Very Strong -N-X⁺•••-O-N⁺ Halogen Bonds

Rakesh Puttreddy, Ondřej Jurček, Sandip Bhowmik, Toni Mäkelä and Kari Rissanen*

University of Jyvaskyla, Department of Chemistry, P. O. Box 35, FI-40014 University of Jyvaskyla, Finland

Supporting Information

Table of Contents

I General Information	2
II Solution studies	2
III X-ray crystallography	55
IV References	56

I General Information

All the solvents used for crystal growth were reagent grade and were used as received. Pyridine *N*-oxide (1), 2-methylpyridine *N*-oxide (2), 4-phenylpyridine *N*-oxide (3) and *N*-iodosuccinimide (NIS) were purchased from Sigma Aldrich while saccharin (NHSac), and *N*-iodosaccharin (NISac) from TCI Europe. 2-Methyl-4-nitropyridine *N*-oxide (4) was synthesised as reported.¹ The solvents used for ¹H NMR and ¹⁵N NMR analysis were purchased from Sigma Aldrich.

II Solution Studies

All titrations were performed in either CDCl₃ or acetone-d₆. Around 10 mM sample solution (volume 600 μ l) of NIS and NISac was prepared in NMR tube, and all titrations were performed with minimum 20 data points up to maximum 4.5 equivalents of the guest added, using around 0.15 M stock solutions of **1**, **2**, **3**, and **4** dissolved in CDCl₃ or acetone-d₆. All the titration experiments were carried out in CDCl₃ or acetone-d₆ at 298 K either using Bruker Avance 400 MHz spectrometer or Bruker Avance III 500 MHz spectrometer. Titration data was fitted into 1:1 binding model with HypNMR2008,² supported by Job plot analysis. The chemical shifts of aliphatic Ha in NIS, and aromatic Ha and Hb in NISac were used to calculate the binding constants.

All the ¹⁵N NMR spectra were obtained by mixing 1:1 ratio of respective XB donor and acceptor molecules in CDCl₃. All the ¹⁵N NMR spectra were recorded on a Bruker Avance III 500 MHz spectrometer. External ¹⁵N reference used was 90% ¹⁵N enriched nitromethane in a sealed tube. The ¹⁵N spectra could be measured with one scan/increment. The signal was calibrated to 0 ppm, and the same parameters were used then to measure the samples. Only number of scans and receiver gain were changed. In some cases the sealed internal reference tube was measured inside sample, but the signal was too strong from enriched reference, and the smaller signal from sample was too weak. The measured spectral width in ¹⁵N was 800 ppm (40542 Hz). With 256 increments it gives 316.7 Hz/pt resolution, data was zero filled to give a nominal 1.56 ppm/pt spectral resolution. Sine bell window function with zero shifts was used for apodization before Fourier transformation, and all the measurements were made with 64 or 128 scans.

1. ¹H NMR titration experiments for 1•NIS in CDCl₃

Figure S1. ¹H NMR spectra for titration of NIS with 1 in CDCl₃ at 298 K.

Figure S2. Graph showing the fitting curve between the calculated and observed chemical shifts of Ha for titration 1•NIS (in CDCl₃ at 298 K, $Ka = 660 \pm 14 \text{ M}^{-1}$).

Species	Log beta	NIS	1	
1	2,8194	1	1	refine

Species c	Species concentrations/mol dm ⁻³				
Point	T(NIS)	T(1)	F(NIS)	F(1)	Species 1
1	1,4816e-02	0,0000e00	1,4816e-02	5,1912e-90	5,0745e-89
2	1,4741e-02	7,3856e-04	1,4074e-02	7,1803e-05	6,6675e-04
3	1,4667e-02	1,4697e-03	1,3347e-02	1,4988e-04	1,3198e-03
4	1,4593e-02	2,1935e-03	1,2635e-02	2,3495e-04	1,9585e-03
5	1,4521e-02	2,9101e-03	1,1939e-02	3,2783e-04	2,5822e-03

6	1,4449e-02	3,6195e-03	1,1259e-02	4,2946e-04	3,1901e-03
7	1,4377e-02	4,3220e-03	1,0596e-02	5,4086e-04	3,7812e-03
8	1,4307e-02	5,0176e-03	9,9524e-03	6,6315e-04	4,3545e-03
9	1,4237e-02	5,7064e-03	9,3282e-03	7,9760e-04	4,9088e-03
10	1,4168e-02	6,3885e-03	8,7249e-03	9,4555e-04	5,4430e-03
11	1,4099e-02	7,0640e-03	8,1437e-03	1,1084e-03	5,9556e-03
12	1,4031e-02	7,7330e-03	7,5862e-03	1,2877e-03	6,4453e-03
13	1,3898e-02	9,0518e-03	6,5473e-03	1,7016e-03	7,3503e-03
14	1,3766e-02	1,0346e-02	5,6185e-03	2,1980e-03	8,1478e-03
15	1,3449e-02	1,3476e-02	3,8088e-03	3,8362e-03	9,6399e-03
16	1,3145e-02	1,6465e-02	2,6586e-03	5,9785e-03	1,0487e-02
17	1,2856e-02	1,9323e-02	1,9598e-03	8,4268e-03	1,0896e-02
18	1,2578e-02	2,2057e-02	1,5231e-03	1,1002e-02	1,1055e-02
19	1,2312e-02	2,4675e-02	1,2348e-03	1,3597e-02	1,1078e-02
20	1,2058e-02	2,7185e-02	1,0339e-03	1,6161e-02	1,1024e-02
21	1,1959e-02	2,8161e-02	9,6995e-04	1,7172e-02	1,0989e-02
22	1,1862e-02	2,9120e-02	9,1319e-04	1,8172e-02	1,0948e-02

Measured chemical shifts

Point	На	Point	На
1	3,0298e00	1	3,0306e00
2	3,0203e00	2	3,0203e00
3	3,0101e00	3	3,0102e00
4	3,0008e00	4	3,0002e00
5	2,9902e00	5	2,9903e00
6	2,9811e00	6	2,9806e00
7	2,9716e00	7	2,9710e00
8	2,9615e00	8	2,9616e00
9	2,9525e00	9	2,9525e00
10	2,9437e00	10	2,9436e00
11	2,9348e00	11	2,9349e00
12	2,9261e00	12	2,9265e00
13	2,9106e00	13	2,9108e00
14	2,8965e00	14	2,8965e00
15	2,8678e00	15	2,8682e00
16	2,8497e00	16	2,8499e00
17	2,8394e00	17	2,8386e00
18	2,8318e00	18	2,8315e00
19	2,8272e00	19	2,8268e00
20	2,8232e00	20	2,8235e00
21	2,8220e00	21	2,8224e00
22	2,8213e00	22	2,8215e00

Calculated chemical shifts

Species	На
NIS	3,0306e00
1	0,0000e00
1•NIS	2,8041e00

Converged in 5 iterations with sigma = 0,419744

	Value	Standard deviation	Comments
log beta(1•NIS)	2.8194	0.0094	2.819(9)

2. ¹H NMR titration experiments for 2•NIS in CDCl₃

Figure S3. ¹H NMR spectra for titration of NIS with 2 in CDCl₃ at 298 K.

Figure S4. Graph showing the fitting curve between the calculated and observed chemical shifts of Ha for titration **2**•NIS (in CDCl₃ at 298 K, $Ka = 779 \pm 43 \text{ M}^{-1}$).

Species	Log beta	NIS	2	
1	2,8915	1	1	refine

Point	T(NIS)	T(2)	F(NIS)	F(2)	Species 1
1	1,4075e-02	0,0000e00	1,4075e-02	4,5130e-90	4,9478e-89
2	1,3960e-02	1,3974e-03	1,2691e-02	1,2838e-04	1,2690e-03
3	1,3846e-02	2,7721e-03	1,1356e-02	2,8157e-04	2,4905e-03
4	1,3735e-02	4,1246e-03	1,0076e-02	4,6613e-04	3,6585e-03
5	1,3625e-02	5,4555e-03	8,8598e-03	6,9047e-04	4,7650e-03
6	1,3517e-02	6,7652e-03	7,7165e-03	9,6501e-04	5,8002e-03
7	1,3410e-02	8,0543e-03	6,6579e-03	1,3020e-03	6,7523e-03
8	1,3305e-02	9,3232e-03	5,6968e-03	1,7147e-03	7,6086e-03
9	1,3202e-02	1,0573e-02	4,8446e-03	2,2148e-03	8,3577e-03
10	1,3101e-02	1,1803e-02	4,1082e-03	2,8102e-03	8,9924e-03
11	1,3001e-02	1,3014e-02	3,4881e-03	3,5013e-03	9,5126e-03
12	1,2805e-02	1,5382e-02	2,5604e-03	5,1370e-03	1,0245e-02
13	1,2615e-02	1,7679e-02	1,9515e-03	7,0155e-03	1,0664e-02
14	1,2431e-02	1,9910e-02	1,5479e-03	9,0267e-03	1,0883e-02
15	1,2078e-02	2,4181e-02	1,0724e-03	1,3175e-02	1,1006e-02
16	1,1745e-02	2,8217e-02	8,1210e-04	1,7284e-02	1,0933e-02
17	1,1430e-02	3,2036e-02	6,5099e-04	2,1257e-02	1,0779e-02
18	1,1131e-02	3,5655e-02	5,4232e-04	2,5066e-02	1,0589e-02
19	1,0847e-02	3,9090e-02	4,6435e-04	2,8707e-02	1,0383e-02
20	1,0578e-02	4,2354e-02	4,0579e-04	3,2182e-02	1,0172e-02
21	1,0321e-02	4,5459e-02	3,6025e-04	3,5498e-02	9,9609e-03

Measured chemical shifts		16	2,8088e00
Point	На	17	2,8052e00
1	3,0279e00	18	2,8024e00
2	3,0056e00	19	2,8003e00
3	2,9837e00	20	2,7985e00
4	2,9619e00	21	2,7971e00
5	2,9433e00		
6	2,9233e00	Calculate	ed chemical shifts
7	2,9053e00	Point	На
8	2,8890e00	1	3,0255e00
9	2,8747e00	2	3,0042e00
10	2,8637e00	3	2,9833e00
11	2,8539e00	4	2,9630e00
12	2,8396e00	5	2,9435e00
13	2,8292e00	6	2,9249e00
14	2,8221e00	7	2,9074e00
15	2,8139e00	8	2,8914e00

9	2,8770e00	16	2,8071e00
10	2,8645e00	17	2,8043e00
11	2,8539e00	18	2,8024e00
12	2,8378e00	19	2,8010e00
13	2,8272e00	20	2,7999e00
14	2,8201e00	21	2,7991e00
15	2,8118e00		

Species	На
NIS	3,0255e00
2	0,0000e00
2•NIS	2,7909e00

Converged in 1 iterations with sigma = 1,717611

	Value	Standard deviation	Comments
log beta(2•NIS)	2.8915	0.0231	2.89(2)

3. ¹H NMR titration experiments for 3•NIS in CDCl₃

Figure S5. ¹H NMR spectra for titration of NIS with 3 in CDCl₃ at 298 K.

Figure S6. Graph showing the fitting curve between the calculated and observed chemical shifts of Ha for titration **3**•NIS (in CDCl₃ at 298 K, $Ka = 325 \pm 7 \text{ M}^{-1}$).

