Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Betaine mediated synthesis of annulated dihydrofurans from oxobis(methylthio)ketene acetals and N-butyl-N'-methyl ethane-1,2-diamine as precursors via NHC elimination

Atul Kumar,^{a,b,*} Shivam Maurya,^{a,b} Kemant,^{a,b} and Suman Srivastava^a ^aMedicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow-226031 India.

^bAcademy of Scientific & Innovative Research (AcSIR) New Delhi

E-mail: dratulsax@gmail.com / atul_kumar@cdri.res.in **Table of Contents**

1.	General information	2
2.	X-ray Crystallographic Data	2
3.	Characteristic representation of Betaine	3
4.	Representative one pot procedure for the synthesis of 9a-q, 11a-h, 13a-k	4
5.	Spectroscopic characterization of all synthesized compounds (9a-q, 11a-h, 13a-k, 4)	5
6.	Spectral charts of all synthesized compounds (9a-q, 11a-h, 13a-k, 4)	18
7.	Mechanistic experiment	56
8.	¹ H-COSY Spectra of 13j	58
9.	HMBC Spectra of 13j	59
10.	HSQC Spectra of 13j	60

1. General information

All reactions were carried out under a nitrogen atmosphere with dry, freshly distilled solvent under anhydrous condition. Progress of reactions was monitored by Thin Layer Chromatography (TLC). NMR spectra were recorded in CDCl₃ at 300 and 200 MHz (based on availability of instruments) 75 and 50 MHz (for ¹³C) respectively. Chemical shifts are reported in d(ppm) relative to TMS (¹H) or CDCl₃ (¹³C) as internal standards. Integrals are in accordance with assignments; coupling constants are given in Hz. ¹H- ¹H COSY, HSQC and HMBC methods used to confirm the NMR peak assignments. Yields refer to quantities obtained after chromatography.

2. X-ray Crystallographic Data

The crystal data of 13g: C₂₇H₂₄O₃, M = 396.46, Monoclinic, P2 1 /c, a = 18.7438(12) Å, b = 5.9398(4), Å, c = 19.1345(14) Å, $\beta = 92.094(6)^{\circ}$, V = 2128.9(3) Å 3 , Z = 4, Dx = 1.237 gcm -³, μ (Mo-Ka) = 0.079 mm -¹, F(000) = 840.0, rectangular block, colorless, size = 0.48 x 0.46 x 0.44 mm, 9703 reflections measured (*Rint* = 0.0739 (2947), wR2 = 0.1987(5710) for all data, conventional RI = 0.0739 for 2947 Fo > 4 σ (Fo) and 0.1987 for all 5710 data, S = 1.022 for all data and 265 parameters.

Single-crystal X-ray data, space group, unit-cell dimensions and intensity data for **13g** were collected with an Oxford Diffraction X-calibur CCD diffractometer using graphite monochromated Mo Karadiation (λ = 0.71073 Å). The structures were solved by direct methods

using SHELXS-97 and refined on F 2 by full-matrix least-squares technique using SHELXL-97. Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were geometrically fixed with thermal parameters equivalent to 1.2 times that of the atom to which they are bonded. Diagrams for all complexes were prepared using ORTEP. CCDC (deposit No: 892304) contains the supplementary crystallographic data. Cambridge Crystallographic Data Center,12 Union Road, Cambridge,CB21EZ, U. K; Fax: (internat.) + 44-1223/336-033; E-mail:

deposit@ccdc.cam.ac.uk.

Fig 1. ORTEP diagram of 9g

3. Characteristic representation of Betaine

Our studies aimed at introducing new dogma in *N*-heterocyclic carbene catalysis via betaine¹, a novel nucleophilic intermediates which can be explored for their nucleophilicity and high reactivity towards electrophiles as cycloaddition partners. Betaines of Pseudo-cross-conjugated mesomeric type (Fig 2; I-IV) are isoconjugate with even non-alternant hydrocarbon dianions categorised as heterocyclic mesomeric betaines². Characteristic & systematic dipole types can be dissected from the resonance structures (Fig 2; V). Nodal positions of the HOMO of the anionic building block (Fig 2; VI) & charge distributions according to valence bond theory (Fig 2, VII) within limits also can be represented. The anionic part of the betaine is joined by union bonds

("*u*") to the cationic part via unstarred positions of the isoconjugated hydrocarbon equivalent (Fig 2; X).

Fig 2. Characteristic representation of Betaine

4. Representative one pot procedure for the synthesis of 9a-q, 11a-h, 13a-k:

NaH (10 mol%) was added to a solution of bis(methylthio)-1-phenylprop-2-en-1-ones (1 mmol), N-butyl-N'-methylethane-1,2-diamine (1 mmol) in THF under N₂ atmosphere. The mixture was stirred for one hr at refluxing condition, followed by the addition of α -ylidene- β -diketone (1.0 mmol). The reaction mixture was stirred at refluxing condition for completion of 8 h until consumption of starting enone as checked by TLC on various time interval. After completion of the reaction was checked by TLC, the solvent was evaporated in a rotatory evaporator and the residue was extracted with ethyl acetate (3×10 mL) and water. The extracted solution was dried over anhydrous sodium sulphate and concentrated in vacuo. The crude

product was subjected to chromatography on a silica gel column with a hexane-ethyl acetate mixture to afford dihydrofuran derivatives **9a-q**, **11a-h**, **13a-k** in good to excellent yield.

5. Spectroscopic characterization of all synthesized compounds (9ap, 11a-g, 13a-j)

2-Benzoyl-3-(3-nitrophenyl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one (9a): m.p: 145-150°C; 87% (0.31 g) as white solid; ¹H NMR (300 MHz, CDCl₃) δ = 8.13 (t, *J* = 7.9 Hz, 2H, ArH), 7.86 (d, *J* = 7.4 Hz, 2H, Ar-H), 7.66-7.45 (m, 5H, ArH), 5.85 (d, *J* = 5.1 Hz, 1H, CH), 4.68 (d, *J* = 4.4 Hz, 1H, CH), 2.72 (s, 2H, CH ²), 2.34-2.32 (m, 2H, CH ²), 2.16-2.12 (m, 2H, CH ²); ¹³C NMR (50 MHz, CDCl₃) δ = 194.2, 192.2, 148.6, 143.1, 134.4, 134.0, 133.2, 129.9, 129.0, 122.6, 122.1, 115.5, 90.9, 47.8, 36.6, 23.8, 21.6; IR(KBr): 1685 cm⁻¹; MS (ESI+) *m/z*: [M+H]⁺ 364.1; analysis (calcd., found for C₂₁H₁₇NO₅): C (69.41, 69.26), H (4.72, 4.65), N (3.85, 3.79).

2-Benzoyl-3-(4-methoxyphenyl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one (**9b**) : m. p:115-120°C; 82% (0.29 g) as white solid; ¹H NMR (300 MHz, CDCl₃) δ = 7.83 (d, *J* = 7.3Hz, 2H, ArH), 7.62 (t, *J* = 7.1Hz, 1H, Ar-H), 7.47 (t, *J* = 7.7Hz, 2H, ArH), 7.16 (d, *J* = 8.5Hz, 2H, ArH), 6.89 (d, *J* = 8.6Hz, 2H, ArH), 5.83 (d, *J* = 4.6Hz, 1H, CH), 4.36 (d, *J* = 3.8Hz, 1H, CH), 3.79 (s, 3H, OCH₃), 2.70 (s, 2H, CH₂), 2.34-2.29 (m, 2H, CH₂), 2.12 2.08 (m, 2H, CH₂); ¹³C NMR (50MHz, CDCl₃) δ = 194.5, 193.1, 177.3, 159.1, 134.2, 133.4, 129.0, 128.5, 116.7, 114.5, 91.8, 55.4, 48.5, 36.9, 29.8, 24.0, 21.8; IR(KBr): 1687 cm⁻¹; MS (ESI+) *m/z*: 349.1 [M+H]+; analysis (calcd., found for C₂₂H₂₀O₄): C (75.84, 75.85), H (5.79, 5.70).

