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1. Materials and Methods

All solvents were distilled or dried before use according to the general purification procedure.
Commercially available reagents including NaBH(OAc); (Tokyo Chemical Industry Co., Ltd.),
paraformaldehyde (Nakalai Tesque, Ltd.), [Rh(nbd)Cl], (Tokyo Chemical Industry Co., Ltd.),
N-methylpyrrolidone (NMP, Wako Pure Chemical Industries, Ltd.), triethylamine (Wako Pure
Chemical Industries, Ltd.), and trichloroacetic acid (Kanto Chemical Co., Inc.) were used without
further purification unless otherwise noted. All reactions were carried out under inert atmosphere
of argon. Alumina column chromatography was performed using MERCK Aluminium oxide 90
Standardized. Silica gel column chromatography was performed using silica gel 60 (spherical,
grain size 40-50 pm) (Kanto Chemical Co. Inc., Tokyo, Japan). Compound 4, Rotaxanes
TIPS-M1, M1 were synthesized according to literature' (Scheme 1). Axle precursor 6 was
prepared according to literature®. All prepared polymers could not be detected by NMR, so
polymerization and the successible protonation and thermal deprotonation of polymers were
confirmed by IR.

'H (400 MHz) and "“C (100 MHz) NMR spectra were recorded on a JEOL AL-400
spectrometer (JEOL, Tokyo, Japan) using CDCIl; as the solvent, calibrated using
tetramethylsilane as the internal standard. Recycling preparative GPC was performed by JAI Co.,
Ltd. LC-9210NEXT system with CHCl; eluent. IR spectra were recorded on a JASCO FT/IR-460
plus spectrometer (JASCO, Tokyo, Japan). Thermogravimetric analyses were carried out with a
Shimadzu DTG-60 (Shimadzu, Japan) (heating rate of 10 °C-min') and Shimadzu DSC-60
(Shimadzu, Japan) (heating rate of 10 °C-min ') instrument under nitrogen. UV-vis spectra were

taken on a JASCO V-550 UV-vis spectrophotometer (JASCO, Japan). FAB HR-MS and



ESI-TOF MS data were taken by the National University Corporation, Tokyo Institute of

Technology, Center for Advanced Materials Analysis, on request. Raman spectra data were taken

by JASCO Corporation.

2. Experiments

Scheme S1
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Synthesis of rotaxane TIPS-M1
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To a solution of sec-ammonium salt 6 (2.0 g, 7.8 mmol), dibenzo-24-crown-8-cther 5 (4.2 g, 9.4

mmol), and 3-bromo-5-(triisopropylsilyl)ethynylbenzoic acid 4 (3.6 g, 9.4 mmol) in CHCl; (20

mL) was added N, N’-diisopropylcarbodiimide (DIC) (3.4 mL, 22 mmol) and tributylphosphane

(PBu3) (0.11 mL, 1.2 mmol) at room temperature and the reaction mixture was stirred for 12 h.

The reaction mixture was poured into hexane (70 mL), and the formed precipitates were collected

by decantation. The precipitates were purified by silica gel column chromatography (CHCl; /

EtOAc =1/ 1, R, = 0.4) and recycle preparative GPC to give monomer TIPS-M1 (4.7 g, 3.9

mmol) in 50% yield as a white solid.

'"H NMR (400 MHz, CDCl, 298 K) & 8.08 (s, 1H), 8.04 (s, 1H), 7.78 (s, 1H), 7.59 (br, 2H), 7.35



(d, J=17.8 Hz, 2H), 7.24 (d, J = 7.8 Hz, 2H), 6.89-6.86 (m, 5H), 6.85 (s, 2H), 6.79-6.76 (m, 4H)
5.27 (s, 2H), 4.65-4.64 (m, 2H), 4.48-4.45 (m, 2H), 4.10-4.09 (m, 8H), 3.78-3.77 (m, 8H), 3.49
(s, 8H), 2.16 (s, 6H), 1.12 (s, 21H) ppm, adapted from Ref. 1;

Lit'. data: '"H NMR (400 MHz, CDCls, 298 K) § 8.09 (s, 1H), 8.04 (s, 1H), 7.79 (s, 1H), 7.59 (br,
2H), 7.36 (d, J= 7.8 Hz, 2H), 7.24 (d, J = 7.8 Hz, 2H), 6.89-6.86 (m, SH), 6.84 (s, 2H), 6.79—
6.77 (m, 4H), 5.27 (s, 2H), 4.67-4.64 (m, 2H), 4.49—4.45 (m, 2H), 4.10-4.09 (m, 8H), 3.79-3.77
(m, 8H), 3.48 (s, 8H), 2.16 (s, 6H), 1.12 (s, 21H) ppm.