Species	Log beta	NIS	3	
1	2,5114	1	1	refine

Point	T(NIS)	T(3)	F(NIS)	F(3)	Species 1
1	1,4816e-02	0,0000e00	1,4816e-02	8,1976e-90	3,9432e-89
2	1,4733e-02	1,4726e-03	1,3533e-02	2,7302e-04	1,1996e-03
3	1,4651e-02	2,9288e-03	1,2308e-02	5,8622e-04	2,3426e-03
4	1,4570e-02	4,3689e-03	1,1147e-02	9,4586e-04	3,4230e-03
5	1,4490e-02	5,7931e-03	1,0055e-02	1,3585e-03	4,4346e-03
6	1,4410e-02	7,2016e-03	9,0388e-03	1,8304e-03	5,3713e-03
7	1,4332e-02	8,5949e-03	8,1038e-03	2,3671e-03	6,2278e-03
8	1,4254e-02	9,9730e-03	7,2535e-03	2,9726e-03	7,0004e-03
9	1,4177e-02	1,1336e-02	6,4895e-03	3,6487e-03	7,6875e-03
10	1,4101e-02	1,2685e-02	5,8107e-03	4,3946e-03	8,2904e-03
11	1,4026e-02	1,4019e-02	5,2133e-03	5,2067e-03	8,8126e-03
12	1,3951e-02	1,5339e-02	4,6915e-03	6,0794e-03	9,2599e-03
13	1,3878e-02	1,6646e-02	4,2381e-03	7,0058e-03	9,6397e-03
14	1,3733e-02	1,9217e-02	3,5048e-03	8,9888e-03	1,0228e-02
15	1,3591e-02	2,1735e-02	2,9528e-03	1,1097e-02	1,0638e-02
16	1,3452e-02	2,4202e-02	2,5323e-03	1,3282e-02	1,0920e-02
17	1,3316e-02	2,6619e-02	2,2063e-03	1,5509e-02	1,1109e-02
18	1,2987e-02	3,2452e-02	1,6531e-03	2,1118e-02	1,1334e-02
19	1,2674e-02	3,8004e-02	1,3134e-03	2,6643e-02	1,1361e-02
20	1,2376e-02	4,3295e-02	1,0865e-03	3,2006e-02	1,1289e-02
21	1,2091e-02	4,8343e-02	9,2515e-04	3,7176e-02	1,1166e-02
22	1,1820e-02	5,3163e-02	8,0494e-04	4,2149e-02	1,1015e-02

Measured	l chemical shifts	15 2,8499e00	
Point	На	16	2,8437e00
1	3,0301e00	17	2,8385e00
2	3,0130e00	18	2,8299e00
3	2,9964e00	19	2,8242e00
4	2,9790e00	20	2,8199e00
5	2,9619e00	21	2,8170e00
6	2,9456e00	22	2,8144e00
7	2,9306e00		
8	2,9181e00	Calculate	ed chemical shifts
9	2,9061e00	Point	На
10	2,8958e00	1	3,0322e00
11	2,8857e00	2	3,0133e00
12	2,8770e00	3	2,9950e00
13	2,8700e00	4	2,9776e00
14	2,8581e00	5	2,9610e00

6	2,9455e00	15	2,8501e00
7	2,9311e00	16	2,8433e00
8	2,9179e00	17	2,8380e00
9	2,9060e00	18	2,8291e00
10	2,8954e00	19	2,8236e00
11	2,8860e00	20	2,8199e00
12	2,8778e00	21	2,8173e00
13	2,8706e00	22	2,8153e00
14	2,8589e00		

Species	На
NIS	3,0322e00
3	0,0000e00
3 •NIS	2,7995e00

Converged in 2 iterations with sigma = 0,852856

	Value	Standard deviation	Comments
log beta(3•NIS)	2.5114	0.0096	2.51(1)

4. ¹H NMR titration experiments for 4•NIS in CDCl₃

Figure S7. ¹H NMR spectra for titration of NIS with 4 in CDCl₃ at 298 K.

Figure S8. Graph showing the fitting curve between the calculated and observed chemical shifts of Ha for titration 4•NIS (in CDCl₃ at 298 K, $Ka = 17 \pm 2 \text{ M}^{-1}$).

Species	Log beta	NIS	4	
1	1,2381	1	1	refine

Point	T(NIS)	T(4)	F(NIS)	F(4)	Species 1
1	1,6001e-02	0,0000e00	1,6001e-02	2,2011e-89	6,0940e-90
2	1,5716e-02	1,5716e-03	1,5386e-02	1,2412e-03	3,3041e-04
3	1,5440e-02	3,0881e-03	1,4810e-02	2,4581e-03	6,2993e-04
4	1,5174e-02	4,5523e-03	1,4273e-02	3,6507e-03	9,0158e-04
5	1,4917e-02	5,9669e-03	1,3769e-02	4,8189e-03	1,1481e-03
6	1,4669e-02	7,3345e-03	1,3297e-02	5,9626e-03	1,3719e-03
7	1,4429e-02	8,6572e-03	1,2854e-02	7,0821e-03	1,5751e-03
8	1,4196e-02	9,9372e-03	1,2436e-02	8,1776e-03	1,7597e-03
9	1,3971e-02	1,1177e-02	1,2044e-02	9,2493e-03	1,9274e-03
10	1,3753e-02	1,2377e-02	1,1673e-02	1,0298e-02	2,0799e-03
11	1,3541e-02	1,3541e-02	1,1323e-02	1,1323e-02	2,2184e-03
12	1,3137e-02	1,5765e-02	1,0679e-02	1,3306e-02	2,4586e-03
13	1,2757e-02	1,7860e-02	1,0100e-02	1,5203e-02	2,6568e-03
14	1,2398e-02	1,9836e-02	9,5778e-03	1,7016e-02	2,8200e-03
15	1,1737e-02	2,3474e-02	8,6738e-03	2,0411e-02	3,0632e-03
16	1,1143e-02	2,6743e-02	7,9199e-03	2,3520e-02	3,2231e-03
17	1,0606e-02	2,9698e-02	7,2828e-03	2,6374e-02	3,3235e-03
18	1,0119e-02	3,2380e-02	6,7380e-03	2,8999e-02	3,3809e-03
19	9,9475e-03	3,3324e-02	6,5536e-03	2,9930e-02	3,3939e-03

Measured chemical shifts		18	2,9621e00
Point	На	19	2,9611e00
1	3,0290e00		
2	3,0245e00	Calculat	ed chemical shifts
3	3,0207e00	Point	На
4	3,0171e00	1	3,0287e00
5	3,0135e00	2	3,0246e00
6	3,0106e00	3	3,0207e00
7	3,0072e00	4	3,0170e00
8	3,0045e00	5	3,0136e00
9	3,0015e00	6	3,0103e00
10	2,9984e00	7	3,0073e00
11	2,9961e00	8	3,0043e00
12	2,9915e00	9	3,0016e00
13	2,9881e00	10	2,9990e00
14	2,9843e00	11	2,9965e00
15	2,9772e00	12	2,9919e00
16	2,9726e00	13	2,9878e00
17	2,9683e00	14	2,9840e00

15	2,9774e00	18	2,9630e00
16	2,9718e00	19	2,9616e00
17	2,9671e00		

На
3,0287e00
0,0000e00
2,8320e00

Converged in 1 iterations with sigma = 0,516038

	Value	Standard deviation	Comments
log beta(3•NIS)	1.2381	0.0434	1.24(4)

5. ¹H NMR titration experiments for 1•NIS in acetone-d₆

Figure S9. ¹H NMR spectra for titration of NIS with **1** in acetone-d₆ at 298 K: a) full spectrum; b) expanded region of the spectrum depicting the shift. (* -CH₂- signal of *N*-hydroxysuccinimide, the hydrolysis product of NIS; concentration increases and the signal moves downfield upon additions of **1** due to the hydrogen bonding interactions)

Figure S10. Graph showing the fitting curve between the calculated and observed chemical shifts of Ha for titration 1•NIS (in acetone-d₆ at 298 K, $Ka = 54 \pm 1 \text{ M}^{-1}$).

Species	Log beta	NIS	1	
1	1,7286	1	1	refine

Point	T(NIS)	T(1)	F(NIS)	F(1)	Species 1
1	1,5779e-02	0,0000e00	1,5779e-02	1,6933e-89	1,4304e-89
2	1,5630e-02	1,5637e-03	1,4936e-02	8,6894e-04	6,9478e-04
3	1,5484e-02	3,0982e-03	1,4149e-02	1,7629e-03	1,3353e-03
4	1,5341e-02	4,6044e-03	1,3417e-02	2,6797e-03	1,9247e-03
5	1,5201e-02	6,0829e-03	1,2735e-02	3,6170e-03	2,4659e-03
6	1,5062e-02	7,5345e-03	1,2100e-02	4,5725e-03	2,9620e-03
7	1,4927e-02	8,9600e-03	1,1511e-02	5,5438e-03	3,4162e-03
8	1,4794e-02	1,0360e-02	1,0962e-02	6,5287e-03	3,8314e-03
9	1,4663e-02	1,1735e-02	1,0452e-02	7,5248e-03	4,2106e-03
10	1,4534e-02	1,3087e-02	9,9779e-03	8,5301e-03	4,5565e-03
11	1,4408e-02	1,4414e-02	9,5363e-03	9,5426e-03	4,8717e-03
12	1,4284e-02	1,5719e-02	9,1251e-03	1,0560e-02	5,1588e-03
13	1,4042e-02	1,8263e-02	8,3843e-03	1,2605e-02	5,6577e-03
14	1,3808e-02	2,0721e-02	7,7384e-03	1,4651e-02	6,0697e-03
15	1,3582e-02	2,3099e-02	7,1729e-03	1,6690e-02	6,4090e-03
16	1,3363e-02	2,5401e-02	6,6755e-03	1,8713e-02	6,6875e-03
17	1,3151e-02	2,7629e-02	6,2359e-03	2,0714e-02	6,9151e-03
18	1,2845e-02	3,0844e-02	5,6664e-03	2,3665e-02	7,1788e-03
19	1,2553e-02	3,3913e-02	5,1850e-03	2,6545e-02	7,3682e-03
20	1,2274e-02	3,6845e-02	4,7742e-03	2,9345e-02	7,5001e-03
21	1,1921e-02	4,0555e-02	4,3134e-03	3,2947e-02	7,6080e-03
22	1,1588e-02	4,4057e-02	3,9301e-03	3,6399e-02	7,6581e-03
23	1,1273e-02	4,7368e-02	3,6070e-03	3,9702e-02	7,6663e-03

