0023(11)	0.0005(11)	-0.0007(11)
C(12)	0.0169(12)	0.0177(13)	0.0210(13)	0.0002(11)	0.0024(10)	0.0010(11)
C(13)	0.0195(13)	0.0256(16)	0.0201(13)	0.0026(12)	0.0019(11)	-0.0001(12)
C(14)	0.0184(14)	0.0361(18)	0.0250(15)	0.0103(13)	0.0034(12)	-0.0012(12)
C(15)	0.0207(14)	0.0225(15)	0.0329(17)	0.0105(13)	-0.0043(12)	-0.0052(12)
C(16)	0.0193(14)	0.0204(15)	0.0313(16)	-0.0012(12)	-0.0021(12)	0.0019(11)

Table S18. – continued from previous page

atom – atom	distance	atom – atom	distance
C-C(21)	1.502(4)	C-C(11)	1.519(4)
C-Pd	2.162(3)	С-Н	1.0000
Pd - P(2)	2.2765(7)	Pd-P(1)	2.3360(7)
Pd-Si	2.4253(8)	Si-C(51)	1.907(3)
Si - C(61)	1.910(3)	Si - C(71)	1.920(3)
C(21) - C(22)	1.396(4)	C(21) - C(26)	1.404(4)
C(22) - C(23)	1.407(4)	C(22) - P(2)	1.820(3)
C(23) - C(24)	1.373(4)	C(23) - H(23)	0.9500
C(24) - C(25)	1.383(5)	C(24) - H(24)	0.9500
C(25) - C(26)	1.370(4)	C(25) - H(25)	0.9500
C(26) - H(26)	0.9500	C(31) - C(33)	1.514(4)
C(31) - C(34)	1.529(4)	C(31) - P(1)	1.853(3)
C(31) - H(31)	1.0000	C(32) - C(35)	1.531(4)
C(32) - C(36)	1.534(4)	C(32) - P(1)	1.851(3)
C(32) - H(32)	1.0000	C(33) - H(33A)	0.9800
C(33)-H(33B)	0.9800	C(33) - H(33C)	0.9800
C(81) - C(82)	1.577(14)	C(81)-H(81A)	0.9800
C(81)-H(81B)	0.9800	C(81)-H(81C)	0.9800
C(83) - C(82)	1.510(16)	C(83) - C(84)	1.526(15)
C(83)-H(83A)	0.9900	C(83) - H(83B)	0.9900
C(85) - C(84)	1.500(17)	C(85) - H(85A)	0.9800
C(85) - H(85B)	0.9800	C(85) - H(85C)	0.9800
C(84) - H(84A)	0.9900	C(84) - H(84B)	0.9900
C(82) - H(82A)	0.9900	C(82) - H(82B)	0.9900
C(91) - C(92)	1.538(19)	C(91)-H(91A)	0.9800
C(91) - H(91B)	0.9800	C(91) - H(91C)	0.9800
C(92) - C(93)	1.399(19)	C(92) - H(92A)	0.9900
C(92) - H(92B)	0.9900	C(93) - C(94)	1.443(17)
C(93)-H(93A)	0.9900	C(93) - H(93B)	0.9900
C(94) - C(95)	1.48(2)	C(94) - H(94A)	0.9900
C(94) - H(94B)	0.9900	C(95) - H(95A)	0.9800
C(95) - H(95B)	0.9800	C(95) - H(95C)	0.9800
C(34) - H(34A)	0.9800	C(34) - H(34B)	0.9800
C(34) - H(34C)	0.9800	C(35) - H(35A)	0.9800
C(35) - H(35B)	0.9800	C(35) - H(35C)	0.9800
C(36) - H(36A)	0.9800	C(36) - H(36B)	0.9800
C(36) - H(36C)	0.9800	C(41) - C(43)	1.528(4)
C(41) - C(44)	1.532(4)	C(41) - P(2)	1.848(3)
C(41) - H(41)	1.0000	C(42) - C(45)	1.529(4)
C(42) - C(46)	1.534(4)	C(42) - P(2)	1.834(3)
C(42) - H(42)	1.0000	C(43) - H(43A)	0.9800
			Continued on next page

Table S19. Distances [Å] for $[PC(H)P]Pd(SiPh_3) \cdot C_5H_{12}$ (8 $\cdot C_5H_{12}$).

atom – atom	distance	atom – atom	distance
C(43)-H(43B)	0.9800	C(43)-H(43C)	0.9800
C(44) - H(44A)	0.9800	C(44) - H(44B)	0.9800
C(44) - H(44C)	0.9800	C(45) - H(45A)	0.9800
C(45) - H(45B)	0.9800	C(45) - H(45C)	0.9800
C(46) - H(46A)	0.9800	C(46) - H(46B)	0.9800
C(46) - H(46C)	0.9800	C(51) - C(56)	1.392(4)
C(51) - C(52)	1.407(4)	C(52) - C(53)	1.384(4)
C(52) - H(52)	0.9500	C(53) - C(54)	1.382(4)
C(53) - H(53)	0.9500	C(54) - C(55)	1.380(5)
C(54) - H(54)	0.9500	C(55) - C(56)	1.392(4)
C(55) - H(55)	0.9500	C(56) - H(56)	0.9500
C(61) - C(66)	1.396(4)	C(61) - C(62)	1.397(4)
C(62) - C(63)	1.384(4)	C(62) - H(62)	0.9500
C(63) - C(64)	1.381(4)	C(63) - H(63)	0.9500
C(64) - C(65)	1.377(5)	C(64) - H(64)	0.9500
C(65) - C(66)	1.390(4)	C(65) - H(65)	0.9500
C(66) - H(66)	0.9500	C(71) - C(72)	1.397(4)
C(71) - C(76)	1.403(4)	C(72) - C(73)	1.391(4)
C(72) - H(72)	0.9500	C(73) - C(74)	1.378(4)
C(73) - H(73)	0.9500	C(74) - C(75)	1.379(4)
C(74) - H(74)	0.9500	C(75) - C(76)	1.385(4)
C(75) - H(75)	0.9500	C(76) - H(76)	0.9500
P(1) - C(12)	1.829(3)	C(11) - C(16)	1.397(4)
C(11) - C(12)	1.411(4)	C(12) - C(13)	1.392(4)
C(13) - C(14)	1.394(4)	C(13) - H(13)	0.9500
C(14) - C(15)	1.379(4)	C(14) - H(14)	0.9500
C(15) - C(16)	1.385(4)	C(15) - H(15)	0.9500
C(16) – H(16)	0.9500		

Table S19. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(21) - C - C(11)	114.5(2)	C(21) - C - Pd	116.05(19)
C(11)-C-Pd	109.77(18)	C(21) - C - H	105.1
С(11)-С-Н	105.1	Pd-C-H	105.1
C - Pd - P(2)	83.19(8)	C-Pd-P(1)	80.46(7)
P(2) - Pd - P(1)	158.68(3)	C-Pd-Si	165.27(8)
P(2) - Pd - Si	100.08(3)	P(1)-Pd-Si	99.20(3)
C(51) - Si - C(61)	108.17(12)	C(51) - Si - C(71)	101.76(12)
C(61) - Si - C(71)	98.65(12)	C(51) - Si - Pd	106.01(9)
C(61) - Si - Pd	121.34(9)	C(71) - Si - Pd	119.01(9)
C(22) - C(21) - C(26)	118.3(3)	C(22) - C(21) - C	120.4(2)
C(26) - C(21) - C	121.3(3)	C(21) - C(22) - C(23)	119.6(3)
C(21) - C(22) - P(2)	114.4(2)	C(23) - C(22) - P(2)	125.7(2)
C(24) - C(23) - C(22)	120.4(3)	C(24) - C(23) - H(23)	119.8
C(22) - C(23) - H(23)	119.8	C(23) - C(24) - C(25)	120.0(3)
C(23) - C(24) - H(24)	120.0	C(25) - C(24) - H(24)	120.0
C(26) - C(25) - C(24)	120.1(3)	C(26) - C(25) - H(25)	119.9
C(24) - C(25) - H(25)	119.9	C(25) - C(26) - C(21)	121.2(3)
C(25) - C(26) - H(26)	119.4	C(21) - C(26) - H(26)	119.4
C(33) - C(31) - C(34)	112.2(2)	C(33) - C(31) - P(1)	113.29(19)
C(34) - C(31) - P(1)	109.37(19)	C(33) - C(31) - H(31)	107.2
C(34) - C(31) - H(31)	107.2	P(1) - C(31) - H(31)	107.2
C(35) - C(32) - C(36)	110.0(2)	C(35) - C(32) - P(1)	109.4(2)
C(36) - C(32) - P(1)	114.3(2)	C(35) - C(32) - H(32)	107.6
C(36) - C(32) - H(32)	107.6	P(1) - C(32) - H(32)	107.6
C(31) - C(33) - H(33A)	109.5	C(31) - C(33) - H(33B)	109.5
H(33A) - C(33) - H(33B)	109.5	C(31) - C(33) - H(33C)	109.5
H(33A) - C(33) - H(33C)	109.5	H(33B) - C(33) - H(33C)	109.5
C(82) - C(81) - H(81A)	109.5	C(82) - C(81) - H(81B)	109.5
H(81A) - C(81) - H(81B)	109.5	C(82) - C(81) - H(81C)	109.5
H(81A) - C(81) - H(81C)	109.5	H(81B) - C(81) - H(81C)	109.5
C(82) - C(83) - C(84)	110.3(9)	C(82) - C(83) - H(83A)	109.6
C(84) - C(83) - H(83A)	109.6	C(82) - C(83) - H(83B)	109.6
C(84) - C(83) - H(83B)	109.6	H(83A) - C(83) - H(83B)	108.1
C(84) - C(85) - H(85A)	109.5	C(84) - C(85) - H(85B)	109.5
H(85A) - C(85) - H(85B)	109.5	C(84) - C(85) - H(85C)	109.5
H(85A) - C(85) - H(85C)	109.5	H(85B) - C(85) - H(85C)	109.5
C(85) - C(84) - C(83)	122.1(10)	C(85) - C(84) - H(84A)	106.8
C(83) - C(84) - H(84A)	106.8	C(85) - C(84) - H(84B)	106.8
C(83) - C(84) - H(84B)	106.8	H(84A) - C(84) - H(84B)	106.7
C(83) - C(82) - C(81)	102.6(9)	C(83) - C(82) - H(82A)	111.2
C(81) - C(82) - H(82A)	111.2	C(83) - C(82) - H(82B)	111.2
		Continue	d on next page

Table S20. Angles [°] for $[PC(H)P]Pd(SiPh_3) \cdot C_5H_{12}$ (8 $\cdot C_5H_{12}$).

atom – atom – atom	angle	atom – atom – atom	angle
C(81) - C(82) - H(82B)	111.2	H(82A) - C(82) - H(82B)	109.2
C(93) - C(92) - C(91)	122.0(14)	C(93) - C(92) - H(92A)	106.8
C(91) - C(92) - H(92A)	106.8	C(93) - C(92) - H(92B)	106.8
C(91) - C(92) - H(92B)	106.8	H(92A) - C(92) - H(92B)	106.7
C(92) - C(93) - C(94)	137.9(13)	C(92) - C(93) - H(93A)	102.6
C(94) - C(93) - H(93A)	102.6	C(92) - C(93) - H(93B)	102.6
C(94) - C(93) - H(93B)	102.6	H(93A) - C(93) - H(93B)	105.0
C(93) - C(94) - C(95)	114.1(12)	C(93) - C(94) - H(94A)	108.7
C(95) - C(94) - H(94A)	108.7	C(93) - C(94) - H(94B)	108.7
C(95) - C(94) - H(94B)	108.7	H(94A) - C(94) - H(94B)	107.6
C(31) - C(34) - H(34A)	109.5	C(31) - C(34) - H(34B)	109.5
H(34A) - C(34) - H(34B)	109.5	C(31) - C(34) - H(34C)	109.5
H(34A) - C(34) - H(34C)	109.5	H(34B) - C(34) - H(34C)	109.5
C(32) - C(35) - H(35A)	109.5	C(32) - C(35) - H(35B)	109.5
H(35A) - C(35) - H(35B)	109.5	C(32) - C(35) - H(35C)	109.5
H(35A) - C(35) - H(35C)	109.5	H(35B) - C(35) - H(35C)	109.5
C(32) - C(36) - H(36A)	109.5	C(32) - C(36) - H(36B)	109.5
H(36A) - C(36) - H(36B)	109.5	C(32) - C(36) - H(36C)	109.5
H(36A) - C(36) - H(36C)	109.5	H(36B) - C(36) - H(36C)	109.5
C(43) - C(41) - C(44)	111.0(2)	C(43) - C(41) - P(2)	108.40(19)
C(44) - C(41) - P(2)	116.7(2)	C(43) - C(41) - H(41)	106.7
C(44) - C(41) - H(41)	106.7	P(2) - C(41) - H(41)	106.7
C(45) - C(42) - C(46)	111.1(3)	C(45) - C(42) - P(2)	113.2(2)
C(46) - C(42) - P(2)	108.5(2)	C(45) - C(42) - H(42)	108.0
C(46) - C(42) - H(42)	108.0	P(2) - C(42) - H(42)	108.0
C(41) - C(43) - H(43A)	109.5	C(41) - C(43) - H(43B)	109.5
H(43A) - C(43) - H(43B)	109.5	C(41) - C(43) - H(43C)	109.5
H(43A) - C(43) - H(43C)	109.5	H(43B) - C(43) - H(43C)	109.5
C(41) - C(44) - H(44A)	109.5	C(41) - C(44) - H(44B)	109.5
H(44A) - C(44) - H(44B)	109.5	C(41) - C(44) - H(44C)	109.5
H(44A) - C(44) - H(44C)	109.5	H(44B) - C(44) - H(44C)	109.5
C(42) - C(45) - H(45A)	109.5	C(42) - C(45) - H(45B)	109.5
H(45A) - C(45) - H(45B)	109.5	C(42) - C(45) - H(45C)	109.5
H(45A) - C(45) - H(45C)	109.5	H(45B) - C(45) - H(45C)	109.5
C(42) - C(46) - H(46A)	109.5	C(42) - C(46) - H(46B)	109.5
H(46A) - C(46) - H(46B)	109.5	C(42) - C(46) - H(46C)	109.5
H(46A) - C(46) - H(46C)	109.5	H(46B) - C(46) - H(46C)	109.5
C(56) - C(51) - C(52)	116.1(3)	C(56) - C(51) - Si	125.6(2)
C(52) - C(51) - Si	118.2(2)	C(53) - C(52) - C(51)	121.9(3)
C(53) - C(52) - H(52)	119.0	C(51) - C(52) - H(52)	119.0
C(54) - C(53) - C(52)	120.5(3)	C(54) - C(53) - H(53)	119.8
C(52) - C(53) - H(53)	119.8	C(55) - C(54) - C(53)	119.0(3)
		Continue	ed on next page

 Table S20. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(55) - C(54) - H(54)	120.5	C(53) - C(54) - H(54)	120.5
C(54) - C(55) - C(56)	120.3(3)	C(54) - C(55) - H(55)	119.8
C(56) - C(55) - H(55)	119.8	C(55) - C(56) - C(51)	122.1(3)
C(55) - C(56) - H(56)	118.9	C(51) - C(56) - H(56)	118.9
C(66) - C(61) - C(62)	116.5(3)	C(66) - C(61) - Si	122.1(2)
C(62) - C(61) - Si	121.2(2)	C(63) - C(62) - C(61)	122.0(3)
C(63) - C(62) - H(62)	119.0	C(61) - C(62) - H(62)	119.0
C(64) - C(63) - C(62)	120.0(3)	C(64) - C(63) - H(63)	120.0
C(62) - C(63) - H(63)	120.0	C(65) - C(64) - C(63)	119.7(3)
C(65) - C(64) - H(64)	120.1	C(63) - C(64) - H(64)	120.1
C(64) - C(65) - C(66)	119.8(3)	C(64) - C(65) - H(65)	120.1
C(66) - C(65) - H(65)	120.1	C(65) - C(66) - C(61)	122.0(3)
C(65) - C(66) - H(66)	119.0	C(61) - C(66) - H(66)	119.0
C(72) - C(71) - C(76)	116.1(3)	C(72) - C(71) - Si	123.9(2)
C(76) - C(71) - Si	119.9(2)	C(73) - C(72) - C(71)	121.8(3)
C(73) - C(72) - H(72)	119.1	C(71) - C(72) - H(72)	119.1
C(74) - C(73) - C(72)	120.3(3)	C(74) - C(73) - H(73)	119.8
C(72) - C(73) - H(73)	119.8	C(73) - C(74) - C(75)	119.5(3)
C(73) - C(74) - H(74)	120.2	C(75) - C(74) - H(74)	120.2
C(74) - C(75) - C(76)	119.9(3)	C(74) - C(75) - H(75)	120.0
C(76) - C(75) - H(75)	120.0	C(75) - C(76) - C(71)	122.3(3)
C(75) - C(76) - H(76)	118.9	C(71) - C(76) - H(76)	118.9
C(12) - P(1) - C(32)	107.04(13)	C(12) - P(1) - C(31)	100.82(12)
C(32) - P(1) - C(31)	105.13(13)	C(12) - P(1) - Pd	100.69(9)
C(32) - P(1) - Pd	119.91(9)	C(31) - P(1) - Pd	120.58(9)
C(22) - P(2) - C(42)	102.90(13)	C(22) - P(2) - C(41)	104.70(12)
C(42) - P(2) - C(41)	107.33(13)	C(22) - P(2) - Pd	104.80(9)
C(42) - P(2) - Pd	116.26(10)	C(41) - P(2) - Pd	118.93(9)
C(16) - C(11) - C(12)	117.3(3)	C(16) - C(11) - C	125.5(3)
C(12) - C(11) - C	117.0(2)	C(13) - C(12) - C(11)	120.6(3)
C(13) - C(12) - P(1)	124.8(2)	C(11) - C(12) - P(1)	114.12(19)
C(12) - C(13) - C(14)	120.3(3)	C(12) - C(13) - H(13)	119.9
C(14) - C(13) - H(13)	119.9	C(15) - C(14) - C(13)	119.2(3)
C(15) - C(14) - H(14)	120.4	C(13) - C(14) - H(14)	120.4
C(14) - C(15) - C(16)	120.7(3)	C(14) - C(15) - H(15)	119.6
C(16) - C(15) - H(15)	119.6	C(15) - C(16) - C(11)	121.3(3)
C(15) - C(16) - H(16)	119.3	C(11) - C(16) - H(16)	119.3

Table S20. – continued from previous page

4.5 Crystal data for [PC(Bpin)P]PdH (9)

Figure S59. Thermal-ellipsoid representation of [PC(Bpin)P]PdH (9) at 50% probability. Most hydrogen atoms were omitted for clarity.

Identification code:	cc181a	
Empirical formula:	$C_{31}H_{49}BO_2P_2Pd$	
Formula weight:	632.85	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Monoclinic	
Space group:	$P2_{1}/c$	
Unit cell dimensions:	a = 17.3966(10) Å	$\alpha = 90^{\circ}$
	b = 10.0819(6) Å	$\beta = 115.8960(18)^{\circ}$
	c = 19.8141(11) Å	$\gamma = 90^{\circ}$
Volume:	3126.3(3) Å ³	
Z:	4	
Density (calculated):	$1.345 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (μ):	0.721 mm^{-1}	
F(000):	1328	
Crystal size:	$0.03 \times 0.02 \times 0.02 \text{ mm}^3$	
θ range for data collection:	1.30 to 25.00°	
Index ranges:	$-20 \le h \le 20, -11 \le k \le 11, -23 \le l \le 23$	
Reflections collected:	71734	
Independent reflections:	5509 [$R_{int} = 0.0279$]	
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.7458 and 0.6655	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	5509 / 0 / 350	
Goodness-of-fit on F ² :	1.065	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0203, wR_2 = 0.0513$	
R indices (all data):	$R_1 = 0.0237, wR_2 = 0.0528$	
Largest diff. peak and hole:	0.781 and $-0.667 e^{-1} \dot{A}^{-3}$	

 Table S21. Crystal data and structure refinement for [PC(Bpin)P]PdH (9).