2-Benzoyl-3-(4-chlorophenyl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one (9c) : m.p:160-165°C; 89% (0.31 g) as white solid; ¹H NMR (300 MHz, CDCl₃) δ = 7.82 (d, *J* = 7.6Hz, 2H, ArH), 7.63 (t, *J* = 7.0Hz, 1H, Ar-H), 7.47 (t, *J* = 7.2Hz, 2H, ArH), 7.31 (d, *J* = 7.6Hz, 2H, ArH), 7.17 (d, *J* = 7.8Hz, 2H, ArH), 5.81 (d, *J* = 4.6Hz, 1H, CH), 4.43 (d, *J* = 3.6Hz, 1H, CH), 2.69 (s, 2H, CH ²), 2.33-2.29 (m, 2H, CH ²), 2.14-2.12 (m, 2H, CH ²); ¹³C NMR (50 MHz, CDCl₃) δ = 194.06, 192.48, 177.38, 139.59, 134.13, 133.12, 128.98, 128.80, 128.65, 115.92, 91.12, 48.01, 36.55, 23.70, 21.53; IR(KBr): 1685 cm⁻¹; MS (ESI+) *m/z:* 353.1[M+H]+; analysis (calcd., found for C₂₁H₁₇ClO₃): C (71.49, 71.55), H (4.86, 4.81).

2-Benzoyl-3-(biphenyl-4-yl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one (**9d**) : m. p :155-158°C; 88% (0.35 g) as white solid; ¹H NMR (300 MHz, CDCl₃) δ = 7.82 (d, *J* = 7.4Hz, 2H, ArH), 7.63 (t, *J* = 7.3Hz, 1H, Ar-H), 7.47-7.32 (m, 7H, ArH), 7.16 (d, *J* = 8.5Hz, 2H, ArH), 6.96 (d, *J* = 8.5Hz, 2H, ArH), 5.83 (d, *J* = 4.6Hz, 1H, CH), 4.37 (d, *J* = 4.0Hz, 1H, CH), 2.70 (s, 2H, CH₂), 2.34-2.30 (m, 2H, CH₂), 2.12-2.08 (m, 2H, CH₂); ¹³C NMR (50 MHz, CDCl₃) δ = 194.4, 193.0, 177.3, 158.3, 137.0, 134.2, 133.6, 133.3, 129.0, 129.0, 128.7, 128.5, 128.1, 127.6, 116.6, 115.4, 91.8, 70.1, 48.4, 36.8, 23.9, 21.8; IR(KBr): 1684 cm⁻¹; MS (ESI+) *m/z:* 395.2 [M+H]+; analysis (calcd., found for C₂₇H₂₂O₃): C(82.21, 82.25), H(5.62, 5.60).

2-Benzoyl-6,6-dimethyl-3-propyl-2,3,6,7-tetrahydrobenzofuran-4(5H)-one (**9e**) : m.p: 94-96°C; 90% (0.28 g) as White solid; ¹H NMR (300 MHz, CDCl₃) δ = 7.93 (d, *J* = 7.3Hz, 2H, ArH), 7.64 (t, *J* = 7.3Hz, 1H, Ar-H), 7.52 (t, *J* = 7.7Hz, 2H, Ar-H), 5.63 (d, *J* = 4.3Hz, 1H, CH), 3.43 (s, 1H, CH), 2.50-2.33 (m, 2H, CH ²), 2.22 (s, 2H, CH ²), 1.88-1.63 (m, 2H, CH), 1.42-1.30 (m, 2H, CH ²), 1.12 (s, 6H, 2xCH₃), 0.95 (t, *J* = 7.2Hz, 3H, CH₃); ¹³C NMR (50 MHz, CDCl₃) δ

= 193.4, 194.1, 176.2, 133.8, 128.8, 128.7, 88.8, 51.2, 42.9, 37.5, 35.2, 34.1, 28.9, 28.3, 19.4, 14.1; IR(KBr): 1685 cm⁻¹; MS (ESI+) *m/z:* 313.2[M+H]+; analysis (calcd., found for C₂₀H₂₄O₃): C(76.89, 76.67), H(7.74, 7.65).

2-(4-Bromobenzoyl)-3-(2,5-dimethoxyphenyl)-6,6-dimethyl-2,3,6,7-tetrahydrobenzofuran-4 (**5H)-one (9f):** m. p:147-150°C; 84% (0.41 g) as white solid; ¹H NMR (300 MHz, CDCl₃) δ = 7.73 (d, *J* = 8.5Hz, 2H, ArH), 7.59 (d, *J* = 8.4Hz, 2H, Ar-H), 6.76 (s, 2H, ArH), 6.66 (s, 1H, ArH), 5.72 (d, *J*= 5.1Hz, 1H, CH), 4.81 (d, *J*= 4.4Hz, 1H, CH), 3.72 (s, 3H, OCH ³), 3.55 (s, 3H, OCH ³), 2.57-2.43 (m, 2H, CH ²), 2.25 (m, 2H, CH ²), 1.19 (s, 3H, CH ³), 1.15 (s, 3H, CH ³); ¹³C NMR (50MHz, CDCl₃) δ = 193.7, 192.4, 176.8, 153.8, 150.9, 132.8, 132.0, 129.2, 115.0, 113.5, 112.7, 111.9, 90.2, 55.7, 51.3, 43.1, 37.8, 34.3, 29.2, 28.4; IR(KBr): 1686 cm⁻¹; MS (ESI+) *m/z*: 485.1 [M+H]+; analysis (calcd., found for C₂₅H₂₅BrO₅) : C (61.86, 61.88), H (5.19, 5.11).

2-Benzoyl-6,6-dimethyl-3-(naphthalen-2-yl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one (**9g**): m.p:175-179°C; 89% (0.35 g) as white solid; ¹H NMR (300 MHz, CDCl₃) δ = 7.94- 7.77 (m, 5H, ArH), 7.59-7.32 (m, 7H, Ar-H), 5.86 (s, 1H, CH), 5.45 (s, 1H, CH), 2.56 (s, 2H, CH ₂), 2.27 (m, 2H, CH ₂), 1.22 (s, 3H, CH ₃), 1.17 (s, 3H, CH ₃); ¹³C NMR (50MHz, CDCl₃) δ = 193.7, 193.0, 176.0, 134.2, 133.8, 131.3, 129.4, 128.9, 128.3, 126.4, 125.9, 125.7, 123.4, 115.2, 91.5, 51.4, 37.9, 34.4, 29.2, 28.7; IR(KBr): 1684 cm⁻¹; MS (ESI+) *m/z:* 397.1; [M+H]+; analysis (calcd. found for C₂₇H₂₄O₃): C (81.79, 81.81), H (6.10, 6.14).

2-(4-Bromobenzoyl)-6,6-dimethyl-3-(thiophen-2-yl)-2,3,6,7-tetrahydrobenzofuran-

4(5H)-one (9h): m. p:145-150°C; 85% (0.37 g) as white solid; ¹H NMR (300 MHz, CDCl₃) δ = 7.79 (d, *J* = 8.5Hz, 2H, ArH), 7.65 (d, *J* = 8.4Hz, 2H, Ar-H), 7.23 (d, *J* = 4.8Hz, 1H, ArH), 6.98 (dd, *J* = 3.4, 4.5Hz, 2H, ArH), 5.84 (d, *J* = 4.2Hz, 1H, CH), 4.78 (s, 1H, CH), 2.61-2.46 (m, 2H,

CH 2), 2.24 (m, 2H, CH 2), 1.19 (s, 3H, CH₃), 1.15 (s, 3H, CH₃); ¹³C NMR (50MHz, CDCl₃) δ = 193.4,191.6, 176.4, 144.7, 132.4, 132.0, 130.5, 129.8, 127.4, 125.3, 124.9, 114.5, 91.4, 51.2, 43.8, 37.7, 34.3, 29.2, 28.2; IR(KBr): 1687 cm⁻¹; MS (ESI+) *m/z*: 431.0 [M+H]⁺; analysis (calcd., found for C₂₁H₁₉BrO₃S): C(58.47, 58.41), H (4.44, 4.46).

2-Benzoyl-3- ferrocenyl -2, 3, 6, 7-tetrahydrobenzofuran-4(5H)-one (9i): m. p:120-

125°C; 88% (0.39 g) as yellow solid; ¹H NMR (300 MHz, CDCl₃) δ = 8.08 (d, *J* = 7.4Hz, 2H, ArH), 7.67-7.52 (m, 3H, Ar-H), 6.07 (d, *J* = 3.6Hz, 1H, CH), 4.47 (d, *J* = 3.3Hz, 1H, CH), 4.26 (s, 1H, Fc-H), 4.27-4.10 (m, 8H, Fc-H), 2.58-2.56 (m, 2H, CH₂), 2.43-2.26 (m, 2H, CH₂), 2.10-2.01 (m, 2H, CH₂); ¹³C NMR (50MHz, CDCl₃) δ = 194.5, 193.8, 176.1, 134.4, 134.1, 129.2, 129.0, 117.0, 90.5, 90.1, 68.7, 68.0, 66.6, 41.4, 37.0, 24.0, 21.6; IR(KBr): 1695 cm⁻¹; MS (ESI+) *m/z*: 427.1 [M+H]⁺; analysis (calcd., found for C₂₅H₂₂FeO₃): C(70.44, 70.24), H (5.20, 5.29).