1,0902e-02 1,0555e-02 1,0230e-02	5,1266e-02 5,4915e-02 5,8340e-02	3,2683e-03 2,9862e-03 2,7479e-03	4,3632e-02 4,7346e-02 5,0858e-02	7,6342e-03 7,5691e-03 7,4817e-03
hemical shift	S	Ca	alculated che	mical shifts
На		Ро	oint Ha	a
2,9062e00		1	2,9	9067e00
2,8990e00		2	2,	8991e00
2,8920e00		3	2,	8920e00
2,8855e00		4	2,	8853e00
2,8792e00		5	2,	8790e00
2,8731e00		6	2,	8731e00
2,8679e00		7	2,	8676e00
2,8629e00		8	2,	8625e00
2,8579e00		9	2,	8577e00
2,8533e00		10) 2,3	8532e00
2,8490e00		11	1 2,3	8490e00
2,8451e00		12	2 2,3	8450e00
2,8377e00		13	3 2,3	8379e00
2,8313e00		14	4 2,3	8316e00
2,8257e00		13	5 2,3	8261e00
2,8209e00		16	5 2,3	8212e00
2,8166e00		17	7 2,3	8169e00
2,8110e00		18	3 2,3	8113e00
2,8063e00		19	9 2,3	8065e00
2,8026e00		20) 2,	8024e00
2,7984e00		21	1 2,	7977e00
2,7942e00		22	2 2,	7939e00
2,7910e00		23	3 2,	7906e00
2,7872e00		24	4 2,	7871e00
2,7841e00		25	5 2,	7843e00
2,7813e00		20	5 2, [°]	7818e00
	1,0902e-02 1,0555e-02 1,0230e-02 hemical shift Ha 2,9062e00 2,8990e00 2,8920e00 2,8920e00 2,8731e00 2,8679e00 2,8679e00 2,8679e00 2,8533e00 2,8533e00 2,8490e00 2,8451e00 2,8313e00 2,8257e00 2,8209e00 2,8110e00 2,8063e00 2,8063e00 2,7942e00 2,7942e00 2,7942e00 2,7942e00 2,7942e00 2,7942e00 2,7872e00 2,7813e00	1,0902e-02 5,1266e-02 1,0555e-02 5,4915e-02 1,0230e-02 5,8340e-02 hemical shifts Ha 2,9062e00 2,8990e00 2,8920e00 2,8731e00 2,8679e00 2,8679e00 2,8679e00 2,8533e00 2,8451e00 2,8313e00 2,8257e00 2,8209e00 2,8106e00 2,810e00 2,8063e00 2,8063e00 2,7984e00 2,7942e00 2,7910e00 2,7872e00 2,7813e00	1,0902e-02 $5,1266e-02$ $3,2683e-03$ $1,0555e-02$ $5,4915e-02$ $2,9862e-03$ $1,0230e-02$ $5,8340e-02$ $2,7479e-03$ hemical shiftsCaHaPo $2,9062e00$ 1 $2,8990e00$ 2 $2,8920e00$ 3 $2,8855e00$ 4 $2,8792e00$ 5 $2,8731e00$ 6 $2,8629e00$ 8 $2,8579e00$ 9 $2,8533e00$ 10 $2,8451e00$ 12 $2,8377e00$ 13 $2,8257e00$ 14 $2,8257e00$ 15 $2,8110e00$ 16 $2,8063e00$ 16 $2,8063e00$ 16 $2,7984e00$ 22 $2,7910e00$ 22 $2,7872e00$ 22 $2,7813e00$ 24 $2,7813e00$ 24	1,0902e-02 $5,1266e-02$ $3,2683e-03$ $4,3632e-02$ $1,0555e-02$ $5,4915e-02$ $2,9862e-03$ $4,7346e-02$ $1,0230e-02$ $5,8340e-02$ $2,7479e-03$ $5,0858e-02$ hemical shiftsCalculated cheHaPointHa $2,9062e00$ 1 $2,922000$ $2,8990e00$ 2 $2,232000$ $2,8920e00$ 3 $2,232000$ $2,8855e00$ 4 $2,322000$ $2,8792e00$ 5 $2,322000$ $2,8679e00$ 7 $2,322000$ $2,8629e00$ 8 $2,322000$ $2,8579e00$ 9 $2,322000$ $2,8451e00$ 11 $2,322000$ $2,8451e00$ 12 $2,320000$ $2,8451e00$ 13 $2,320000$ $2,8257e00$ 15 $2,320000$ $2,8110e00$ 18 $2,320000$ $2,8026e00$ 20 $2,3200000$ $2,7984e00$ 21 $2,32000000$ $2,7984e00$ 21 $2,3200000000$ $2,7910e00$ $2,3200000000000000000000000000000000000$

Species	На
NIS	2,9067e00
1	0,0000e00
1•NIS	2,7359e00

Converged in 1 iterations with sigma = 0,325835

	Value	Standard deviation	Comments
log beta(1•NIS)	1.7286	0.0058	1.729(6)

6. ¹H NMR titration experiments for 2•NIS in acetone-d₆

Figure S11. ¹H NMR spectra for titration of NIS with **2** in acetone-d₆ at 298 K: a) full spectrum; b) expanded region of the spectrum depicting the shift. (* -CH₂- signal of *N*-hydroxysuccinimide, the hydrolysis product of NIS; concentration increases and the signal moves downfield upon additions of **2** due to the hydrogen bonding interactions)

Figure S12. Graph showing the fitting curve between the calculated and observed chemical shifts of Ha for titration **2**•NIS (in acetone-d₆ at 298 K, $Ka = 65 \pm 1 \text{ M}^{-1}$).

Species	Log beta	NIS	2	
1	1,8129	1	1	refine

Point	T(NIS)	T(2)	F(NIS)	F(2)	Species 1
1	1,9335e-02	0,0000e00	1,9335e-02	1,8955e-89	2,3821e-89
2	1,9139e-02	1,9152e-03	1,8104e-02	8,7989e-04	1,0353e-03
3	1,8947e-02	3,7920e-03	1,6958e-02	1,8038e-03	1,9882e-03
4	1,8758e-02	5,6314e-03	1,5897e-02	2,7697e-03	2,8617e-03
5	1,8574e-02	7,4346e-03	1,4914e-02	3,7751e-03	3,6594e-03
6	1,8392e-02	9,2026e-03	1,4007e-02	4,8171e-03	4,3855e-03
7	1,8215e-02	1,0937e-02	1,3171e-02	5,8924e-03	5,0441e-03
8	1,8041e-02	1,2637e-02	1,2401e-02	6,9974e-03	5,6399e-03
9	1,7870e-02	1,4306e-02	1,1692e-02	8,1284e-03	6,1773e-03
10	1,7702e-02	1,5943e-02	1,1041e-02	9,2819e-03	6,6610e-03
11	1,7537e-02	1,7550e-02	1,0442e-02	1,0454e-02	7,0953e-03
12	1,7376e-02	1,9127e-02	9,8913e-03	1,1642e-02	7,4846e-03
13	1,7139e-02	2,1440e-02	9,1457e-03	1,3447e-02	7,9932e-03
14	1,6908e-02	2,3691e-02	8,4864e-03	1,5269e-02	8,4220e-03
15	1,6684e-02	2,5882e-02	7,9017e-03	1,7100e-02	8,7822e-03
16	1,6465e-02	2,8016e-02	7,3818e-03	1,8932e-02	9,0836e-03
17	1,5910e-02	3,3439e-02	6,2501e-03	2,3779e-02	9,6598e-03
18	1,5391e-02	3,8508e-02	5,3943e-03	2,8512e-02	9,9964e-03
19	1,4904e-02	4,3257e-02	4,7310e-03	3,3084e-02	1,0173e-02

20	1,4448e-02	4,7715e-02	4,2053e-03	3,7473e-02	1,0242e-02
21	1,4018e-02	5,1908e-02	3,7802e-03	4,1670e-02	1,0238e-02
22	1,3614e-02	5,5859e-02	3,4302e-03	4,5675e-02	1,0183e-02

Measured chemical shifts		Calculat	ed chemical shifts
Point	На	Point	На
1	2,9050e00	1	2,9057e00
2	2,8960e00	2	2,8959e00
3	2,8866e00	3	2,8868e00
4	2,8782e00	4	2,8782e00
5	2,8702e00	5	2,8701e00
6	2,8633e00	6	2,8627e00
7	2,8563e00	7	2,8557e00
8	2,8494e00	8	2,8493e00
9	2,8437e00	9	2,8433e00
10	2,8384e00	10	2,8378e00
11	2,8325e00	11	2,8326e00
12	2,8279e00	12	2,8279e00
13	2,8208e00	13	2,8215e00
14	2,8150e00	14	2,8158e00
15	2,8103e00	15	2,8107e00
16	2,8056e00	16	2,8061e00
17	2,7967e00	17	2,7961e00
18	2,7883e00	18	2,7884e00
19	2,7824e00	19	2,7824e00
20	2,7778e00	20	2,7777e00
21	2,7739e00	21	2,7738e00
22	2,7707e00	22	2,7706e00

Species	На
NIS	2,9057e00
2	0,0000e00
2• NIS	2,7251e00

Converged in 1 iterations with sigma = 0,447277

	Value	Standard deviation	Comments
log beta(2•NIS)	1.8129	0.0088	1.813(9)

7. ¹H NMR titration experiments for 3•NIS in acetone-d₆

Figure S13. ¹H NMR spectra for titration of NIS with **3** in acetone-d₆ at 298 K: a) full spectrum; b) expanded region of the spectrum depicting the shift. (* -CH₂- signal of *N*-hydroxysuccinimide, the hydrolysis product of NIS; concentration increases and the signal moves downfield upon additions of **3** due to the hydrogen bonding interactions)

Figure S14. Graph showing the fitting curve between the calculated and observed chemical shifts of Ha for titration **3**•NIS (in acetone-d₆ at 298 K, $Ka = 42 \pm 1 \text{ M}^{-1}$).

Species	Log beta	NIS	3	
1	1,6245	1	1	refine

species et					
Point	T(NIS)	T(3)	F(NIS)	F(3)	Species 1
1	2,2224e-02	0,0000e00	2,2224e-02	2,5350e-89	2,3729e-89
2	2,1985e-02	2,1977e-03	2,0955e-02	1,1674e-03	1,0303e-03
3	2,1751e-02	4,3486e-03	1,9775e-02	2,3725e-03	1,9761e-03
4	2,1523e-02	6,4543e-03	1,8680e-02	3,6122e-03	2,8421e-03
5	2,1298e-02	8,5161e-03	1,7665e-02	4,8830e-03	3,6331e-03
6	2,1079e-02	1,0535e-02	1,6725e-02	6,1813e-03	4,3542e-03
7	2,0864e-02	1,2514e-02	1,5854e-02	7,5034e-03	5,0102e-03
8	2,0653e-02	1,4452e-02	1,5047e-02	8,8457e-03	5,6060e-03
9	2,0447e-02	1,6351e-02	1,4300e-02	1,0205e-02	6,1464e-03
10	2,0244e-02	1,8213e-02	1,3609e-02	1,1577e-02	6,6357e-03
11	2,0046e-02	2,0038e-02	1,2968e-02	1,2960e-02	7,0783e-03
12	1,9851e-02	2,1828e-02	1,2373e-02	1,4350e-02	7,4782e-03
13	1,9660e-02	2,3584e-02	1,1821e-02	1,5744e-02	7,8391e-03
14	1,9290e-02	2,6995e-02	1,0832e-02	1,8538e-02	8,4575e-03
15	1,8932e-02	3,0280e-02	9,9746e-03	2,1323e-02	8,9579e-03
16	1,8588e-02	3,3446e-02	9,2276e-03	2,4085e-02	9,3608e-03
17	1,8256e-02	3,6499e-02	8,5734e-03	2,6816e-02	9,6831e-03
18	1,7780e-02	4,0879e-02	7,7351e-03	3,0834e-02	1,0045e-02
19	1,7328e-02	4,5037e-02	7,0346e-03	3,4743e-02	1,0294e-02
20	1,6899e-02	4,8988e-02	6,4428e-03	3,8532e-02	1,0456e-02
21	1,6490e-02	5,2748e-02	5,9377e-03	4,2196e-02	1,0552e-02
22	1,6101e-02	5,6331e-02	5,5023e-03	4,5732e-02	1,0598e-02
23	1,5729e-02	5,9748e-02	5,1238e-03	4,9143e-02	1,0605e-02
24	1,5374e-02	6,3011e-02	4,7922e-03	5,2429e-02	1,0582e-02