-

Table S22. Atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for [PC(Bpin)P]PdH (9). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor

atom	X	У	Z	U(eq)
Pd	0.67571(1)	0.50861(1)	0.27417(1)	0.013(1)
В	0.82663(12)	0.65902(19)	0.35972(11)	0.016(1)
С	0.80525(10)	0.51143(16)	0.36439(9)	0.014(1)
P(1)	0.63274(3)	0.46931(4)	0.36433(2)	0.013(1)
P(2)	0.73929(3)	0.48864(4)	0.19578(2)	0.015(1)
C(21)	0.84049(10)	0.41650(16)	0.26252(9)	0.015(1)
C(16)	0.73781(11)	0.41854(17)	0.51905(10)	0.019(1)
C(15)	0.81471(11)	0.42228(17)	0.58264(9)	0.020(1)
C(14)	0.88772(11)	0.46203(17)	0.57652(10)	0.020(1)
C(13)	0.88350(11)	0.49106(16)	0.50663(10)	0.018(1)
C(12)	0.80730(11)	0.48171(15)	0.44053(9)	0.014(1)
C(11)	0.73283(10)	0.45121(16)	0.44856(9)	0.014(1)
C(22)	0.85567(10)	0.41832(16)	0.33891(9)	0.014(1)
C(23)	0.92059(10)	0.33429(16)	0.38734(10)	0.017(1)
C(24)	0.97223(11)	0.26208(17)	0.36381(10)	0.021(1)
C(25)	0.96078(11)	0.26947(17)	0.29016(10)	0.022(1)
C(26)	0.89418(11)	0.34549(17)	0.23982(10)	0.019(1)
O(31)	0.86186(8)	0.70894(11)	0.31424(7)	0.019(1)
C(31)	0.88600(11)	0.84627(17)	0.33615(10)	0.020(1)
O(32)	0.81480(8)	0.75777(12)	0.40274(7)	0.020(1)
C(33)	0.87166(12)	0.92697(18)	0.26680(10)	0.024(1)
C(34)	0.98066(12)	0.8445(2)	0.39001(11)	0.027(1)
C(35)	0.74001(12)	0.9329(2)	0.31776(12)	0.030(1)
C(36)	0.86618(15)	0.98158(19)	0.43829(12)	0.032(1)
C(41)	0.57146(11)	0.60208(17)	0.38368(9)	0.017(1)
C(42)	0.57194(11)	0.31656(17)	0.35790(10)	0.019(1)
C(43)	0.53990(12)	0.57012(19)	0.44247(11)	0.025(1)
C(44)	0.62376(12)	0.72993(18)	0.40306(11)	0.024(1)
C(45)	0.48215(12)	0.3272(2)	0.29398(11)	0.029(1)
C(46)	0.61953(13)	0.19601(19)	0.34826(12)	0.030(1)
C(51)	0.69203(11)	0.35461(18)	0.12545(9)	0.020(1)
C(52)	0.76273(12)	0.62836(18)	0.14690(10)	0.021(1)
C(53)	0.60712(12)	0.3972(2)	0.06107(10)	0.028(1)
C(54)	0.67952(12)	0.23130(18)	0.16460(10)	0.024(1)
C(55)	0.68801(13)	0.7259(2)	0.11497(11)	0.029(1)
C(56)	0.79422(14)	0.5892(2)	0.08850(11)	0.031(1)
C(32)	0.82732(12)	0.88456(17)	0.37363(10)	0.021(1)
H(16)	0.6874	0.3934	0.5232	0.023
H(15)	0.8176	0.3979	0.6300	0.024
			Continue	ed on next page

atom	X	y	X	U(eq)
H(14)	0.9405	0.4693	0.6201	0.024
H(13)	0.9341	0.5183	0.5034	0.021
H(23)	0.9295	0.3266	0.4380	0.020
H(24)	1.0159	0.2070	0.3985	0.025
H(25)	0.9979	0.2233	0.2746	0.026
H(26)	0.8848	0.3495	0.1889	0.023
H(33A)	0.9110	0.8966	0.2466	0.036
H(33B)	0.8822	1.0210	0.2803	0.036
H(33C)	0.8126	0.9154	0.2288	0.036
Н	0.5830(18)	0.489(2)	0.2091(16)	0.062(8)
H(34A)	1.0125	0.7999	0.3662	0.041
H(34B)	0.9891	0.7968	0.4358	0.041
H(34C)	1.0014	0.9358	0.4027	0.041
H(35A)	0.7459	1.0189	0.2974	0.045
H(35B)	0.7028	0.9426	0.3430	0.045
H(35C)	0.7149	0.8685	0.2768	0.045
H(36A)	0.8810	1.0640	0.4205	0.048
H(36B)	0.9178	0.9427	0.4779	0.048
H(36C)	0.8248	1.0007	0.4583	0.048
H(41)	0.5196	0.6189	0.3356	0.021
H(42)	0.5667	0.3059	0.4059	0.023
H(43A)	0.5056	0.6442	0.4463	0.037
H(43B)	0.5890	0.5560	0.4911	0.037
H(43C)	0.5048	0.4896	0.4278	0.037
H(44A)	0.6440	0.7474	0.3649	0.036
H(44B)	0.6728	0.7206	0.4522	0.036
H(44C)	0.5880	0.8039	0.4045	0.036
H(45A)	0.4859	0.3447	0.2469	0.044
H(45B)	0.4515	0.4000	0.3043	0.044
H(45C)	0.4514	0.2439	0.2897	0.044
H(46A)	0.5881	0.1150	0.3478	0.045
H(46B)	0.6769	0.1922	0.3900	0.045
H(46C)	0.6241	0.2035	0.3008	0.045
H(51)	0.7330	0.3323	0.1041	0.024
H(52)	0.8109	0.6783	0.1867	0.025
H(53A)	0.6170	0.4719	0.0342	0.042
H(53B)	0.5673	0.4241	0.0814	0.042
H(53C)	0.5828	0.3227	0.0264	0.042
H(54A)	0.6596	0.1576	0.1288	0.036
H(54B)	0.6370	0.2500	0.1833	0.036
H(54C)	0.7339	0.2073	0.2067	0.036
H(55A)	0.7060	0.8063	0.0979	0.044
~ /			Continue	d on next page

Table S22. – continued from previous page

atom	X	У	X	U(eq)
H(55B)	0.6700	0.7491	0.1540	0.044
H(55C)	0.6401	0.6848	0.0725	0.044
H(56A)	0.7487	0.5418	0.0471	0.046
H(56B)	0.8444	0.5317	0.1119	0.046
H(56C)	0.8096	0.6693	0.0691	0.046

Table S22. – continued from previous page

uispiacein						
atom	U ₁₁	U_{22}	U ₃₃	U_{23}	U ₁₃	U_{12}
Pd	0.0133(1)	0.0165(1)	0.0107(1)	0.0014(1)	0.0061(1)	0.0022(1)
В	0.0128(9)	0.0201(10)	0.0137(9)	0.0014(8)	0.0037(8)	0.0007(8)
С	0.0131(8)	0.0167(8)	0.0131(8)	0.0015(6)	0.0065(7)	0.0012(6)
P(1)	0.0123(2)	0.0167(2)	0.0120(2)	0.0008(2)	0.0062(2)	0.0004(2)
P(2)	0.0173(2)	0.0167(2)	0.0116(2)	0.0005(2)	0.0080(2)	0.0009(2)
C(21)	0.0161(8)	0.0129(8)	0.0183(8)	0.0009(7)	0.0090(7)	-0.0015(6)
C(16)	0.0195(9)	0.0215(9)	0.0187(9)	0.0027(7)	0.0111(7)	0.0000(7)
C(15)	0.0263(10)	0.0203(9)	0.0124(8)	0.0030(7)	0.0085(7)	0.0014(7)
C(14)	0.0206(9)	0.0195(9)	0.0143(8)	-0.0002(7)	0.0027(7)	0.0001(7)
C(13)	0.0163(9)	0.0191(9)	0.0182(9)	-0.0011(7)	0.0075(7)	-0.0026(7)
C(12)	0.0169(8)	0.0107(8)	0.0142(8)	0.0004(6)	0.0075(7)	0.0008(6)
C(11)	0.0150(8)	0.0134(8)	0.0137(8)	0.0001(6)	0.0058(7)	-0.0001(6)
C(22)	0.0120(8)	0.0127(8)	0.0176(8)	-0.0008(6)	0.0074(7)	-0.0039(6)
C(23)	0.0164(8)	0.0160(8)	0.0175(9)	0.0012(7)	0.0067(7)	-0.0023(7)
C(24)	0.0154(9)	0.0160(8)	0.0278(10)	0.0033(7)	0.0075(8)	0.0015(7)
C(25)	0.0196(9)	0.0170(9)	0.0342(11)	-0.0028(8)	0.0170(8)	0.0001(7)
C(26)	0.0220(9)	0.0189(9)	0.0218(9)	-0.0022(7)	0.0139(8)	-0.0031(7)
O(31)	0.0248(6)	0.0152(6)	0.0200(6)	-0.0004(5)	0.0130(5)	-0.0024(5)
C(31)	0.0242(9)	0.0139(8)	0.0212(9)	0.0001(7)	0.0106(8)	-0.0028(7)
O(32)	0.0259(7)	0.0158(6)	0.0211(6)	0.0011(5)	0.0140(5)	-0.0008(5)
C(33)	0.0308(10)	0.0209(9)	0.0245(10)	0.0021(8)	0.0156(8)	-0.0024(8)
C(34)	0.0242(10)	0.0262(10)	0.0303(11)	0.0012(8)	0.0104(9)	-0.0042(8)
C(35)	0.0297(11)	0.0222(10)	0.0436(12)	0.0091(9)	0.0213(10)	0.0060(8)
C(36)	0.0509(13)	0.0228(10)	0.0325(11)	-0.0068(8)	0.0273(11)	-0.0098(9)
C(41)	0.0154(8)	0.0202(9)	0.0167(8)	0.0009(7)	0.0074(7)	0.0036(7)
C(42)	0.0204(9)	0.0187(9)	0.0203(9)	-0.0003(7)	0.0104(8)	-0.0032(7)
C(43)	0.0256(10)	0.0284(10)	0.0271(10)	-0.0005(8)	0.0174(8)	0.0038(8)
C(44)	0.0286(10)	0.0197(9)	0.0269(10)	-0.0011(8)	0.0144(8)	0.0010(8)
C(45)	0.0219(10)	0.0294(10)	0.0308(11)	-0.0033(8)	0.0065(9)	-0.0085(8)
C(46)	0.0338(11)	0.0190(10)	0.0394(12)	-0.0020(8)	0.0183(10)	-0.0002(8)
C(51)	0.0215(9)	0.0228(9)	0.0166(9)	-0.0040(7)	0.0098(7)	-0.0015(7)
C(52)	0.0267(10)	0.0208(9)	0.0165(9)	0.0033(7)	0.0099(8)	-0.0025(7)
C(53)	0.0282(10)	0.0321(11)	0.0200(9)	-0.0051(8)	0.0069(8)	-0.0043(8)
C(54)	0.0270(10)	0.0215(9)	0.0252(10)	-0.0046(8)	0.0133(8)	-0.0049(8)
C(55)	0.0402(12)	0.0250(10)	0.0247(10)	0.0067(8)	0.0158(9)	0.0049(9)
C(56)	0.0384(12)	0.0343(11)	0.0300(11)	0.0079(9)	0.0242(10)	0.0011(9)
C(32)	0.0271(10)	0.0143(8)	0.0237(9)	0.0014(7)	0.0137(8)	-0.0025(7)

Table S23. Anisotropic displacement parameters (Å²) for [PC(Bpin)P]PdH (9). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U₁₁ + ... + 2hka^{*}b^{*}U₁₂].

atom – atom	distance	atom – atom	distance
Pd-C	2.1809(17)	Pd-P(1)	2.2524(4)
Pd-P(2)	2.2754(4)	Pd-H	1.58(3)
B - O(32)	1.383(2)	B - O(31)	1.387(2)
B-C	1.546(2)	C - C(22)	1.514(2)
C - C(12)	1.523(2)	P(1) - C(11)	1.8200(17)
P(1) - C(42)	1.8408(17)	P(1) - C(41)	1.8526(17)
P(2) - C(21)	1.8285(17)	P(2) - C(52)	1.8529(18)
P(2) - C(51)	1.8555(18)	C(21) - C(26)	1.398(2)
C(21) - C(22)	1.418(2)	C(16) - C(15)	1.381(2)
C(16) - C(11)	1.400(2)	C(16) - H(16)	0.9500
C(15) - C(14)	1.387(3)	C(15) - H(15)	0.9500
C(14) - C(13)	1.386(2)	C(14) - H(14)	0.9500
C(13) - C(12)	1.402(2)	C(13) - H(13)	0.9500
C(12) - C(11)	1.407(2)	C(22) - C(23)	1.403(2)
C(23) - C(24)	1.386(2)	C(23) - H(23)	0.9500
C(24) - C(25)	1.386(3)	C(24) - H(24)	0.9500
C(25) - C(26)	1.384(3)	C(25) - H(25)	0.9500
C(26) - H(26)	0.9500	O(31) - C(31)	1.457(2)
C(31) - C(33)	1.521(2)	C(31) - C(34)	1.522(3)
C(31) - C(32)	1.551(2)	O(32) - C(32)	1.457(2)
C(33) - H(33A)	0.9800	C(33) - H(33B)	0.9800
C(33) - H(33C)	0.9800	C(34) - H(34A)	0.9800
C(34) - H(34B)	0.9800	C(34) - H(34C)	0.9800
C(35) - C(32)	1.517(3)	C(35) - H(35A)	0.9800
C(35) - H(35B)	0.9800	C(35) - H(35C)	0.9800
C(36) - C(32)	1.516(3)	C(36) - H(36A)	0.9800
C(36) - H(36B)	0.9800	C(36) - H(36C)	0.9800
C(41) - C(43)	1.523(2)	C(41) - C(44)	1.527(2)
C(41) - H(41)	1.0000	C(42) - C(45)	1.526(2)
C(42) - C(46)	1.529(3)	C(42) - H(42)	1.0000
C(43) - H(43A)	0.9800	C(43) - H(43B)	0.9800
C(43) - H(43C)	0.9800	C(44) - H(44A)	0.9800
C(44) - H(44B)	0.9800	C(44) - H(44C)	0.9800
C(45) - H(45A)	0.9800	C(45) - H(45B)	0.9800
C(45) - H(45C)	0.9800	C(46) - H(46A)	0.9800
C(46) - H(46B)	0.9800	C(46) - H(46C)	0.9800
C(51) - C(54)	1.530(2)	C(51) - C(53)	1.532(3)
C(51) - H(51)	1.0000	C(52) - C(55)	1.529(3)
C(52) - C(56)	1.532(3)	C(52) - H(52)	1.0000
C(53)-H(53A)	0.9800	C(53) - H(53B)	0.9800
C(53) - H(53C)	0.9800	C(54) - H(54A)	0.9800
			Continued on next page

 Table S24. Distances [Å] for [PC(Bpin)P]PdH (9).

	1 1 0		
atom – atom	distance	atom – atom	distance
C(54)-H(54B)	0.9800	C(54)-H(54C)	0.9800
C(55)-H(55A)	0.9800	C(55) - H(55B)	0.9800
C(55)-H(55C)	0.9800	C(56) - H(56A)	0.9800
C(56)-H(56B)	0.9800	C(56) – H(56C)	0.9800

Table S24. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C-Pd-P(1)	86.23(4)	C - Pd - P(2)	85.66(4)
P(1) - Pd - P(2)	162.648(17)	C-Pd-H	173.4(9)
P(1) - Pd - H	92.9(10)	P(2)-Pd-H	93.4(10)
O(32) - B - O(31)	111.48(15)	O(32) - B - C	123.46(16)
O(31) - B - C	125.04(16)	C(22) - C - C(12)	116.23(13)
C(22) - C - B	112.77(14)	C(12) - C - B	110.26(14)
C(22) - C - Pd	105.09(10)	C(12)-C-Pd	112.22(11)
B-C-Pd	98.80(11)	C(11) - P(1) - C(42)	105.68(8)
C(11) - P(1) - C(41)	106.81(8)	C(42) - P(1) - C(41)	104.70(8)
C(11) - P(1) - Pd	103.23(5)	C(42) - P(1) - Pd	118.16(6)
C(41) - P(1) - Pd	117.21(6)	C(21) - P(2) - C(52)	108.56(8)
C(21) - P(2) - C(51)	102.96(8)	C(52) - P(2) - C(51)	106.72(8)
C(21) - P(2) - Pd	98.23(5)	C(52) - P(2) - Pd	124.97(6)
C(51) - P(2) - Pd	112.89(6)	C(26) - C(21) - C(22)	120.71(15)
C(26) - C(21) - P(2)	122.59(13)	C(22) - C(21) - P(2)	116.00(12)
C(15) - C(16) - C(11)	121.13(16)	C(15) - C(16) - H(16)	119.4
C(11) - C(16) - H(16)	119.4	C(16) - C(15) - C(14)	119.17(16)
C(16) - C(15) - H(15)	120.4	C(14) - C(15) - H(15)	120.4
C(13) - C(14) - C(15)	119.85(16)	C(13) - C(14) - H(14)	120.1
C(15) - C(14) - H(14)	120.1	C(14) - C(13) - C(12)	122.36(16)
C(14) - C(13) - H(13)	118.8	C(12) - C(13) - H(13)	118.8
C(13) - C(12) - C(11)	116.81(15)	C(13) - C(12) - C	121.05(15)
C(11) - C(12) - C	122.05(15)	C(16) - C(11) - C(12)	120.36(15)
C(16) - C(11) - P(1)	123.77(13)	C(12) - C(11) - P(1)	115.72(12)
C(23) - C(22) - C(21)	116.19(15)	C(23) - C(22) - C	123.84(15)
C(21) - C(22) - C	119.93(14)	C(24) - C(23) - C(22)	122.25(16)
C(24) - C(23) - H(23)	118.9	C(22) - C(23) - H(23)	118.9
C(23) - C(24) - C(25)	120.65(16)	C(23) - C(24) - H(24)	119.7
C(25) - C(24) - H(24)	119.7	C(26) - C(25) - C(24)	118.60(16)
C(26) - C(25) - H(25)	120.7	C(24) - C(25) - H(25)	120.7
C(25) - C(26) - C(21)	121.23(16)	C(25) - C(26) - H(26)	119.4
C(21) - C(26) - H(26)	119.4	B - O(31) - C(31)	107.63(13)
O(31) - C(31) - C(33)	109.08(14)	O(31) - C(31) - C(34)	106.31(14)
C(33) - C(31) - C(34)	109.88(15)	O(31) - C(31) - C(32)	102.41(13)
C(33) - C(31) - C(32)	114.65(15)	C(34) - C(31) - C(32)	113.83(15)
B - O(32) - C(32)	107.41(13)	C(31) - C(33) - H(33A)	109.5
C(31) - C(33) - H(33B)	109.5	H(33A) - C(33) - H(33B)	109.5
C(31) - C(33) - H(33C)	109.5	H(33A) - C(33) - H(33C)	109.5
H(33B) - C(33) - H(33C)	109.5	C(31) - C(34) - H(34A)	109.5
C(31) - C(34) - H(34B)	109.5	H(34A) - C(34) - H(34B)	109.5
C(31) - C(34) - H(34C)	109.5	H(34A) - C(34) - H(34C)	109.5
		Continue	ed on next page

 Table S25. Angles [°] for [PC(Bpin)P]PdH (9).