3. Ferrocenyl, 2-(4-methoxybenzoyl)- 2, 3, 6, 7-tetrahydrobenzofuran-4(5H)-one (9j): m.p:160-165°C; 85% (0.40 g) as yellow solid; ¹H NMR (300 MHz, CDCl₃) δ = 8.08 (d, *J* = 8.9Hz, 2H, ArH), 7.02 (d, *J* = 8.8Hz, 2H, Ar-H), 6.02 (d, *J* = 4.0Hz, 1H, CH), 4.49 (d, *J* = 3.7Hz, 1H, CH), 4.26-4.10 (m, 9H, Fc-H), 3.90 (s, 3H, OCH₃), 2.56-2.52 (m, 2H, CH₂), 2.41- 2.30 (m, 2H, CH₂), 2.09-2.03 (m, 2H, CH₂); ¹³C NMR (50 MHz, CDCl₃) δ = 194.5, 191.9, 176.1, 164.3, 131.6, 121.2, 117.1, 114.3, 90.3, 68.6, 68.0, 67.9, 66.5, 55.7, 41.2, 36.9, 24.0, 21.6; IR(KBr): 1690 cm⁻¹; MS (ESI+) *m/z:* 457.1 [M+H]⁺; analysis (calcd., found for C₂₆H₂₄FeO₄): C (68.44, 68.30), H (5.30, 5.39).

2-(4-Bromobenzoyl)-3- ferrocenyl-2, 3, 6, 7-tetrahydrobenzofuran-4(5H)-one (9k):

m.p:150-155°C; 81% (0.42 g) as yellow solid; ¹H NMR (300 MHz, CDCl₃) δ = 7.95 (d, *J* = 8.5Hz, 2H, ArH), 7.70 (d, *J* = 8.5Hz, 2H, Ar-H), 5.98 (d, *J* = 3.9Hz, 1H, CH), 4.50 (d, *J* = 3.3Hz, 1H, CH), 4.25 (s, 1H, Fc-H), 4.16-4.10 (m, 8H, Fc-H), 2.53 (s, 2H, CH₂), 2.44-2.25 (m, 2H, CH₂), 2.08-1.95 (m, 2H, CH₂); ¹³C NMR (50MHz, CDCl₃) δ = 194.4, 192.9, 175.7, 133.1, 132.3, 130.7, 129.4, 117.0, 90.6, 89.9, 68.6, 68.0, 66.4, 41.6, 36.9, 23.9, 21.5; IR(KBr): 1696 cm⁻¹; MS (ESI+) *m/z*: 505.2 [M+H]⁺ analysis (calcd., found for C₂₅H₂₁FeO₃ Br): C(59.44, 59.31), H(4.19, 4.29).

2-(Biphenylcarbonyl)-3-ferrocenyl-2, 3, 6, 7-tetrahydrobenzofuran-4(5H)-one (9i):

m.p:170-175°C; 78% (0.40 g) as yellow solid; ¹H NMR (300 MHz, CDCl₃) δ = 8.16 (d, *J* = 8.3Hz, 2H, ArH), 7.78 (d, *J* = 8.3Hz, 2H, Ar-H), 7.66 (d, *J* = 6.9Hz, 2H, Ar-H), 7.51-7.39 (m, 3H, Ar-H), 6.09 (d, *J* = 3.7Hz, 1H, CH), 4.52 (d, *J* = 3.5Hz, 1H, CH), 4.29 (s, 1H, Fc-H), 4.17-4.11 (m, 8H, Fc-H), 2.59-2.55 (m, 2H, CH₂), 2.39-2.32 (m, 2H, CH₂), 2.10-2.04 (m, 2H, CH₂); ¹³C NMR (50 MHz, CDCl₃) δ = 194.6, 193.3, 176.1, 146.8, 139.7, 133.0, 129.8, 129.1, 128.6, 127.6, 127.4, 117.1, 90.6, 90.1, 68.7, 68.0, 67.9, 66.6, 41.3, 37.0, 24.0, 21.6; IR(KBr): 1698 cm⁻¹; MS (ESI+) *m/z:* 503.2 [M+H]⁺; analysis (calcd., found for C₃₁H₂₆FeO₃): C (74.11, 74.25), H (5.22, 5.13).

2-Benzoyl-6,6-dimethyl -3-ferrocenyl- 2,3,6,7-tetrahydrobenzofuran-4(5H)-one (9m): m. p :120-123°C; 80% (0.38 g) as yellow solid; ¹H NMR (300MHz, CDCl₃) $\delta = 8.06$ (d, J = 7.3Hz, 2H, ArH), 7.65 (d, J = 7.4Hz, 1H, Ar-H), 7.56 (d, J = 7.3Hz, 2H, Ar-H), 6.08 (s, 1H, CH), 4.40 (s, 1H, CH), 4.20-4.12 (m, 9H, Fc-H) 2.51-2.36 (m, 2H, CH ₂), 2.24 (s, 2H, CH₂), 1.16 (s, 3H, CH₃), 1.12 (s, 3H, CH₃); ¹³C NMR (50 MHz, CDCl₃) $\delta = 193.8$, 193.0, 175.4, 134.3, 134.0, 129.0, 128.9, 115.2, 91.2, 90.4, 68.7, 68.6, 67.9, 67.8, 67.6, 66.6, 51.4, 41.4, 37.8, 34.1, 29.0, 28.3; IR(KBr): 1690 cm⁻¹; MS (ESI+) m/z: 455.3 [M+H]⁺; analysis (calcd., found for C₂₇H₂₆FeO₃): C(71.38, 71.45), H(5.77, 5.66).

6, 6-Dimethyl-3-ferrocenyl-2-(4-methoxybenzoyl)-2, 3, 6, 7-tetrahydrobenzofuran-

4(5H)-one (9n): m. p:124-128°C; 87% (0.43 g) as yellow solid; yield: ¹H NMR (300 MHz, CDCl₃) $\delta = 8.07$ (d, J = 8.8Hz, 2H, ArH), 7.03 (d, J = 8.8Hz, 2H, Ar-H), 6.05 (d, J = 3.7Hz, 1H, CH), 4.43 (d, J = 2.6Hz, 1H, CH), 4.20-4.09 (m, 9H, Fc-H), 3.90 (s, 3H, OCH₃), 2.50- 2.36 (m, 2H, CH ²), 2.24 (s, 2H), 1.15 (s, 3H, CH ³), 1.12 (s, 3H, CH₃); ¹³C NMR (50 MHz, CDCl₃) $\delta = 193.9$, 192,1, 175.5, 164.3, 131.5, 127.2, 115.4, 114.3, 91.2, 90.5, 68.7, 67.9, 67.8, 66.7, 55.7, 51.5, 41.4, 37.9, 34.1, 29.1, 28.3; IR(KBr): 1699 cm⁻¹; MS (ESI+) *m/z:* 485.0 [M+H]⁺ analysis (calcd., found for C₂₈H₂₈FeO₄): C(69.43, 69.23), H(5.83, 5.78).

2-(4-Bromobenzoyl)-6, 6-dimethyl-3-ferrocenyl-2,3,6,7-tetrahydrobenzofuran-4(5H)-one (**9o**) : m. p : 115-125°C; 74% (0.41 g) as yellow solid; ¹H NMR (300 MHz, CDCl₃) δ = 7.94 (d, J = 8.6Hz, 2H, ArH), 7.70 (d, J = 8.6Hz, 2H, Ar-H), 6.00 (d, J = 3.8Hz, 1H, CH), 4.44 (d, J = 3.3Hz, 1H, CH), 4.18-4.07 (m, 9H, Fc-H), 2.41 (s, 2H, CH ₂), 2.23 (s, 2H, CH₂), 1.15 (s, 3H, CH₃), 1.11 (s, 3H, CH₃); ¹³C NMR (50 MHz, CDCl₃) δ = 193.9, 193.0, 175.1, 133.1, 132.4, 130.6, 129.4, 115.4, 91.4, 90.3, 68.7, 68.0, 67.7, 66.6, 51.4, 41.3, 37.8, 34.2, 29.0, 28.3; IR(KBr): 1698 cm⁻¹; MS (ESI+) *m/z:* 533.1 [M+H]⁺; analysis (calcd., found for C₂₇H₂₅FeO₃Br): C (60.82, 60.62), H (4.73, 4.63).