25 26 27	1,4926e-02 1,4502e-02 1,4102e-02	6,7140e-02 7,1034e-02 7,4713e-02	4,4095e-03 4,0818e-03 3,7983e-03	5,6623e-02 6,0613e-02 6,4409e-02	1,0516e-02 1,0420e-02 1,0304e-02
Measured c	hemical shift	S	Ca	alculated che	mical shifts
Point	На		Ро	oint Ha	l
1	2,9047e00		1	2,9	9073e00
2	2,8984e00		2	2,8	3985e00
3	2,8906e00		3	2,8	3904e00
4	2,8833e00		4	2,8	3827e00
5	2,8763e00		5	2,8	3755e00
6	2,8695e00		6	2,8	3688e00
7	2,8635e00		7	2,8	3626e00
8	2,8576e00		8	2,8	3568e00
9	2,8517e00		9	2,8	3513e00
10	ignore		10) igi	nore
11	2,8424e00		11	1 2,8	3416e00
12	2,8376e00		12	2 2,8	3372e00
13	2,8335e00		13	3 2,8	3331e00
14	2,8259e00		14	4 2,8	3257e00
15	2,8189e00		15	5 2,8	3192e00
16	2,8125e00		16	5 2,8	8136e00
17	2,8074e00		17	7 2,8	3086e00
18	2,8010e00		18	3 2,8	3022e00
19	2,7957e00		19	9 2,7	7968e00
20	2,7915e00		20) 2,7	7922e00
21	2,7879e00		21	1 2,7	7882e00
22	2,7849e00		22	2 2,7	7848e00
23	2,7821e00		23	3 2,7	7818e00
24	2,7795e00		24	4 2,7	7792e00
25	2,7766e00		25	5 2,7	7762e00
26	2,7742e00		20	5 2,7	7736e00
27	2,7720e00		27	7 2,7	7713e00

На
2,9073e00
0,0000e00
2,7212e00

Converged in 1 iterations with sigma = 0,874726

	Value	Standard deviation	Comments
log beta(3•NIS)	1.6245	0.0148	1.62(1)

8. ¹H NMR titration experiments for 4•NIS in acetone-d₆

No chemical shift observed upon titration.

9. ¹H NMR titration experiments for 1•NISac in CDCl₃

Figure S15. ¹H NMR spectra for titration of NISac with 1 in CDCl₃ at 298 K.

Figure S16. Graph showing the fitting curve between the calculated and observed chemical shifts for titration $1 \cdot \text{NISac}$ (in CDCl₃ at 298 K, $Ka = 3121 \pm 417 \text{ M}^{-1}$) following a) Ha and b) Hb signal.

Species	Log beta	NISac	1	
1	3,4943	1	1	refine

Point	T(NISac)	T(1)	F(NISac)	F(1)	Species 1
1	8,4660e-03	0,0000e00	8,4660e-03	1,4788e-90	3,9078e-89
2	8,4141e-03	8,3942e-04	7,6086e-03	3,3917e-05	8,0550e-04
3	8,3628e-03	1,6686e-03	6,7696e-03	7,5398e-05	1,5932e-03
4	8,3122e-03	2,4878e-03	5,9515e-03	1,2708e-04	2,3607e-03
5	8,2622e-03	3,2970e-03	5,1579e-03	1,9281e-04	3,1042e-03
6	8,2128e-03	4,0967e-03	4,3945e-03	2,7836e-04	3,8183e-03
7	8,1639e-03	4,8868e-03	3,6695e-03	3,9238e-04	4,4944e-03
8	8,1157e-03	5,6675e-03	2,9957e-03	5,4755e-04	5,1200e-03
9	8,0680e-03	6,4391e-03	2,3900e-03	7,6111e-04	5,6780e-03
10	8,0208e-03	7,2016e-03	1,8717e-03	1,0525e-03	6,1491e-03
11	7,9742e-03	7,9554e-03	1,4547e-03	1,4358e-03	6,5195e-03
12	7,8827e-03	9,4368e-03	9,0769e-04	2,4618e-03	6,9750e-03
13	7,7932e-03	1,0885e-02	6,1935e-04	3,7108e-03	7,1738e-03
14	7,7057e-03	1,2300e-02	4,5938e-04	5,0536e-03	7,2463e-03
15	7,6201e-03	1,3684e-02	3,6189e-04	6,4255e-03	7,2583e-03
16	7,4144e-03	1,7013e-02	2,3396e-04	9,8323e-03	7,1804e-03
17	7,2194e-03	2,0167e-02	1,7210e-04	1,3119e-02	7,0473e-03
18	7,0345e-03	2,3159e-02	1,3592e-04	1,6260e-02	6,8985e-03
19	6,8588e-03	2,6002e-02	1,1225e-04	1,9255e-02	6,7465e-03
20	6,6916e-03	2,8706e-02	9,5577e-05	2,2110e-02	6,5960e-03
21	6,5324e-03	3,1281e-02	8,3204e-05	2,4832e-02	6,4492e-03
22	6,3806e-03	3,3737e-02	7,3662e-05	2,7430e-02	6,3069e-03

Measured chemical shifts

Point	На	Hb
1	8,0606e00	7,9544e00
2	8,0513e00	7,9450e00
3	8,0419e00	7,9355e00
4	8,0329e00	7,9265e00
5	8,0233e00	7,9170e00
6	8,0138e00	7,9075e00
7	8,0055e00	7,8994e00
8	7,9954e00	7,8896e00
9	7,9856e00	7,8802e00
10	7,9766e00	7,8717e00
11	7,9687e00	7,8644e00
12	7,9588e00	7,8550e00
13	7,9561e00	7,8527e00
14	7,9552e00	7,8518e00

15	7,9544e00	7,8507e00		
16	7,9537e00	7,8504e00		
17	7,9523e00	7,8496e00		
18	7,9513e00	7,8486e00		
19	7,9505e00	7,8480e00		
20	7,9498e00	7,8472e00		
21	7,9490e00	7,8464e00		
Calculated chemical shifts				
Point	На	Hb		
Point 1	Ha 8,0647e00	Hb 7,9572e00		
Point 1 2	Ha 8,0647e00 8,0536e00	Hb 7,9572e00 7,9466e00		
Point 1 2 3	Ha 8,0647e00 8,0536e00 8,0427e00	Hb 7,9572e00 7,9466e00 7,9360e00		
Point 1 2 3 4	Ha 8,0647e00 8,0536e00 8,0427e00 8,0319e00	Hb 7,9572e00 7,9466e00 7,9360e00 7,9256e00		
Point 1 2 3 4 5	Ha 8,0647e00 8,0536e00 8,0427e00 8,0319e00 8,0213e00	Hb 7,9572e00 7,9466e00 7,9360e00 7,9256e00 7,9154e00		
Point 1 2 3 4 5 6	Ha 8,0647e00 8,0536e00 8,0427e00 8,0319e00 8,0213e00 8,0109e00	Hb 7,9572e00 7,9466e00 7,9360e00 7,9256e00 7,9154e00 7,9055e00		

8	7,9918e00	7,8870e00	15	7,9546e00	7,8512e00
9	7,9833e00	7,8789e00	16	7,9527e00	7,8494e00
10	7,9761e00	7,8719e00	17	7,9518e00	7,8485e00
11	7,9702e00	7,8662e00	18	7,9513e00	7,8480e00
12	7,9624e00	7,8587e00	19	7,9510e00	7,8477e00
13	7,9583e00	7,8547e00	20	7,9507e00	7,8475e00
14	7,9560e00	7,8525e00	21	7,9506e00	7,8473e00

Species	На	Hb
NISac	8,0647e00	7,9572e00
1	0,0000e00	0,0000e00
1•NISac	7,9491e00	7,8459e00

Converged in 1 iterations with sigma = 2,105294

	Value	Standard deviation	Comments
log beta(1•NISac)	3.4943	0.0545	3.49(5)

10. ¹H NMR titration experiments for 2•NISac in CDCl₃

Figure S17. ¹H NMR spectra for titration of NISac with 2 in CDCl₃ at 298 K: a) full spectrum;b) expanded region of the spectrum depicting the shift.

Figure S18. Graph showing the fitting curve between the calculated and observed chemical shifts for titration **2**•NISac (in CDCl₃ at 298 K, $Ka = 16338 \pm 6314 \text{ M}^{-1}$) following a) Ha and b) Hb signal.

Species	Log beta	NISac	2	
1	4,2132	1	1	refine

Point	T(NISac)	T(2)	F(NISac)	F(2)	Species 1
1	1,1324e-02	0,0000e00	1,1324e-02	4,6882e-91	8,6733e-89
2	1,1256e-02	1,4599e-03	9,8048e-03	9,0569e-06	1,4508e-03
3	1,1188e-02	3,0510e-03	8,1599e-03	2,2716e-05	3,0283e-03
4	1,1121e-02	4,3085e-03	6,8512e-03	3,8151e-05	4,2703e-03
5	1,1056e-02	5,2956e-03	5,8151e-03	5,5160e-05	5,2405e-03
6	1,0991e-02	6,5130e-03	4,5637e-03	8,6196e-05	6,4268e-03
7	1,0926e-02	7,2189e-03	3,8211e-03	1,1381e-04	7,1051e-03
8	1,0863e-02	8,4620e-03	2,5956e-03	1,9495e-04	8,2670e-03
9	1,0800e-02	9,2597e-03	1,8384e-03	2,9836e-04	8,9613e-03
10	1,0738e-02	1,0414e-02	9,5221e-04	6,2901e-04	9,7854e-03
11	1,0676e-02	1,1510e-02	4,7647e-04	1,3103e-03	1,0200e-02
12	1,0555e-02	1,3959e-02	1,7741e-04	3,5805e-03	1,0378e-02
13	1,0437e-02	1,5831e-02	1,1470e-04	5,5088e-03	1,0323e-02
14	1,0265e-02	1,8964e-02	7,1148e-05	8,7699e-03	1,0194e-02
15	1,0099e-02	2,2533e-02	4,9273e-05	1,2484e-02	1,0049e-02
16	9,8847e-03	2,6487e-02	3,6230e-05	1,6639e-02	9,8485e-03
17	9,6797e-03	2,9991e-02	2,9040e-05	2,0341e-02	9,6506e-03
18	9,4350e-03	3,4994e-02	2,2521e-05	2,5582e-02	9,4125e-03
19	9,2024e-03	3,9829e-02	1,8344e-05	3,0645e-02	9,1841e-03
20	8,9810e-03	4,4198e-02	1,5576e-05	3,5232e-02	8,9655e-03