Ammonium salt-type rotaxane monomer M1

To a solution of TIPS-M1 (0.50 g, 040 mmol) in THF (70 mL) was added
tetra-n-butylammonium fluoride (1.1 mL, 1.0 mmol, 1.0 M THF solution) at room temperature,
and stirred for 2 h. After the half amount of the THF was evaporated, the solution was extracted
with CH,Cl,. The organic layer was washed with sat. NaHCO; solution and brine, dried over
MgSO,, and concentrated in vacuo. A white solid momomer M1 (0.29 g, 0.26 mmol) was
obtained in 65% yield.

m.p. 127-130 °C; 1H NMR (400 MHz, CDCl;, 298 K) 6 8.14-8.13 (m, 1H), 8.06 (m, 1H), 7.80
(m, 1H), 7.59 (br, 2H), 7.37 (d, J = 8.1 Hz, 2H), 7.25 (d, J = 8.1 Hz, 2H), 6.89-6.87 (m, 5H), 6.84
(br, 2H), 6.80-6.77 (m, 4H), 5.26 (s, 2H), 4.68-4.65 (m, 2H), 4.49-4.46 (m, 2H), 4.10-4.09 (m,
8H), 3.79-3.77 (m, 8H), 3.49 (s, 8H), 3.21 (s, 1H), 2.16 (s, 6H) ppm; "C NMR (100 MHz, CDCl;,
298 K) 0 164.1, 147.4, 139.0, 138.9, 138.4, 138.3, 136.6, 132.9, 132.8, 131.9, 131.8, 131.7, 131.3,
130.7, 129.7, 129.6, 128.2, 126.6, 126.5, 124.5, 122.2, 121.7, 112.6, 112.5, 80.9, 79.9, 70.6, 70.5,
70.2, 70.1, 68.1, 68.0, 66.6, 66.5, 52.9, 52.7, 52.6, 52.2, 52.1, 30.3, 29.4, 23.7, 21.2, 19.9, 19.5,

17.7, 13.5, 12.2 ppm; IR (KBr) v 3442, 3275, 3152, 2923, 1726, 1595, 1566, 1505, 1455, 1355,



1279, 1253, 1191, 1124, 1057, 955, 843, 745, 669, 557 cm™', adapted from Ref. 1.

Lit' data: m.p. 129-131 °C; 'H NMR (400 MHz, CDCl;, 298 K) & 8.14-8.13 (m, 1H), 8.06 (m,
1H), 7.80-7.79 (m, 1H), 7.59 (br, 2H), 7.36 (d, J = 8.1 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 6.89-
6.84 (m, 7H), 6.80-6.77 (m, 4H), 5.25 (s, 2H), 4.68-4.65 (m, 2H), 4.49-4.46 (m, 2H), 4.10-4.09
(m, 8H), 3.79 (m, 8H), 3.49 (s, 8H), 3.21 (s, 1H), 2.16 (s, 6H) ppm.

N-Methylated amine-type rotaxane monomer Al

A solution of M1 (0.22 g, 0.20 mmol), paraformaldehyde (0.15 g, 4.0 mmol), NaBH(OAc); (0.27
g, 1.3 mmol), and triethylamine (0.50 mL) in NMP (3.0 mL) was stirred for 12 h at 70 °C under
Ar atmosphere. The cooled reaction mixture was poured into water (0.50 L), and the precipitates
were collected by filtration. The products were dissolved in ethyl acetate, washed with sat.
NaHCO; solution and brine, dried over MgSQO,, and concentrated in vacuo. The residue was
purified by Al,O; column chromatography (EtOAc, R, = 0.4) to give Al (0.15 g, 0.16 mmol) in
80% yield as a white solid.

m.p. 52-53 °C. 'H NMR (400 MHz, CDCls, 298 K) & 8.69 (s, 1H), 8.58 (s, 1H), 7.88 (d, J = 7.6
Hz, 2H), 7.60 (s, 1H), 7.16 (d, J = 7.6 Hz, 2H), 6.93 (s, 2H), 6.87 (s, 1H), 6.83-6.80 (m, 4H),
6.75-6.73 (m, 4H), 5.30 (s, 2H), 4.08-4.04 (m, 8 H), 3.71-3.63 (m, 8H), 3.44 (s, 2H), 3,37 (s,
2H), 3.16 (m, 4H), 3.02 (m, 4H), 2.80 (s, 1H), 2.28 (s, 6H), 2.15 (s, 3H) ppm; “C NMR (100
MHz, CDCl;, 298K) 6 164.1, 147.3, 147.1, 138.9, 138.5, 136.6, 132.8, 132.1, 132.0, 131.8, 131.1,
130.9, 129.8, 129.1, 127.9, 124.5, 122.3, 121.5, 121.3, 111.9, 111.8, 81.0, 79.9, 71.8, 71,5, 70.5,
70.3, 68.2, 68.0, 66.7, 61.1, 60.3, 39.4, 21.2 ppm; IR (KBr) v 3280, 2920, 1716, 1593, 1563, 1505,
1453, 1377, 1324, 1284, 1253, 1218, 1126, 1055, 952, 870, 840, 770, 740, 669 cm™; FAB

HR-MS Calc’d for Cs;HsoNO;o [M+H]": m/z = 924.3322. Found: m/z =924.3336.