atom – atom – atom	angle	atom – atom – atom	angle
H(34B) - C(34) - H(34C)	109.5	C(32) - C(35) - H(35A)	109.5
C(32) - C(35) - H(35B)	109.5	H(35A) - C(35) - H(35B)	109.5
C(32) - C(35) - H(35C)	109.5	H(35A) - C(35) - H(35C)	109.5
H(35B) - C(35) - H(35C)	109.5	C(32) - C(36) - H(36A)	109.5
C(32) - C(36) - H(36B)	109.5	H(36A) - C(36) - H(36B)	109.5
C(32) - C(36) - H(36C)	109.5	H(36A) - C(36) - H(36C)	109.5
H(36B) - C(36) - H(36C)	109.5	C(43) - C(41) - C(44)	111.13(15)
C(43) - C(41) - P(1)	115.95(12)	C(44) - C(41) - P(1)	109.18(12)
C(43) - C(41) - H(41)	106.7	C(44) - C(41) - H(41)	106.7
P(1) - C(41) - H(41)	106.7	C(45) - C(42) - C(46)	111.50(16)
C(45) - C(42) - P(1)	110.33(12)	C(46) - C(42) - P(1)	110.34(12)
C(45) - C(42) - H(42)	108.2	C(46) - C(42) - H(42)	108.2
P(1) - C(42) - H(42)	108.2	C(41) - C(43) - H(43A)	109.5
C(41) - C(43) - H(43B)	109.5	H(43A) - C(43) - H(43B)	109.5
C(41) - C(43) - H(43C)	109.5	H(43A) - C(43) - H(43C)	109.5
H(43B) - C(43) - H(43C)	109.5	C(41) - C(44) - H(44A)	109.5
C(41) - C(44) - H(44B)	109.5	H(44A) - C(44) - H(44B)	109.5
C(41) - C(44) - H(44C)	109.5	H(44A) - C(44) - H(44C)	109.5
H(44B) - C(44) - H(44C)	109.5	C(42) - C(45) - H(45A)	109.5
C(42) - C(45) - H(45B)	109.5	H(45A) - C(45) - H(45B)	109.5
C(42) - C(45) - H(45C)	109.5	H(45A) - C(45) - H(45C)	109.5
H(45B) - C(45) - H(45C)	109.5	C(42) - C(46) - H(46A)	109.5
C(42) - C(46) - H(46B)	109.5	H(46A) - C(46) - H(46B)	109.5
C(42) - C(46) - H(46C)	109.5	H(46A) - C(46) - H(46C)	109.5
H(46B) - C(46) - H(46C)	109.5	C(54) - C(51) - C(53)	110.53(15)
C(54) - C(51) - P(2)	108.99(12)	C(53) - C(51) - P(2)	111.79(13)
C(54) - C(51) - H(51)	108.5	C(53) - C(51) - H(51)	108.5
P(2) - C(51) - H(51)	108.5	C(55) - C(52) - C(56)	111.88(15)
C(55) - C(52) - P(2)	111.34(13)	C(56) - C(52) - P(2)	115.58(13)
C(55) - C(52) - H(52)	105.7	C(56) - C(52) - H(52)	105.7
P(2) - C(52) - H(52)	105.7	C(51) - C(53) - H(53A)	109.5
C(51) - C(53) - H(53B)	109.5	H(53A) - C(53) - H(53B)	109.5
C(51) - C(53) - H(53C)	109.5	H(53A) - C(53) - H(53C)	109.5
H(53B) - C(53) - H(53C)	109.5	C(51) - C(54) - H(54A)	109.5
C(51) - C(54) - H(54B)	109.5	H(54A) - C(54) - H(54B)	109.5
C(51) - C(54) - H(54C)	109.5	H(54A) - C(54) - H(54C)	109.5
H(54B) - C(54) - H(54C)	109.5	C(52) - C(55) - H(55A)	109.5
C(52) - C(55) - H(55B)	109.5	H(55A) - C(55) - H(55B)	109.5
C(52) - C(55) - H(55C)	109.5	H(55A) - C(55) - H(55C)	109.5
H(55B) - C(55) - H(55C)	109.5	C(52) - C(56) - H(56A)	109.5
C(52) - C(56) - H(56B)	109.5	H(56A) - C(56) - H(56B)	109.5
C(52) - C(56) - H(56C)	109.5	H(56A) - C(56) - H(56C)	109.5
		Continue	ed on next page

 Table S25. – continued from previous page

ii pievious puge		
angle	atom – atom – atom	angle
109.5	O(32) - C(32) - C(36)	108.66(14)
107.20(14)	C(36) - C(32) - C(35)	110.13(16)
102.39(13)	C(36) - C(32) - C(31)	114.92(15)
112.90(15)		
	angle 109.5 107.20(14) 102.39(13) 112.90(15)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table S25. – continued from previous page

4.6 Crystal data for [PC(H)P]Pd(GeH₂Ph) (10)

Figure S60. Thermal-ellipsoid representation of $[PC(H)P]Pd(GeH_2Ph)$ (10) at 50% probability. Most hydrogen atoms were omitted for clarity.

Identification code:	cc293	
Empirical formula:	$C_{31}H_{44}GeP_2Pd$	
Formula weight:	657.59	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Triclinic	
Space group:	$P\bar{1}$	
Unit cell dimensions:	a = 8.3636(3) Å	$\alpha = 94.2185(11)^{\circ}$
	b = 10.0092(4) Å	$\beta = 93.3363(11)^{\circ}$
	c = 18.4078(7) Å	$\gamma = 100.7761(11)^{\circ}$
Volume:	1505.62(10) Å ³	
Z:	2	
Density (calculated):	$1.451 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (μ):	1.719 mm^{-1}	
F(000):	676	
Crystal size:	$0.09 \times 0.08 \times 0.07 \text{ mm}^3$	
θ range for data collection:	2.08 to 25.00°	
Index ranges:	$-9 \le h \le 9, -11 \le k \le 11, -21 \le l \le 21$	
Reflections collected:	32263	
Independent reflections:	5270 [$R_{int} = 0.0429$]	
Completeness to $\theta = 25.00^{\circ}$:	99.9 %	
Absorption correction:	Semi–empirical from equivalents	
Max. and min. transmission:	0.7457 and 0.6773	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	5270 / 0 / 332	
Goodness-of-fit on F ² :	1.076	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0340, wR_2 = 0.0693$	
R indices (all data):	$R_1 = 0.0412, wR_2 = 0.0725$	
Largest diff. peak and hole:	1.013 and $-1.472 e^{}A^{3}$	

Table S26. Crystal data and structure refinement for $[PC(H)P]Pd(GeH_2Ph)$ (10).

-

Table S27. Atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for [PC(H)P]Pd(GeH₂Ph) (10). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor

atom	X	У	Z	U(eq)
Pd	0.17687(3)	0.89245(3)	0.24157(1)	0.017(1)
Ge	0.15572(5)	0.72582(4)	0.33352(2)	0.019(1)
P(1)	0.18342(12)	1.08788(9)	0.31773(5)	0.019(1)
P(2)	0.21556(11)	0.74690(9)	0.14668(5)	0.016(1)
С	0.1922(4)	1.0386(3)	0.16188(18)	0.020(1)
C(11)	0.3194(5)	1.1615(3)	0.19230(19)	0.021(1)
C(12)	0.3069(4)	1.2119(4)	0.26524(19)	0.021(1)
C(13)	0.4068(5)	1.3332(4)	0.2948(2)	0.025(1)
C(14)	0.5288(5)	1.4000(4)	0.2555(2)	0.031(1)
C(15)	0.5510(5)	1.3448(4)	0.1867(2)	0.030(1)
C(16)	0.4459(5)	1.2288(4)	0.1546(2)	0.025(1)
C(21)	0.2102(4)	0.9855(4)	0.08431(19)	0.019(1)
C(22)	0.2208(4)	0.8487(3)	0.06831(18)	0.017(1)
C(25)	0.2070(4)	1.0175(4)	-0.0442(2)	0.023(1)
C(24)	0.2185(4)	0.8827(4)	-0.06031(19)	0.023(1)
C(23)	0.2239(4)	0.7979(4)	-0.00475(18)	0.020(1)
C(26)	0.2043(4)	1.0683(4)	0.0269(2)	0.023(1)
C(31)	0.2966(5)	1.1184(4)	0.40875(19)	0.023(1)
C(32)	-0.0150(5)	1.1388(4)	0.3338(2)	0.026(1)
C(34)	0.1969(5)	1.0463(4)	0.4666(2)	0.028(1)
C(35)	-0.1238(5)	1.1253(4)	0.2630(2)	0.031(1)
C(36)	0.0016(5)	1.2807(4)	0.3718(2)	0.033(1)
C(41)	0.4172(4)	0.7003(4)	0.1568(2)	0.024(1)
C(42)	0.0729(4)	0.5879(3)	0.1122(2)	0.020(1)
C(43)	0.5425(4)	0.8292(4)	0.1841(2)	0.030(1)
C(44)	0.4670(5)	0.6284(5)	0.0884(2)	0.036(1)
C(45)	-0.0984(4)	0.6186(4)	0.1016(2)	0.030(1)
C(46)	0.0749(5)	0.4698(4)	0.1599(2)	0.034(1)
C(51)	-0.0655(4)	0.6861(3)	0.37003(18)	0.019(1)
C(52)	-0.1896(4)	0.7479(4)	0.3436(2)	0.023(1)
C(53)	-0.3448(5)	0.7226(4)	0.3693(2)	0.031(1)
C(54)	-0.3780(5)	0.6327(4)	0.4221(2)	0.033(1)
C(55)	-0.2571(5)	0.5696(4)	0.4495(2)	0.034(1)
C(56)	-0.1028(5)	0.5959(4)	0.4240(2)	0.026(1)
C(33)	0.4638(5)	1.0795(4)	0.4049(2)	0.031(1)
H(1)	0.187(5)	0.594(4)	0.315(2)	0.043(12)
H(2)	0.260(5)	0.760(4)	0.402(2)	0.038(12)
Н	0.0856	1.0703	0.1606	0.024
H(13)	0.3910	1.3704	0.3423	0.030
			Conti	nued on next page

atom	X	y	X	U(eq)
H(14)	0.5966	1.4829	0.2756	0.037
H(15)	0.6394	1.3869	0.1609	0.036
H(16)	0.4605	1.1947	0.1064	0.030
H(25)	0.2010	1.0753	-0.0826	0.028
H(24)	0.2227	0.8484	-0.1095	0.028
H(23)	0.2296	0.7048	-0.0159	0.025
H(26)	0.1982	1.1615	0.0373	0.028
H(31)	0.3151	1.2187	0.4231	0.028
H(32)	-0.0724	1.0734	0.3667	0.031
H(34A)	0.1001	1.0866	0.4733	0.042
H(34B)	0.2638	1.0571	0.5130	0.042
H(34C)	0.1630	0.9490	0.4507	0.042
H(35A)	-0.0769	1.1943	0.2312	0.046
H(35B)	-0.2331	1.1387	0.2743	0.046
H(35C)	-0.1313	1.0341	0.2382	0.046
H(36A)	0.0629	1.3476	0.3425	0.050
H(36B)	0.0598	1.2848	0.4200	0.050
H(36C)	-0.1071	1.3015	0.3777	0.050
H(41)	0.4134	0.6359	0.1960	0.029
H(42)	0.1059	0.5588	0.0630	0.024
H(43A)	0.6507	0.8058	0.1912	0.046
H(43B)	0.5116	0.8675	0.2305	0.046
H(43C)	0.5453	0.8966	0.1479	0.046
H(44A)	0.3826	0.5483	0.0720	0.054
H(44B)	0.5707	0.5995	0.0994	0.054
H(44C)	0.4796	0.6912	0.0498	0.054
H(45A)	-0.0966	0.6937	0.0702	0.046
H(45B)	-0.1357	0.6446	0.1491	0.046
H(45C)	-0.1729	0.5371	0.0786	0.046
H(46A)	0.0032	0.3874	0.1363	0.051
H(46B)	0.0364	0.4929	0.2077	0.051
H(46C)	0.1865	0.4532	0.1665	0.051
H(52)	-0.1681	0.8094	0.3069	0.028
H(53)	-0.4273	0.7669	0.3505	0.037
H(54)	-0.4839	0.6142	0.4396	0.039
H(55)	-0.2797	0.5079	0.4860	0.041
H(56)	-0.0206	0.5519	0.4435	0.031
H(33A)	0.4504	0.9805	0.3942	0.047
H(33B)	0.5272	1.1071	0.4518	0.047
H(33C)	0.5214	1.1260	0.3662	0.047

Table S27. – continued from previous page

souropie a						
atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pd	0.0242(2)	0.0127(1)	0.0142(1)	0.0014(1)	0.0060(1)	-0.0002(1)
Ge	0.0216(2)	0.0175(2)	0.0187(2)	0.0053(2)	0.0054(2)	0.0043(2)
P(1)	0.0257(5)	0.0164(5)	0.0137(4)	0.0003(4)	0.0036(4)	0.0004(4)
P(2)	0.0156(4)	0.0143(4)	0.0163(4)	-0.0001(3)	0.0022(3)	-0.0003(3)
С	0.0231(19)	0.0178(18)	0.0187(18)	0.0027(15)	0.0036(15)	0.0027(15)
C(11)	0.033(2)	0.0132(18)	0.0202(18)	0.0037(14)	0.0063(16)	0.0077(15)
C(12)	0.027(2)	0.0166(18)	0.0193(18)	0.0025(15)	0.0054(15)	0.0010(15)
C(13)	0.033(2)	0.0185(19)	0.0228(19)	-0.0016(15)	0.0026(17)	0.0021(16)
C(14)	0.031(2)	0.019(2)	0.037(2)	-0.0023(17)	0.0010(18)	-0.0058(17)
C(15)	0.028(2)	0.027(2)	0.034(2)	0.0094(18)	0.0110(18)	0.0009(17)
C(16)	0.032(2)	0.0199(19)	0.0235(19)	0.0061(16)	0.0080(17)	0.0060(16)
C(21)	0.0186(18)	0.0192(19)	0.0184(18)	0.0004(15)	0.0034(14)	-0.0006(15)
C(22)	0.0140(17)	0.0176(18)	0.0190(18)	0.0008(14)	0.0021(14)	-0.0008(14)
C(25)	0.0190(19)	0.029(2)	0.0227(19)	0.0088(16)	0.0043(15)	0.0038(16)
C(24)	0.0216(19)	0.033(2)	0.0150(18)	-0.0011(16)	0.0011(15)	0.0040(16)
C(23)	0.0210(19)	0.0204(19)	0.0188(18)	-0.0048(15)	0.0001(15)	0.0042(15)
C(26)	0.026(2)	0.0198(19)	0.026(2)	0.0041(16)	0.0082(16)	0.0046(16)
C(31)	0.030(2)	0.0223(19)	0.0155(18)	-0.0011(15)	0.0025(15)	0.0012(16)
C(32)	0.030(2)	0.023(2)	0.023(2)	0.0033(16)	0.0039(16)	0.0024(16)
C(34)	0.035(2)	0.030(2)	0.0182(19)	0.0022(16)	0.0019(17)	0.0037(18)
C(35)	0.028(2)	0.033(2)	0.031(2)	0.0032(18)	0.0028(18)	0.0063(18)
C(36)	0.035(2)	0.027(2)	0.040(2)	-0.0039(18)	0.0070(19)	0.0112(18)
C(41)	0.0143(18)	0.033(2)	0.025(2)	0.0042(17)	0.0028(15)	0.0058(16)
C(42)	0.0193(19)	0.0152(18)	0.0251(19)	0.0003(15)	0.0013(15)	0.0010(14)
C(43)	0.0168(19)	0.041(2)	0.030(2)	0.0040(19)	0.0001(16)	-0.0019(17)
C(44)	0.022(2)	0.049(3)	0.040(2)	0.000(2)	0.0027(18)	0.0158(19)
C(45)	0.0152(19)	0.029(2)	0.044(2)	-0.0011(19)	0.0002(17)	0.0002(16)
C(46)	0.036(2)	0.019(2)	0.044(3)	0.0046(18)	-0.006(2)	-0.0035(17)
C(51)	0.026(2)	0.0149(18)	0.0150(17)	-0.0005(14)	0.0043(15)	0.0000(15)
C(52)	0.025(2)	0.0196(19)	0.0225(19)	0.0016(15)	0.0007(16)	0.0012(16)
C(53)	0.024(2)	0.031(2)	0.037(2)	-0.0052(19)	0.0020(18)	0.0035(17)
C(54)	0.027(2)	0.036(2)	0.031(2)	-0.0080(19)	0.0136(18)	-0.0032(18)
C(55)	0.044(3)	0.030(2)	0.025(2)	0.0048(18)	0.0146(19)	-0.0054(19)
C(56)	0.031(2)	0.025(2)	0.0213(19)	0.0053(16)	0.0064(16)	0.0037(17)
C(33)	0.029(2)	0.036(2)	0.028(2)	0.0071(18)	0.0015(17)	0.0055(18)

Table S28. Anisotropic displacement parameters (Å²) for [PC(H)P]Pd(GeH₂Ph) (10). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U₁₁ + ... + 2hka*b*U₁₂].

atom – atom	distance	atom – atom	distance
Pd-C	2.139(3)	Pd-P(2)	2.2685(9)
Pd-P(1)	2.3113(9)	Pd-Ge	2.4531(4)
Ge - C(51)	1.986(4)	Ge-H(1)	1.41(4)
Ge - H(2)	1.47(4)	P(1) - C(12)	1.831(4)
P(1) - C(31)	1.852(4)	P(1) - C(32)	1.858(4)
P(2) - C(22)	1.824(3)	P(2) - C(41)	1.835(4)
P(2) - C(42)	1.847(3)	C - C(21)	1.513(5)
C - C(11)	1.516(5)	С-Н	1.0000
C(11) - C(16)	1.393(5)	C(11) - C(12)	1.416(5)
C(12) - C(13)	1.393(5)	C(13) - C(14)	1.384(5)
C(13) - H(13)	0.9500	C(14) - C(15)	1.380(6)
C(14) - H(14)	0.9500	C(15) - C(16)	1.389(5)
C(15) - H(15)	0.9500	C(16) - H(16)	0.9500
C(21) - C(26)	1.394(5)	C(21) - C(22)	1.400(5)
C(22) - C(23)	1.406(5)	C(25) - C(26)	1.373(5)
C(25) - C(24)	1.383(5)	C(25) - H(25)	0.9500
C(24) - C(23)	1.380(5)	C(24) - H(24)	0.9500
C(23) - H(23)	0.9500	C(26) - H(26)	0.9500
C(31) - C(33)	1.524(5)	C(31) - C(34)	1.531(5)
C(31) - H(31)	1.0000	C(32) - C(36)	1.515(5)
C(32) - C(35)	1.528(5)	C(32) - H(32)	1.0000
C(34) - H(34A)	0.9800	C(34) - H(34B)	0.9800
C(34) - H(34C)	0.9800	C(35) - H(35A)	0.9800
C(35) - H(35B)	0.9800	C(35) - H(35C)	0.9800
C(36) - H(36A)	0.9800	C(36) - H(36B)	0.9800
C(36) - H(36C)	0.9800	C(41) - C(44)	1.522(5)
C(41) - C(43)	1.534(5)	C(41) - H(41)	1.0000
C(42) - C(45)	1.525(5)	C(42) - C(46)	1.526(5)
C(42) - H(42)	1.0000	C(43) - H(43A)	0.9800
C(43) - H(43B)	0.9800	C(43) - H(43C)	0.9800
C(44) - H(44A)	0.9800	C(44) - H(44B)	0.9800
C(44) - H(44C)	0.9800	C(45) - H(45A)	0.9800
C(45) - H(45B)	0.9800	C(45) - H(45C)	0.9800
C(46) - H(46A)	0.9800	C(46) - H(46B)	0.9800
C(46) - H(46C)	0.9800	C(51) - C(52)	1.387(5)
C(51) - C(56)	1.400(5)	C(52) - C(53)	1.392(5)
C(52) - H(52)	0.9500	C(53) - C(54)	1.378(6)
C(53) - H(53)	0.9500	C(54) - C(55)	1.379(6)
C(54) - H(54)	0.9500	C(55) - C(56)	1.384(5)
C(55) - H(55)	0.9500	C(56) - H(56)	0.9500
C(33)-H(33A)	0.9800	C(33) – H(33B)	0.9800

Table S29. Distances [Å] for $[PC(H)P]Pd(GeH_2Ph)$ (10).