Measured chemical shifts

18,0762e007,9369e0018,0733e007,928,0577e007,9184e0028,0581e007,938,0417e007,9023e0038,0413e007,948,0273e007,8889e0048,0279e007,8	328e00 185e00 028e00 903e00 803e00
2 8,0577e00 7,9184e00 2 8,0581e00 7,9 3 8,0417e00 7,9023e00 3 8,0413e00 7,9 4 8,0273e00 7,8889e00 4 8,0279e00 7,8	185e00 028e00 903e00 803e00
3 8,0417e00 7,9023e00 3 8,0413e00 7,9 4 8,0273e00 7,8889e00 4 8,0279e00 7,8	028e00 903e00 803e00
4 8,0273e00 7,8889e00 4 8,0279e00 7,8	903e00 803e00
	803e00
5 8,0158e00 7,8789e00 5 8,0173e00 7,8	
6 8,0040e00 7,8678e00 6 8,0042e00 7,8	681e00
7 7,9935e00 7,8583e00 7 7,9965e00 7,8	608e00
8 7,9827e00 7,8469e00 8 7,9834e00 7,8	486e00
9 7,9723e00 7,8371e00 9 7,9753e00 7,8	410e00
10 7,9649e00 7,8311e00 10 7,9656e00 7,8	320e00
11 7,9625e00 7,8290e00 11 7,9604e00 7,8	271e00
12 7,9607e00 7,8270e00 12 7,9571e00 7,8	240e00
13 7,9594e00 7,8266e00 13 7,9565e00 7,8	234e00
14 7,9584e00 7,8257e00 14 7,9560e00 7,8	229e00
15 7,9574e00 7,8242e00 15 7,9557e00 7,8	227e00
16 7,9562e00 7,8230e00 16 7,9556e00 7,8	225e00
177,9554e007,8222e00177,9555e007,8	225e00
18 7,9544e00 7,8218e00 18 7,9554e00 7,81	224e00
19 7,9531e00 7,8211e00 19 7,9554e00 7,8	224e00
207,9523e007,8202e00207,9554e007,8	223e00

Calculated chemical shifts

Chemical shifts for each nucleus

Species	На	Hb
NISac	8,0733e00	7,9328e00
2	0,0000e00	0,0000e00
2•NISac	7,9552e00	7,8221e00

Converged in 8 iterations with sigma = 2,183343

	Value	Standard deviation	Comments
log beta(2•NISac)	4.2132	0.1419	4.2(1)

11. ¹H NMR titration experiments for 3•NISac in CDCl₃

Figure S19. ¹H NMR spectra for titration of NISac with 3 in CDCl₃ at 298 K.

Figure S20. Graph showing the fitting curve between the calculated and observed chemical shifts for titration **3**•NISac (in CDCl₃ at 298 K, $Ka = 14200 \pm 3034$ M⁻¹) following a) Ha and b) Hb signal.

Species	Log beta	NISac	3	
1	4,1523	1	1	refine

Point	T(NISac)	T(3)	F(NISac)	F(3)	Species 1
1	8,0885e-03	0,0000e00	8,0885e-03	4,9996e-91	5,7422e-89

2	8,0440e-03	8,0358e-04	7,2482e-03	7,7326e-06	7,9584e-04
3	8,0000e-03	1,5984e-03	6,4190e-03	1,7346e-05	1,5810e-03
4	7,9564e-03	2,3845e-03	5,6016e-03	2,9606e-05	2,3549e-03
5	7,9134e-03	3,1621e-03	4,7970e-03	4,5751e-05	3,1163e-03
6	7,8708e-03	3,9313e-03	4,0073e-03	6,7897e-05	3,8634e-03
7	7,8286e-03	4,6923e-03	3,2362e-03	9,9938e-05	4,5924e-03
8	7,7869e-03	5,4452e-03	2,4914e-03	1,4969e-04	5,2955e-03
9	7,7456e-03	6,1902e-03	1,7898e-03	2,3434e-04	5,9558e-03
10	7,7048e-03	6,9272e-03	1,1707e-03	3,9308e-04	6,5341e-03
11	7,6644e-03	7,6566e-03	7,0408e-04	6,9621e-04	6,9603e-03
12	7,5849e-03	9,0925e-03	2,8649e-04	1,7941e-03	7,2984e-03
13	7,5070e-03	1,0499e-02	1,6387e-04	3,1559e-03	7,3431e-03
14	7,4307e-03	1,1877e-02	1,1303e-04	4,5592e-03	7,3176e-03
15	7,3559e-03	1,3227e-02	8,5946e-05	5,9571e-03	7,2699e-03
16	7,2826e-03	1,4550e-02	6,9239e-05	7,3369e-03	7,2133e-03
17	7,1056e-03	1,7746e-02	4,6519e-05	1,0687e-02	7,0591e-03
18	6,9370e-03	2,0790e-02	3,5000e-05	1,3888e-02	6,9020e-03
19	6,7762e-03	2,3692e-02	2,8047e-05	1,6944e-02	6,7481e-03
20	6,6227e-03	2,6464e-02	2,3397e-05	1,9864e-02	6,5993e-03
21	6,4760e-03	2,9112e-02	2,0068e-05	2,2656e-02	6,4559e-03

Measured chemical shifts

Point	На	Hb	Ро
1	8,0744e00	7,9368e00	1
2	8,0634e00	7,9256e00	2
3	8,0534e00	7,9161e00	3
4	8,0422e00	7,9054e00	4
5	8,0318e00	7,8953e00	5
6	8,0206e00	7,8846e00	6
7	8,0094e00	7,8746e00	7
8	7,9980e00	7,8660e00	8
9	7,9866e00	7,8581e00	9
10	7,9793e00	7,8479e00	10
11	7,9743e00	7,8410e00	11
12	7,9709e00	7,8380e00	12
13	7,9696e00	7,8365e00	13
14	7,9687e00	7,8363e00	14
15	7,9679e00	7,8352e00	15
16	7,9675e00	7,8348e00	16
17	7,9662e00	7,8342e00	17
18	7,9648e00	7,8333e00	18
19	7,9631e00	7,8326e00	19
20	7,9629e00	7,8321e00	20
21	7,9623e00	7,8314e00	21

Calculated chemical shifts

Point	На	Hb
1	8,0743e00	7,9360e00
2	8,0634e00	7,9258e00
3	8,0526e00	7,9157e00
4	8,0418e00	7,9055e00
5	8,0311e00	7,8955e00
6	8,0204e00	7,8855e00
7	8,0099e00	7,8756e00
8	7,9997e00	7,8660e00
9	7,9899e00	7,8568e00
10	7,9812e00	7,8487e00
11	7,9746e00	7,8425e00
12	7,9687e00	7,8369e00
13	7,9669e00	7,8353e00
14	7,9662e00	7,8346e00
15	7,9658e00	7,8342e00
16	7,9656e00	7,8340e00
17	7,9653e00	7,8337e00
18	7,9651e00	7,8335e00
19	7,9650e00	7,8334e00
20	7,9649e00	7,8334e00
21	7,9649e00	7,8333e00

Species	На	Hb
NISac	8,0743e00	7,9360e00
3•NISac	7,9645e00	7,8330e00

Converged in 9 iterations with sigma = 1,482189

	Value	Standard deviation	Comments
log beta(3•NISac)	4.1523	0.0841	4.15(8)

12. ¹H NMR titration experiments for 4•NISac in CDCl₃

Figure S21. ¹H NMR spectra for titration of NISac with 4 in CDCl₃ at 298 K.

Figure S22. Graph showing the fitting curve between the calculated and observed chemical shifts for titration **4**•NISac (in CDCl₃ at 298 K, $Ka = 543 \pm 26 \text{ M}^{-1}$) following a) Ha and b) Hb signal.

Species	Log beta	NISac	4	
1	2,7348	1	1	refine

Point	T(NISac)	T(4)	F(NISac)	F(4)	Species 1	
1	8,1424e-03	0,0000e00	8,1424e-03	4,3391e-90	1,9183e-89)
2	8,0657e-03	8,0587e-04	7,4201e-03	1,6025e-04	6,4562e-04	
3	7,9904e-03	1,5967e-03	6,7365e-03	3,4281e-04	1,2539e-03	
4	7,9164e-03	2,3729e-03	6,0942e-03	5,5068e-04	1,8222e-03	
5	7,8439e-03	3,1348e-03	5,4959e-03	7,8684e-04	2,3480e-03	
6	7,7726e-03	3,8829e-03	4,9436e-03	1,0539e-03	2,8290e-03	
7	7,7026e-03	4,6176e-03	4,4391e-03	1,3540e-03	3,2635e-03	
8	7,6339e-03	5,3391e-03	3,9830e-03	1,6882e-03	3,6509e-03	
9	7,5664e-03	6,0478e-03	3,5749e-03	2,0564e-03	3,9915e-03	
10	7,5001e-03	6,7442e-03	3,2131e-03	2,4572e-03	4,2869e-03	
11	7,4349e-03	7,4284e-03	2,8949e-03	2,8884e-03	4,5400e-03	
12	7,3079e-03	8,7618e-03	2,3739e-03	3,8279e-03	4,9340e-03	
13	7,1851e-03	1,0050e-02	1,9792e-03	4,8445e-03	5,2060e-03	
14	7,0665e-03	1,1296e-02	1,6791e-03	5,9091e-03	5,3873e-03	
15	6,8955e-03	1,3091e-02	1,3525e-03	7,5482e-03	5,5430e-03	
16	6,7326e-03	1,4801e-02	1,1238e-03	9,1924e-03	5,6089e-03	
17	6,5272e-03	1,6958e-02	9,1178e-04	1,1343e-02	5,6154e-03	
18	6,3339e-03	1,8987e-02	7,6446e-04	1,3418e-02	5,5694e-03	
19	6,1517e-03	2,0900e-02	6,5693e-04	1,5405e-02	5,4948e-03	
20	5,9383e-03	2,3141e-02	5,5792e-04	1,7761e-02	5,3803e-03	
21	5,7391e-03	2,5232e-02	4,8443e-04	1,9977e-02	5,2547e-03	
Measured	d chemical shi	fts		14	8,0125e00	7,8770e00
Point	На	Hb		15	8,0105e00	7,8740e00
1	8,0746e00	7,9361e00		16	8,0073e00	7,8715e00
2	8,0676e00	7,9295e00		17	8,0048e00	7,8698e00
3	8,0611e00	7,9231e00		18	8,0028e00	7,8679e00
4	8,0543e00	7,9168e00		19	8,0018e00	7,8669e00
5	8,0478e00	7,9109e00		20	7,9994e00	7,8647e00
6	8,0430e00	7,9057e00		21	7,9996e00	7,8646e00
7	8,0388e00	7,9020e00		Calculated c	hemical shift	ts
8	8,0347e00	7,8977e00		Point	На	Hb
9	8,0313e00	7,8944e00		1	8,0733e00	7,9348e00
10	8,0274e00	7,8905e00		2	8,0669e00	7,9287e00
11	8,0240e00	7,8879e00		3	8,0608e00	7,9228e00
12	8,0198e00	7,8837e00		4	8,0549e00	7,9172e00

5

8,0494e00

7,9119e00

8,0161e00 7,8799e00

13

6	8,0442e00	7,9070e00	14	8,0123e00	7,8766e00
7	8,0394e00	7,9024e00	15	8,0090e00	7,8734e00
8	8,0350e00	7,8983e00	16	8,0066e00	7,8712e00
9	8,0311e00	7,8945e00	17	8,0044e00	7,8691e00
10	8,0276e00	7,8911e00	18	8,0029e00	7,8676e00
11	8,0244e00	7,8882e00	19	8,0018e00	7,8666e00
12	8,0193e00	7,8832e00	20	8,0008e00	7,8656e00
13	8,0153e00	7,8795e00	21	8,0000e00	7,8649e0

Species	На	Hb
NISac	8,0733e00	7,9348e00
4	0,0000e00	0,0000e00
4•NISac	7,9932e00	7,8584e00

Converged in 1 iterations with sigma = 0,773155

	Value	Standard deviation	Comments
log beta(4•NISac)	2.7348	0.02	2.73(2)

13. ¹H NMR titration experiments for 1•NISac in acetone-d₆

Figure S23. ¹H NMR spectra for titration of NISac with 1 in acetone-d₆ at 298 K.

