## Electronic Supplementary Information

# Homoleptic gold(I) $N$-heterocyclic allenylidene complexes: Excited-state properties and lyotropic chromonics 

Xin-Shan Xiao, $\dagger^{a}$ Chao Zou, $\dot{\dagger}^{b}$ Xiangguo Guan, ${ }^{a}$ Chen Yang, ${ }^{a}$ Wei Lu ${ }^{* b}$ and Chi-Ming Che ${ }^{* a}$
${ }^{\text {a }}$ State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China. E-mail: cmche@hku.hk
${ }^{\mathrm{b}}$ Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, Guangdong, P.R. China. E-mail: luw@sustc.edu.cn
$\dagger$ The authors contributed equally to this work.

Electronic Supplementary Information (ESI) available: Experiment details, additional spectra and tables.

## Experimental Section

Materials. All starting materials were purchased from commercial sources and used as received. The solvents used for synthesis were of analytical grade unless stated otherwise. The solvents used for nanostructure preparations and photophysical measurements were of HPLC grade. The compounds THT-Au-Cl $(\mathrm{THT}=$ tetrahydrothiophene $){ }^{[1]}$, $\mathrm{L} 1,{ }^{[2]} \mathrm{L} 2-\mathrm{L} 4,{ }^{[3]}$, were prepared according to modified literature methods.

Characterization. Fast atom bombardment (FAB) mass spectra were obtained on a Finnigan MAT 95 mass spectrometer using 3-nitrobenzyl alcohol as matrix. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded with Bruker Avance 400 FT-NMR or 600 FT-NMR spectrometers. Elemental analyses were performed by Beijing Institute of Chemistry, Chinese Academy of Sciences. Infrared spectra were recorded on a Bio-Rad FT-IR spectrometer.

UV-Vis absorption spectra were recorded on a Perkin-Elmer Lambda 19 UV/vis spectrophotometer. Emission lifetime measurements were performed with a Quanta Ray DCR-3 pulsed Nd:YAG laser system (pulse output $355 \mathrm{~nm}, 8 \mathrm{~ns}$ ). Luminescent quantum yields were referenced to degassed 9,10-bis(phenylethynyl)anthracene in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(B P E A, \Phi=0.39)$ with estimated error of $\pm 15 \%$.

Time-resolved emission and transient absorption experiments were performed on an LP920 Laser flash photolysis setup (Edinburgh Instruments). The $266 / 355 \mathrm{~nm}$ pump laser pulse was obtained from the fourth/third harmonic output of an Nd:YAG Q-switched laser, and the probe light was provided by a 450 W xenon lamp. The sample was excited by the pump laser, and the
[1] W. Lu, M. C. W. Chan, N. Zhu, C.-M. Che, C. Li, Z. Hui, J. Am. Chem. Soc., 2004, 126, 7639.
[2] K. H. Wong, K. K. Cheung, M. C. W. Chan, C.-M. Che, Organometallics, 1998, 7, 3505.
[3] A. K. Al-sa'ady, C. A. McAuliffe, R. V. Parish, J. A. Aandbank, Inorg. Synth., 1985, 23, 191.
probe light from the xenon lamp was passed through the sample at right angles to the path of the exciting pulse. The two beams were focused onto a 1 cm quartz cell. After passing through the sample the analyzing light was directed to a monochromator/spectrograph. The transmitted probe light was then measured either by a single detector (for kinetic analysis at a single wavelength) or by an array detector (for spectral analysis at a given time). The transmission properties of the sample before, during, and after the exciting pulse were converted by the detector into electrical signals, which were measured by an oscilloscope (in the case of the single detector) or acquired by a CCD camera (in the case of an array detector). The changes in the transmission properties were converted into changes of optical density. The signals analyzed by a symmetrical CzernyTurner monochromator were detected by a Hamamatsu R928 photomultiplier, and the signal processed via an interfaced PC and analytical software.

The SEM images were taken on a Hitachi S-4800 field emission scanning electron microscope operating at 3.0 kV . SEM samples were prepared by drop-casting suspensions onto silicon wafers.