2-(Biphenylcarbonyl)-6, 6-dimethyl-3-ferrocenyl-2, 3, 6, 7-tetrahydrobenzofuran-4(5H)one (9p): m. p : 125-130°C; 79% (0.43 g) as Yellow solid; ¹H NMR (300MHz, CDCl₃) δ = 8.15 (d, *J* = 8.2Hz, 2H, Ar-H), 7.77 (d, *J* = 8.3Hz, 2H, ArH), 7.66 (d, *J* = 6.9Hz, 2H, ArH), 7.51-7.42 (m, 3H, ArH), 6.11 (d, J = 3.6Hz, 1H, CH), 4.46 (s, 1H, CH), 4.23-4.11 (m, 9H), 2.52-2.38 (m, 2H, CH₂), 2.25 (s, 2H, CH₂), 1.16 (s, 3H, CH₃), 1.13 (s, 3H, CH₃); ¹³C NMR (50 MHz, CDCl₃) $\delta = 193.8$, 193.3, 175.4, 146.7, 139.6, 132.9, 129.7, 129.1, 128.6, 127.6, 127.4, 115.3, 91.4, 90.4, 68.7, 67.9, 67.8, 67.7, 66.7, 51.4, 41.5, 37.8, 34.1, 29.0, 28.3; IR(KBr): 1692 cm⁻¹; MS (ESI+) m/z: 531.1 [M+H]⁺; analysis (calcd., found for C₃₃H₃₀FeO₃): C (74.72, 74.52), H (5.70, 5.79).

3-(4-chlorophenyl)-6,6-dimethyl-2-(4-nitrobenzoyl)-3,5,6,7-tetrahydrobenzofuran-4(2H)-

one (9q): m.p:120-122°C; 74% (0.31 g) as pale yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 8.09 (d, *J* = 8.56 Hz, 2H), 8.03 (t, *J* = 7.94 Hz, 1H), 7.77 (t, *J* = 7.7 Hz, 1H), 7.45 (d, *J* = 7.92 Hz, 2H), 7.35 (d, *J* = 8.52 Hz, 2H), 6.58 (d, *J* = 4.0 Hz, 1H), 5.71 (d, *J* = 4.1 Hz, 1H), 2.56 (s, 2H), 2.27 (s, 2H), 1.22 (s, 3H), 1.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 20.12, 28.67, 29.12, 38.81, 42.98, 51.36, 91.51, 114.67, 122.63, 128.23, 128.70, 128.95, 129.63, 130.96, 132.44, 138.44, 138.63, 139.28, 147.03, 194.08, 194.80; IR(KBr): 1686 cm⁻¹; MS (ESI+) *m/z:* 426.1 [M+H]⁺; analysis (calcd., found for C₂₃H₂₀ClNO₅): C (64.87, 64.88), H (4.73, 4.71).

2-Benzoyl-3-isopropyl-2H-furo[**3,2-c**]**chromen-4(3H)-one** (**11a**) : m. p: 98-100°C; 93% (0.31 g) as white solid. ¹H NMR (300 MHz, CDCl₃) $\delta = 8.04$ (d, J = 7.3Hz, 2H, Ar-H), 7.69- 7.51 (m, 4H, ArH), 7.39 (d, J = 8.3Hz, 1H, ArH), 7.30 (t, J = 7.3Hz, 2H, ArH), 5.94 (d, J = 4.6Hz, 1H, CH), 3.90 (t, J = 3.9Hz, 1H, CH), 2.54-2.46 (m, 1H, CH), 1.01-0.98 (m, 6H, 2xCH ₃); ¹³C NMR (50 MHz, CDCl₃) $\delta = 193.7$, 166.2, 160.1, 155.0, 134.1, 133.9, 132.6, 129.1, 128.9, 124.0, 122.8, 116.8, 112.0, 103.8, 86.6, 49.0, 29.3, 19.9, 18.1; IR(KBr): 1689, 1702 cm⁻¹; MS (ESI+) *m/z*: 335.1 [M+H]⁺ analysis (calcd., found for C₂₁H₁₈O₄): C(75.43, 75.40), H (5.43, 5.49).

2-(4-Methoxybenzoyl)-3-phenyl-2H-furo[3,2-c]chromen-4(3H)-one (11b): m.p: 175-

180°C; 80% (0.31 g) as white solid; ¹H NMR (300 MHz, CDCl₃,) δ = 7.89 (t, *J* = 8.9Hz, 3H, Ar-H), 7.62 (t, *J* = 7.1Hz, 1H, ArH), 7.40-7.32 (m, 7H, ArH), 6.97 (d, *J* = 8.8Hz, 2H, ArH), 6.13 (d, *J* = 4.9Hz, 1H, CH), 4.81(d, *J* = 4.9Hz, 1H, CH), 3.89 (s, 3H, OCH₃); ¹³C NMR (50 MHz, CDCl₃,) δ = 190.7, 166.6, 164.6, 159.5, 155.5, 139.8, 133.0, 131.6, 130.2, 129.3, 128.2, 127.7, 126.1, 124.2, 123.3, 117.1, 114.4, 112.3, 105.5, 92.6, 55.7, 49.6; IR(KBr): 1682, 1705 cm⁻¹; MS (ESI+) *m/z*: 399.1 [M+H]⁺; analysis (calcd., found for C₂₅H₁₈O₅) : C (75.37, 75.45), H (4.55, 4.39).

3-(2,4-Dichlorophenyl)-2-(4-methoxybenzoyl)-2H-furo[**3,2-c**]**chromen-4(3H)-one** (**11c**) : m.p:150-154°C; 86% (0.40 g) as white solid; ¹H NMR (300 MHz, CDCl₃) δ = 7.99 (d, *J* = 8.8Hz, 2H, Ar-H), 7.76 (d, *J* = 6.8Hz, 1H, ArH), 7.63-7.58 (m, 1H, ArH), 7.42 (d, *J* = 8.4Hz, 2H, ArH), 7.34-7.18 (m, 3H, ArH), 6.99 (d, *J* = 8.8Hz, 2H, ArH), 6.07 (d, *J* = 5.1Hz, 1H, CH), 5.45 (d, *J* = 5.0Hz, 1H, CH), 3.90 (s, 3H, OCH₃);¹³C NMR (50 MHz, CDCl₃) δ = 189.6, 166.8, 164.6, 159.1, 155.4, 135.7, 134.4, 134.3, 133.1, 131.6, 130.4, 130.0, 127.9, 126.5, 124.2, 123.1, 117.1, 114.3, 112.0, 103.9, 90.6, 55.6, 45.3; IR(KBr): 1683, 1704 cm⁻¹; MS (ESI+) *m/z*: 467.1 [M+H]⁺; analysis (calcd., found for C_{25H16}Cl₂O₅): C (64.26, 64.32), H (3.45, 3.22).

2-Benzoyl-3-ferrocenyl-2H-furo [3, 2-c] chromen-4(3H)-one (11d): m.p:155-160°C; 80% (0.39 g) as yellow solid; ¹H NMR (300 MHz, CDCl₃) $\delta = 8.16$ (d, J = 7.2Hz, 2H, Ar-H), 7.71 (t, J = 7.5Hz, 2H, ArH), 7.61-7.54 (m, 3H, ArH), 7.38 (d, J = 8.2Hz, 1H, ArH), 7.30 (d, J = 7.9Hz, 1H, ArH), 6.35 (d, J = 4.0Hz, 1H, CH), 4.87 (d, J = 3.9Hz, 1H, CH), 4.36 (s, 1H, Fc-H), 4.24-4.11 (m, 8H, Fc-H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 193.0$, 165.1, 159.7, 155.2, 134.4, 134.2,

12

132.8, 129.3, 129.1, 124.1, 123.0, 117.0, 112.3, 106.0, 91.7, 88.6, 68.8, 68.4, 68.2, 68.2, 66.2, 42.2; IR(KBr): 1689, 1712 cm⁻¹; MS (ESI+) *m/z:* 477.5 [M+H]+; analysis (calcd., found for C₂₈H₂₀FeO₄): C (70.61, 70.51), H (4.23, 4.43).