Figure S24. Graph showing the fitting curve between the calculated and observed chemical shifts for titration **1**•NISac (in acetone- d_6 at 298 K, $Ka = 435 \pm 33 \text{ M}^{-1}$) following a) Ha and b) Hb signal.

Species	Log beta	NISac	1	
1	2,6386	1	1	refine

Point	T(NISac)	T(1)	F(NISac)	F(1)	Species 1
1	8,0885e-03	0,0000e00	8,0885e-03	4,9241e-90	1,7328e-89
2	8,0638e-03	8,0370e-04	7,4496e-03	1,8950e-04	6,1420e-04
3	8,0392e-03	1,6025e-03	6,8398e-03	4,0307e-04	1,1994e-03
4	8,0148e-03	2,3965e-03	6,2618e-03	6,4346e-04	1,7530e-03
5	7,9905e-03	3,1856e-03	5,7183e-03	9,1335e-04	2,2723e-03
6	7,9664e-03	3,9700e-03	5,2114e-03	1,2150e-03	2,7549e-03
7	7,9424e-03	4,7496e-03	4,7431e-03	1,5504e-03	3,1993e-03
8	7,9185e-03	5,5246e-03	4,3142e-03	1,9203e-03	3,6043e-03
9	7,8948e-03	6,2949e-03	3,9248e-03	2,3249e-03	3,9700e-03
10	7,8713e-03	7,0606e-03	3,5741e-03	2,7635e-03	4,2972e-03
11	7,8479e-03	7,8218e-03	3,2603e-03	3,2342e-03	4,5876e-03
12	7,8246e-03	8,5785e-03	2,9809e-03	3,7348e-03	4,8437e-03
13	7,8014e-03	9,3307e-03	2,7331e-03	4,2623e-03	5,0683e-03
14	7,7555e-03	1,0822e-02	2,3198e-03	5,3860e-03	5,4358e-03
15	7,7102e-03	1,2295e-02	1,9958e-03	6,5810e-03	5,7144e-03
16	7,6654e-03	1,3752e-02	1,7401e-03	7,8266e-03	5,9253e-03
17	7,6211e-03	1,5192e-02	1,5359e-03	9,1064e-03	6,0852e-03
18	7,5556e-03	1,7320e-02	1,2996e-03	1,1064e-02	6,2560e-03
19	7,4912e-03	1,9413e-02	1,1223e-03	1,3044e-02	6,3689e-03
20	7,4279e-03	2,1470e-02	9,8542e-04	1,5027e-02	6,4425e-03
21	7,3657e-03	2,3492e-02	8,7711e-04	1,7003e-02	6,4886e-03
22	7,3045e-03	2,5481e-02	7,8955e-04	1,8966e-02	6,5150e-03
23	7,2443e-03	2,7437e-02	7,1744e-04	2,0910e-02	6,5269e-03

Measured	chemical	shifts

Point	На	Hb
1	8,1171e00	8,0462e00
2	8,0977e00	8,0357e00
3	8,0871e00	8,0276e00
4	8,0783e00	8,0203e00
5	8,0705e00	8,0148e00
6	8,0585e00	8,0051e00
7	8,0505e00	7,9985e00
8	8,0416e00	7,9911e00
9	8,0335e00	7,9834e00
10	8,0261e00	7,9779e00
11	8,0194e00	7,9737e00
12	8,0112e00	7,9662e00
13	8,0052e00	7,9621e00
14	7,9966e00	7,9551e00
15	7,9880e00	7,9483e00
16	7,9814e00	7,9425e00

17	7,9781e00	7,9395e00
18	7,9745e00	7,9367e00
19	7,9722e00	7,9348e00
20	7,9709e00	7,9339e00
21	7,9688e00	7,9325e00
22	7,9687e00	7,9325e00
23	7,9675e00	7,9309e00

Calculated chemical shifts

Point	На	Hb
1	8,1153e00	8,0490e00
2	8,1025e00	8,0389e00
3	8,0903e00	8,0292e00
4	8,0787e00	8,0199e00
5	8,0677e00	8,0112e00
6	8,0574e00	8,0030e00
7	8,0478e00	7,9954e00
8	8,0391e00	7,9885e00

9	8,0311e00	7,9821e00	17	7,9816e00	7,9428e00
10	8,0239e00	7,9764e00	18	7,9766e00	7,9389e00
11	8,0174e00	7,9713e00	19	7,9729e00	7,9359e00
12	8,0116e00	7,9667e00	20	7,9701e00	7,9336e00
13	8,0065e00	7,9626e00	21	7,9678e00	7,9318e00
14	7,9979e00	7,9558e00	22	7,9659e00	7,9304e00
15	7,9912e00	7,9504e00	23	7,9644e00	7,9292e00
16	7,9858e00	7,9462e00			

Species	Ha	Hb
NISac	8,1153e00	8,0490e00
1	0,0000e00	0,0000e00
1•NISac	7,9478e00	7,9160e00

Converged in 6 iterations with sigma = 2,481943

	Value	Standard deviation	Comments
log beta(1•NISac)	2.6386	0.0314	2.64(3)

14. ¹H NMR titration experiments for 2•NISac in acetone-d₆

Figure S25. ¹H NMR spectra for titration of NISac with 2 in acetone-d₆ at 298 K.

Figure S26. Graph showing the fitting curve between the calculated and observed chemical shifts for titration **2**•NISac (in acetone-d₆ at 298 K, $Ka = 2774 \pm 70 \text{ M}^{-1}$) following a) Ha and b) Hb signal.

Species	Log beta	NISac	2	
1	3,4431	1	1	refine

T(NISac)	T(2)	F(NISac)	F(2)	Species 1
9,5984e-03	0,0000e00	9,5984e-03	1,6544e-90	4,4046e-89
9,5280e-03	9,5368e-04	8,6127e-03	3,8318e-05	9,1536e-04
9,4587e-03	1,8935e-03	7,6504e-03	8,5216e-05	1,8083e-03
9,3904e-03	2,8197e-03	6,7144e-03	1,4369e-04	2,6760e-03
9,3230e-03	3,7326e-03	5,8085e-03	2,1814e-04	3,5145e-03
9,2567e-03	4,6326e-03	4,9392e-03	3,1515e-04	4,3174e-03
9,1912e-03	5,5198e-03	4,1160e-03	4,4456e-04	5,0752e-03
9,1267e-03	6,3945e-03	3,3530e-03	6,2083e-04	5,7737e-03
9,0631e-03	7,2571e-03	2,6695e-03	8,6351e-04	6,3936e-03
9,0003e-03	8,1077e-03	2,0869e-03	1,1943e-03	6,9134e-03
8,9384e-03	8,9466e-03	1,6202e-03	1,6284e-03	7,3182e-03
8,8172e-03	1,0590e-02	1,0109e-03	2,7841e-03	7,8063e-03
8,6992e-03	1,2190e-02	6,9053e-04	4,1814e-03	8,0086e-03
8,5843e-03	1,3747e-02	5,1271e-04	5,6759e-03	8,0716e-03
8,4724e-03	1,5264e-02	4,0422e-04	7,1962e-03	8,0682e-03
8,3634e-03	1,6742e-02	3,3238e-04	8,7111e-03	8,0310e-03
8,1536e-03	1,9587e-02	2,4420e-04	1,1677e-02	7,9094e-03
7,9540e-03	2,2292e-02	1,9258e-04	1,4530e-02	7,7614e-03
7,7640e-03	2,4868e-02	1,5884e-04	1,7262e-02	7,6052e-03
7,5829e-03	2,7323e-02	1,3510e-04	1,9876e-02	7,4478e-03
7,4100e-03	2,9667e-02	1,1751e-04	2,2375e-02	7,2925e-03
7,2448e-03	3,1906e-02	1,0396e-04	2,4766e-02	7,1408e-03
7,0868e-03	3,4048e-02	9,3198e-05	2,7054e-02	6,9936e-03
	T(NISac) 9,5984e-03 9,5280e-03 9,4587e-03 9,3904e-03 9,3230e-03 9,2567e-03 9,1912e-03 9,1267e-03 9,0631e-03 9,0003e-03 8,9384e-03 8,8172e-03 8,6992e-03 8,5843e-03 8,4724e-03 8,1536e-03 7,7640e-03 7,7640e-03 7,5829e-03 7,4100e-03 7,2448e-03 7,0868e-03	T(NISac)T(2) $9,5984e-03$ $0,0000e00$ $9,5280e-03$ $9,5368e-04$ $9,4587e-03$ $1,8935e-03$ $9,3904e-03$ $2,8197e-03$ $9,3230e-03$ $3,7326e-03$ $9,2567e-03$ $4,6326e-03$ $9,1267e-03$ $6,3945e-03$ $9,003e-03$ $8,1077e-03$ $9,003e-03$ $8,1077e-03$ $8,9384e-03$ $8,9466e-03$ $8,8172e-03$ $1,2190e-02$ $8,6992e-03$ $1,2190e-02$ $8,5843e-03$ $1,5264e-02$ $8,3634e-03$ $1,6742e-02$ $8,1536e-03$ $1,9587e-02$ $7,7640e-03$ $2,2292e-02$ $7,7640e-03$ $2,7323e-02$ $7,2448e-03$ $3,1906e-02$ $7,0868e-03$ $3,4048e-02$	T(NISac)T(2)F(NISac) $9,5984e-03$ $0,0000e00$ $9,5984e-03$ $9,5280e-03$ $9,5368e-04$ $8,6127e-03$ $9,4587e-03$ $1,8935e-03$ $7,6504e-03$ $9,3904e-03$ $2,8197e-03$ $6,7144e-03$ $9,3230e-03$ $3,7326e-03$ $5,8085e-03$ $9,2567e-03$ $4,6326e-03$ $4,9392e-03$ $9,1912e-03$ $5,5198e-03$ $4,1160e-03$ $9,1267e-03$ $6,3945e-03$ $3,3530e-03$ $9,0631e-03$ $7,2571e-03$ $2,6695e-03$ $9,0003e-03$ $8,1077e-03$ $2,0869e-03$ $8,9384e-03$ $8,9466e-03$ $1,6202e-03$ $8,8172e-03$ $1,0590e-02$ $1,0109e-03$ $8,6992e-03$ $1,2190e-02$ $6,9053e-04$ $8,5843e-03$ $1,5264e-02$ $4,0422e-04$ $8,3634e-03$ $1,6742e-02$ $3,3238e-04$ $8,1536e-03$ $1,9587e-02$ $2,4420e-04$ $7,7640e-03$ $2,2292e-02$ $1,9258e-04$ $7,7640e-03$ $2,7323e-02$ $1,5884e-04$ $7,5829e-03$ $2,7323e-02$ $1,3510e-04$ $7,4100e-03$ $2,9667e-02$ $1,0396e-04$ $7,0868e-03$ $3,4048e-02$ $9,3198e-05$	T(NISac)T(2)F(NISac)F(2) $9,5984e-03$ $0,0000e00$ $9,5984e-03$ $1,6544e-90$ $9,5280e-03$ $9,5368e-04$ $8,6127e-03$ $3,8318e-05$ $9,4587e-03$ $1,8935e-03$ $7,6504e-03$ $8,5216e-05$ $9,3904e-03$ $2,8197e-03$ $6,7144e-03$ $1,4369e-04$ $9,2320e-03$ $3,7326e-03$ $5,8085e-03$ $2,1814e-04$ $9,2567e-03$ $4,6326e-03$ $4,9392e-03$ $3,1515e-04$ $9,1912e-03$ $5,5198e-03$ $4,1160e-03$ $4,4456e-04$ $9,1267e-03$ $6,3945e-03$ $3,3530e-03$ $6,2083e-04$ $9,003e-03$ $8,1077e-03$ $2,6695e-03$ $8,6351e-04$ $9,0003e-03$ $8,1077e-03$ $2,0869e-03$ $1,1943e-03$ $8,9384e-03$ $8,9466e-03$ $1,6202e-03$ $1,6284e-03$ $8,6992e-03$ $1,2190e-02$ $6,9053e-04$ $4,1814e-03$ $8,5843e-03$ $1,3747e-02$ $5,1271e-04$ $5,6759e-03$ $8,4724e-03$ $1,5264e-02$ $4,0422e-04$ $7,1962e-03$ $8,3634e-03$ $1,6742e-02$ $3,3238e-04$ $8,7111e-03$ $8,1536e-03$ $1,9587e-02$ $2,4420e-04$ $1,1677e-02$ $7,9540e-03$ $2,2292e-02$ $1,9258e-04$ $1,4530e-02$ $7,7640e-03$ $2,4868e-02$ $1,5884e-04$ $1,7262e-02$ $7,5829e-03$ $2,7323e-02$ $1,3510e-04$ $1,9876e-02$ $7,4100e-03$ $2,9667e-02$ $1,0396e-04$ $2,4766e-02$ $7,0868e-03$ $3,4048e-02$ $9,3198e-05$ $2,7054e-02$