Single crystals of $\mathbf{5} \cdot \mathrm{PF}_{6}$ and $7 \cdot \mathrm{PF}_{6}$ suitable for X-ray diffraction analysis were obtained by slow evaporation of the acetone $/ n$-hexane solutions, while that of $\mathbf{8} \cdot \mathrm{PF}_{6}$ was obtained by diffusion of acetonitrile/diethyl ether solutions. The diffraction data were collected by a Bruker X8 PROTEUM single crystal X-ray diffractometer with MicroStar rotating-anode X-ray source ( $\mathrm{CuK}_{\alpha}$ radiation, $\lambda=1.54178 \AA$ Å). Step-scanned PXRD data was collected by Bruker AXS D8 ADVANCE (Philips PW1830) powder X-ray diffractometer, in Bragg-Brentano ( $\theta / 2 \theta$ ) reflection mode with a graphite monochromatized CuK_radiation $(\lambda=1.540562 \AA)$ and nickel filter.

Mesophase formation and characterization. Complex $5 . \mathrm{Cl}$ was dispersed in water and the suspension was heated to $65^{\circ} \mathrm{C}$ in a water bath to give homogenous solutions. These samples
were cooled down to room temperature and then characterizations of the mesophase were performed. ${ }^{2} \mathrm{H}$ NMR spectra were recorded with a Bruker Avance 500 FT-NMR spectrometer. Mesophase textures were recorded on a polarization optical microscope (Axio Scope.A1).

## Synthesis and Characterization Data





Synthetic Procedure for L1: 40 mmol pyrrolidine was dissolved in a $10 \%$ solution of $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{OH}(1 / 1, w / w)$, namely $12.8 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and 16 mL MeOH , the mixture was cooled to - 50 ${ }^{\circ} \mathrm{C}$. Then 40 mmol methyl propiolate was added to the solution in small portion, and the mixture was stirred at $-50{ }^{\circ} \mathrm{C}$ for 3 hours. After that, 200 mL 2 N HCl solution was added, which was further stirred at room temperature for 16 hours. Then the clear orange solution was extracted 3 times by $\mathrm{CHCl}_{3}$, and then washed with saturated $\mathrm{NaHCO}_{3}$ solution and $\mathrm{H}_{2} \mathrm{O}$. Dried over $\mathrm{MgSO}_{4}$ and removal of the solvent gave pure product as off-white solid.

L1. White solid; Yield: $90 \%$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 3.78(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.39 \mathrm{~Hz}), 3.65(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=4.53 \mathrm{~Hz}), 3.16(\mathrm{~s}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 149.31,78.98,78.71$, 47.53, 44.68, 24.68, 23.98; IR (KBr) $2099.8 \mathrm{~cm}(\mathrm{C} \equiv \mathrm{C})$; MS(ESI): 123.1 [M] ${ }^{+}$; Elemental Analysis: C 68.27, H 7.37, N 11.37, Found: C 68.01, H 7.35, N 11.34.

Synthetic Procedures for L2-L3: Firstly, To a solution of 1-methylimidazole/ 1-methyl benzylimidazole ( 36.5 mmol ) in 60 mL dry THF, 20 mL n -BuLi 2.5 M in hexane) was added dropwise over half an hour at $-80^{\circ} \mathrm{C}$. After that, the mixture was stirred at room temperature for 16 hours. The mixture was washed with a $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, then the organic layer was extracted by $\mathrm{CHCl}_{3}$ and further washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation, washing the residue with little amount of ether gave pure off-white 2-iodo-1-methylimidazole (71 $\%$ ) and 2-iodo-1-methylbenzylimidazole ( $60 \%$ ). Secondly, 2-iodo-1-methylimidazole / 2-iodo-1methylbenzylimidazole ( 2.4 mmol ) was dissolved in 20 mL triethylamine, and the mixture was degassed by $\mathrm{N}_{2}$ for 10 minutes. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.1 \mathrm{mmol})$ and $\mathrm{CuI}(0,048 \mathrm{mmol})$ were added quickly, followed by the addition of 5 mmol trimethylsilyl $(0.5 \mathrm{~mL})$ acetylene through syringe. The mixture was firstly stirred at room temperature for 1 hour, then at $70^{\circ} \mathrm{C}$ for 5 hours. The volume of solvent was reduced under low pressure at $25{ }^{\circ} \mathrm{C}$ (as the product 1-methy-2trimethylsiylethynylimidazole is volatile). The organic layer was extracted with $\mathrm{CHCl}_{3}$, then washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, brine and water. Dried over anhydrous $\mathrm{MgSO}_{4}$ and concentrated under reduced pressure, the resulting brown residue was purified by column chromatography ( n -Hexane/Ethyl acetate $=3 / 1$ to $1 / 1$ ). The resulted 1 -methy- 2 trimethylsiylethynylimidazole was colorless oil when firstly prepared, but turned into yellow later ( $58 \%$ ). The 1-methy-2-trimethylsiylethyny benzyllimidazole is off-white solid (54 \%). Thirdly, 5 mmol 1-methy-2-trimethylsiylethynylimidazole/1-methy-2-trimethylsiylethyny benzyllimidazole and $6 \mathrm{mmol} \mathrm{K}_{2} \mathrm{CO}_{3}$ was dissolved in 3 mL MeOH , and the mixture was stirred at room temperature for 15 minutes. The solid was filtered and the filtrate was concentrated under low pressure at room temperature to give pure $\mathbf{L} \mathbf{2}$ as light yellow oil ( 93 \%), and $\mathbf{L} 3$ as white solid ( 95 \%).