Trichloroacetate-type rotaxane A1-TCA

Trichloroacetic acid (98 mg, 0.60 mmol) was added to a solution of A1 (0.20 g, 0.20 mmol) in
CHCI; (2.0 mL) at room temperature, and stirred for 10 min. After the solvent was removed
under the reduced pressure, the residue was washed with hexane to remove the excess amount of
trichloroacetic acid and dried in vacuo to give A1-TCA (0.26 g, 0.20 mmol) in 100% yield as a
white solid.

m.p. 95 °C (decomp.) 'H NMR (400 MHz, CDCls, 298 K) & 8.22 (s, 1H), 8.15 (s, 1H), 7.78 (s,
1H), 7.59 (br, 2H), 7.38 (br, 2H), 7.27 (s, 1H), 7.02 (s, 2H), 6.95 (s, 1H), 6.89-6.96 (m, 4H),
6.81-6.76 (m, 4H), 5.28 (s, 2H), 5.05 (d, /= 13.2 Hz, 1H), 4.83 (d, /= 13.2 Hz, 1H), 4.40 (d, J =
7.8 Hz, 1H), 4.13 (d, J = 7.8 Hz, 1H), 4.11-4.09 (m, 8H), 3.83-3.74 (m, 8H), 3.57-3.52 (s, 8H),
3.15 (s, 1H), 2.85 (s, 3H), 2.25 (s, 6H) ppm; °C NMR (100 MHz, CDCls, 298 K) & 164.1, 163.5,
147.2, 147.1, 138.9, 138.5, 136.6, 132.8, 131.9, 131.8, 131.2, 130.8, 129.8, 128.8, 127.9, 124.4,
122.2, 121.4,121.3, 111.9, 111.8, 94.1, 80.9, 79.9, 71.7, 71.5, 70.5, 70.3, 68.2, 68.0, 66.5, 64.4,
61.0, 60.3, 39.5, 21.2, 17.6 ppm; IR (KBr) v 3438, 3068, 2923, 1727, 1593, 1565, 1505, 1454,
1429, 1354, 1279, 1250, 1212, 1190, 1123, 1058, 954, 834, 744, 676 cm™'; ESI-TOF Calc’d for
Cs3HsoBrCI;NO, [M-CI;,CCOO]"™: m/z = 926.3297. Found: m/z = 926.3296. [C1;CCOO]: m/z =
160.8964. Found: m/z = 160.8971.

Synthesis of amine-type polyphenylacetylene PA1

To a solution of monomer Al (0.20 g, 14 wmol) in CHCI; (0.48 mL) was added a solution
consisted of [RhCI(nbd)], (4.0 mg, 8.7 uL), and Et;N (10 uL) in CHCl; (1.0 mL), and the mixture

was stirred for 4 h at room temperature. The solution was poured into MeOH (20 mL). The



precipitates were collected by filtration to give polyphenylacetylene PA1 (0.15 g, 0.10 mmol, as a
red solid in 90% yield.

IR (KBr) v 2872, 1717, 1593, 1504, 1452, 1325, 1252, 1215, 1052, 950, 739 cm™".
Ammonium-type polyphenylacetylene PA1-TCA

To a solution of PA1 (20 mg, 21 umol) in CHCIl; (5.0 mL) was added trichloroacetic acid (9.8 mg,
60 umol) at room temperature, and stirred for 10 min. The reaction solution was concentrated in
vacuo. The residue was washed with hexane to remove the excess amount of trichloroacetic acid
and dried in vacuo to give PA1-TCA (26 mg, 21 wmol) as a red solid in 100% yield.

IR (KBr) v 2924, 1734, 1505, 1250, 1125, 952, 845, 680 cm™.

Scheme S2
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Synthesis of polyphenylacetylene PA2

The tert-amine-type dumbbell polyphenylacetylene PA2 was synthesized using the same
methods with the PA1 as a yellow solid in 80% yield.

IR (KBr) v 3447, 1560, 1419, 1094, 937 cm’.

Ammonium-type polyphenylacetylene PA2-TCA



The fert-ammonium-type dumbbell polyphenylacetylene PA2-TCA was synthesized
using the same methods with PA1-TCA as a yellow solid in 100% yield.