Table S30. Angles [°] for $[PC(H)P]Pd(GeH_2Ph)$ (10).

atom – atom – atom	angle	atom – atom – atom	angle
C - Pd - P(2)	84.20(10)	C-Pd-P(1)	80.63(10)
P(2) - Pd - P(1)	162.61(3)	C-Pd-Ge	179.17(10)
P(2) - Pd - Ge	96.34(3)	P(1)-Pd-Ge	98.93(3)
C(51) - Ge - Pd	112.45(10)	C(51) - Ge - H(1)	102.8(17)
Pd-Ge-H(1)	119.2(17)	C(51) - Ge - H(2)	101.9(16)
Pd-Ge-H(2)	118.7(16)	H(1) - Ge - H(2)	99(2)
C(12) - P(1) - C(31)	102.26(17)	C(12) - P(1) - C(32)	110.32(17)
C(31) - P(1) - C(32)	104.11(17)	C(12) - P(1) - Pd	99.10(12)
C(31) - P(1) - Pd	122.39(13)	C(32) - P(1) - Pd	117.20(12)
C(22) - P(2) - C(41)	105.78(16)	C(22) - P(2) - C(42)	102.62(16)
C(41) - P(2) - C(42)	105.64(17)	C(22) - P(2) - Pd	104.10(11)
C(41) - P(2) - Pd	111.36(12)	C(42) - P(2) - Pd	125.47(12)
C(21) - C - C(11)	115.5(3)	C(21)-C-Pd	116.2(2)
C(11)-C-Pd	107.1(2)	C(21) - C - H	105.7
C(11) - C - H	105.7	Pd-C-H	105.7
C(16) - C(11) - C(12)	117.7(3)	C(16) - C(11) - C	125.7(3)
C(12) - C(11) - C	116.6(3)	C(13) - C(12) - C(11)	120.4(3)
C(13) - C(12) - P(1)	125.1(3)	C(11) - C(12) - P(1)	113.3(3)
C(14) - C(13) - C(12)	120.4(3)	C(14) - C(13) - H(13)	119.8
C(12) - C(13) - H(13)	119.8	C(15) - C(14) - C(13)	119.4(4)
C(15) - C(14) - H(14)	120.3	C(13) - C(14) - H(14)	120.3
C(14) - C(15) - C(16)	120.9(4)	C(14) - C(15) - H(15)	119.5
C(16) - C(15) - H(15)	119.5	C(15) - C(16) - C(11)	120.8(3)
C(15) - C(16) - H(16)	119.6	C(11) - C(16) - H(16)	119.6
C(26) - C(21) - C(22)	118.8(3)	C(26) - C(21) - C	120.9(3)
C(22) - C(21) - C	120.2(3)	C(21) - C(22) - C(23)	119.5(3)
C(21) - C(22) - P(2)	115.2(3)	C(23) - C(22) - P(2)	125.1(3)
C(26) - C(25) - C(24)	120.3(3)	C(26) - C(25) - H(25)	119.9
C(24) - C(25) - H(25)	119.9	C(23) - C(24) - C(25)	119.9(3)
C(23) - C(24) - H(24)	120.0	C(25) - C(24) - H(24)	120.0
C(24) - C(23) - C(22)	120.3(3)	C(24) - C(23) - H(23)	119.9
C(22) - C(23) - H(23)	119.9	C(25) - C(26) - C(21)	121.2(3)
C(25) - C(26) - H(26)	119.4	C(21) - C(26) - H(26)	119.4
C(33) - C(31) - C(34)	112.6(3)	C(33) - C(31) - P(1)	110.6(3)
C(34) - C(31) - P(1)	111.5(3)	C(33) - C(31) - H(31)	107.3
C(34) - C(31) - H(31)	107.3	P(1) - C(31) - H(31)	107.3
C(36) - C(32) - C(35)	110.1(3)	C(36) - C(32) - P(1)	113.8(3)
C(35) - C(32) - P(1)	111.5(3)	C(36) - C(32) - H(32)	107.0
C(35) - C(32) - H(32)	107.0	P(1)-C(32)-H(32)	107.0
C(31) - C(34) - H(34A)	109.5	C(31) - C(34) - H(34B)	109.5
H(34A) - C(34) - H(34B)	109.5	C(31) - C(34) - H(34C)	109.5
		Continue	ed on next page

atom – atom – atom	angle	atom – atom – atom	angle
H(34A) - C(34) - H(34C)	109.5	H(34B) - C(34) - H(34C)	109.5
C(32) - C(35) - H(35A)	109.5	C(32) - C(35) - H(35B)	109.5
H(35A) - C(35) - H(35B)	109.5	C(32) - C(35) - H(35C)	109.5
H(35A) - C(35) - H(35C)	109.5	H(35B) - C(35) - H(35C)	109.5
C(32) - C(36) - H(36A)	109.5	C(32) - C(36) - H(36B)	109.5
H(36A) - C(36) - H(36B)	109.5	C(32) - C(36) - H(36C)	109.5
H(36A) - C(36) - H(36C)	109.5	H(36B) - C(36) - H(36C)	109.5
C(44) - C(41) - C(43)	112.0(3)	C(44) - C(41) - P(2)	114.4(3)
C(43) - C(41) - P(2)	108.3(3)	C(44) - C(41) - H(41)	107.3
C(43) - C(41) - H(41)	107.3	P(2) - C(41) - H(41)	107.3
C(45) - C(42) - C(46)	111.1(3)	C(45) - C(42) - P(2)	108.9(2)
C(46) - C(42) - P(2)	114.1(3)	C(45) - C(42) - H(42)	107.5
C(46) - C(42) - H(42)	107.5	P(2) - C(42) - H(42)	107.5
C(41) - C(43) - H(43A)	109.5	C(41) - C(43) - H(43B)	109.5
H(43A) - C(43) - H(43B)	109.5	C(41) - C(43) - H(43C)	109.5
H(43A) - C(43) - H(43C)	109.5	H(43B) - C(43) - H(43C)	109.5
C(41) - C(44) - H(44A)	109.5	C(41) - C(44) - H(44B)	109.5
H(44A) - C(44) - H(44B)	109.5	C(41) - C(44) - H(44C)	109.5
H(44A) - C(44) - H(44C)	109.5	H(44B) - C(44) - H(44C)	109.5
C(42) - C(45) - H(45A)	109.5	C(42) - C(45) - H(45B)	109.5
H(45A) - C(45) - H(45B)	109.5	C(42) - C(45) - H(45C)	109.5
H(45A) - C(45) - H(45C)	109.5	H(45B) - C(45) - H(45C)	109.5
C(42) - C(46) - H(46A)	109.5	C(42) - C(46) - H(46B)	109.5
H(46A) - C(46) - H(46B)	109.5	C(42) - C(46) - H(46C)	109.5
H(46A) - C(46) - H(46C)	109.5	H(46B) - C(46) - H(46C)	109.5
C(52) - C(51) - C(56)	117.1(3)	C(52) - C(51) - Ge	121.2(3)
C(56) - C(51) - Ge	121.7(3)	C(51) - C(52) - C(53)	122.0(4)
C(51) - C(52) - H(52)	119.0	C(53) - C(52) - H(52)	119.0
C(54) - C(53) - C(52)	119.6(4)	C(54) - C(53) - H(53)	120.2
C(52) - C(53) - H(53)	120.2	C(53) - C(54) - C(55)	119.8(4)
C(53) - C(54) - H(54)	120.1	C(55) - C(54) - H(54)	120.1
C(54) - C(55) - C(56)	120.4(4)	C(54) - C(55) - H(55)	119.8
C(56) - C(55) - H(55)	119.8	C(55) - C(56) - C(51)	121.2(4)
C(55) - C(56) - H(56)	119.4	C(51) - C(56) - H(56)	119.4
C(31) - C(33) - H(33A)	109.5	C(31) - C(33) - H(33B)	109.5
H(33A) - C(33) - H(33B)	109.5	C(31) - C(33) - H(33C)	109.5
H(33A) - C(33) - H(33C)	109.5	H(33B) - C(33) - H(33C)	109.5

Table S30. – continued from previous page

4.7 Crystal data for [PC(H)P]Pd(GeHPh₂) (11)

Figure S61. Thermal-ellipsoid representation of $[PC(H)P]Pd(GeHPh_2)$ (11) at 50% probability. Most hydrogen atoms were omitted for clarity.

Identification code:	cc307	
Empirical formula:	$C_{37}H_{48}GeP_2Pd$	
Formula weight:	733.68	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Monoclinic	
Space group:	I2/a	
Unit cell dimensions:	a = 22.9918(15) Å	$\alpha = 90^{\circ}$
	b = 12.0605(7) Å	$\beta = 105.728(4)^{\circ}$
	c = 25.6249(17) Å	$\gamma = 90^{\circ}$
Volume:	6839.6(7) Å ³	
Z:	8	
Density (calculated):	$1.425 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (μ):	1.522 mm^{-1}	
F(000):	3024	
Crystal size:	$0.11 \times 0.07 \times 0.05 \text{ mm}^3$	
θ range for data collection:	1.65 to 25.00°	
Index ranges:	$-27 \le h \le 21, -14 \le k \le 14, -30 \le l \le 30$	
Reflections collected:	48072	
Independent reflections:	$6020 [R_{int} = 0.0538]$	
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.7456 and 0.7094	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	6020 / 0 / 392	
Goodness-of-fit on F ² :	1.052	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0337, wR_2 = 0.0735$	
R indices (all data):	$R_1 = 0.0495, wR_2 = 0.0776$	
Largest diff. peak and hole:	0.744 and $-0.722 \text{ e}^{-} \cdot \text{\AA}^{-3}$	

Table S31. Crystal data and structure refinement for $[PC(H)P]Pd(GeHPh_2)$ (11).

-

Table S32. Atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for [PC(H)P]Pd(GeHPh₂) (11). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor

atom	X	У	Z	U(eq)
Pd	0.09496(1)	0.33779(2)	0.14792(1)	0.024(1)
Ge	0.02419(2)	0.18328(3)	0.13519(1)	0.021(1)
P(1)	0.06050(4)	0.41908(7)	0.21412(4)	0.027(1)
P(2)	0.15294(4)	0.27901(7)	0.09461(4)	0.025(1)
C(11)	0.16439(18)	0.5286(3)	0.21554(17)	0.042(1)
C(12)	0.11754(15)	0.5246(3)	0.24027(14)	0.028(1)
C(13)	0.11887(16)	0.5904(3)	0.28504(14)	0.029(1)
C(14)	0.16924(16)	0.6531(3)	0.30852(15)	0.034(1)
C(15)	0.21830(16)	0.6473(3)	0.28832(15)	0.031(1)
C(16)	0.21587(16)	0.5871(3)	0.24206(16)	0.038(1)
C(21)	0.19990(16)	0.4802(3)	0.13058(15)	0.034(1)
C(22)	0.20819(15)	0.3898(3)	0.10030(14)	0.028(1)
C(23)	0.2504(2)	0.3944(4)	0.07139(19)	0.057(1)
C(24)	0.2838(2)	0.4882(4)	0.07075(19)	0.065(2)
C(25)	0.27287(17)	0.5813(3)	0.09714(15)	0.038(1)
C(26)	0.23173(16)	0.5771(3)	0.12628(16)	0.036(1)
C(32)	-0.01196(15)	0.4914(3)	0.20001(14)	0.032(1)
C(31)	0.06260(16)	0.3244(3)	0.27146(14)	0.029(1)
C(33)	0.12021(17)	0.2555(3)	0.28330(15)	0.040(1)
C(34)	0.05533(19)	0.3772(3)	0.32287(15)	0.040(1)
C(35)	-0.06542(15)	0.4122(3)	0.18853(15)	0.033(1)
C(36)	-0.01628(19)	0.5696(3)	0.15230(16)	0.047(1)
С	0.1463(2)	0.4875(4)	0.15454(19)	0.019(2)
C(3)	0.1787(5)	0.4285(8)	0.1832(4)	0.021(3)
C(41)	0.19345(18)	0.1491(3)	0.11822(19)	0.048(1)
C(42)	0.1220(2)	0.2699(4)	0.02101(16)	0.052(1)
C(43)	0.2194(2)	0.1570(4)	0.1794(2)	0.067(2)
C(44)	0.24107(19)	0.1155(4)	0.0902(2)	0.068(2)
C(45)	0.0849(2)	0.1692(4)	0.00401(19)	0.065(1)
C(46)	0.0867(2)	0.3755(4)	0.00124(18)	0.077(2)
C(51)	0.05544(14)	0.0316(3)	0.13095(14)	0.025(1)
C(52)	0.04290(15)	-0.0311(3)	0.08399(15)	0.031(1)
C(53)	0.06546(18)	-0.1374(3)	0.08373(19)	0.047(1)
C(54)	0.10079(19)	-0.1829(3)	0.1302(2)	0.049(1)
C(55)	0.11379(16)	-0.1239(3)	0.17756(18)	0.041(1)
C(56)	0.09148(15)	-0.0179(3)	0.17774(15)	0.031(1)
C(61)	-0.05226(14)	0.1947(3)	0.07705(13)	0.022(1)
C(62)	-0.06819(16)	0.2912(3)	0.04672(14)	0.029(1)
C(63)	-0.12386(17)	0.3023(3)	0.00912(15)	0.037(1)
			Conti	nued on next page

atom	X	y y	X	U(eq)
C(64)	-0.16496(16)	0.2176(3)	0.00077(16)	0.037(1)
C(65)	-0.15038(16)	0.1213(3)	0.02994(15)	0.036(1)
C(66)	-0.09477(15)	0.1100(3)	0.06745(14)	0.030(1)
H(2)	0.0007(14)	0.169(3)	0.1797(13)	0.032(9)
H(13)	0.0850	0.5923	0.2995	0.035
H(14)	0.1698	0.6998	0.3385	0.040
H(15)	0.2544	0.6851	0.3063	0.037
H(16)	0.2501	0.5856	0.2281	0.045
H(23)	0.2565	0.3312	0.0514	0.069
H(24)	0.3144	0.4885	0.0522	0.078
H(25)	0.2939	0.6482	0.0950	0.045
H(26)	0.2243	0.6421	0.1444	0.044
H(32)	-0.0125	0.5370	0.2325	0.038
H(31)	0.0281	0.2716	0.2588	0.034
H(33A)	0.1215	0.2141	0.2507	0.059
H(33B)	0.1208	0.2035	0.3128	0.059
H(33C)	0.1554	0.3047	0.2940	0.059
H(34A)	0.0224	0.4315	0.3137	0.061
H(34B)	0.0930	0.4146	0.3418	0.061
H(34C)	0.0459	0.3198	0.3464	0.061
H(35A)	-0.1030	0.4547	0.1819	0.050
H(35B)	-0.0617	0.3633	0.2198	0.050
H(35C)	-0.0659	0.3675	0.1565	0.050
H(36A)	-0.0113	0.5272	0.1212	0.070
H(36B)	0.0156	0.6258	0.1624	0.070
H(36C)	-0.0559	0.6060	0.1426	0.070
H(1)	0.1186	0.5449	0.1331	0.023
H(3)	0.2106	0.3796	0.2063	0.026
H(41)	0.1625	0.0886	0.1113	0.058
H(42)	0.1568	0.2667	0.0045	0.062
H(43A)	0.2425	0.0897	0.1929	0.101
H(43B)	0.1863	0.1645	0.1966	0.101
H(43C)	0.2460	0.2217	0.1883	0.101
H(44A)	0.2241	0.1207	0.0508	0.102
H(44B)	0.2539	0.0391	0.1000	0.102
H(44C)	0.2760	0.1652	0.1015	0.102
H(45A)	0.0700	0.1675	-0.0356	0.097
H(45B)	0.0506	0.1702	0.0198	0.097
H(45C)	0.1096	0.1032	0.0166	0.097
H(46A)	0.0719	0.3740	-0.0384	0.115
H(46B)	0.1131	0.4399	0.0125	0.115
H(46C)	0.0523	0.3806	0.0169	0.115
			Cont	inued on next page

Table S32. – continued from previous page

atom	X	y	X	U(eq)
H(52)	0.0183	-0.0005	0.0513	0.037
H(53)	0.0563	-0.1788	0.0510	0.056
H(54)	0.1164	-0.2557	0.1298	0.058
H(55)	0.1380	-0.1558	0.2101	0.049
H(56)	0.1010	0.0227	0.2107	0.037
H(62)	-0.0402	0.3508	0.0519	0.035
H(63)	-0.1336	0.3691	-0.0110	0.044
H(64)	-0.2032	0.2254	-0.0250	0.045
H(65)	-0.1787	0.0621	0.0243	0.044
H(66)	-0.0854	0.0426	0.0871	0.035

Table S32. – continued from previous page

atom	U ₁₁	Um	Ua	U23	<u>U13</u>	U ₁₂
Pd	0.0266(2)	0.0208(1)	0.0266(2)	-0.0088(1)	0.0112(1)	-0.0088(1)
Ge	0.0241(2)	0.0181(2)	0.0217(2)	-0.0030(1)	0.0059(2)	-0.0048(1)
P(1)	0.0304(5)	0.0237(5)	0.0299(5)	-0.0090(4)	0.0136(4)	-0.0086(4)
P(2)	0.0280(5)	0.0215(4)	0.0267(5)	-0.0050(4)	0.0101(4)	-0.0028(4)
C(11)	0.048(2)	0.0267(19)	0.061(3)	-0.0243(19)	0.033(2)	-0.0194(18)
C(12)	0.031(2)	0.0202(17)	0.034(2)	-0.0075(15)	0.0134(17)	-0.0083(15)
C(13)	0.030(2)	0.0233(17)	0.035(2)	-0.0067(15)	0.0114(17)	-0.0014(15)
C(14)	0.039(2)	0.0279(19)	0.032(2)	-0.0102(16)	0.0067(18)	-0.0049(17)
C(15)	0.030(2)	0.0215(18)	0.038(2)	-0.0003(15)	0.0057(17)	-0.0081(15)
C(16)	0.035(2)	0.0222(19)	0.062(3)	-0.0091(18)	0.025(2)	-0.0095(16)
C(21)	0.027(2)	0.041(2)	0.039(2)	-0.0162(18)	0.0155(17)	-0.0127(17)
C(22)	0.030(2)	0.0234(17)	0.033(2)	-0.0008(15)	0.0135(17)	-0.0030(15)
C(23)	0.070(3)	0.047(3)	0.074(3)	-0.034(2)	0.050(3)	-0.026(2)
C(24)	0.085(4)	0.065(3)	0.067(3)	-0.033(3)	0.060(3)	-0.041(3)
C(25)	0.042(2)	0.037(2)	0.032(2)	0.0002(17)	0.0082(19)	-0.0158(18)
C(26)	0.031(2)	0.0285(19)	0.050(2)	-0.0150(17)	0.0117(19)	-0.0069(16)
C(32)	0.035(2)	0.0293(19)	0.033(2)	-0.0067(16)	0.0136(17)	-0.0020(16)
C(31)	0.029(2)	0.0282(19)	0.030(2)	-0.0066(15)	0.0091(16)	-0.0080(15)
C(33)	0.042(2)	0.046(2)	0.030(2)	-0.0013(18)	0.0090(18)	-0.0005(19)
C(34)	0.055(3)	0.035(2)	0.035(2)	-0.0076(18)	0.021(2)	-0.0053(19)
C(35)	0.030(2)	0.034(2)	0.036(2)	-0.0074(17)	0.0098(17)	-0.0020(16)
C(36)	0.059(3)	0.038(2)	0.046(3)	0.0057(19)	0.018(2)	0.005(2)
С	0.026(3)	0.012(2)	0.021(3)	-0.001(2)	0.008(2)	-0.001(2)
C(3)	0.025(6)	0.016(5)	0.020(6)	-0.001(4)	0.001(5)	-0.010(5)
C(41)	0.036(2)	0.028(2)	0.085(4)	-0.001(2)	0.025(2)	-0.0024(17)
C(42)	0.077(3)	0.053(3)	0.027(2)	-0.008(2)	0.017(2)	-0.021(2)
C(43)	0.043(3)	0.074(3)	0.079(4)	0.040(3)	0.006(3)	0.010(2)
C(44)	0.043(3)	0.044(3)	0.122(5)	-0.023(3)	0.032(3)	0.004(2)
C(45)	0.074(3)	0.077(3)	0.045(3)	-0.023(2)	0.019(3)	-0.033(3)
C(46)	0.100(4)	0.071(3)	0.036(3)	0.025(2)	-0.021(3)	-0.035(3)
C(51)	0.0230(18)	0.0211(17)	0.032(2)	-0.0001(15)	0.0111(16)	-0.0061(14)
C(52)	0.030(2)	0.0311(19)	0.033(2)	-0.0067(16)	0.0101(17)	-0.0024(16)
C(53)	0.045(3)	0.037(2)	0.061(3)	-0.021(2)	0.018(2)	-0.0009(19)
C(54)	0.041(2)	0.025(2)	0.083(4)	-0.002(2)	0.022(2)	0.0063(18)
C(55)	0.027(2)	0.040(2)	0.055(3)	0.014(2)	0.0129(19)	0.0074(17)
C(56)	0.028(2)	0.0312(19)	0.035(2)	0.0039(16)	0.0106(17)	-0.0008(16)
C(61)	0.0249(18)	0.0200(16)	0.0229(18)	-0.0041(13)	0.0075(15)	-0.0015(14)
C(62)	0.034(2)	0.0198(17)	0.032(2)	-0.0060(15)	0.0062(17)	-0.0031(15)
C(63)	0.043(2)	0.0275(19)	0.035(2)	-0.0008(16)	0.0027(19)	0.0116(18)
C(64)	0.021(2)	0.047(2)	0.039(2)	-0.0058(19)	0.0015(17)	0.0087(18)
					Continue	ed on next page

Table S33. Anisotropic displacement parameters (Å²) for [PC(H)P]Pd(GeHPh₂) (**11**). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^{*b*}U_{12}]$.