3-Ferrocenyl, 2-(4-methoxybenzoyl) - 2H-furo [3, 2-c] chromen-4(3H)-one (11e):

m.p:150-155°C; 75% (0.39 g) as yellow solid; ¹H NMR (300 MHz, CDCl₃) $\delta = 8.16$ (d, J = 8.6Hz, 2H, Ar-H), 7.71 (d, J = 7.6Hz, 1H, ArH), 7.58 (t, J = 7.5Hz, 1H, ArH), 7.38 (d, J = 8.3Hz, 1H, ArH), 7.29 (d, J = 7.9Hz, 1H, ArH), 7.06 (d, J = 8.6Hz, 2H, ArH), 6.31 (d, J = 3.9Hz, 1H, CH), 4.89 (d, J = 3.9Hz, 1H, CH), 4.36 (s, 1H, Fc-H), 4.23-4.11 (m, 8H, Fc-H), 3.92 (s, 3H, OCH₃); ¹³C NMR (50 MHz, CDCl₃) $\delta = 191.2$, 165.1, 164.6,159.8, 155.2, 132.7, 131.8, 127.1, 124.1, 123.0, 117.0, 114.4, 112.4, 106.0, 91.5, 88.7, 68.8, 68.4, 68.3, 66.2, 55.8, 42.1; IR(KBr): 1698, 1710 cm⁻¹; MS (ESI+) *m/z:* 507.1 [M+H]⁺; analysis (calcd., found for C₂₉H₂₂FeO₅) : C(68.79, 68.85), H (4.38, 4.25).

2-(4-Bromobenzoyl)-3- ferrocenyl-2H-furo [3,2-c]chromen-4(3H)-one (11f): m.p :125-130°C; 82% (0.47 g) as yellow solid; ¹H NMR (300 MHz, CDCl₃) δ = 8.03 (d, *J* = 8.5Hz, 2H, Ar-H), 7.74-7.66 (m, 3H, ArH), 7.59 (t, *J* = 7.1Hz, 1H, ArH), 7.38 (d, *J* = 8.2Hz, 1H, ArH), 7.30 (d, *J* = 7.5Hz, 1H, ArH), 6.27 (d, *J* = 4.0Hz, 1H, CH), 4.89 (d, *J* = 3.9Hz, 1H, CH), 4.35 (s, 1H, Fc-H), 4.22-4.11 (m, 8H, Fc-H); ¹³C NMR (50 MHz, CDCl₃) δ = 192.2, 164.8, 159.6, 155.2, 132.9, 132.5, 130.9, 129.9, 124.2, 122.9, 117.1, 112.2, 106.0, 91.8, 88.4, 68.9, 68.5, 68.3, 66.1, 42.0; IR(KBr): 1695, 1708 cm⁻¹; MS (ESI+) *m/z:* 556.1 [M+H]⁺; analysis (calcd., found for C_{28H19}FeO4 Br): C (60.57, 60.76), H (3.45, 3.33).

2-(Biphenylcarbonyl)-3-ferrocenyl-2H-furo [3, 2-c] chromen-4(3H)-one (11g): m. p :115-120°C; 71% (0.40 g) as yellow solid; ¹H NMR (300 MHz, CDCl₃) δ = 8.24 (d, *J* = 8.31Hz, 2H, Ar-H), 7.82 (d, *J* = 8.3Hz, 2H, ArH), 7.74-7.66 (m, 3H, ArH), 7.59-7.36 (m, 4H, ArH), 7.30 (d, *J* = 7.50Hz, 2H, ArH), 6.38 (d, *J* = 4.0Hz, 1H, CH), 4.91 (d, *J* = 3.9Hz, 1H, CH), 4.38 (s, 1H, Fc-H), 4.26-4.13 (m, 8H, Fc-H); ¹³C NMR (75 MHz, CDCl₃) δ = 192.5, 165.1, 155.3, 147.1, 139.6, 132.8, 132.8, 130.0, 129.2, 128.7, 127.7, 127.5, 124.1, 123.0, 117.1, 112.4, 106.0, 91.8, 88.7, 68.9, 68.5, 68.3, 66.3, 42.2; IR(KBr): 1685, 1702 cm⁻¹; MS (ESI+) *m/z:* 553.2 [M+H]⁺; analysis (calcd., found for C₃₄H₂₄FeO₄): C (73.93, 73.79), H (4.38, 4.54)

4-(3-(4-chlorophenyl)-4-oxo-2,3-dihydro-4H-furo[3,2-c]chromene-2-carbonyl)benzonitrile (**11h):** m.p:148-150°C; 71% (0.30 g) as dirty white solid; ¹H NMR (400 MHz, CDCl₃) δ = 7.77-7.94 (m, 5H), 7.57 (t, *J* = 8.8 Hz, 1H), 7.25-7.47 (m, 6H), 5.87 (d, *J* = 4.5 Hz, 1H), 4.85 (d, *J* = 4.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ = 44.39, 92.60, 105.46, 112.13, 120.65, 121.58, 123.62, 128.05, 129.24, 129.35, 129.86, 129.94, 130.61, 132.03, 133.35, 136.12, 136.87, 137.41, 139.54, 139.57, 140.25, 148.13, 163.61, 166.51, 197.20; IR(KBr): 1684, 1703 cm⁻¹; MS (ESI+) *m/z:* 428.1 [M+H]⁺; analysis (calcd., found for C₂₅H₁₄ClNO₄): C (70.18, 70.20), H (3.30, 3.28).

2-(4-Bromobenzoyl)-6-methyl-3-phenyl-2H-furo[**3**,**2-c**]**pyran-4**(**3H**)**-one** (**13a**)**:** m. p: 152-155°C; 90% (0.37g) as white solid; ¹H NMR (300 MHz, CDCl₃) δ = 7.72 (d, *J* = 8.9Hz, 2H, Ar-H), 7.63 (d, *J* = 7.1Hz, 2H, ArH), 7.37 (d, *J* = 7.3Hz, 3H, ArH), 7.25 (d, *J* = 8.8Hz, 2H, ArH), 6.14 (s 1H, CH), 5.93 (d, *J* = 4.8Hz, 1H, CH), 4.63 (d, *J* = 4.6Hz, 1H, CH), 2.29 (s, 3H, CH₃); ¹³C NMR (50 MHz, CDCl₃) d= 191.5, 170.9, 166.8, 160.7, 139.7, 132.4, 130.5, 129.3, 128.2, 127.5, 102.5, 95.5, 92.2, 48.3, 20.6; IR(KBr): 1686, 1705 cm⁻¹; MS (ESI+) *m/z:* 411.0 [M+H]⁺; analysis (calcd., found for C₂₁H₁₅BrO₄) : C (61.33, 61.38), H (3.68, 3.60)

14

2-Benzoyl-3-(4-fluorophenyl)-6-methyl-2H-furo[3,2-c]pyran-4(3H)-one (13b): m.p:135-140°C; 89% (0.31 g) as white solid; ¹H NMR (300 MHz, CDCl₃) δ = 7.85 (d, *J* = 7.1Hz, 2H, Ar-H), 7.64 (d, *J* = 6.5Hz, 1H, ArH), 7.51 (d, *J* = 7.4Hz, 2H, ArH), 7.24 (dd, *J* = 5.4Hz, 2H, ArH), 7.08 (m, 2H, ArH), 6.16 (s, 1H, CH), 5.96 (d, *J* = 4.9Hz, 1H, CH), 4.63 (d, *J* = 4.7Hz, 1H, CH), 2.30 (s, 3H, CH ₃); ¹³C NMR (50 MHz, CDCl₃) d= 192.3, 171.1, 166.9, 164.9, 160.8, 160.0, 135.6, 134.5, 133.2, 129.3, 129.1, 116.4, 116.0, 102.4, 95.6, 92.3, 47.7, 20.6; IR(KBr): 1683, 1706 cm⁻¹; MS (ESI+) *m/z:* 351.1 [M+H]⁺; analysis (calcd., found for C₂₁H₁₅FO₄) : C (71.99, 71.91), H (4.32, 4.38).

3-(4-Chlorophenyl)-2-(4-methoxybenzoyl)-6-methyl-2H-furo[3,2-c]pyran-4(3H)-one

(13c): m.p:147-150°C; 85% (0.34 g) as white solid; H NMR (300 MHz, CDCl₃) δ = 7.82 (d, *J* = 8.6Hz, 2H, Ar-H), 7.35 (d, *J* = 8.4Hz, 2H, ArH), 7.20 (d, *J* = 8.4Hz, 2H, ArH), 6.95 (d, *J* = 8.9Hz, 2H, Ar-H), 6.15 (s, 1H, CH), 5.90 (d, *J* = 5.0Hz, 1H, CH), 4.62 (d, *J* = 4.8Hz, 1H, CH), 3.88 (s, 3H, OCH ₃), 2.29 (s, 3H, CH ₃); ¹³C NMR (50 MHz, CDCl₃) δ = 190.6, 171.2, 166.9, 164.6, 160.8, 138.5, 133.9, 131.5, 129.4, 129.0, 126.0, 114.8, 102.2, 95.6, 91.9, 55.7, 48.0, 20.7; IR(KBr): 1685, 1705 cm⁻¹; MS (ESI+) *m/z:* 397.1 [M+H]⁺. analysis (calcd., found for C₂₂H₁₇ClO₅): C (66.59, 4.32), H (66.54, 4.28).