L2. Light yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.07 \mathrm{~Hz}), 6.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $1.04 \mathrm{~Hz}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 139.20,128.46,122.32,76.32$, 75.30, 30.87; $\operatorname{IR}(\mathrm{KBr}) 2134.5 \mathrm{~cm}^{-1}(\mathrm{C} \equiv \mathrm{C})$; $\mathrm{MS}(\mathrm{FAB})$ : 106.01 [M] ${ }^{+}$; Elemental Analysis: C 67.90 , H 5.70, N 26.40, Found: C 67.64, H 5.71, N 26.31.
L3. White solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.72 \mathrm{~Hz}), 7.33(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.50$ $\mathrm{Hz}), 7.20(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 142.75,137.29$, $134.66,123.97,122.92,120.36,109.46,102.26,93.41,30.66 ; \operatorname{IR}(\mathrm{KBr}) 2167.7 \mathrm{~cm}^{-1}(\mathrm{C} \equiv \mathrm{C})$;

MS(FAB): $156.1[\mathrm{M}]^{+}$; Elemental Analysis: C 76.90, H 5.16, N 17.94, Found: C 77.11, H 5.20, N 17.89.

Synthetic Procedures for L4: L4 was synthesized by a two-step coupling starting from 2-bromo-3-methylpyridine. The synthetic details were similar to those of $\mathbf{L} \mathbf{2}-\mathbf{L} \mathbf{3}$, except that $\mathbf{L} \mathbf{4}$ is far more stable in ambient conditions.