IR (KBr) v 3418, 1751, 1623, 1265, 849, 833, 679 cm™.

3.Film preparation method and switching process

Quartz Film

' Trichloroacetic acid / Hexane (2 M) '
dipping, 5 min
PAT1 (red) \ d) / PAT1-TCA (yellow)
—

i —

heating, 100 °C, 5 min

Scheme S3. Schematic illustration of switching process at the film state.

Preparation of Films (high concentration):

a) 2.0 mg amine-type polyphenylacetylene PA1 was dissolved in 100 uL CHCl; (0.022
M). Casting this solution onto the surface of quarts and then dried overnight to
remove the solvent to obtain PA1 film.

b) Dipping this PA1 film into the trichloroacetic acid hexane solution (2.0 M) for 5 min.

¢) Dried overnight to removed the solvent, ammonium-type film PA1-TCA was obtained

as a yellow one.

d) Heating the PA1-TCA film on a hotplate at 100 °C for 5 min, the film color changed

from yellow to red, indicated amine-type film PA1 was achieved. (The heating time

of ammonium-type film is dependent on the thickness of film and concentration of



polymer chloroform solution.)

. . . , .

Fig. S1. Photos of PA1 dipping into the Cl;CCOOH/hexane solution (2.0 M) at (a) 0 sec,
(b) 15 sec, (c) 30 sec, (d) 45 sec, and (e) 60 sec, respectively, to obtain PA1-TCA as an

orange film (Original concentration of PA1 chloroform solution: 0.022 M).

Fig. S2. Photos of PA1-TCA heating at 100 °C on a hotplate at (a) 0 sec, (b) 8 sec, (c) 12
sec, (d) 16 sec, and (e) 20 sec, respectively, to obtain PA1 as a red film (Original

concentration of PA1 chloroform solution: 0.011 M).
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4. Spectra
4.1. '"H NMR spectra
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Fig. S3. "H NMR spectrum of monomer M1 (400 MHz, CDCls, 298 K).
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Fig. S4. "H NMR spectrum of monomer A1 (400 MHz, CDCls, 298 K).
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Fig. S6. "H NMR spectra of (a) A1 and (b) residue of A1-TCA heating until 200 °C
(400 MHz, 298 K, CDCls).
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Fig. S7. "H NMR spectra of titration of TCA into A1 in CDCl; (400 MHz, 298 K,
CDCl).

4.2. HH COSY correlations spectra
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Fig. S8. HH COSY correlations of A1 (400 MHz, CDCl;, 298 K)
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4.3. °C NMR spectra
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Fig. S10. °C NMR spectrum of monomer M1 (100 MHz, CDCl;, 298 K).
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Fig. S11. °C NMR spectrum of monomer A1 (100 MHz, CDCl;, 298 K).
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Fig. S12. °C NMR spectrum of monomer A1-TCA (100 MHz, CDCls, 298 K).
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4.4. IR spectra
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Fig. S13. IR spectrum of monomer M1 (KBr).
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Fig. S14. IR spectrum of monomer A1 (KBr).
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Fig. S16. IR spectrum of polyphenylacetylene PA1 (KBr).
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Fig. S18. IR spectra of Al and PA1 (KBr).
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Fig. S20. IR spectra of polyphenylacetylene PA1y and PA1s (KBr).
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4.5. ESI-TOF spectra
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Fig. S22. ESI-TOF spectra of rotaxane A1-TCA: (a) rotaxane-type ammonium ion, and

(b) trichloroacetate.
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5. UV—vis spectra
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Fig. S23. UV-vis spectra of PA1 film (298 K): (a) at room temperature; (b) after thermal

annealing preprocessing: heating at 100 °C for 10 min.
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Fig. S24. UV—vis spectra of films of PA1 (red lines) and PA1-TCA (blue line) by
repeated heating and acidification progresses into the CI;CCOOH/hexane (2.0 M)

in the consecutive 5 cycles.
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Fig. S25. UV-vis spectra of PA1 film PA1, (before thermal annealing preprocess),
PA15 (in the fifth cycle) and PA1’5 (dissolved PA1sinto the CHCI3).
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Blank experiment :
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Fig. S26. Synthesis of film PA1-TFA and UV—vis spectra of: (a) PA1 film (Amax = 502
nm); (b) PA1-TFA film (Amax = 432 nm, produced by dipping PA1 film into the
trifluoroacetic acid hexane for 5 min); and (c) PA1-TFA film heated at 100 °C for 5 min
(Amax = 432 nm).
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6. DSC
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Fig. S27. DSC profiles of: (a) PA1 and (b) PA1-TCA (heating and cooling rate:
10 °C-min™": 2nd heating and cooling from 30 °C to 200 °C under N, atmosphere).
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