2-(Biphenylcarbonyl)-6-methyl-3-phenyl-2H-furo[3,2-c]pyran-4(3H)-one (13d): m.p:155-160°C; 87% (0.35 g) as white solid; H NMR (300 MHz, CDCl₃) δ = 7.85 (d, *J* = 8.3Hz, 2H, Ar-H), 7.64 (d, *J* = 8.2Hz, 2H, ArH), 7.56 (d, *J* = 6.9Hz, 2H, ArH), 7.43-7.34 (m, 3H, ArH), 7.29 (s, 2H, Ar-H), 7.18 (t, *J* = 7.9Hz, 3H, ArH), 6.09 (s, 1H, CH), 5.90 (d, *J* = 5.0Hz, 1H, CH), 4.60 (d, *J* = 4.8Hz, 1H, CH), 2.23 (s, 3H, CH ₃); ¹³C NMR (50 MHz, CDCl₃) δ =191.8, 171.2, 167.0,

160.8, 147.2, 139.4, 138.4, 134.0, 131.8, 129.7, 129.5, 129.2, 129.0, 128.8, 127.7, 127.4, 102.3, 95.6, 92.2, 47.9, 20.7; IR(KBr): 1684, 1704 cm⁻¹; MS (ESI+) *m/z*: 443.1 [M+H]⁺; analysis (calcd., found for C₂₇H₂₀O₄): C, 79.40; H, 4.94; Found: C, 79.45; H, 4.97. C (79.40, 79.45), H (4.94, 4.97).

2-(Biphenylcarbonyl)-3-(furan-2-yl)-6-methyl-2H-furo[3,2-c]pyran-4(3H)-one (13e):

m.p:125-130°C; 91% (0.36 g) as white solid; ¹H NMR (300 MHz, CDCl₃) $\delta = 8.05$ (d, J = 8.3Hz, 2H, ArH), 7.74 (d, J = 8.3Hz, 2H, Ar-H), 7.65 (d, J = 7.0Hz, 2H, ArH), 7.51-7.43 (m, 4H, ArH), 6.38 (s, 1H, ArH), 6.31 (d, J = 2.8Hz, 1H, ArH), 6.20 (d, J = 4.6Hz, 1H, CH), 6.14 (s, 1H, CH), 4.86 (d, J = 4.4Hz, 1H, CH), 2.30 (s, 3H, CH ₃); ¹³C NMR (50 MHz, CDCl₃) $\delta = 191.6$, 171.6, 167.0, 160.8, 151.3, 147.2, 142.8, 139.5, 131.8, 129.8, 129.1, 128.7, 127.7, 127.4, 111.0, 108.2, 99.6, 95.7, 88.9, 41.9, 20.7; IR(KBr): 1689, 1703 cm⁻¹; MS (ESI +) *m/z:* 399.1 [M+H]⁺; analysis (calcd., found for C₂₅H₁₈O₅): C (75.37, 75.39), H (4.55, 4.50).

2-(Biphenylcarbonyl)-3-ferrocenyl 6-methyl- 2H-furo [3, 2-c]pyran -4(3H)-one (13f): m. p:175-180°C; 81% (0.43 g) as yellow solid; ¹H NMR (300 MHz, CDCl₃) $\delta = 8.07$ (d, J = 8.4Hz, 2H, Ar-H), 7.70 (d, J = 8.3Hz, 2H, ArH), 7.58 (t, J = 6.8Hz, 2H, ArH), 7.43-7.33 (m, 3H, ArH), 6.11 (d, J = 3.8Hz, 1H, CH), 5.96 (s, 1H, CH), 4.61 (d, J = 3.7Hz, 1H, CH), 4.22- 4.05 (m, 9H, Fc-H), 2.18 (s, 3H, CH ₃); ¹³C NMR (50 MHz, CDCl₃) $\delta = 192.7$, 170.2, 166.3, 161.3, 147.0, 139.6, 132.7, 129.9, 129.2, 128.7, 127.7, 127.4, 103.0, 95.6, 91.4, 89.1, 68.9, 68.4, 68.1, 67.7, 66.4, 41.3, 20.6; IR(KBr): 1688, 1704 cm⁻¹; MS (ESI+) *m/z:* 516.1 [M+H]⁺; analysis (calcd., found for C₃₁H₂₄FeO₄): C (72.11, 72.24), H (4.68, 4.58).

2-Benzoyl-3-ferrocenyl 6-methyl- -2H-furo [3, 2-c]pyran-4(3H)-one (13g): m. p :165-

170°C; 78% (0.33 g) as yellow solid; ¹H NMR (300 MHz, CDCl₃) $\delta = 8.08$ (d, J = 7.5Hz, 2H, Ar-H), 7.69 (t, J = 7.0Hz, 1H, ArH), 7.58 (t, J = 7.6Hz, 2H, ArH), 6.16 (d, J = 3.6Hz, 1H, CH), 6.04 (s, 1H, CH), 4.64 (d, J = 3.4Hz, 1H, CH), 4.27-4.11 (m, 9H, Fc-H), 2.27 (s, 3H, CH ₃); ¹³C NMR (75 MHz, CDCl₃) $\delta = 193.2$, 170.2, 166.3, 161.3, 134.3, 134.1, 129.2, 129.1, 102.9, 95.5, 91.3, 89.0, 68.8, 68.3, 68.1, 67.6, 66.4, 41.3, 20.6; IR(KBr): 1689, 1705 cm⁻¹; MS (ESI+) m/z: 441.1 [M+H]⁺; analysis (calcd., found for C₂₅H₂₀FeO₄): C (68.20, 68.29), H (4.58, 4.68).

3-Ferrocenyl-2-(4-methoxybenzoyl) - 6-methyl- 2H-furo [3,2-c]pyran-4(3H)-one (13h): m. p : 155-160°C; 86% (0.41 g) as yellow solid; ¹H NMR (300 MHz, CDCl₃) δ = 8.08 (d, *J* = 8.8Hz, 2H, Ar-H), 7.03 (d, *J* = 8.8Hz, 2H, ArH), 6.12 (d, *J* = 3.8Hz, 1H, CH), 6.03 (s, 1H, CH), 4.65 (d, *J* = 3.6Hz, 1H, CH), 4.28-4.11 (m, 9H, Fc-H), 3.91 (s, 3H, OCH ₃), 2.27 (s, 3H, CH ₃); ¹³C NMR (75 MHz, CDCl₃) δ = 191.4, 170.2, 166.2, 164.5, 161.4, 131.6, 126.9, 114.4, 103.1, 95.6, 91.1, 89.1, 68.8, 68.3, 68.0, 67.7, 66.4, 55.7, 41.2, 20.6; IR(KBr): 1691, 1708 cm⁻¹; MS (ESI+) *m/z:* 471.8 [M+H]⁺; analysis (calcd., found for C₂₆H₂₂FeO₅): C (66.40, 66.28), H (4.72, 4.69).

2-(4-Bromobenzoyl)- 3-ferrocenyl 6-methyl- -**2H-furo**[**3,2-c**]**pyran-4**(**3H**)-**one** (**13i**): m. p: 142-145°C; 82% (0.44 g) as yellow solid; ¹H NMR (300 MHz, CDCl₃) δ = 7.95 (d, *J* = 8.5Hz, 2H, Ar-H), 7.71 (d, *J* = 8.4Hz, 2H, ArH), 6.08 (d, *J* = 3.9Hz, 1H, CH), 6.01 (s, 1H, CH), 4.67 (d, *J* = 3.7Hz, 1H, CH), 4.26 (s, 1H, Fc-H), 4.21-4.12 (m, 8H, Fc-H), 2.27 (s, 3H, CH ₃); ¹³C NMR (50 MHz, CDCl₃) δ = 192.3, 169.8, 166.3, 161.0, 132.8, 132.4, 130.7, 129.6, 102.8, 95.4, 91.3, 89.6, 69.6, 69.2, 68.8, 68.5, 67.0, 41.0, 20.6; IR(KBr): 1695, 1706 cm⁻¹; MS (ESI+) *m/z:* 519.2 [M+H]+ analysis (calcd., found for C₂₅H₁₉FeO₄Br) : C (57.84, 57.75), H (3.69, 3.78).