General Procedure for the Syntheses of Complexes 1-4•Na: A mixture of tht-Au-Cl (3 mmol) and L1-L4 ( 7 mmol ) in $5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $\mathrm{NaOCH}_{3}(8 \mathrm{mmol})$ in $15 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{OH}$. The white solution was degassed for 5 minutes by $\mathrm{N}_{2}$ and then stirred at room temperature for overnight. After removing the solvent, the white solid was washed with ether, small portion of water followed by methanol for 2 times.
$\left[\mathrm{Au}\left(\mathrm{C} \equiv \mathrm{CCH}_{3} \mathrm{Im}\right)_{2}\right]^{-} \mathrm{Na}^{+}(1 \cdot \mathrm{Na})$. Grey-white solid; Y ield: $59 \% ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right): \delta$ 6.78 (d, 1H, J < 1 Hz ), 6.94 (d, $1 \mathrm{H}, \mathrm{J}<1 \mathrm{~Hz}$ ), 3.77 ( $\mathrm{s}, 3 \mathrm{H}$ ); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OH}, 150 \mathrm{MHz}\right.$ ): $\delta 140.2$, 136.2, 127.6, 121.3, 91.5, 33.8; IR (KBr): $2117.5 \mathrm{~cm}^{-1}(\mathrm{C} \equiv \mathrm{C}) ; \mathrm{MS}(\mathrm{ESI}): 407.5$ [M] ${ }^{+}$; Elemental Analysis: C 35.39 , H 2.48, N 13.76, Found: C 34.88, H 2.47, N 13.56.
$\left[\mathrm{Au}\left(\mathrm{C} \equiv \mathrm{CCH}_{3} \text { benzylIm }\right)_{2}\right]{ }^{-} \mathrm{Na}^{+}(2 \cdot \mathrm{Na})$. White solid; Yield: $62 \%$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right): \delta$ $7.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.73 \mathrm{~Hz}), 7.41(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.48 \mathrm{~Hz}), 7.27(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.64), 6.59(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.40)$, 3.89 (s, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OH}, 150 \mathrm{MHz}\right): \delta 144.2,142.4,139.7,134.4,123.0,122.7,118.3$, 109.6, 91.5, 30.1; IR(KBr): $2129.9 \mathrm{~cm}^{-1}(\mathrm{C} \equiv \mathrm{C})$; MS(ESI): $507.5\left(\mathrm{M}^{+}\right)$; Elemental Analysis: C 41.35, H 2.78 , N 11.4, Found: C 40.48, H 2.74, N 10.88.
$\left\{\mathrm{Au}\left[\mathrm{C} \equiv \mathrm{C}(\mathrm{C}=\mathrm{O}) \mathrm{N}\left(\mathrm{CH}_{2}\right)_{4}\right]_{2}\right\}-\mathrm{Na}^{+}(\mathbf{3} \cdot \mathrm{Na})$. Grey-white solid; Yield: 65\%; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 400\right.$ MHz ): $\delta 3.69(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.72 \mathrm{~Hz}), 3.57(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.68 \mathrm{~Hz}), 1.91(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OH}\right.$, $150 \mathrm{MHz}): \delta 146.0,139.8,95.1,48.8,44.9,25.0,24.6$; IR (KBr) $2094.4 \mathrm{~cm}^{-1}(\mathrm{C} \equiv \mathrm{C}) ; \mathrm{MS}(\mathrm{ESI}):$ 441.1[M] ${ }^{+}$; Elemental Analysis: C 36.22 , H 3.47, N 6.03, Found: C 36.18, H 3.47, N 6.02 .
$\left\{\mathrm{Au}[\mathrm{C} \equiv \mathrm{CPyridyl}]_{2}\right\}-\mathrm{Na}^{+}(4 \cdot \mathrm{Na})$. Grey-white solid; Yield: $62 \% ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6} 400 \mathrm{MHz}\right): \delta$ $8.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.46 \mathrm{~Hz}), 7.49(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.32 \mathrm{~Hz}), 7.05(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.25 \mathrm{~Hz}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ( $\mathrm{CD}_{3} \mathrm{OH}, 150 \mathrm{MHz}$ ): $\delta 146.4,145.7,142.3,136.0,134.2,120.1,101.2,19.6$; $\operatorname{IR}(\mathrm{KBr}) 2108.0$,
$2092.4 \mathrm{~cm}^{-1}$ (C $\equiv \mathrm{C}$ ); MS(ESI): 429.1[M] ${ }^{+}$; Elemental Analysis: C 42.49, H 2.67, N 6.19, Found: C 41.86, H 2.62, N 6.13 .

General Procedure for the Syntheses of Complexes 5-8•X: The acetylide complexes $\mathbf{1 - 4} \cdot \mathrm{Na}(1$ mmol ) in 20 mL dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were cooled down to $-50^{\circ} \mathrm{C}$, then methyl triflate ( 3 mmol ) was added quickly through syringe. The solution was stirred at $-50{ }^{\circ} \mathrm{C}$ for 30 minutes, then at room temperature for another 4 hours. The solvent was removed by rotatory evaporation and the excess MeOTf was washed away by ether. The complexes with triflate as anion were dissolved in methanol, which was filtered into a saturated methanolic solution of $\mathrm{NH}_{4} \mathrm{PF}_{6}$. The resulted white precipitate was washed carefully with little amount of methanol to obtain pure $\mathbf{5 - 8} \cdot \mathrm{PF}_{6}$ in high yields.
$\mathbf{5} \cdot \mathrm{Cl}-\mathbf{6} \cdot \mathrm{Cl}$. $5 \cdot \mathrm{PF}_{6}-\mathbf{6} \cdot \mathrm{PF}_{6}(1 \mathrm{mmol})$ was stirred with excess chloride exchange resin in 5 mL methanol for 15 minutes. Then the resin was removed by filtration and the resulting filtrate was dried by rotator evaporation.