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(65)	0.027(2)	0.042(2)	0.038(2)	-0.0066(18)	0.0057(18)	-0.0108(17)
C(66)	0.031(2)	0.0287(19)	0.028(2)	0.0014(15)	0.0062(16)	-0.0068(16)

Table S33. – continued from previous page

atom – atom	distance	atom – atom	distance
Pd-C	2.139(4)	Pd-C(3)	2.186(9)
Pd - P(2)	2.2655(9)	Pd-P(1)	2.2793(9)
Pd-Ge	2.4369(4)	Ge - C(61)	1.977(3)
Ge - C(51)	1.980(3)	Ge - H(2)	1.40(3)
P(1) - C(12)	1.820(3)	P(1) - C(32)	1.828(4)
P(1) - C(31)	1.851(3)	P(2) - C(22)	1.822(3)
P(2) - C(42)	1.830(4)	P(2) - C(41)	1.839(4)
C(11) - C(16)	1.387(5)	C(11) - C(12)	1.391(5)
C(11) - C(3)	1.548(10)	C(11) - C	1.584(6)
C(12) - C(13)	1.388(5)	C(13) - C(14)	1.377(5)
C(13) - H(13)	0.9500	C(14) - C(15)	1.364(5)
C(14) - H(14)	0.9500	C(15) - C(16)	1.378(5)
C(15) - H(15)	0.9500	C(16) - H(16)	0.9500
C(21) - C(22)	1.380(5)	C(21) - C(26)	1.399(5)
C(21) - C	1.520(6)	C(21) - C(3)	1.673(10)
C(22) - C(23)	1.372(5)	C(23) - C(24)	1.371(5)
C(23) - H(23)	0.9500	C(24) - C(25)	1.369(5)
C(24) - H(24)	0.9500	C(25) - C(26)	1.356(5)
C(25) - H(25)	0.9500	C(26) - H(26)	0.9500
C(32) - C(35)	1.521(5)	C(32) - C(36)	1.526(5)
C(32) - H(32)	1.0000	C(31) - C(34)	1.513(5)
C(31) - C(33)	1.523(5)	C(31) - H(31)	1.0000
C(33) - H(33A)	0.9800	C(33) - H(33B)	0.9800
C(33) - H(33C)	0.9800	C(34) - H(34A)	0.9800
C(34) - H(34B)	0.9800	C(34) - H(34C)	0.9800
C(35) - H(35A)	0.9800	C(35) - H(35B)	0.9800
C(35) - H(35C)	0.9800	C(36) - H(36A)	0.9800
C(36) - H(36B)	0.9800	C(36) - H(36C)	0.9800
C-H(1)	1.0000	C(3) - H(3)	1.0000
C(41) - C(44)	1.519(6)	C(41) - C(43)	1.523(6)
C(41) - H(41)	1.0000	C(42) - C(45)	1.480(6)
C(42) - C(46)	1.522(7)	C(42) - H(42)	1.0000
C(43) - H(43A)	0.9800	C(43) - H(43B)	0.9800
C(43) - H(43C)	0.9800	C(44) - H(44A)	0.9800
C(44) - H(44B)	0.9800	C(44) - H(44C)	0.9800
C(45) - H(45A)	0.9800	C(45) - H(45B)	0.9800
C(45) - H(45C)	0.9800	C(46) - H(46A)	0.9800
C(46) - H(46B)	0.9800	C(46) - H(46C)	0.9800
C(51) - C(52)	1.383(5)	C(51) - C(56)	1.393(5)
C(52) - C(53)	1.383(5)	C(52) - H(52)	0.9500
C(53) – C(54)	1.363(6)	C(53) - H(53)	0.9500
		С	continued on next page

 Table S34. Distances [Å] for [PC(H)P]Pd(GeHPh2) (11).
atom – atom	distance	atom – atom	distance
C(54) - C(55)	1.367(6)	C(54) - H(54)	0.9500
C(55) - C(56)	1.378(5)	C(55) - H(55)	0.9500
C(56) - H(56)	0.9500	C(61) - C(66)	1.389(4)
C(61) - C(62)	1.392(5)	C(62) - C(63)	1.384(5)
C(62) - H(62)	0.9500	C(63) - C(64)	1.368(5)
C(63) - H(63)	0.9500	C(64) - C(65)	1.373(5)
C(64) - H(64)	0.9500	C(65) - C(66)	1.382(5)
C(65) – H(65)	0.9500	C(66) – H(66)	0.9500

Table S34. – continued from previous page

Table S35. Angles $[^{\circ}]$ for $[PC(H)P]Pd(GeHPh_2)$ (11).

atom – atom – atom	angle	atom – atom – atom	angle
C-Pd-C(3)	30.6(3)	C-Pd-P(2)	84.81(12)
C(3) - Pd - P(2)	79.0(3)	C-Pd-P(1)	82.74(12)
C(3) - Pd - P(1)	85.5(3)	P(2) - Pd - P(1)	164.45(3)
C-Pd-Ge	172.05(14)	C(3) - Pd - Ge	156.8(3)
P(2) - Pd - Ge	99.24(2)	P(1)-Pd-Ge	94.27(2)
C(61) - Ge - C(51)	106.54(13)	C(61) - Ge - Pd	118.22(9)
C(51) - Ge - Pd	118.37(9)	C(61) - Ge - H(2)	99.3(13)
C(51) - Ge - H(2)	98.9(13)	Pd-Ge-H(2)	112.2(13)
C(12) - P(1) - C(32)	105.43(16)	C(12) - P(1) - C(31)	106.14(16)
C(32) - P(1) - C(31)	106.12(16)	C(12) - P(1) - Pd	102.35(11)
C(32) - P(1) - Pd	122.70(12)	C(31) - P(1) - Pd	112.71(11)
C(22) - P(2) - C(42)	101.20(17)	C(22) - P(2) - C(41)	108.58(17)
C(42) - P(2) - C(41)	108.0(2)	C(22) - P(2) - Pd	103.50(11)
C(42) - P(2) - Pd	120.85(16)	C(41) - P(2) - Pd	113.36(14)
C(16) - C(11) - C(12)	117.2(3)	C(16) - C(11) - C(3)	112.4(5)
C(12) - C(11) - C(3)	121.4(4)	C(16) - C(11) - C	127.1(3)
C(12) - C(11) - C	114.3(3)	C(13) - C(12) - C(11)	120.7(3)
C(13) - C(12) - P(1)	123.8(3)	C(11) - C(12) - P(1)	115.2(2)
C(14) - C(13) - C(12)	120.1(3)	C(14) - C(13) - H(13)	119.9
C(12) - C(13) - H(13)	119.9	C(15) - C(14) - C(13)	119.4(3)
C(15) - C(14) - H(14)	120.3	C(13) - C(14) - H(14)	120.3
C(14) - C(15) - C(16)	120.5(3)	C(14) - C(15) - H(15)	119.7
C(16) - C(15) - H(15)	119.7	C(15) - C(16) - C(11)	121.3(3)
C(15) - C(16) - H(16)	119.3	C(11) - C(16) - H(16)	119.3
C(22) - C(21) - C(26)	117.4(3)	C(22) - C(21) - C	121.6(3)
C(26) - C(21) - C	118.8(3)	C(22) - C(21) - C(3)	105.9(4)
C(26) - C(21) - C(3)	130.3(4)	C(23) - C(22) - C(21)	119.8(3)
C(23) - C(22) - P(2)	124.4(3)	C(21) - C(22) - P(2)	115.1(3)
C(24) - C(23) - C(22)	121.4(4)	C(24) - C(23) - H(23)	119.3
C(22) - C(23) - H(23)	119.3	C(25) - C(24) - C(23)	119.5(4)
C(25) - C(24) - H(24)	120.3	C(23) - C(24) - H(24)	120.3
C(26) - C(25) - C(24)	119.4(3)	C(26) - C(25) - H(25)	120.3
C(24) - C(25) - H(25)	120.3	C(25) - C(26) - C(21)	122.2(3)
C(25) - C(26) - H(26)	118.9	C(21) - C(26) - H(26)	118.9
C(35) - C(32) - C(36)	111.1(3)	C(35) - C(32) - P(1)	112.6(2)
C(36) - C(32) - P(1)	108.1(3)	C(35) - C(32) - H(32)	108.3
C(36) - C(32) - H(32)	108.3	P(1)-C(32)-H(32)	108.3
C(34) - C(31) - C(33)	110.6(3)	C(34) - C(31) - P(1)	116.5(2)
C(33) - C(31) - P(1)	109.2(2)	C(34) - C(31) - H(31)	106.7
C(33) - C(31) - H(31)	106.7	P(1)-C(31)-H(31)	106.7
C(31) - C(33) - H(33A)	109.5	C(31) - C(33) - H(33B)	109.5
		Continue	ed on next page

atom – atom – atom	angle	atom – atom – atom	angle
H(33A) - C(33) - H(33B)	109.5	C(31)-C(33)-H(33C)	109.5
H(33A) - C(33) - H(33C)	109.5	H(33B) - C(33) - H(33C)	109.5
C(31) - C(34) - H(34A)	109.5	C(31) - C(34) - H(34B)	109.5
H(34A) - C(34) - H(34B)	109.5	C(31) - C(34) - H(34C)	109.5
H(34A) - C(34) - H(34C)	109.5	H(34B) - C(34) - H(34C)	109.5
C(32) - C(35) - H(35A)	109.5	C(32) - C(35) - H(35B)	109.5
H(35A) - C(35) - H(35B)	109.5	C(32) - C(35) - H(35C)	109.5
H(35A) - C(35) - H(35C)	109.5	H(35B) - C(35) - H(35C)	109.5
C(32) - C(36) - H(36A)	109.5	C(32) - C(36) - H(36B)	109.5
H(36A) - C(36) - H(36B)	109.5	C(32) - C(36) - H(36C)	109.5
H(36A) - C(36) - H(36C)	109.5	H(36B) - C(36) - H(36C)	109.5
C(21) - C - C(11)	113.1(4)	C(21) - C - Pd	114.1(3)
C(11) - C - Pd	109.5(3)	C(21) - C - H(1)	106.5
C(11) - C - H(1)	106.5	Pd-C-H(1)	106.5
C(11) - C(3) - C(21)	107.0(6)	C(11) - C(3) - Pd	108.7(6)
C(21) - C(3) - Pd	105.6(5)	C(11) - C(3) - H(3)	111.8
C(21) - C(3) - H(3)	111.8	Pd - C(3) - H(3)	111.8
C(44) - C(41) - C(43)	111.9(4)	C(44) - C(41) - P(2)	115.9(3)
C(43) - C(41) - P(2)	107.9(3)	C(44) - C(41) - H(41)	106.9
C(43) - C(41) - H(41)	106.9	P(2) - C(41) - H(41)	106.9
C(45) - C(42) - C(46)	112.0(4)	C(45) - C(42) - P(2)	112.6(3)
C(46) - C(42) - P(2)	108.4(3)	C(45) - C(42) - H(42)	107.9
C(46) - C(42) - H(42)	107.9	P(2) - C(42) - H(42)	107.9
C(41) - C(43) - H(43A)	109.5	C(41) - C(43) - H(43B)	109.5
H(43A) - C(43) - H(43B)	109.5	C(41) - C(43) - H(43C)	109.5
H(43A) - C(43) - H(43C)	109.5	H(43B) - C(43) - H(43C)	109.5
C(41) - C(44) - H(44A)	109.5	C(41) - C(44) - H(44B)	109.5
H(44A) - C(44) - H(44B)	109.5	C(41) - C(44) - H(44C)	109.5
H(44A) - C(44) - H(44C)	109.5	H(44B) - C(44) - H(44C)	109.5
C(42) - C(45) - H(45A)	109.5	C(42) - C(45) - H(45B)	109.5
H(45A) - C(45) - H(45B)	109.5	C(42) - C(45) - H(45C)	109.5
H(45A) - C(45) - H(45C)	109.5	H(45B) - C(45) - H(45C)	109.5
C(42) - C(46) - H(46A)	109.5	C(42) - C(46) - H(46B)	109.5
H(46A) - C(46) - H(46B)	109.5	C(42) - C(46) - H(46C)	109.5
H(46A) - C(46) - H(46C)	109.5	H(46B) - C(46) - H(46C)	109.5
C(52) - C(51) - C(56)	116.7(3)	C(52) - C(51) - Ge	124.0(3)
C(56) - C(51) - Ge	119.2(2)	C(53) - C(52) - C(51)	121.4(4)
C(53) - C(52) - H(52)	119.3	C(51) - C(52) - H(52)	119.3
C(54) - C(53) - C(52)	120.3(4)	C(54) - C(53) - H(53)	119.9
C(52) - C(53) - H(53)	119.9	C(53) - C(54) - C(55)	120.1(4)
C(53) - C(54) - H(54)	120.0	C(55) - C(54) - H(54)	120.0
C(54) - C(55) - C(56)	119.6(4)	C(54) - C(55) - H(55)	120.2
		Continue	d on next page

Table S35. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(56) - C(55) - H(55)	120.2	C(55) - C(56) - C(51)	121.9(4)
C(55) - C(56) - H(56)	119.0	C(51) - C(56) - H(56)	119.0
C(66) - C(61) - C(62)	116.7(3)	C(66) - C(61) - Ge	121.5(2)
C(62) - C(61) - Ge	121.6(2)	C(63) - C(62) - C(61)	121.6(3)
C(63) - C(62) - H(62)	119.2	C(61) - C(62) - H(62)	119.2
C(64) - C(63) - C(62)	120.4(3)	C(64) - C(63) - H(63)	119.8
C(62) - C(63) - H(63)	119.8	C(63) - C(64) - C(65)	119.3(3)
C(63) - C(64) - H(64)	120.3	C(65) - C(64) - H(64)	120.3
C(64) - C(65) - C(66)	120.3(3)	C(64) - C(65) - H(65)	119.8
C(66) - C(65) - H(65)	119.8	C(65) - C(66) - C(61)	121.7(3)
C(65) - C(66) - H(66)	119.2	C(61) - C(66) - H(66)	119.2

Table S35. – continued from previous page

Figure S62. Thermal-ellipsoid representation of $[PC(H)P]Pd(GePh_3)$ (12) at 50% probability. Most hydrogen atoms were omitted for clarity.

Identification code:	cc294	
Empirical formula:	$C_{43}H_{52}GeP_2Pd$	
Formula weight:	809.78	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Monoclinic	
Space group:	$P2_{1}/c$	
Unit cell dimensions:	a = 11.6399(15) Å	$\alpha = 90^{\circ}$
	b = 19.396(3) Å	$\beta = 105.713(2)^{\circ}$
	c = 17.6306(18) Å	$\gamma = 90^{\circ}$
Volume:	3831.6(8) Å ³	
Z:	4	
Density (calculated):	$1.404 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (μ):	1.366 mm^{-1}	
F(000):	1672	
Crystal size:	$0.09 \times 0.08 \times 0.06 \text{ mm}^3$	
θ range for data collection:	1.59 to 25.00°	
Index ranges:	$-13 \le h \le 13, -23 \le k \le 23, -13 \le l \le 20$	
Reflections collected:	28856	
Independent reflections:	$6706 [R_{int} = 0.1035]$	
Completeness to $\theta = 25.00^{\circ}$:	99.6 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.7454 and 0.5708	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	6706 / 0 / 426	
Goodness-of-fit on F ² :	0.986	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0499, wR_2 = 0.0946$	
R indices (all data):	$R_1 = 0.0976, wR_2 = 0.1041$	
Largest diff. peak and hole:	1.045 and $-1.175 e^{-} \cdot A^{-3}$	

Table S36. Crystal data and structure refinement for $[PC(H)P]Pd(GePh_3)$ (12).