2-(4-Methoxybenzoyl)-6-methyl-3-(naphthalen-1-yl)-2H-furo[3,2-c]pyran-4(3H)-one

(13j): m.p:160-165°C; 83% (0.34 g) as white solid; ¹H NMR (300 MHz, CDCl₃) δ = 7.96 (d, *J* = 8.0Hz, 1H, Ar-H), 7.86-7.79 (m, 4H, ArH), 7.47-7.41 (m, 3H, ArH), 7.33 (d, *J* = 6.9Hz, 1H, ArH), 6.87 (d, *J* = 8.8Hz, 2H, Ar-H), 6.12 (s, 1H, CH), 5.90 (s, 1H, CH), 5.73 (s, 1H, CH), 3.84 (s, 3H, OCH ₃), 2.30 (s, 3H, CH ₃); ¹³C NMR (50 MHz, CDCl₃) δ =190.8, 170.9, 166.5, 164.5, 161.0, 135.9, 134.2, 131.9, 131.3, 129.0, 128.5, 126.6, 125.9, 125.7, 123.2, 114.1, 102.3, 95.5, 91.8, 60.4, 55.6, 42.6, 20.6, 14.2; IR(KBr): 1692, 1700 cm⁻¹; MS (ESI+) *m/z*: 413.1 [M+H]⁺; analysis (calcd., found for C₂₆H₂₀O₅): C (75.72, 75.78), H (4.89, 4.85).

3-(4-chlorophenyl)-6-methyl-2-(4-nitrobenzoyl)-2,3-dihydro-4H-furo[3,2-c]pyran-4-one

(13k): m.p:150-152°C; 78% (0.32 g) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 7.45 (d, *J* = 8.0 Hz, 2H), 7.13 (t, *J* = 7.9 Hz, 1H), 7.00-7.08 (m, 3H), 6.88 (d, *J* = 7.9 Hz, 2H), 6.16 (s, 1H), 5.94 (d, *J* = 4.4 Hz, 1H), 4.62 (d, *J* = 4.8 Hz, 1H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 20.71, 39.36, 43.49, 92.03, 95.69, 102.26, 115.96, 123.16, 128.09, 128.29, 128.81, 129.25, 129.56, 132.76, 135.61, 139.14, 148.06, 162.79, 164.21, 171.18, 196.79; IR(KBr): 1684, 1707 cm⁻¹; MS (ESI+) *m/z:* 412.6 [M+H]⁺; analysis (calcd., found for C₂₁H₁₄ClNO₆): C (61.25, 61.23), H (3.43, 3.45).

2-(1-butyl-3-methylimidazolidin-2-ylidene)-1-phenylethan-1-one(4): obtained as viscous pale yellow liquid; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.42-8.46$ (m, 3H), 8.25-8.27 (m, 2H), 5.23 (s, 1H), 3.58-3.62 (m, 2H), 3.39-3.43 (m, 2H), 3.09 (t, J = 7.47 Hz, 2H), 2.87 (s, 3H), 1.76-1.83 (m, 2H), 1.26-1.36 (m, 2H), 0.90 (t, J = 7.36 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 13.08$, 19.10, 31.62, 35.90, 45.26, 46.96, 49.24, 75.23, 127.35, 129.61, 137.85, 145.65, 167.03, 183.45; IR(KBr): 2918, 2858, 1603, 1545 cm⁻¹; MS (ESI+) *m/z*: 258.1 [M].

6. Spectral charts of all synthesized compounds(9a-q, 11a-h, 13a-k,4)

¹H spectra of 2-benzoyl-3-(3-nitrophenyl)-2, 3, 6,7-tetrahydrobenzofuran-4(5H)-one (9a)

¹³C spectra of 2-benzoyl-3-(3-nitrophenyl)-2, 3, 6,7-tetrahydrobenzofuran-4(5H)-one (9a)

¹³C spectra of 2-benzoyl-3-(4-methoxyphenyl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one (9b)

¹H spectra of 2-benzoyl-3-(4-chlorophenyl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one (9c)

¹³C spectra of 2-benzoyl-3-(4-chlorophenyl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one (9c)

¹H spectra of 2-benzoyl-3-(biphenyl-4-yl)-2,3,6,7-tetrahydrobenzofuran-4(5H)- one (9d)

¹³C spectra of 2-benzoyl-3-(biphenyl-4-yl)-2,3,6,7-tetrahydrobenzofuran-4(5H)- one (9d)

¹H spectra of 2-benzoyl-6,6-dimethyl-3-propyl-2,3,6,7-tetrahydrobenzofuran- 4(5H)-one (9e)

¹³C spectra of 2-benzoyl-6,6-dimethyl-3-propyl-2,3,6,7-tetrahydrobenzofuran- 4(5H)-one (9e)

¹H spectra of 2-(4-bromobenzoyl)-3-(2, 5-dimethoxyphenyl)-6, 6-dimethyl- 2,3,6,7-tetrahydrobenzofuran-4(5H)-one (9f)

¹³C spectra of 2-(4-bromobenzoyI)-3-(2, 5-dimethoxyphenyI)-6, 6-dimethyI- 2,3,6,7-tetrahydrobenzofuran-4(5H)-one (9f)

¹H spectra of 2-benzoyl-6,6-dimethyl-3-(naphthalen-2-yl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one (9g)

¹³C spectra of 2-benzoyl-6,6-dimethyl-3-(naphthalen-2-yl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one (9g)

¹H spectra of 2-(4-bromobenzoyl)-6,6-dimethyl-3-(thiophen-2-yl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one(9h)

¹³C spectra of 2-(4-bromobenzoyI)-6,6-dimethyI-3-(thiophen-2-yI)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one(9h)

13^c spectra of 2-benzoyl-3- ferrocenyl -2, 3, 6, 7-tetrahydrobenzofuran-4(5H)-one (9i)

¹H spectra of 3- ferrocenyl, 2-(4-methoxybenzoyl)-2, 3, 6, 7-tetrahydrobenzofuran-4(5H)-one (9j)

¹³C spectra of 3- ferrocenyl, 2-(4-methoxybenzoyl)-2, 3, 6, 7-tetrahydrobenzofuran-4(5H)-one (9j)

¹H spectra of 2-(4-bromobenzoyl)-3- ferrocenyl-2, 3, 6, 7-tetrahydrobenzofuran4(5H)-one (9k)

¹³C spectra of 2-(4-bromobenzoyl)-3- ferrocenyl-2, 3, 6, 7-tetrahydrobenzofuran4(5H)-one (9k)

¹H spectra 2-(biphenylcarbonyl)-3-ferrocenyl-2, 3, 6, 7-tetrahydrobenzofuran-4(5H)-one (9I)

¹³C spectra 2-(biphenylcarbonyl)-3-ferrocenyl-2, 3, 6, 7-tetrahydrobenzofuran-4(5H)-one (9I)

¹H spectra of 2-benzoyl-6,6-dimethyl-3-ferrocenyl-2,3,6,7-tetrahydrobenzofuran4(5H)-one (9m):

¹³C spectra of 2-benzoyl-6,6-dimethyl-3-ferrocenyl-2,3,6,7-tetrahydrobenzofuran4(5H)-one (9m):

¹H spectra of 6, 6-dimethyl-3-ferrocenyl-2-(4-methoxybenzoyl)-2,3,6,7-tetrahydrobenzofuran-4(5H)-one (9n)

¹H spectra of 2-(4-bromobenzoyl)-6, 6-dimethyl-3-ferrocenyl-2, 3, 6, 7-tetrahydrobenzofuran-4(5H)one (9o)

¹³ C spectra of 2-(4-bromobenzoyl)-6, 6-dimethyl-3-ferrocenyl-2, 3, 6, 7-tetrahydrobenzofuran-4(5H)-one (9o)

¹H spectra of 2-(biphenylcarbonyl)-6,6-dimethyl-3-ferrocenyl-2,3,6,7- tetrahydrobenzofuran-4(5H)one (9p)

¹H spectra of 3-(4-chlorophenyl)-6,6-dimethyl-2-(4-nitrobenzoyl)-3,5,6,7-tetrahydrobenzofuran-4(2H)-one (9q)

¹³C spectra of 3-(4-chlorophenyl)-6,6-dimethyl-2-(4-nitrobenzoyl)-3,5,6,7-tetrahydrobenzofuran-4(2H)-one (9q)

¹H spectra of 2-benzoyl-3-isopropyl-2H-furo[3,2-c]chromen-4(3H)-one (11a):

¹³C spectra of 2-benzoyl-3-isopropyl-2H-furo[3,2-c]chromen-4(3H)-one (11a):

¹H spectra of 2-(4-methoxybenzoyl)-3-phenyl-2H-furo[3,2-c]chromen-4(3H)-one (11b)

13^c spectra of 2-(4-methoxybenzoyl)-3-phenyl-2H-furo[3,2-c]chromen-4(3H)-one (11b)

¹³C spectra of 3-(2,4-dichlorophenyl)-2-(4-methoxybenzoyl)-2H-furo[3,2-c]chromen-4(3H)-one (11c)