5•PF . White solid; Yield: $88 \%$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta 7.17(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}<1 \mathrm{~Hz}), 3.84$ (s, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 150 \mathrm{MHz}\right): \delta 158.8,132.5,122.4,82.5,36.2 ;{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 400\right.$ $\mathrm{MHz}): \delta-71.2,-72.9 ; \operatorname{IR}(\mathrm{KBr}) 2113.0 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}=\mathrm{C})$; $\mathrm{MS}(\mathrm{ESI}): 437.1[\mathrm{M}]^{+}$; Elemental Analysis: C 28.88, H 2.77, N 9.62, Found: C 29.09, H 2.79, N 9.56.
5.Cl. White solid; Yield: $82 \%$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right): \delta 7.40(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}<1 \mathrm{~Hz}), 3.76$ (s, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}\right): 160.9,132.5,122.8,82.5,36.1$; IR (KBr) $2113.4 \mathrm{~cm}^{-1}$ ( $\mathrm{C}=\mathrm{C}=\mathrm{C}$ ); MS(ESI): $437.1[\mathrm{M}]^{+}$; Elemental Analysis: C 35.57, H 3.41, N 11.85, Found: C 34.88, H 3.37, N 11.68 .

6•PF . White solid; Yield: $88 \%$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta 7.72(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=3.25 \mathrm{~Hz}), 7.65$ ( $\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=3.05$ ), $3.94(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 150 \mathrm{MHz}\right): \delta 164.5,136.2,132.2,127.7,113.4$, 82.3, 33.3; ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta-72.0,-73.4$; IR ( KBr ) $2109.6 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}=\mathrm{C})$; MS(ESI): $537.1[\mathrm{M}]^{+}$; Elemental Analysis: C 38.72, H 2.95, N 8.21 , Found: C 38.52, H 2.93, N 8.19.
6.Cl. White solid; Yield: $88 \%$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- $d_{6} 400 \mathrm{MHz}$ ): $\delta 7.68(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=3.39 \mathrm{~Hz}$ ), 7.53 (t, 2H, J = 3.18), $3.90(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6} 150 \mathrm{MHz}\right): \delta 165.2,133.9,131.5,126.6,113.3$,
83.1, 32.6; $\operatorname{IR}(\mathrm{KBr}) 2109.1 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}=\mathrm{C})$; MS(ESI): 537.1 [M] ${ }^{+}$; Elemental Analysis: $\mathrm{C} 46.13, \mathrm{H}$ 3.52, N 9.78, Found: C 45.59, H 3.54, N 9.69.

7• $\mathrm{PF}_{6}$. White solid; Yield: $82 \%$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta 4.21(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $5.48 \mathrm{~Hz}), 3.60(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.74 \mathrm{~Hz}), 1.94(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 150 \mathrm{MHz}\right): \delta 166.2,132.0$, 86.3, 61.0, 52.4, 46.8, 24.1, 23.7; ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta-71.8,-73.7$; $\operatorname{IR}(\mathrm{KBr}) 2113.8$ $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{C}=\mathrm{C})$; $\mathrm{MS}(\mathrm{ESI}): 471.2[\mathrm{M}]^{+}$; Elemental Analysis: C 31.18, H 3.60, N 4.55, Found: C 31.08, H 3.58, N 4.57.

8•PF . Grey-white solid; Yield: $86 \%$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta 8.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.84 \mathrm{~Hz})$, $8.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.53 \mathrm{~Hz}), 7.52(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.77 \mathrm{~Hz}), 4.45(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right.$, $150 \mathrm{MHz}): \delta 167.9,144.4,143.5,142.4,123.4,119.0,94.4,48.3,20.5 ;{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 400\right.$ $\mathrm{MHz}): \delta-72.0,-73.9$; $\operatorname{IR}(\mathrm{KBr}) 2111.5,2083.4 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}=\mathrm{C})$; MS(ESI): 459.1 [M] ${ }^{+}$; Elemental Analysis: C 35.78, H 3.00, N 4.64, Found: C 36.56, H 2.96, N 4.61.