-

Table S37. Atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for [PC(H)P]Pd(GePh₃) (12). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor

atom	X	у	Z	U(eq)
Pd	0.34093(3)	0.53317(2)	0.27519(2)	0.019(1)
P(1)	0.29412(11)	0.43823(8)	0.19210(8)	0.021(1)
Ge	0.13522(4)	0.56408(3)	0.28232(3)	0.018(1)
P(2)	0.44506(11)	0.62511(7)	0.33964(8)	0.021(1)
С	0.5161(4)	0.4907(3)	0.2914(3)	0.020(1)
C(21)	0.6198(4)	0.5327(3)	0.3385(3)	0.022(1)
C(22)	0.6020(4)	0.5999(3)	0.3620(3)	0.021(1)
C(23)	0.6993(4)	0.6402(3)	0.4009(3)	0.026(1)
C(24)	0.8137(4)	0.6133(3)	0.4182(3)	0.025(1)
C(25)	0.8309(4)	0.5459(3)	0.3994(3)	0.029(2)
C(26)	0.7358(4)	0.5058(3)	0.3599(3)	0.026(1)
C(31)	0.1942(4)	0.4471(3)	0.0924(3)	0.029(1)
C(32)	0.2507(4)	0.3565(3)	0.2302(3)	0.026(1)
C(33)	0.2283(5)	0.5111(3)	0.0520(3)	0.043(2)
C(34)	0.0630(4)	0.4467(3)	0.0907(3)	0.031(2)
C(35)	0.3394(5)	0.3383(3)	0.3074(3)	0.035(2)
C(36)	0.2318(5)	0.2964(3)	0.1734(4)	0.039(2)
C(41)	0.4371(4)	0.7028(3)	0.2787(3)	0.024(1)
C(42)	0.4221(4)	0.6517(3)	0.4349(3)	0.024(1)
C(43)	0.4530(5)	0.6817(3)	0.1985(3)	0.037(2)
C(44)	0.3226(4)	0.7433(3)	0.2679(3)	0.029(1)
C(45)	0.4421(4)	0.5887(3)	0.4894(3)	0.030(1)
C(46)	0.4942(5)	0.7138(3)	0.4770(3)	0.036(2)
C(51)	0.0629(4)	0.4756(3)	0.3029(3)	0.020(1)
C(52)	0.1229(4)	0.4326(3)	0.3646(3)	0.020(1)
C(53)	0.0821(5)	0.3666(3)	0.3745(3)	0.027(1)
C(54)	-0.0189(5)	0.3412(3)	0.3224(3)	0.027(1)
C(55)	-0.0817(4)	0.3825(3)	0.2617(3)	0.026(1)
C(56)	-0.0423(4)	0.4483(3)	0.2526(3)	0.020(1)
C(61)	0.0084(4)	0.6095(3)	0.1977(3)	0.019(1)
C(62)	-0.1066(4)	0.6158(3)	0.2079(3)	0.023(1)
C(63)	-0.1972(4)	0.6481(3)	0.1527(3)	0.029(1)
C(64)	-0.1754(5)	0.6765(3)	0.0860(3)	0.029(1)
C(65)	-0.0628(5)	0.6723(3)	0.0752(3)	0.027(1)
C(66)	0.0273(4)	0.6388(3)	0.1300(3)	0.020(1)
C(71)	0.1222(4)	0.6246(3)	0.3713(3)	0.018(1)
C(72)	0.1009(4)	0.6945(3)	0.3603(3)	0.024(1)
C(73)	0.1068(4)	0.7400(3)	0.4215(3)	0.031(1)
C(74)	0.1336(5)	0.7153(3)	0.4980(4)	0.036(2)
			Continu	ed on next page

atom	X	<u>y</u>	X	U(eq)
C(75)	0.1497(4)	0.6453(3)	0.5116(3)	0.031(2)
C(76)	0.1444(4)	0.6004(3)	0.4489(3)	0.026(1)
C(11)	0.5295(4)	0.4640(3)	0.2136(3)	0.024(1)
C(12)	0.4360(4)	0.4241(3)	0.1674(3)	0.023(1)
C(13)	0.4483(5)	0.3909(3)	0.1001(3)	0.033(2)
C(14)	0.5496(5)	0.3999(3)	0.0746(3)	0.039(2)
C(15)	0.6366(5)	0.4434(3)	0.1159(3)	0.036(2)
C(16)	0.6277(4)	0.4744(3)	0.1850(3)	0.031(1)
Н	0.5166	0.4483	0.3238	0.024
H(23)	0.6871	0.6862	0.4156	0.032
H(24)	0.8802	0.6414	0.4429	0.030
H(25)	0.9090	0.5269	0.4139	0.035
H(26)	0.7490	0.4595	0.3469	0.032
H(31)	0.2079	0.4060	0.0617	0.035
H(32)	0.1726	0.3650	0.2420	0.031
H(33A)	0.3130	0.5086	0.0535	0.065
H(33B)	0.2140	0.5526	0.0797	0.065
H(33C)	0.1798	0.5128	-0.0029	0.065
H(34A)	0.0141	0.4439	0.0359	0.046
H(34B)	0.0438	0.4892	0.1147	0.046
H(34C)	0.0464	0.4069	0.1202	0.046
H(35A)	0.3138	0.2960	0.3285	0.053
H(35B)	0.3437	0.3761	0.3451	0.053
H(35C)	0.4182	0.3311	0.2988	0.053
H(36A)	0.1665	0.3071	0.1267	0.058
H(36B)	0.2117	0.2551	0.1991	0.058
H(36C)	0.3051	0.2881	0.1576	0.058
H(41)	0.5052	0.7335	0.3051	0.029
H(42)	0.3360	0.6643	0.4244	0.029
H(43A)	0.3876	0.6511	0.1717	0.056
H(43B)	0.5293	0.6576	0.2060	0.056
H(43C)	0.4523	0.7230	0.1663	0.056
H(44A)	0.3255	0.7847	0.2366	0.044
H(44B)	0.3136	0.7569	0.3195	0.044
H(44C)	0.2546	0.7147	0.2406	0.044
H(45A)	0.3924	0.5504	0.4627	0.045
H(45B)	0.4204	0.6002	0.5378	0.045
H(45C)	0.5263	0.5751	0.5025	0.045
H(46A)	0.4902	0.7513	0.4391	0.054
H(46B)	0.5776	0.7002	0.4994	0.054
H(46C)	0.4606	0.7296	0.5193	0.054
H(52)	0.1937	0.4489	0.4009	0.024
			Cor	ntinued on next page

Table S37. – continued from previous page

	P			
atom	Х	У	Х	U(eq)
H(53)	0.1244	0.3390	0.4175	0.033
H(54)	-0.0452	0.2957	0.3281	0.032
H(55)	-0.1525	0.3656	0.2260	0.032
H(56)	-0.0879	0.4762	0.2110	0.024
H(62)	-0.1223	0.5973	0.2540	0.028
H(63)	-0.2747	0.6509	0.1604	0.035
H(64)	-0.2378	0.6988	0.0478	0.035
H(65)	-0.0470	0.6925	0.0300	0.033
H(66)	0.1041	0.6356	0.1212	0.024
H(72)	0.0813	0.7120	0.3081	0.029
H(73)	0.0925	0.7878	0.4112	0.037
H(74)	0.1410	0.7462	0.5408	0.043
H(75)	0.1644	0.6277	0.5637	0.038
H(76)	0.1560	0.5524	0.4590	0.031
H(13)	0.3863	0.3617	0.0713	0.040
H(14)	0.5586	0.3763	0.0293	0.047
H(15)	0.7041	0.4526	0.0969	0.044
H(16)	0.6906	0.5034	0.2134	0.037

Table S37. – continued from previous page

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pd	0.0082(2)	0.0240(2)	0.0256(2)	-0.0029(2)	0.0058(2)	-0.0005(2)
P(1)	0.0118(6)	0.0291(9)	0.0235(8)	-0.0042(7)	0.0055(6)	-0.0022(6)
Ge	0.0094(3)	0.0228(3)	0.0214(3)	0.0012(3)	0.0055(2)	0.0001(2)
P(2)	0.0103(6)	0.0256(9)	0.0264(9)	-0.0005(7)	0.0051(6)	-0.0002(6)
С	0.017(3)	0.020(3)	0.024(3)	0.000(3)	0.005(2)	0.002(2)
C(21)	0.009(2)	0.034(3)	0.023(3)	0.001(3)	0.005(2)	-0.001(2)
C(22)	0.015(3)	0.022(3)	0.027(3)	0.005(3)	0.006(2)	-0.001(2)
C(23)	0.017(3)	0.035(4)	0.029(3)	0.004(3)	0.008(2)	-0.001(2)
C(24)	0.011(3)	0.038(4)	0.027(3)	0.003(3)	0.007(2)	-0.003(2)
C(25)	0.016(3)	0.048(4)	0.027(3)	0.013(3)	0.010(2)	0.006(3)
C(26)	0.018(3)	0.039(4)	0.026(3)	-0.001(3)	0.011(2)	0.002(2)
C(31)	0.023(3)	0.035(4)	0.033(4)	0.002(3)	0.013(3)	0.001(3)
C(32)	0.020(3)	0.023(4)	0.036(4)	-0.005(3)	0.012(3)	-0.001(2)
C(33)	0.024(3)	0.068(5)	0.038(4)	0.017(4)	0.010(3)	0.006(3)
C(34)	0.020(3)	0.045(4)	0.028(3)	-0.002(3)	0.007(2)	-0.002(3)
C(35)	0.037(3)	0.033(4)	0.037(4)	0.006(3)	0.011(3)	0.000(3)
C(36)	0.029(3)	0.034(4)	0.055(4)	-0.009(3)	0.014(3)	-0.006(3)
C(41)	0.014(3)	0.030(3)	0.027(3)	0.004(3)	0.000(2)	-0.004(2)
C(42)	0.015(3)	0.031(4)	0.027(3)	-0.004(3)	0.006(2)	-0.002(2)
C(43)	0.031(3)	0.053(5)	0.029(4)	0.005(3)	0.009(3)	-0.007(3)
C(44)	0.026(3)	0.026(3)	0.035(4)	0.010(3)	0.008(3)	-0.001(3)
C(45)	0.024(3)	0.041(4)	0.028(4)	0.005(3)	0.010(3)	0.004(3)
C(46)	0.034(3)	0.038(4)	0.037(4)	-0.012(3)	0.011(3)	-0.010(3)
C(51)	0.0130(17)	0.026(2)	0.022(2)	-0.0037(18)	0.0087(15)	0.0031(16)
C(52)	0.0130(17)	0.026(2)	0.022(2)	-0.0037(18)	0.0087(15)	0.0031(16)
C(53)	0.037(3)	0.024(3)	0.024(3)	0.007(3)	0.013(3)	0.004(3)
C(54)	0.031(3)	0.020(3)	0.036(4)	0.002(3)	0.020(3)	-0.009(3)
C(55)	0.020(3)	0.030(4)	0.034(4)	-0.007(3)	0.015(3)	-0.009(3)
C(56)	0.012(2)	0.029(4)	0.023(3)	0.004(2)	0.010(2)	0.005(2)
C(61)	0.018(3)	0.018(3)	0.022(3)	-0.006(2)	0.005(2)	-0.003(2)
C(62)	0.020(3)	0.028(3)	0.022(3)	0.002(3)	0.006(2)	0.004(2)
C(63)	0.013(3)	0.031(4)	0.041(4)	0.000(3)	0.004(3)	0.002(2)
C(64)	0.022(3)	0.026(4)	0.031(4)	0.001(3)	-0.004(3)	0.005(2)
C(65)	0.035(3)	0.027(4)	0.018(3)	0.004(3)	0.005(3)	-0.005(3)
C(66)	0.018(3)	0.022(3)	0.022(3)	-0.003(3)	0.011(2)	-0.004(2)
C(71)	0.010(2)	0.021(3)	0.023(3)	0.003(3)	0.004(2)	0.003(2)
C(72)	0.011(3)	0.033(4)	0.027(3)	0.002(3)	0.006(2)	0.002(2)
C(73)	0.022(3)	0.031(4)	0.039(4)	-0.003(3)	0.006(3)	0.006(3)
C(74)	0.032(3)	0.041(4)	0.035(4)	-0.013(3)	0.011(3)	0.011(3)
C(75)	0.026(3)	0.049(4)	0.021(3)	-0.003(3)	0.010(2)	0.006(3)
					Continue	d on next page

Table S38. Anisotropic displacement parameters (Å²) for [PC(H)P]Pd(GePh₃) (**12**). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U₁₁ + ... + 2hka*b*U₁₂].

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(76)	0.019(3)	0.029(4)	0.034(4)	0.001(3)	0.012(2)	0.006(2)
C(11)	0.013(2)	0.026(3)	0.031(3)	0.001(3)	0.004(2)	0.003(2)
C(12)	0.016(3)	0.035(4)	0.019(3)	-0.003(3)	0.006(2)	0.003(2)
C(13)	0.024(3)	0.045(4)	0.030(4)	-0.017(3)	0.007(3)	0.001(3)
C(14)	0.023(3)	0.067(5)	0.032(4)	-0.013(3)	0.016(3)	0.002(3)
C(15)	0.020(3)	0.063(5)	0.028(4)	0.007(3)	0.010(3)	0.002(3)
C(16)	0.023(3)	0.043(4)	0.030(4)	0.000(3)	0.010(2)	-0.005(3)

Table S38. – continued from previous page

atom – atom	distance	atom – atom	distance
Pd-C	2.145(5)	Pd-P(2)	2.2791(15)
Pd-P(1)	2.3242(15)	Pd-Ge	2.5043(7)
P(1) - C(31)	1.834(6)	P(1) - C(12)	1.839(5)
P(1) - C(32)	1.845(6)	Ge - C(51)	1.989(5)
Ge - C(71)	1.997(5)	Ge - C(61)	1.997(5)
P(2) - C(22)	1.828(5)	P(2) - C(41)	1.838(5)
P(2) - C(42)	1.843(5)	C - C(21)	1.507(7)
C - C(11)	1.513(7)	C-H	1.0000
C(21) - C(22)	1.399(7)	C(21) - C(26)	1.400(6)
C(22) - C(23)	1.393(7)	C(23) - C(24)	1.386(7)
C(23) - H(23)	0.9500	C(24) - C(25)	1.376(7)
C(24) - H(24)	0.9500	C(25) - C(26)	1.378(7)
C(25) - H(25)	0.9500	C(26) - H(26)	0.9500
C(31) - C(34)	1.519(7)	C(31) - C(33)	1.536(8)
C(31) - H(31)	1.0000	C(32) - C(35)	1.511(7)
C(32) - C(36)	1.513(7)	C(32) - H(32)	1.0000
C(33)-H(33A)	0.9800	C(33) - H(33B)	0.9800
C(33) - H(33C)	0.9800	C(34) - H(34A)	0.9800
C(34) - H(34B)	0.9800	C(34) - H(34C)	0.9800
C(35)-H(35A)	0.9800	C(35) - H(35B)	0.9800
C(35) - H(35C)	0.9800	C(36) - H(36A)	0.9800
C(36) - H(36B)	0.9800	C(36) - H(36C)	0.9800
C(41) - C(44)	1.514(7)	C(41) - C(43)	1.532(7)
C(41) - H(41)	1.0000	C(42) - C(45)	1.534(7)
C(42) - C(46)	1.539(7)	C(42) - H(42)	1.0000
C(43) - H(43A)	0.9800	C(43) - H(43B)	0.9800
C(43) - H(43C)	0.9800	C(44) - H(44A)	0.9800
C(44) - H(44B)	0.9800	C(44) - H(44C)	0.9800
C(45) - H(45A)	0.9800	C(45) - H(45B)	0.9800
C(45) - H(45C)	0.9800	C(46) - H(46A)	0.9800
C(46) - H(46B)	0.9800	C(46) - H(46C)	0.9800
C(51) - C(52)	1.398(7)	C(51) - C(56)	1.405(7)
C(52) - C(53)	1.393(7)	C(52) - H(52)	0.9500
C(53) - C(54)	1.372(7)	C(53) - H(53)	0.9500
C(54) - C(55)	1.377(7)	C(54) - H(54)	0.9500
C(55) - C(56)	1.381(7)	C(55) - H(55)	0.9500
C(56)-H(56)	0.9500	C(61) - C(66)	1.393(7)
C(61) - C(62)	1.403(6)	C(62) - C(63)	1.378(7)
C(62) - H(62)	0.9500	C(63) - C(64)	1.383(7)
C(63) - H(63)	0.9500	C(64) - C(65)	1.377(7)
C(64) - H(64)	0.9500	C(65) - C(66)	1.380(7)
			Continued on next page

Table S39. Distances [Å] for [PC(H)P]Pd(GePh₃) (12).

atom – atom	distance	atom – atom	distance
C(65)-H(65)	0.9500	C(66) – H(66)	0.9500
C(71) - C(72)	1.382(7)	C(71) - C(76)	1.403(7)
C(72) - C(73)	1.381(7)	C(72) - H(72)	0.9500
C(73) - C(74)	1.386(8)	C(73) - H(73)	0.9500
C(74) - C(75)	1.383(8)	C(74) - H(74)	0.9500
C(75) - C(76)	1.395(7)	C(75) - H(75)	0.9500
C(76) - H(76)	0.9500	C(11) - C(16)	1.384(7)
C(11) - C(12)	1.403(7)	C(12) - C(13)	1.390(7)
C(13) - C(14)	1.382(7)	C(13) - H(13)	0.9500
C(14) - C(15)	1.367(8)	C(14) - H(14)	0.9500
C(15) - C(16)	1.388(8)	C(15) - H(15)	0.9500
C(16) – H(16)	0.9500		

 Table S39. – continued from previous page

Table S40.	Angles	[°] for	[PC(H)P]P	$d(GePh_3)$	(12).
------------	--------	---------	-----------	-------------	-------

atom – atom – atom	angle	atom – atom – atom	angle
C - Pd - P(2)	82.89(14)	C-Pd-P(1)	80.31(14)
P(2) - Pd - P(1)	159.47(5)	C-Pd-Ge	166.50(14)
P(2) - Pd - Ge	100.04(4)	P(1)-Pd-Ge	99.04(4)
C(31) - P(1) - C(12)	99.5(2)	C(31) - P(1) - C(32)	105.3(2)
C(12) - P(1) - C(32)	108.0(2)	C(31) - P(1) - Pd	120.6(2)
C(12) - P(1) - Pd	101.26(18)	C(32) - P(1) - Pd	119.48(18)
C(51) - Ge - C(71)	103.8(2)	C(51) - Ge - C(61)	104.7(2)
C(71) - Ge - C(61)	97.4(2)	C(51)-Ge-Pd	105.09(13)
C(71) - Ge - Pd	117.19(13)	C(61) - Ge - Pd	126.27(14)
C(22) - P(2) - C(41)	103.6(2)	C(22) - P(2) - C(42)	105.2(2)
C(41) - P(2) - C(42)	107.8(3)	C(22) - P(2) - Pd	105.29(18)
C(41) - P(2) - Pd	114.47(18)	C(42) - P(2) - Pd	118.97(17)
C(21) - C - C(11)	114.9(4)	C(21)-C-Pd	117.2(3)
C(11)-C-Pd	109.8(3)	C(21) - C - H	104.5
C(11) - C - H	104.5	Pd-C-H	104.5
C(22) - C(21) - C(26)	118.5(5)	C(22) - C(21) - C	120.4(4)
C(26) - C(21) - C	121.1(5)	C(23) - C(22) - C(21)	120.2(5)
C(23) - C(22) - P(2)	126.0(4)	C(21) - C(22) - P(2)	113.8(4)
C(24) - C(23) - C(22)	120.1(5)	C(24) - C(23) - H(23)	119.9
C(22) - C(23) - H(23)	119.9	C(25) - C(24) - C(23)	119.9(5)
C(25) - C(24) - H(24)	120.1	C(23) - C(24) - H(24)	120.1
C(24) - C(25) - C(26)	120.6(5)	C(24) - C(25) - H(25)	119.7
C(26) - C(25) - H(25)	119.7	C(25) - C(26) - C(21)	120.6(5)
C(25) - C(26) - H(26)	119.7	C(21) - C(26) - H(26)	119.7
C(34) - C(31) - C(33)	112.2(5)	C(34) - C(31) - P(1)	113.1(4)
C(33) - C(31) - P(1)	110.1(4)	C(34) - C(31) - H(31)	107.0
C(33) - C(31) - H(31)	107.0	P(1) - C(31) - H(31)	107.0
C(35) - C(32) - C(36)	111.0(5)	C(35) - C(32) - P(1)	109.9(4)
C(36) - C(32) - P(1)	115.2(4)	C(35) - C(32) - H(32)	106.7
C(36) - C(32) - H(32)	106.7	P(1) - C(32) - H(32)	106.7
C(31) - C(33) - H(33A)	109.5	C(31) - C(33) - H(33B)	109.5
H(33A) - C(33) - H(33B)	109.5	C(31) - C(33) - H(33C)	109.5
H(33A) - C(33) - H(33C)	109.5	H(33B) - C(33) - H(33C)	109.5
C(31) - C(34) - H(34A)	109.5	C(31) - C(34) - H(34B)	109.5
H(34A) - C(34) - H(34B)	109.5	C(31) - C(34) - H(34C)	109.5
H(34A) - C(34) - H(34C)	109.5	H(34B) - C(34) - H(34C)	109.5
C(32) - C(35) - H(35A)	109.5	C(32) - C(35) - H(35B)	109.5
H(35A) - C(35) - H(35B)	109.5	C(32) - C(35) - H(35C)	109.5
H(35A) - C(35) - H(35C)	109.5	H(35B) - C(35) - H(35C)	109.5
C(32) - C(36) - H(36A)	109.5	C(32) - C(36) - H(36B)	109.5
H(36A) - C(36) - H(36B)	109.5	C(32) - C(36) - H(36C)	109.5
		Continue	ed on next page