¹H spectra of 2-benzoyl-3-ferrocenyl-2H-furo[3,2-c]chromen-4(3H)-one (11d)

¹³C spectra of 2-benzoyl-3-ferrocenyl-2H-furo[3,2-c]chromen-4(3H)-one (11d)

¹³C spectra of 3- ferrocenyl-2-(4-methoxybenzoyl)-2H-furo[3,2-c]chromen-4(3H)- one (11e)

¹H spectra of 2-(4-bromobenzoyl)-3- ferrocenyl-2H-furo[3,2-c]chromen-4(3H)- one(11f)

¹³C spectra of 2-(4-bromobenzoyl)-3- ferrocenyl-2H-furo[3,2-c]chromen-4(3H)- one(11f)

¹H spectra of 2-(biphenylcarbonyl)-3-ferrocenyl-2H-furo[3,2-c]chromen-4(3H)-one (11g)

¹³C spectra of 2-(biphenylcarbonyl)-3-ferrocenyl-2H-furo[3,2-c]chromen-4(3H)-one (11g)

¹H spectra of 4-(3-(4-chlorophenyl)-4-oxo-2,3-dihydro-4H-furo[3,2-c]chromene-2carbonyl)benzonitrile (11h)

¹³C spectra of 4-(3-(4-chlorophenyl)-4-oxo-2,3-dihydro-4H-furo[3,2-c]chromene-2carbonyl)benzonitrile (11h)

¹H spectra of 2-(4-bromobenzoyl)-6-methyl-3-phenyl-2H-furo[3,2-c]pyran-4(3H)-one (13a)

¹³C spectra of 2-(4-bromobenzoyl)-6-methyl-3-phenyl-2H-furo[3,2-c]pyran-4(3H)- one (13a)

¹H spectra of 2-benzoyl-3-(4-fluorophenyl)-6-methyl-2H-furo[3,2-c]pyran-4(3H)-one (13b)

 $^{13}\,C\ spectra\ of\ 2-benzoyl-3-(4-fluorophenyl)-6-methyl-2H-furo[3,2-c]pyran-4(3H)-one\ (13b)$

¹H spectra of 3-(4-chlorophenyl)-2-(4-methoxybenzoyl)-6-methyl-2H-furo[3,2- c]pyran-4(3H)-one (13c)

 $^{13}\ C\ spectra\ of\ 3-(4-chlorophenyl)-2-(4-methoxybenzoyl)-6-methyl-2H-furo[3,2-c]pyran-4(3H)-one\ (13c)$

¹H spectra of 2-(biphenylcarbonyl)-6-methyl-3-phenyl-2H-furo[3,2-c]pyran- 4(3H)-one (13d)

¹³ C spectra of 2-(biphenylcarbonyl)-6-methyl-3-phenyl-2H-furo[3,2-c]pyran- 4(3H)-one (13d)

¹H spectra of 2-(biphenylcarbonyl)-3-(furan-2-yl)-6-methyl-2H-furo[3,2-c]pyran- 4(3H)-one (13e)

 $^{13}\,C\ spectra\ of\ 2-(biphenylcarbonyl)-3-(furan-2-yl)-6-methyl-2H-furo[3,2-c]pyran-\ 4(3H)-one\ (13e)$

48

¹H spectra of 2-(4-methoxybenzoyl)-6-methyl-3-(naphthalen-1-yl)-2H-furo[3,2-c]pyran-4(3H)-one (13f)

¹³ C spectra of 2-(4-methoxybenzoyl)-6-methyl-3-(naphthalen-1-yl)-2H-furo[3,2-c]pyran-4(3H)-one (13f)

¹H spectra of 2-benzoyl-3-ferrocenyl -6-methyl- -2H-furo [3, 2-c]pyran-4(3H)-one (13g)

¹³ C spectra of 2-benzoyl-3-ferrocenyl -6-methyl- -2H-furo [3, 2-c]pyran-4(3H)-one (13g)

¹H spectra of 3-ferrocenyl-2-(4-methoxybenzoyl)-6-methyl- -2H-furo[3,2-c]pyran-4(3H)-one (13h)

¹³C spectra of 3-ferrocenyl-2-(4-methoxybenzoyl)-6-methyl- -2H-furo[3,2-c]pyran-4(3H)-one (13h)

51

¹H spectra of 2-(4-bromobenzoyl)-3-ferrocenyl-6-methyl- 2H-furo[3,2-c]pyran-4(3H)-one (13i)

¹³C spectra of 2-(4-bromobenzoyl)-3-ferrocenyl-6-methyl- 2H-furo[3,2-c]pyran-4(3H)-one (13i)

¹H spectra of 2-(biphenylcarbonyl)-3-ferrocenyl-6-methyl-2H-furo[3,2-c]pyran4(3H)-one (13j)

¹³C spectra of 2-(biphenylcarbonyl)-3-ferrocenyl-6-methyl-2H-furo[3,2-c]pyran4(3H)-one (13j)

53

¹H spectra of 3-(4-chlorophenyl)-6-methyl-2-(4-nitrobenzoyl)-2,3-dihydro-4H-furo[3,2-c]pyran-4-one (13k)

¹³C spectra of 3-(4-chlorophenyl)-6-methyl-2-(4-nitrobenzoyl)-2,3-dihydro-4H-furo[3,2-c]pyran-4-one (13k):

¹H spectra of 2-(1-butyl-3-methylimidazolidin-2-ylidene)-1-phenylethan-1-one (4)

¹³C spectra of 2-(1-butyl-3-methylimidazolidin-2-ylidene)-1-phenylethan-1-one (4)

7. Mechanistic Experiment: Trapping of carbene as 1-butyl-3-methyl-4,5dihydro-1H-imidazol-2-ylidene borane complex using BH₃.THF³

Following the representative one pot procedure, after completion, the reaction mixture was slowly cooled to r.t.. Then resulting supernatant suspension was transferred into other round bottom flask having bar magnet, in N₂ atmosphere. The suspension was further cooled to -78°C followed by drop by drop addition of BH₃.THF(1M). The resulting mixture was stirred overnight and warmed slowly to r.t.. The complex formation was purified by column chromatography, obtained as gummy solid (less stable in nature); IR (KBr): 2913, 2348, 1428, 1365, 734; ¹H NMR (400 MHz, CDCl₃) δ = 4.19-4.31 (m, 4H), 4.09 (d, *J* = 7.4 Hz, 2H), 3.87 (s, 3H), 1.76-1.83 (m, 2H), 1.27-1.36 (m, 2H), 0.91 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 13.11, 19.17, 31.64, 35.91, 47.46, 49.26, 49.65.

¹H spectra of 1-butyl-3-methyl-4,5-dihydro-1H-imidazol-2-ylidene borane complex

¹³C spectra of 1-butyl-3-methyl-4,5-dihydro-1H-imidazol-2-ylidene borane complex

COSY spectra of 2-(biphenylcarbonyl)-3-ferrocenyl 6-methyl- -2H-furo[3,2-c]pyran-4(3H)one: (13j)

HMBC spectra of 2-(biphenylcarbonyl)-3-ferrocenyl 6-methyl- -2H-furo[3,2-c]pyran-4(3H)-one (13j):

HSQC spectra of 2-(biphenylcarbonyl)-3-ferrocenyl 6-methyl- -2H-furo [3,2-c]pyran-4(3H)-one (13 j) :

- 1 W. A. Herrmann, C. Köcher, Angew. Chem. Int. Ed. Engl., 1997, 36, 2162.
- 2 (a) L. Delaude, *Eur. J. Inorg. Chem.*, 2009, 13, 1681; (b) W. D. Ollis, S. P. Stanforth, C.
 A. Ramsden, *Tetrahedron*, 1985, 41, 2239; (c) K. T. Potts, P. M. Murphy, W. R.
 Kuehnling, *J. Org. Chem.*, 1988, 53, 2889; (d) K. T. Potts, P. M. Murphy, M. R. DeLuca,
 W. R. Kuehnling, *J. Org. Chem.*, 1988, 53, 2898.
- 3 (a) M. M. Brahmi, J. Monot, M. Desage-El Murr, D. P. Curran, L. Fensterbank, E. Lacote and M. Malacria, *J. Org. Chem.* 2010, 75, 6983; (b) Y. Hoshimoto, T. Kinoshita, M. Ohashi and S. Ogoshi, *Angew. Chem. Int. Ed.* 2015, 54, 11666; (c) A. J. Arduengo III, J. R. Goerlich and W. J. Marshall, *J Am. Chem. Soc.* 1995, 117, 11027.