Measured	l chemical shif	ts	12	7,9928e00	7,9390e00
Point	На	Hb	13	7,9874e00	7,9347e00
1	8,1263e00	8,0462e00	14	7,9846e00	7,9323e00
2	8,1111e00	8,0343e00	15	7,9827e00	7,9308e00
3	8,0967e00	8,0226e00	16	7,9816e00	7,9298e00
4	8,0841e00	8,0109e00	17	7,9800e00	7,9284e00
5	8,0684e00	7,9997e00	18	7,9790e00	7,9276e00
6	8,0550e00	7,9890e00	19	7,9785e00	7,9270e00
7	8,0433e00	7,9777e00	20	7,9780e00	7,9266e00
8	8,0322e00	7,9682e00	21	7,9778e00	7,9262e00
9	8,0188e00	7,9600e00	22	7,9775e00	7,9260e00
10	8,0096e00	7,9527e00	23	7,9772e00	7,9258e00
11	8,0023e00	7,9468e00			

Calculated chemical shifts		12	7,9926e00	7,9385e00	
Point	На	Hb	13	7,9873e00	7,9342e00
1	8,1259e00	8,0456e00	14	7,9844e00	7,9318e00
2	8,1114e00	8,0340e00	15	7,9826e00	7,9304e00
3	8,0971e00	8,0225e00	16	7,9814e00	7,9294e00
4	8,0830e00	8,0111e00	17	7,9799e00	7,9282e00
5	8,0692e00	8,0000e00	18	7,9790e00	7,9275e00
6	8,0557e00	7,9892e00	19	7,9785e00	7,9271e00
7	8,0428e00	7,9788e00	20	7,9781e00	7,9268e00
8	8,0307e00	7,9690e00	21	7,9778e00	7,9265e00
9	8,0197e00	7,9602e00	22	7,9775e00	7,9263e00
10	8,0103e00	7,9526e00	23	7,9774e00	7,9262e00
11	8,0027e00	7,9465e00			

Species	На	Hb
NISac	8,1259e00	8,0456e00
2	0,0000e00	0,0000e00
2•NISac	7,9754e00	7,9246e00

Converged in 4 iterations with sigma = 0,520818

	Value	Standard deviation	Comments
log beta(2 •NISac)	3.4431	0.0108	3.44(1)

15. ¹H NMR titration experiments for 3•NISac in acetone-d₆

Figure S27. ¹H NMR spectra for titration of NIS with **3** in acetone-d₆ at 298 K.

Figure S28. Graph showing the fitting curve between the calculated and observed chemical shifts for titration **3**•NISac (in acetone- d_6 at 298 K, $Ka = 2099 \pm 63 \text{ M}^{-1}$) following a) Ha and b) Hb signal.

Species	Log beta	NISac	3	
1	3,3219	1	1	refine

Point	T(NISac)	T(3)	F(NISac)	F(3)	Species	1
1	9,7062e-03	0,000e00	9,7062e-03	2,0311e-9	0 4,1374e-	-89
2	9,5986e-03	9,6053e-04	8,6880e-03	4,9942e-0	5 9,1059e-	-04
3	9,4933e-03	1,9000e-03	7,7039e-03	1,1067e-04	4 1,7893e-	-03
4	9,3902e-03	2,8190e-03	6,7569e-03	1,8571e-04	4 2,6333e-	-03
5	9,2894e-03	3,7184e-03	5,8511e-03	2,8002e-04	4 3,4384e-	-03
6	9,1908e-03	4,5986e-03	4,9928e-03	4,0064e-04	4 4,1980e-	-03
7	9,0942e-03	5,4603e-03	4,1913e-03	5,5741e-04	4 4,9029e-	-03
8	8,9996e-03	6,3041e-03	3,4588e-03	7,6333e-04	4 5,5408e-	-03
9	8,9070e-03	7,1306e-03	2,8102e-03	1,0338e-0	3 6,0968e-	-03
10	8,8162e-03	7,9402e-03	2,2591e-03	1,3831e-0	3 6,5571e-	-03
11	8,7273e-03	8,7334e-03	1,8122e-03	1,8183e-0	3 6,9151e-	-03
12	8,5548e-03	1,0273e-02	1,2006e-03	2,9188e-0	3 7,3541e-	-03
13	8,3889e-03	1,1753e-02	8,5191e-04	4,2157e-0	3 7,5370e-	-03
14	8,2293e-03	1,3176e-02	6,4607e-04	5,5929e-0	3 7,5833e-	-03
15	8,0757e-03	1,4547e-02	5,1563e-04	6,9864e-0	3 7,5601e-	-03
16	7,9278e-03	1,5867e-02	4,2721e-04	8,3661e-0	3 7,5006e-	-03
17	7,7156e-03	1,7759e-02	3,3857e-04	1,0382e-02	2 7,3770e-	-03
18	7,5145e-03	1,9554e-02	2,7984e-04	1,2319e-02	2 7,2347e-	-03
19	7,3236e-03	2,1257e-02	2,3824e-04	1,4171e-02	2 7,0854e-	-03
20	7,0839e-03	2,3395e-02	1,9871e-04	1,6510e-02	2 6,8852e-	-03
21	6,8594e-03	2,5398e-02	1,7036e-04	1,8709e-02	2 6,6890e-	-03
22	6,6486e-03	2,7279e-02	1,4905e-04	2,0779e-02	2 6,4996e-	-03
23	6,4505e-03	2,9046e-02	1,3246e-04	2,2728e-02	2 6,3180e-	-03
24	6,2638e-03	3,0712e-02	1,1918e-04	2,4568e-02	2 6,1446e-	-03
Measured o	chemical shift	S	19)	7,9831e00	7,9294e00
Point	На	Hb	20) (7,9819e00	7,9284e00
1	8,1227e00	8,0410e00	2	1 '	7,9825e00	7,9286e00
2	8,1082e00	8,0295e00	22	2	7,9811e00	7,9285e00
3	8,0954e00	8,0194e00	23	3 '	7,9819e00	7,9283e00
4	8,0815e00	8,0083e00	24	4 ′	7,9821e00	7,9281e00
5	8,0679e00	7,9974e00				
6	8,0563e00	7,9877e00	Ca	alculated cl	nemical shit	fts
7	8,0435e00	7,9782e00	Po	oint 1	Ha	Hb
8	8,0353e00	7,9711e00	1	:	8,1221e00	8,0407e00
9	8,0241e00	7,9621e00	2	:	8,1085e00	8,0298e00
10	8,0150e00	7,9555e00	3	:	8,0950e00	8,0190e00
11	8,0080e00	7,9500e00	4	:	8,0818e00	8,0084e00
12	7,9995e00	7,9420e00	5	:	8,0689e00	7,9981e00
13	7,9915e00	7,9371e00	6	:	8,0564e00	7,9882e00
14	7,9883e00	7,9350e00	7	1	8,0445e00	7,9787e00
15	7,9866e00	7,9327e00	8	:	8,0335e00	7,9699e00
16	7,9863e00	7,9316e00	9	:	8,0236e00	7,9620e00
17	7,9839e00	7,9304e00	10) (8,0151e00	7,9552e00
18	7,9832e00	7,9302e00	1	1 :	8,0081e00	7,9496e00

12	7,9984e00	7,9419e00	19	7,9829e00	7,9295e00
13	7,9928e00	7,9374e00	20	7,9822e00	7,9289e00
14	7,9895e00	7,9347e00	21	7,9818e00	7,9286e00
15	7,9874e00	7,9331e00	22	7,9814e00	7,9283e00
16	7,9859e00	7,9319e00	23	7,9811e00	7,9281e00
17	7,9845e00	7,9308e00	24	7,9809e00	7,9279e00
18	7,9835e00	7,9300e00			

Species	На	Hb
NISac	8,1221e00	8,0407e00
3	0,0000e00	0,0000e00
3•NISac	7,9782e00	7,9257e00

Converged in 2 iterations with sigma = 0,655155

	Value	Standard deviation	Comments
log beta(3•NISac)	3.3219	0.0128	3.32(1)

16. ¹H NMR titration experiments for 4•NISac in acetone-d₆

No chemical shift observed upon titration.

17. Job plots for *N*-oxide NIS complexes

Figure S29. Job plots of NIS with 1 (a), 2 (b), 3 (c) and 4 (d) in CDCl₃. The results indicate 1:1 binding mode.

18. Job plots for *N*-oxide NISac complexes

Figure S30. Job plots of NISac with a) 1 (a), 2 (b), 3 (a) and 4 (d) in CDCl₃. The results indicate 1:1 binding mode.

Table S1. HMBC- ¹⁵ N NMR chemical shifts for XB complexes						
HM	HMBC- ¹⁵ N NMR chemical shifts (ppm) [#]		HMBC- ¹⁵ N NMR chemical shifts (ppm) for		HMBC- ¹⁵ N NMR chemical shift differences ($\Delta\delta$ ppm) for	
		Complex	Donor#	Acceptor	Donor	Acceptor
1	-90.1	1•NIS	-257.4	-99.3	25.6	9.2
2	-92.7	2•NIS	-257.5	-104.7	25.5	12.0
3	-93.4	3•NIS	-262.7	-105.8	19.5	12.4
4	-77.6, -19.6(NO ₂)	4•NIS	-270.4	-81.6	12.6	4.0
		1•NISac	N/A	-102.6		12.5
		2•NISac	N/A	-101.5		8.8
		3•NISac	N/A	-101.6		8.2
		4•NISac	N/A	-88.6		11.0

19. HMBC-¹⁵N NMR spectra for acceptors, donor and their XB complexes

[#]HMBC-15N NMR shifts (ppm) for NIS [-283.0]. N/A: The HMBC-15N NMR chemical shifts for NISac are not available due to lack of protons at 3-position from nitrogen.