atom – atom – atom	angle	atom – atom – atom	angle
H(36A) - C(36) - H(36C)	109.5	H(36B) - C(36) - H(36C)	109.5
C(44) - C(41) - C(43)	110.2(4)	C(44) - C(41) - P(2)	113.8(4)
C(43) - C(41) - P(2)	108.8(4)	C(44) - C(41) - H(41)	108.0
C(43) - C(41) - H(41)	108.0	P(2) - C(41) - H(41)	108.0
C(45) - C(42) - C(46)	110.6(5)	C(45) - C(42) - P(2)	108.3(4)
C(46) - C(42) - P(2)	117.7(4)	C(45) - C(42) - H(42)	106.6
C(46) - C(42) - H(42)	106.6	P(2) - C(42) - H(42)	106.6
C(41) - C(43) - H(43A)	109.5	C(41) - C(43) - H(43B)	109.5
H(43A) - C(43) - H(43B)	109.5	C(41) - C(43) - H(43C)	109.5
H(43A) - C(43) - H(43C)	109.5	H(43B) - C(43) - H(43C)	109.5
C(41) - C(44) - H(44A)	109.5	C(41) - C(44) - H(44B)	109.5
H(44A) - C(44) - H(44B)	109.5	C(41) - C(44) - H(44C)	109.5
H(44A) - C(44) - H(44C)	109.5	H(44B) - C(44) - H(44C)	109.5
C(42) - C(45) - H(45A)	109.5	C(42) - C(45) - H(45B)	109.5
H(45A) - C(45) - H(45B)	109.5	C(42) - C(45) - H(45C)	109.5
H(45A) - C(45) - H(45C)	109.5	H(45B) - C(45) - H(45C)	109.5
C(42) - C(46) - H(46A)	109.5	C(42) - C(46) - H(46B)	109.5
H(46A) - C(46) - H(46B)	109.5	C(42) - C(46) - H(46C)	109.5
H(46A) - C(46) - H(46C)	109.5	H(46B) - C(46) - H(46C)	109.5
C(52) - C(51) - C(56)	115.6(5)	C(52) - C(51) - Ge	120.6(4)
C(56) - C(51) - Ge	123.3(4)	C(53) - C(52) - C(51)	122.0(5)
C(53) - C(52) - H(52)	119.0	C(51) - C(52) - H(52)	119.0
C(54) - C(53) - C(52)	120.3(5)	C(54) - C(53) - H(53)	119.8
C(52) - C(53) - H(53)	119.8	C(53) - C(54) - C(55)	119.4(5)
C(53) - C(54) - H(54)	120.3	C(55) - C(54) - H(54)	120.3
C(54) - C(55) - C(56)	120.3(5)	C(54) - C(55) - H(55)	119.9
C(56) - C(55) - H(55)	119.9	C(55) - C(56) - C(51)	122.3(5)
C(55) - C(56) - H(56)	118.8	C(51) - C(56) - H(56)	118.8
C(66) - C(61) - C(62)	116.9(5)	C(66) - C(61) - Ge	124.3(3)
C(62) - C(61) - Ge	118.7(4)	C(63) - C(62) - C(61)	121.6(5)
C(63) - C(62) - H(62)	119.2	C(61) - C(62) - H(62)	119.2
C(62) - C(63) - C(64)	120.0(5)	C(62) - C(63) - H(63)	120.0
C(64) - C(63) - H(63)	120.0	C(65) - C(64) - C(63)	119.6(5)
C(65) - C(64) - H(64)	120.2	C(63) - C(64) - H(64)	120.2
C(64) - C(65) - C(66)	120.2(5)	C(64) - C(65) - H(65)	119.9
C(66) - C(65) - H(65)	119.9	C(65) - C(66) - C(61)	121.7(5)
C(65) - C(66) - H(66)	119.2	C(61) - C(66) - H(66)	119.2
C(72) - C(71) - C(76)	116.3(5)	C(72) - C(71) - Ge	121.0(4)
C(76) - C(71) - Ge	122.5(4)	C(73) - C(72) - C(71)	123.4(5)
C(73) - C(72) - H(72)	118.3	C(71) - C(72) - H(72)	118.3
C(72) - C(73) - C(74)	119.3(6)	C(72) - C(73) - H(73)	120.4
C(74) - C(73) - H(73)	120.4	C(75) - C(74) - C(73)	119.5(5)
		Continue	d on next page

Table S40. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(75) - C(74) - H(74)	120.2	C(73) - C(74) - H(74)	120.2
C(74) - C(75) - C(76)	120.0(5)	C(74) - C(75) - H(75)	120.0
C(76) - C(75) - H(75)	120.0	C(75) - C(76) - C(71)	121.4(5)
C(75) - C(76) - H(76)	119.3	C(71) - C(76) - H(76)	119.3
C(16) - C(11) - C(12)	117.2(5)	C(16) - C(11) - C	125.4(5)
C(12) - C(11) - C	117.4(4)	C(13) - C(12) - C(11)	120.5(5)
C(13) - C(12) - P(1)	125.3(4)	C(11) - C(12) - P(1)	112.6(4)
C(14) - C(13) - C(12)	120.9(5)	C(14) - C(13) - H(13)	119.5
C(12) - C(13) - H(13)	119.5	C(15) - C(14) - C(13)	118.6(5)
C(15) - C(14) - H(14)	120.7	C(13) - C(14) - H(14)	120.7
C(14) - C(15) - C(16)	120.9(5)	C(14) - C(15) - H(15)	119.5
C(16) - C(15) - H(15)	119.5	C(11) - C(16) - C(15)	121.5(5)
C(11) - C(16) - H(16)	119.2	C(15) - C(16) - H(16)	119.2

Table S40. – continued from previous page

Figure S63. Thermal-ellipsoid representation of $[PC(H)P]Pd(PMe_3)(GeHPh_2) \cdot 0.5C_5H_{12}$ (**13** $\cdot 0.5C_5H_{12}$) at 50% probability. Most hydrogen atoms and the solvent were omitted for clarity.

	0.7.5	
Identification code:	cc275	
Empirical formula:	$\mathrm{C}_{85}\mathrm{H}_{114}\mathrm{Ge}_{2}\mathrm{P}_{6}\mathrm{Pd}_{2}$	
Formula weight:	1679.56	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Monoclinic	
Space group:	$P2_{1}/c$	
Unit cell dimensions:	a = 9.5430(4) Å	$\alpha = 90^{\circ}$
	b = 20.3870(10) Å	$\beta = 99.3602(14)^{\circ}$
	c = 21.3674(11) Å	$\gamma = 90^{\circ}$
Volume:	4101.7(3) Å ³	
Z:	2	
Density (calculated):	$1.360 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (μ):	1.316 mm ⁻¹	
F(000):	1740	
Crystal size:	$0.12 \times 0.09 \times 0.08 \text{ mm}^3$	
θ range for data collection:	1.93 to 25.00°	
Index ranges:	$-11 \le h \le 11, -24 \le k \le 24, -25 \le l \le 25$	
Reflections collected:	98578	
Independent reflections:	7227 [$R_{int} = 0.0462$]	
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.7458 and 0.6908	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	7227 / 0 / 442	
Goodness-of-fit on F ² :	1.062	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0296, wR_2 = 0.0661$	
R indices (all data):	$R_1 = 0.0369, wR_2 = 0.0681$	
Largest diff. peak and hole:	0.761 and $-0.551 e^{-1} \dot{A}^{-3}$	

Table S41. Crystal data and structure refinement for $[PC(H)P]Pd(PMe_3)(GeHPh_2) \cdot 0.5C_5H_{12}$ (13·0.5C₅H₁₂).

atom	X	у	Z	U(eq)
Pd	0.39060(2)	0.85971(1)	0.19690(1)	0.015(1)
Ge	0.39830(3)	0.79238(2)	0.29317(1)	0.022(1)
P(1)	0.42680(7)	0.97796(3)	0.20088(3)	0.018(1)
P(3)	0.61304(8)	0.81877(4)	0.18838(4)	0.025(1)
P(2)	0.24669(8)	0.81122(4)	0.10323(3)	0.023(1)
C(11)	0.1931(3)	0.95042(13)	0.25466(12)	0.019(1)
C(12)	0.2960(3)	0.99844(13)	0.25200(13)	0.021(1)
C(13)	0.2955(3)	1.05516(15)	0.28847(15)	0.032(1)
C(14)	0.1955(4)	1.06328(16)	0.32810(16)	0.040(1)
C(15)	0.0955(4)	1.01549(17)	0.33215(16)	0.039(1)
C(16)	0.0936(3)	0.95982(15)	0.29524(14)	0.028(1)
C(21)	0.0931(3)	0.90973(14)	0.14624(13)	0.020(1)
C(22)	0.1043(3)	0.87207(14)	0.09243(13)	0.024(1)
C(23)	0.0147(3)	0.88494(18)	0.03508(14)	0.034(1)
C(24)	-0.0796(3)	0.93640(19)	0.02990(16)	0.040(1)
C(25)	-0.0872(3)	0.97504(17)	0.08147(16)	0.037(1)
C(26)	-0.0026(3)	0.96193(15)	0.13977(15)	0.027(1)
C(31)	0.7607(3)	0.83655(18)	0.25135(16)	0.038(1)
C(81)	0.0000	1.0000	0.5000	0.081(3)
C(82)	0.1247(10)	0.9855(8)	0.5180(6)	0.102(4)
C(84)	-0.2110(12)	1.0573(4)	0.4993(5)	0.162(4)
C(83)	-0.049(3)	1.0496(13)	0.5191(7)	0.180(12)
C(32)	0.6339(4)	0.73049(16)	0.18152(19)	0.042(1)
С	0.1833(3)	0.89286(13)	0.21004(12)	0.017(1)
C(41)	0.5851(3)	1.02448(14)	0.24120(14)	0.027(1)
C(33)	0.6841(3)	0.84623(17)	0.11840(16)	0.035(1)
C(43)	0.6305(3)	0.99882(16)	0.30876(15)	0.036(1)
C(44)	0.7078(3)	1.02243(16)	0.20422(16)	0.036(1)
C(45)	0.3567(4)	1.10018(15)	0.13565(16)	0.036(1)
C(46)	0.4417(3)	1.00812(16)	0.07363(14)	0.033(1)
C(51)	0.1484(3)	0.73868(15)	0.12805(15)	0.032(1)
C(52)	0.2702(4)	0.79272(17)	0.02012(14)	0.037(1)
C(53)	0.0207(4)	0.71724(19)	0.07968(18)	0.049(1)
C(54)	0.2454(4)	0.68061(16)	0.15130(17)	0.042(1)
C(55)	0.3685(5)	0.73486(19)	0.01586(18)	0.053(1)
C(56)	0.3253(4)	0.85273(19)	-0.01128(15)	0.043(1)
C(61)	0.2199(3)	0.76284(14)	0.32178(13)	0.024(1)
C(62)	0.1658(4)	0.70062(17)	0.30742(17)	0.041(1)
C(63)	0.0435(4)	0.67861(19)	0.32856(19)	0.050(1)
			Cont	inued on next page

Table S42. Atomic coordinates and equivalent isotropic displacement parameters (Å²) for $[PC(H)P]Pd(PMe_3)(GeHPh_2) \cdot 0.5C_5H_{12}$ (**13** \cdot **0.5C** $_5H_{12}$). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor

atom	X	<u>y</u>	X	U(eq)
C(64)	-0.0261(3)	0.71854(19)	0.36455(17)	0.042(1)
C(65)	0.0244(3)	0.78078(18)	0.37959(16)	0.037(1)
C(66)	0.1466(3)	0.80241(15)	0.35833(14)	0.029(1)
C(71)	0.5084(3)	0.82604(18)	0.37222(14)	0.034(1)
C(72)	0.6200(4)	0.7876(2)	0.40476(17)	0.053(1)
C(73)	0.6991(5)	0.8081(3)	0.4606(2)	0.080(1)
C(74)	0.6687(5)	0.8665(3)	0.4848(2)	0.080(1)
C(75)	0.5595(5)	0.9061(3)	0.4551(2)	0.080(1)
C(76)	0.4790(4)	0.8852(2)	0.39767(17)	0.049(1)
C(42)	0.3623(3)	1.02607(14)	0.12759(13)	0.023(1)
H(2)	0.466(3)	0.7282(16)	0.2897(15)	0.038(9)
H(13)	0.3642	1.0884	0.2861	0.038
H(14)	0.1959	1.1021	0.3527	0.048
H(15)	0.0285	1.0208	0.3601	0.047
H(16)	0.0233	0.9273	0.2974	0.034
H(23)	0.0192	0.8578	-0.0007	0.040
H(24)	-0.1391	0.9450	-0.0093	0.048
H(25)	-0.1507	1.0112	0.0776	0.044
H(26)	-0.0104	0.9888	0.1754	0.032
H(31A)	0.8459	0.8138	0.2427	0.057
H(31B)	0.7374	0.8216	0.2920	0.057
H(31C)	0.7783	0.8839	0.2532	0.057
H(32A)	0.5662	0.7141	0.1454	0.063
H(32B)	0.6157	0.7092	0.2205	0.063
H(32C)	0.7309	0.7206	0.1749	0.063
H(1)	0.1356	0.8561	0.2293	0.020
H(41)	0.5563	1.0714	0.2442	0.032
H(33A)	0.6273	0.8276	0.0802	0.053
H(33B)	0.7828	0.8316	0.1215	0.053
H(33C)	0.6803	0.8942	0.1160	0.053
H(43A)	0.6462	0.9514	0.3075	0.054
H(43B)	0.5558	1.0081	0.3340	0.054
H(43C)	0.7187	1.0206	0.3280	0.054
H(44A)	0.7248	0.9770	0.1925	0.054
H(44B)	0.7933	1.0400	0.2305	0.054
H(44C)	0.6845	1.0490	0.1657	0.054
H(45A)	0.3097	1.1201	0.0960	0.054
H(45B)	0.4535	1.1174	0.1463	0.054
H(45C)	0.3032	1.1107	0.1698	0.054
H(46A)	0.3895	1.0248	0.0335	0.049
H(46B)	0.4500	0.9603	0.0712	0.049
H(46C)	0.5368	1.0277	0.0815	0.049
			Cont	inued on next page

Table S42. – continued from previous page

atom	X	y	X	U(eq)
H(51)	0.1080	0.7537	0.1660	0.039
H(52)	0.1750	0.7813	-0.0044	0.044
H(53A)	-0.0386	0.7555	0.0659	0.073
H(53B)	-0.0351	0.6850	0.0992	0.073
H(53C)	0.0539	0.6975	0.0429	0.073
H(54A)	0.2817	0.6609	0.1153	0.063
H(54B)	0.1912	0.6477	0.1708	0.063
H(54C)	0.3251	0.6961	0.1826	0.063
H(55A)	0.3848	0.7299	-0.0280	0.080
H(55B)	0.3247	0.6948	0.0292	0.080
H(55C)	0.4592	0.7425	0.0437	0.080
H(56A)	0.3225	0.8441	-0.0566	0.065
H(56B)	0.4233	0.8618	0.0086	0.065
H(56C)	0.2654	0.8907	-0.0060	0.065
H(62)	0.2134	0.6722	0.2825	0.049
H(63)	0.0085	0.6357	0.3179	0.060
H(64)	-0.1092	0.7034	0.3792	0.051
H(65)	-0.0240	0.8088	0.4044	0.045
H(66)	0.1808	0.8454	0.3691	0.034
H(72)	0.6408	0.7464	0.3875	0.064
H(73)	0.7740	0.7817	0.4820	0.096
H(74)	0.7237	0.8810	0.5234	0.096
H(75)	0.5395	0.9468	0.4733	0.096
H(76)	0.4044	0.9119	0.3766	0.059
H(42)	0.2619	1.0119	0.1134	0.027

Table S42. – continued from previous page

TableS43.Anisotropicdisplacementparameters $(Å^2)$ for $[PC(H)P]Pd(PMe_3)(GeHPh_2) \cdot 0.5C_5H_{12}$ $(\mathbf{13} \cdot 0.5C_5H_{12})$ The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pd	0.0128(1)	0.0159(1)	0.0170(1)	0.0026(1)	0.0032(1)	0.0010(1)
Ge	0.0201(2)	0.0256(2)	0.0199(2)	0.0081(1)	0.0034(1)	0.0036(1)
P(1)	0.0149(3)	0.0173(4)	0.0206(4)	0.0021(3)	0.0034(3)	-0.0019(3)
P(3)	0.0200(4)	0.0238(4)	0.0335(4)	0.0066(3)	0.0106(3)	0.0065(3)
P(2)	0.0275(4)	0.0244(4)	0.0164(4)	-0.0028(3)	0.0031(3)	-0.0061(3)
C(11)	0.0193(14)	0.0218(14)	0.0169(14)	0.0022(11)	0.0025(11)	0.0055(11)
C(12)	0.0233(14)	0.0216(15)	0.0187(14)	0.0022(11)	0.0051(11)	0.0008(11)
C(13)	0.0403(18)	0.0219(16)	0.0335(17)	-0.0036(13)	0.0097(14)	-0.0016(13)
C(14)	0.056(2)	0.0292(18)	0.039(2)	-0.0116(15)	0.0191(17)	0.0054(16)
C(15)	0.043(2)	0.041(2)	0.0374(19)	-0.0034(16)	0.0224(16)	0.0091(16)
C(16)	0.0253(16)	0.0315(17)	0.0292(17)	0.0030(13)	0.0102(13)	0.0041(13)
C(21)	0.0124(13)	0.0249(15)	0.0224(14)	0.0075(12)	0.0026(11)	-0.0053(11)
C(22)	0.0199(14)	0.0306(17)	0.0214(15)	0.0060(12)	0.0014(11)	-0.0090(12)
C(23)	0.0264(16)	0.053(2)	0.0191(15)	0.0085(14)	-0.0030(12)	-0.0113(15)
C(24)	0.0230(16)	0.065(2)	0.0276(18)	0.0249(17)	-0.0062(13)	-0.0074(16)
C(25)	0.0179(15)	0.048(2)	0.044(2)	0.0265(17)	0.0055(14)	0.0047(14)
C(26)	0.0154(14)	0.0328(17)	0.0321(17)	0.0119(13)	0.0041(12)	0.0008(12)
C(31)	0.0183(15)	0.050(2)	0.045(2)	0.0121(17)	0.0039(14)	0.0110(14)
C(81)	0.087(7)	0.052(5)	0.096(8)	-0.007(4)	-0.007(5)	0.018(4)
C(82)	0.035(5)	0.164(13)	0.110(10)	-0.034(9)	0.020(6)	0.031(7)
C(84)	0.217(11)	0.093(6)	0.170(9)	0.040(6)	0.011(8)	0.020(7)
C(83)	0.20(2)	0.29(3)	0.054(8)	-0.025(13)	0.044(11)	-0.16(2)
C(32)	0.042(2)	0.0274(18)	0.062(2)	0.0074(16)	0.0240(18)	0.0126(15)
С	0.0124(12)	0.0189(14)	0.0195(14)	0.0043(11)	0.0031(10)	-0.0006(10)
C(41)	0.0220(15)	0.0219(16)	0.0351(17)	-0.0006(13)	0.0001(13)	-0.0051(12)
C(33)	0.0299(17)	0.040(2)	0.0397(19)	0.0088(15)	0.0187(14)	0.0061(14)
C(43)	0.0302(17)	0.0342(19)	0.0385(19)	0.0016(15)	-0.0077(14)	-0.0096(14)
C(44)	0.0252(16)	0.0346(19)	0.047(2)	0.0042(15)	0.0035(14)	-0.0064(14)
C(45)	0.048(2)	0.0256(17)	0.0349(18)	0.0083(14)	0.0051(15)	0.0095(15)
C(46)	0.0375(18)	0.0377(18)	0.0242(16)	0.0075(14)	0.0079(13)	0.0036(15)
C(51)	0.0410(18)	0.0277(17)	0.0285(17)	-0.0015(13)	0.0051(14)	-0.0135(14)
C(52)	0.047(2)	0.045(2)	0.0187(16)	-0.0100(14)	0.0070(14)	-0.0108(16)
C(53)	0.049(2)	0.048(2)	0.045(2)	-0.0060(18)	-0.0003(17)	-0.0243(18)
C(54)	0.056(2)	0.0277(18)	0.040(2)	0.0005(15)	0.0051(17)	-0.0104(16)
C(55)	0.080(3)	0.047(2)	0.038(2)	-0.0177(18)	0.026(2)	-0.006(2)
C(56)	0.051(2)	0.060(2)	0.0200(16)	0.0005(16)	0.0100(15)	-0.0068(18)
C(61)	0.0242(15)	0.0290(16)	0.0187(14)	0.0111(12)	0.0000(12)	-0.0020(12)
C(62)	0.052(2)	0.0322(19)	0.039(2)	0.0044(15)	0.0121(16)	-0.0102(16)
C(63)	0.052(2)	0.041(2)	0.055(2)	0.0081(19)	0.0078(19)	-0.0250(18)
					Continue	d on next page