Table S1. Crystal Data

|  | 5•PF6 | 7- $\mathrm{PF}_{6}$ | 8• $\mathrm{PF}_{6}$ |
| :---: | :---: | :---: | :---: |
| formula | $\mathrm{C}_{42} \mathrm{H}_{48} \mathrm{~N}_{12} \mathrm{~F}_{18} \mathrm{P}_{3} \mathrm{Au}_{3}$ | $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PAu}$ | $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{PAu}$ |
| fw | 1786.69 | 636.28 | 645.33 |
| color | colorless | colorless | light yellow |
| crystal size | $0.15 \times 0.04 \times 0.03$ | $0.05 \times 0.05 \times 0.02$ |  |
| crystal system | triclinic | orthorhombic | orthorhombic |
| space group | $P-1$ | P $212{ }_{1} 2_{1}$ | Pnma |
| $a, ~ \AA ̊$ | 11.7938(2) | 7.32120(10) | 15.7075(7) |
| b, $\AA$ | 13.6822(2) | 13.6716(2) | 6.8525(3) |
| $c, \AA$ | 13.8013(7) | 21.2142(14) | 20.3447(10) |
| $\alpha$, deg | 20.7195(14) | 90.00 | 90.00 |
| $\beta$, deg | 74.412(5) | 90.00 | 90.00 |
| $\gamma$, deg | 83.443(6) | 90.00 | 90.00 |
| $V, \AA^{3}$ | 3124.4(2) | 2123.38(15) | 2189.81(17) |
| Z | 2 | 4 | 4 |
| $D_{\mathrm{c}}, \mathrm{g} \mathrm{cm}^{-3}$ | 1.847 | 1.990 | 1.957 |
| $\mu, \mathrm{mm}^{-1}$ | 14.462 | 14.383 | 13.900 |
| $F(000)$ | 1672 | 1216 | 1240 |
| $2 \theta_{\text {max }}$, deg | 45 | 45 | 45 |
| no. reflections | 44173 | 13191 | 19234 |
| no. independent reflections | $11036[R($ int $)=0.0823]$ | $3816[R($ int $)=0.0386]$ | $2073[R(\mathrm{int})=0.0560]$ |
| no. variables | 728 | 253 | 178 |
| GOF on $\mathrm{F}^{2}$ | 1.062 | 1.147 | 1.123 |
| $R_{1}{ }^{a}$ | $0.0523[I>2 \sigma(I)]$ | $0.0513[I>2 \sigma(I)]$ | $0.0599[I>2 \sigma(I)]$ |
| $w R_{2}{ }^{\text {b }}$ | 0.1394 | 0.1618 | 0.1324 |
| residual $\rho$, e $\AA^{-3}$ | +1.718, -1.956 | +1.071, 1.599 | +3.808, -2.593 |

${ }^{a} R=\Sigma| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right|\right| / \Sigma\left|\mathrm{F}_{\mathrm{o}}\right| .{ }^{b} R w=\left\{\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$.

Table S2. Photophysical Data.