As the halogen bonding is expected to induce some changes in the chemical environment of the *N*-oxide group, both in the O and N atoms, but due to the extremely low sensitivity of the ¹⁷O NMR the changes in the \neg N-X⁺••••O-N⁺ motif was monitored using Heteronuclear Multiple Bond Correlation (HMBC) ¹⁵N NMR. As shown in below Figures S31-S43 and Table S1, the nitrogen atom of the *N*-oxide experiences a shielding effect causing upfield shifts in between 4.0-12.4 ppm and 8.2-12.5 ppm in the NIS and NISac complexes, respectively. Simultaneously, the nitrogen atom in NIS donor molecule experiences a corresponding deshielding effect by 12.6 - 25.6 ppm. The ¹⁵N chemical shifts in NISac could not be obtained due to lack of protons at the 3-position from the N atom.

The observed ¹⁵N NMR chemical shift changes in CDCl₃ do not follow the trend observed via the ¹H NMR titrations suggesting additional effects on the *N*-oxide group, especially for the NISac complexes, where the binding is too strong to be reliable measured. It seems that the *N*-oxide nitrogen is especially sensitive to chemical shift changes and does not seem to correlate solely with the halogen bonds observed. This may also be due to the fact that the XB donor is the N-oxide oxygen, not the formally positively charged nitrogen atom and thus other effects like solvent or concentration effects, pi-pi interactions or other secondary interactions might influence and perturb the ¹⁵N chemical shifts and will make it difficult or impossible to reliably rationalize and correlate the ¹H NMR based XB association constants with the observed ¹⁵N NMR $\Delta\delta$ values.

Figure S33. HMBC-¹⁵N NMR spectra for 3 in CDCl₃.

Figure S34. HMBC-¹⁵N NMR spectra for 4 in CDCl₃.

Figure S35. HMBC-¹⁵N NMR spectra for NIS in CDCl₃. (Note: \diamond degradation of NIS to SNH)

Figure S36. HMBC-¹⁵N NMR spectra for 1•NIS in CDCl₃. (Note: Δ degradation of NIS to SNH)

Figure S38. HMBC-¹⁵N NMR spectra for **3**•NIS in CDCl₃. (Note: Δ degradation of NIS to SNH)

ure S39. HMBC-¹⁵N NMR spectra for 4•NIS in CDCl₃. (Note: Δ degradation of NIS to SNH)

Figure S40. HMBC-¹⁵N NMR spectra for 1•NISac in CDCl₃.

Figure S41. HMBC-¹⁵N NMR spectra for 2•NISac in CDCl₃.

Figure S42. HMBC-¹⁵N NMR spectra for 3•NISac in CDCl₃.

Figure S43. HMBC-¹⁵N NMR spectra for 4•NISac in CDCl₃.

III X-ray Crystallography

X-ray experimental

Single crystal X-ray data for 1•NIS, 2•NIS, 3•NIS, 1•NISac, 2•NISac and 3•NISac were collected at 170 K using a Bruker-Nonius Kappa CCD diffractometer with an APEX-II detector and graphite monochromatized Mo-K α ($\lambda = 0.71073$ Å) radiation; the data for 1•NHSac and 2•NHSac was measured either at 123K or 120 K with Agilent SuperNova single-source diffractometer equipped with an Atlas EoS CCD detector using mirror-monochromated Mo-K α ($\lambda = 0.71073$ Å) radiation. The data collection and reduction for 1•NIS, 2•NIS, 3•NIS, 1•NISac, 2•NISac and 3•NISac were performed using the program *COLLECT*³ and *HKL DENZO AND SCALEPACK*⁴. The data collection and reduction for 1•NHSac and 2•NHSac are performed using the program *CrysAlisPro*⁵. For 1•NIS, 2•NIS, 3•NIS, 1•NISac, 2•NISac, the intensities were corrected for absorption using *SADABS*⁶ with multi-scan absorption correction type method, and Gaussian face index absorption correction method⁵ was used for 1•NHSac and 2•NHSac. All the structures were solved with direct methods (*SHELXS*⁷) and refined by full-matrix least squares on *F*² using the *OLEX2*⁸, which utilizes the *SHELXL*-2013 module⁷. Constraints (EADP) and restraints (DFIX and ISOR) are used where appropriate.

Complex		1•NIS	2•NIS	3•NIS	1•NISac
CCDC depos. No.		1426136	1426137	1426138	1426139
Empirical formula		$C_9H_9IN_2O_3$	$C_{20}H_{24}I_2N_4O_7\\$	$C_{15}H_{13}IN_2O_3$	$C_{12}H_9IN_2O_4S$
Formula weight		320.08	686.23	396.17	404.17
Temperature (K)		170.0	170.0	170.0	170.0
Crystal system		Triclinic	Triclinic	Orthorhombic	Monoclinic
Space group		<i>P</i> -1	P-1	$P2_{1}2_{1}2_{1}$	$P2_1/c$
Unit cell dimension	is: a (Å)	8.154(2)	9.729(2)	5.7923(12)	7.1370(14)
	b (Å)	11.633(2)	11.427(2)	8.4216(17)	22.707(5)
	c (Å)	12.467(3)	11.566(2)	29.710(6)	8.8248(18)
	α (°)	67.55(3)	90.02(3)	90	90
	β (°)	76.11(3)	110.88(3)	90	90.68(3)
	γ (°)	76.47(3)	93.06(3)	90	90
Volume / Å ³		1047.5(5)	1199.4(5)	1449.2(5)	1430.1(5)
Z		4	2	4	4
Density (calculated) Mg/m ³	2.030	1.900	1.816	1.877
Absorption Coeffic	ient mm-1	3.046	2.670	2.221	2.398
F(000)		616	668	776	784
Crystal size (mm ³)		0.25×0.23×0.23	0.48×0.36×0.30	0.19×0.18×0.11	0.14 x 0.13 x 0.13
θ range for data col	lection (°)	2.61 to 25.25	1.80 to 25.24	2.51 to 25.24	1.79 to 25.25
Reflections collected	ed [R(int)]	10999[0.0218]	12583[0.0269]	24654[0.0363]	8791 [0.0642]
Observed reflections $[I>2\sigma(I)]$		3465	3893	2544	1946
Data completeness	(%)	99.34	99.9	99.99	99.90
Data/ restraints/ par	ameters	3754/0/271	4354/0/303	2592/0/190	2576/18/170
Goodness-of-fit on	F ²	1.043	1.044	1.163	1.048
Final R_1 indices $[I > 2\sigma(I)]$		$R_1 = 0.0187$,	$R_1 = 0.0229$,	$R_1 = 0.0383$,	$R_1 = 0.0614$,
		$wR_2 = 0.0415$	$wR_2 = 0.0478$	$wR_2 = 0.1368$	$wR_2 = 0.11111$
Final R indices [all data]		$R_1 = 0.0210$,	$R_1 = 0.0273$,	$R_1 = 0.0396$,	$R_1 = 0.0891$,
		$wR_2 = 0.0425$	$wR_2 = 0.0493$	$wR_2 = 0.1375$	$wR_2 = 0.1217$
Largest diff. peak/h	ole (e.Å ⁻³)	0.411/ -0.505	0.405/-0.471	0.695/-1.388	0.797/ -0.779

Table S2a. Crystallographic details for structures 1•NIS, 2•NIS, 3•NIS, and 1•NISac

Complex		2•NISac	3•NISac	1•NHSac	2•NHSac
CCDC depos. No.		1426140	1426141	1426142	1426143
Empirical formula		$C_{13}H_{11}IN_2O_4S$	$C_{18}H_{13}IN_2O_4S$	$C_{12}H_{10}N_{2}O_{4}S \\$	$C_{13}H_{12}N_2O_4S$
Formula weight		418.20	480.26	278.28	292.31
Temperature (K)		170.0	170.0	123.0	120.0
Crystal system		Triclinic	Monoclinic	Triclinic	Monoclinic
Space group		P-1	$P2_1/c$	<i>P</i> -1	$P2_1/c$
Unit cell dimensions:	a (Å)	7.271(2)	12.277(3)	6.8571(4)	14.1204(10)
	b (Å)	8.763(2)	10.283(2)	8.4482(5)	6.8482(4)
	c (Å)	12.765(3)	14.972(3)	11.3117(6)	14.7897(13)
	α (°)	109.12(3)	90	98.755(5)	90
	β (°)	99.97(3)	106.71(3)	106.766(5)	112.860(10)
	γ (°)	90.54(3)	90	93.582(5)	90
Volume / Å ³		754.9(3)	1810.3(7)	616.19(6)	1317.83(19)
Z		2	4	2	4
Density (calculated) N	Mg/m ³	1.840	1.762	1.500	1.473
Absorption Coefficien	nt mm ⁻¹	2.275	1.910	0.274	0.260
F(000)		408	944	288	608
Crystal size (mm ³)		0.27 x 0.17 x 0.16	0.22 x 0.17 x 0.13	0.23×0.09×0.05	0.31 x 0.05 x 0.04
θ range for data collection (°)		1.72 to 25.25	1.73 to 25.25	3.12 to 25.25	3.33 to 25.25
Reflections collected	[R(int)]	7107 [0.0266]	16159 [0.0636]	4086 [0.0300]	4484 [0.0364]
Observed reflections	[I>2σ(I)]	2489	2144	1968	1695
Data completeness (%	6)	99.70	99.99	99.88	99.12
Data/ restraints/ parameters		2738/0/191	3276/0/235	2224/0/176	2377/0/186
Goodness-of-fit on F ²		1.063	1.010	1.162	1.073
Final R_1 indices $[I > 2\sigma(I)]$		$R_1 = 0.0264$,	$R_1 = 0.0392,$	$R_1 = 0.0373,$	$R_1 = 0.0528$,
		$wR_2 = 0.0593$	$wR_2 = 0.0637$	$wR_2 = 0.0969$	$wR_2 = 0.1303$
Final R indices [all data]		$R_1 = 0.0307$,	$R_1 = 0.0785$,	$R_1 = 0.0433$,	$R_1 = 0.0780$,
		$wR_2 = 0.0606$	$wR_2 = 0.0734$	$wR_2 = 0.1015$	$wR_2 = 0.1483$
Largest diff. peak/hol	e (e.Å-3)	0.378/ -0.286	0.468/ -0.321	0.240/-0.593	0.268/ -0.656

Table S2b.	Crystallographic	details for structures	2•NISac, 3•NISac,	1•NHSac,	and 2•NHSac
			, , ,	,	

VI References

- 1. Olivo, G.; Lanzalunga, O.; Mandolini, L.; Di Stefano, S. J. Org. Chem. 2013, 78, 11508–11512.
- 2. Frassineti, C.; Ghelli, S.; Gans, P.; Sabatini, A.; Moruzzi, M. S.; Vacca, A. Anal. Biochem. 1995, 231, 374–382.
- 3. Bruker AXS BV, Madison, WI, USA; 1997–2004.
- 4. Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307-326.
- 5. CrysAlisPro 2014, Agilent Technologies. Version 1.171.36.35.
- 6. Blessing, J. Appl. Cryst. 1997, 30, 421-426.
- 7. Sheldrick, G. M. Acta Cryst. A 2008, 64, 112–122.
- 8. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. *Appl. Cryst.* **2009**, *42*, 339–341.