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(64)	0.0268(17)	0.057(2)	0.042(2)	0.0242(18)	0.0018(15)	-0.0092(16)
C(65)	0.0265(17)	0.051(2)	0.0345(18)	0.0162(16)	0.0074(14)	0.0047(15)
C(66)	0.0255(15)	0.0319(17)	0.0278(16)	0.0106(13)	0.0026(13)	-0.0008(13)
C(71)	0.0247(16)	0.056(2)	0.0210(16)	0.0085(15)	0.0000(13)	-0.0121(15)
C(72)	0.0283(18)	0.094(3)	0.035(2)	0.017(2)	-0.0024(15)	0.0000(19)
C(73)	0.0682(18)	0.119(3)	0.0460(16)	-0.0077(16)	-0.0107(13)	-0.0269(19)
C(74)	0.0682(18)	0.119(3)	0.0460(16)	-0.0077(16)	-0.0107(13)	-0.0269(19)
C(75)	0.0682(18)	0.119(3)	0.0460(16)	-0.0077(16)	-0.0107(13)	-0.0269(19)
C(76)	0.054(2)	0.062(3)	0.0314(19)	-0.0007(18)	0.0040(17)	-0.027(2)
C(42)	0.0206(14)	0.0229(15)	0.0240(15)	0.0066(12)	0.0038(12)	-0.0010(11)

Table S43. – continued from previous page

atom – atom	distance	atom – atom	distance
Pd-C	2.151(2)	Pd-P(3)	2.3155(7)
Pd-P(1)	2.4349(7)	Pd-P(2)	2.4444(7)
Pd-Ge	2.4642(4)	Ge - C(71)	1.962(3)
Ge - C(61)	1.994(3)	Ge-H(2)	1.47(3)
P(1) - C(12)	1.835(3)	P(1) - C(42)	1.865(3)
P(1) - C(41)	1.871(3)	P(3) - C(32)	1.819(3)
P(3) - C(31)	1.819(3)	P(3) - C(33)	1.827(3)
P(2) - C(22)	1.827(3)	P(2) - C(52)	1.864(3)
P(2) - C(51)	1.873(3)	C(11) - C(12)	1.394(4)
C(11) - C(16)	1.400(4)	C(11)-C	1.505(4)
C(12) - C(13)	1.395(4)	C(13) - C(14)	1.385(4)
C(13) - H(13)	0.9500	C(14) - C(15)	1.376(5)
C(14) - H(14)	0.9500	C(15) - C(16)	1.381(4)
C(15) - H(15)	0.9500	C(16) - H(16)	0.9500
C(21) - C(26)	1.395(4)	C(21) - C(22)	1.401(4)
C(21)-C	1.529(4)	C(22) - C(23)	1.400(4)
C(23) - C(24)	1.375(5)	C(23) - H(23)	0.9500
C(24) - C(25)	1.366(5)	C(24) - H(24)	0.9500
C(25) - C(26)	1.395(4)	C(25) - H(25)	0.9500
C(26) - H(26)	0.9500	C(31) - H(31A)	0.9800
C(31) - H(31B)	0.9800	C(31) - H(31C)	0.9800
C(81) – C(83)#1	1.21(3)	C(81) - C(83)	1.21(3)
C(81) - C(82)	1.226(11)	C(81) - C(82)#1	1.226(10)
C(82) - C(83)1	1.216(18)	C(82) - C(84)#1	1.295(14)
C(84) - C(82)1	1.295(14)	C(84) - C(83)	1.55(3)
C(83) - C(82)1	1.216(18)	C(32) - H(32A)	0.9800
C(32) - H(32B)	0.9800	C(32) - H(32C)	0.9800
C-H(1)	1.0000	C(41) - C(44)	1.516(4)
C(41) - C(43)	1.530(4)	C(41) - H(41)	1.0000
C(33)-H(33A)	0.9800	C(33) - H(33B)	0.9800
C(33) - H(33C)	0.9800	C(43) - H(43A)	0.9800
C(43) - H(43B)	0.9800	C(43) - H(43C)	0.9800
C(44) - H(44A)	0.9800	C(44) - H(44B)	0.9800
C(44) - H(44C)	0.9800	C(45) - C(42)	1.523(4)
C(45) - H(45A)	0.9800	C(45) - H(45B)	0.9800
C(45) - H(45C)	0.9800	C(46) - C(42)	1.524(4)
C(46) - H(46A)	0.9800	C(46) - H(46B)	0.9800
C(46) - H(46C)	0.9800	C(51) - C(53)	1.528(4)
C(51) - C(54)	1.535(5)	C(51) - H(51)	1.0000
C(52) - C(55)	1.518(5)	C(52) - C(56)	1.529(5)
Symmetry transformations us	ed to generate ed	quivalent atoms: #1 -x,-y+2,-	z+1
		Continue	d on next page

 Table S44. Distances [Å] for [PC(H)P]Pd(PMe₃)(GeHPh₂)·0.5C₅H₁₂ (13·0.5C₅H₁₂).

atom – atom	distance	atom – atom	distance
C(52)-H(52)	1.0000	C(53)-H(53A)	0.9800
C(53)-H(53B)	0.9800	C(53)-H(53C)	0.9800
C(54) - H(54A)	0.9800	C(54) - H(54B)	0.9800
C(54) - H(54C)	0.9800	C(55)-H(55A)	0.9800
C(55)-H(55B)	0.9800	C(55)-H(55C)	0.9800
C(56)-H(56A)	0.9800	C(56) - H(56B)	0.9800
C(56)-H(56C)	0.9800	C(61) - C(62)	1.385(4)
C(61) - C(66)	1.388(4)	C(62) - C(63)	1.392(5)
C(62) - H(62)	0.9500	C(63) - C(64)	1.364(5)
C(63)-H(63)	0.9500	C(64) - C(65)	1.377(5)
C(64) - H(64)	0.9500	C(65) - C(66)	1.390(4)
C(65) - H(65)	0.9500	C(66) - H(66)	0.9500
C(71) - C(76)	1.371(5)	C(71) - C(72)	1.411(5)
C(72) - C(73)	1.370(6)	C(72) - H(72)	0.9500
C(73) - C(74)	1.348(7)	C(73) - H(73)	0.9500
C(74) - C(75)	1.388(7)	C(74) - H(74)	0.9500
C(75) - C(76)	1.404(5)	C(75) - H(75)	0.9500
C(76) - H(76)	0.9500	C(42) - H(42)	1.0000
Symmetry transformations us	ed to generate ec	quivalent atoms: #1 -x,-y+2,-	z+1

Table S44. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle	
C-Pd-P(3)	175.99(7)	C-Pd-P(1)	79.20(7)	
P(3) - Pd - P(1)	103.47(3)	C-Pd-P(2)	80.09(7)	
P(3) - Pd - P(2)	100.95(3)	P(1) - Pd - P(2)	119.12(3)	
C-Pd-Ge	88.24(7)	P(3) - Pd - Ge	87.80(2)	
P(1)-Pd-Ge	122.52(2)	P(2) - Pd - Ge	113.25(2)	
C(71) - Ge - C(61)	101.91(12)	C(71) - Ge - Pd	117.57(10)	
C(61) - Ge - Pd	120.88(8)	C(71) - Ge - H(2)	100.3(12)	
C(61) - Ge - H(2)	98.5(12)	Pd-Ge-H(2)	114.2(12)	
C(12) - P(1) - C(42)	102.51(12)	C(12) - P(1) - C(41)	100.77(13)	
C(42) - P(1) - C(41)	104.56(13)	C(12) - P(1) - Pd	98.03(9)	
C(42) - P(1) - Pd	117.76(9)	C(41) - P(1) - Pd	128.12(10)	
C(32) - P(3) - C(31)	100.08(17)	C(32) - P(3) - C(33)	100.20(16)	
C(31) - P(3) - C(33)	101.43(16)	C(32) - P(3) - Pd	118.46(12)	
C(31) - P(3) - Pd	118.66(11)	C(33) - P(3) - Pd	114.89(11)	
C(22) - P(2) - C(52)	102.68(15)	C(22) - P(2) - C(51)	100.10(14)	
C(52) - P(2) - C(51)	104.68(15)	C(22) - P(2) - Pd	97.82(9)	
C(52) - P(2) - Pd	136.30(11)	C(51) - P(2) - Pd	109.14(10)	
C(12) - C(11) - C(16)	118.8(3)	C(12) - C(11) - C	119.6(2)	
C(16) - C(11) - C	121.4(3)	C(11) - C(12) - C(13)	119.5(3)	
C(11) - C(12) - P(1)	114.6(2)	C(13) - C(12) - P(1)	125.8(2)	
C(14) - C(13) - C(12)	120.4(3)	C(14) - C(13) - H(13)	119.8	
C(12) - C(13) - H(13)	119.8	C(15) - C(14) - C(13)	120.5(3)	
C(15) - C(14) - H(14)	119.7	C(13) - C(14) - H(14)	119.7	
C(14) - C(15) - C(16)	119.4(3)	C(14) - C(15) - H(15)	120.3	
C(16) - C(15) - H(15)	120.3	C(15) - C(16) - C(11)	121.3(3)	
C(15) - C(16) - H(16)	119.4	C(11) - C(16) - H(16)	119.4	
C(26) - C(21) - C(22)	118.2(3)	C(26) - C(21) - C	121.7(3)	
C(22) - C(21) - C	120.1(2)	C(23) - C(22) - C(21)	119.9(3)	
C(23) - C(22) - P(2)	125.0(2)	C(21) - C(22) - P(2)	115.0(2)	
C(24) - C(23) - C(22)	120.8(3)	C(24) - C(23) - H(23)	119.6	
C(22) - C(23) - H(23)	119.6	C(25) - C(24) - C(23)	119.7(3)	
C(25) - C(24) - H(24)	120.2	C(23) - C(24) - H(24)	120.2	
C(24) - C(25) - C(26)	120.7(3)	C(24) - C(25) - H(25)	119.6	
C(26) - C(25) - H(25)	119.6	C(21) - C(26) - C(25)	120.6(3)	
C(21) - C(26) - H(26)	119.7	C(25) - C(26) - H(26)	119.7	
P(3) - C(31) - H(31A)	109.5	P(3)-C(31)-H(31B)	109.5	
H(31A) - C(31) - H(31B)	109.5	P(3)-C(31)-H(31C)	109.5	
H(31A) - C(31) - H(31C)	109.5	H(31B) - C(31) - H(31C)	109.5	
C(83)#1 - C(81) - C(83)	180.0(13)	C(83)#1-C(81)-C(82)	59.9(10)	
C(83) - C(81) - C(82)	120.1(10)	C(83)#1 - C(81) - C(82)#1	120.1(10)	
Symmetry transformations used to generate equivalent atoms: $\#1 - x, -y+2, -z+1$				
Continued on next page				

Table S45. Angles [°] for $[PC(H)P]Pd(PMe_3)(GeHPh_2) \cdot 0.5C_5H_{12}$ (13.0.5C₅H₁₂).

atom – atom – atom	angle	atom – atom – atom	angle	
C(83)-C(81)-C(82)#1	59.9(10)	C(82)-C(81)-C(82)#1	180.000(4)	
C(83)#1 - C(82) - C(81)	59.4(16)	C(83)#1 - C(82) - C(84)#1	75.9(17)	
C(81) - C(82) - C(84)#1	134.7(13)	C(82)#1 - C(84) - C(83)	49.7(10)	
C(81) - C(83) - C(82)#1	60.7(12)	C(81) - C(83) - C(84)	114.6(13)	
C(82)#1- $C(83)$ - $C(84)$	54.3(12)	P(3) - C(32) - H(32A)	109.5	
P(3) - C(32) - H(32B)	109.5	H(32A) - C(32) - H(32B)	109.5	
P(3) - C(32) - H(32C)	109.5	H(32A) - C(32) - H(32C)	109.5	
H(32B) - C(32) - H(32C)	109.5	C(11) - C - C(21)	111.0(2)	
C(11)-C-Pd	111.33(17)	C(21) - C - Pd	110.53(17)	
C(11) - C - H(1)	108.0	C(21) - C - H(1)	108.0	
Pd-C-H(1)	108.0	C(44) - C(41) - C(43)	111.0(3)	
C(44) - C(41) - P(1)	112.4(2)	C(43) - C(41) - P(1)	110.2(2)	
C(44) - C(41) - H(41)	107.7	C(43) - C(41) - H(41)	107.7	
P(1) - C(41) - H(41)	107.7	P(3) - C(33) - H(33A)	109.5	
P(3) - C(33) - H(33B)	109.5	H(33A) - C(33) - H(33B)	109.5	
P(3) - C(33) - H(33C)	109.5	H(33A) - C(33) - H(33C)	109.5	
H(33B) - C(33) - H(33C)	109.5	C(41) - C(43) - H(43A)	109.5	
C(41) - C(43) - H(43B)	109.5	H(43A) - C(43) - H(43B)	109.5	
C(41) - C(43) - H(43C)	109.5	H(43A) - C(43) - H(43C)	109.5	
H(43B) - C(43) - H(43C)	109.5	C(41) - C(44) - H(44A)	109.5	
C(41) - C(44) - H(44B)	109.5	H(44A) - C(44) - H(44B)	109.5	
C(41) - C(44) - H(44C)	109.5	H(44A) - C(44) - H(44C)	109.5	
H(44B) - C(44) - H(44C)	109.5	C(42) - C(45) - H(45A)	109.5	
C(42) - C(45) - H(45B)	109.5	H(45A) - C(45) - H(45B)	109.5	
C(42) - C(45) - H(45C)	109.5	H(45A) - C(45) - H(45C)	109.5	
H(45B) - C(45) - H(45C)	109.5	C(42) - C(46) - H(46A)	109.5	
C(42) - C(46) - H(46B)	109.5	H(46A) - C(46) - H(46B)	109.5	
C(42) - C(46) - H(46C)	109.5	H(46A) - C(46) - H(46C)	109.5	
H(46B) - C(46) - H(46C)	109.5	C(53) - C(51) - C(54)	111.8(3)	
C(53) - C(51) - P(2)	114.5(2)	C(54) - C(51) - P(2)	113.4(2)	
C(53) - C(51) - H(51)	105.4	C(54) - C(51) - H(51)	105.4	
P(2) - C(51) - H(51)	105.4	C(55) - C(52) - C(56)	109.6(3)	
C(55) - C(52) - P(2)	112.7(2)	C(56) - C(52) - P(2)	111.1(2)	
C(55) - C(52) - H(52)	107.8	C(56) - C(52) - H(52)	107.8	
P(2) - C(52) - H(52)	107.8	C(51) - C(53) - H(53A)	109.5	
C(51) - C(53) - H(53B)	109.5	H(53A) - C(53) - H(53B)	109.5	
C(51) - C(53) - H(53C)	109.5	H(53A) - C(53) - H(53C)	109.5	
H(53B) - C(53) - H(53C)	109.5	C(51) - C(54) - H(54A)	109.5	
C(51) - C(54) - H(54B)	109.5	H(54A) - C(54) - H(54B)	109.5	
C(51) - C(54) - H(54C)	109.5	H(54A) - C(54) - H(54C)	109.5	
H(54B) - C(54) - H(54C)	109.5	C(52) - C(55) - H(55A)	109.5	
Symmetry transformations used to generate equivalent atoms: $\#1 - x, -y+2, -z+1$				
Continued on next page				

Table S45. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle	
C(52)-C(55)-H(55B)	109.5	H(55A) - C(55) - H(55B)	109.5	
C(52) - C(55) - H(55C)	109.5	H(55A) - C(55) - H(55C)	109.5	
H(55B) - C(55) - H(55C)	109.5	C(52) - C(56) - H(56A)	109.5	
C(52) - C(56) - H(56B)	109.5	H(56A) - C(56) - H(56B)	109.5	
C(52) - C(56) - H(56C)	109.5	H(56A) - C(56) - H(56C)	109.5	
H(56B) - C(56) - H(56C)	109.5	C(62) - C(61) - C(66)	117.0(3)	
C(62) - C(61) - Ge	121.0(2)	C(66) - C(61) - Ge	122.0(2)	
C(61) - C(62) - C(63)	121.7(3)	C(61) - C(62) - H(62)	119.2	
C(63) - C(62) - H(62)	119.2	C(64) - C(63) - C(62)	120.1(3)	
C(64) - C(63) - H(63)	120.0	C(62) - C(63) - H(63)	120.0	
C(63) - C(64) - C(65)	119.8(3)	C(63) - C(64) - H(64)	120.1	
C(65) - C(64) - H(64)	120.1	C(64) - C(65) - C(66)	119.8(3)	
C(64) - C(65) - H(65)	120.1	C(66) - C(65) - H(65)	120.1	
C(61) - C(66) - C(65)	121.7(3)	C(61) - C(66) - H(66)	119.1	
C(65) - C(66) - H(66)	119.1	C(76) - C(71) - C(72)	118.7(3)	
C(76) - C(71) - Ge	122.2(3)	C(72) - C(71) - Ge	119.0(3)	
C(73) - C(72) - C(71)	121.6(5)	C(73) - C(72) - H(72)	119.2	
C(71) - C(72) - H(72)	119.2	C(74) - C(73) - C(72)	118.7(5)	
C(74) - C(73) - H(73)	120.6	C(72) - C(73) - H(73)	120.6	
C(73) - C(74) - C(75)	122.1(5)	C(73) - C(74) - H(74)	119.0	
C(75) - C(74) - H(74)	119.0	C(74) - C(75) - C(76)	119.1(5)	
C(74) - C(75) - H(75)	120.4	C(76) - C(75) - H(75)	120.4	
C(71) - C(76) - C(75)	119.7(4)	C(71) - C(76) - H(76)	120.1	
C(75) - C(76) - H(76)	120.1	C(45) - C(42) - C(46)	110.8(2)	
C(45) - C(42) - P(1)	116.1(2)	C(46) - C(42) - P(1)	111.8(2)	
C(45) - C(42) - H(42)	105.8	C(46) - C(42) - H(42)	105.8	
P(1) - C(42) - H(42)	105.8			
Symmetry transformations used to generate equivalent atoms: $\#1 - x, -y+2, -z+1$				

Table S45. – continued from previous page