| Complex | Medium ( $\mathrm{T} / \mathrm{K}$ ) | $\begin{aligned} & \lambda_{\mathrm{abs}} / \mathrm{nm} \\ & \left(\varepsilon / \times 10^{3} \mathrm{~mol}^{-1} \mathrm{dm}^{3} \mathrm{~cm}^{-1}\right) \end{aligned}$ | $\lambda_{\text {em }} / \mathrm{nm}(\tau / \mu \mathrm{s})$ | $\Phi_{\text {em }}$ | $\mathrm{k}_{\mathrm{r}} / \mathrm{s}^{-1}$ | $\mathrm{k}_{\mathrm{nr}} / \mathrm{s}^{-1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 \cdot \mathrm{Na}$ | $\mathrm{CH}_{3} \mathrm{OH}$ (298) | $\begin{aligned} & 273 \text { (13.4), } 284(19.5), \\ & 295(\mathrm{sh})(15.7) \end{aligned}$ | 402, 424 (max, 0.7) | 0.03 | $4.3 \times 10^{4}$ | $1.4 \times 10^{6}$ |
|  | EtOH/MeOH (77) |  |  |  |  |  |
|  | Solid (298) |  | $\begin{aligned} & 452 \text { (sh), } 465 \text { (max, 2.6), } \\ & 481,491,564 \end{aligned}$ |  |  |  |
|  | Solid (77) |  | 467 (2.8) |  |  |  |
| 2•Na | $\mathrm{CH}_{3} \mathrm{OH}$ (298) | $\begin{aligned} & 239 \text { (11.3), } 306 \text { (12.5), } \\ & 309 \text { (13.2), } 319 \text { (19.1), } \\ & 322(18.0) \end{aligned}$ | 425, 452 (1.3) | 0.12 | $9.2 \times 10^{4}$ | $6.8 \times 10^{5}$ |
|  | EtOH/MeOH (77) |  | $\begin{aligned} & 418(16.8), 447,460,475, \\ & 493,509,528,550,570 \\ & \hline \end{aligned}$ |  |  |  |
|  | Solid (298) |  | 467, 483 (14.3), 529 (sh) |  |  |  |
|  | Solid (77) |  | 515 (16.7), 535 |  |  |  |
| 3•Na | $\mathrm{CH}_{3} \mathrm{OH}$ (298) | $\begin{aligned} & 217 \text { (19.8), } 231 \text { (13.7), } \\ & 258(8.6), 268(6.3) \end{aligned}$ | Non-emissive |  |  |  |
| $4 \cdot \mathrm{Na}$ | $\mathrm{CH}_{3} \mathrm{OH}$ (298) | $\begin{aligned} & 238 \text { (16.0), } 250 \text { (12.3), } \\ & 265 \text { (12.6), } 311 \text { (23.0) } \\ & \hline \end{aligned}$ | 429, 455 (16.0), 498 | 0.13 | $8.1 \times 10^{3}$ | $5.4 \times 10^{4}$ |
|  | EtOH/MeOH (77) |  | $\begin{aligned} & 428 \text { (18.3), 442, 457, 470, } \\ & 485,501,520,538 \end{aligned}$ |  |  |  |
|  | Solid (298) |  | 499 (17.6), 535 |  |  |  |
|  | Solid (77) |  | 471, 495 (23.4), 526 |  |  |  |
| 5•PF6 | $\mathrm{CH}_{3} \mathrm{CN}$ (298) | $\begin{aligned} & 244 \text { (10.6), } 260 \text { (10.2), } \\ & 292 \text { (25.6), } 300 \text { ( } 24.2 \text {, , } \\ & 306 \text { (22.1) } \end{aligned}$ | 414, 438 (max, 1.4) | 0.08 | $5.7 \times 10^{4}$ | $6.6 \times 10^{5}$ |
|  | EtOH/MeOH (77) |  | $\begin{aligned} & 409(12.1), 435,448,464 \\ & \text { (sh), } 480 \end{aligned}$ |  |  |  |
|  | Solid (298) |  | $\begin{aligned} & 462 \text { (sh), } 467 \text { (3.4), 480, } \\ & 491,564 ; \end{aligned}$ |  |  |  |
|  | Solid (77) |  | 475 (9.4), 501 (sh) |  |  |  |
| 5•Cl | $\mathrm{CH}_{3} \mathrm{OH}$ (298) | $\begin{aligned} & 243 \text { (14.2), } 256 \text { (14.8), } \\ & 290(24.2), 298(21.8), \\ & 303 \text { (sh, 20.3) } \end{aligned}$ | 414, 438 (max, 1.1) | 0.08 | $7.3 \times 10^{4}$ | $8.4 \times 10^{5}$ |
|  | $\mathrm{H}_{2} \mathrm{O}$ (298) | $\begin{aligned} & \hline 248 \text { (11.5), } 288 \text { (17.3), } \\ & 298 \text { (14.9), } 320 \text { (tail, 2.1) } \end{aligned}$ | 412, 437 (1.2) | 0.09 |  |  |
| 6. $\mathrm{PF}_{6}$ | $\mathrm{CH}_{3} \mathrm{CN}(298)$ | $\begin{aligned} & 245(14.1), 313(23.9) \\ & 322(24.3), 330(\text { sh, 18.4) } \end{aligned}$ | 429 (max, 0.5), 456 | 0.14 | $2.8 \times 10^{5}$ | $1.7 \times 10^{6}$ |
|  | EtOH/MeOH (77) |  | $\begin{aligned} & 423 \text { (17.8), 451, 464, 478, } \\ & 495,514 \end{aligned}$ |  |  |  |
|  | Solid (298) |  | 472 (8.5), 500, 538 (sh) |  |  |  |
|  | Solid (77) |  | 524 (10.6), 545, 585 (sh) |  |  |  |
| 6.Cl | $\mathrm{CH}_{3} \mathrm{OH}$ (298) | $\begin{aligned} & 241 \text { (11.9), } 314(15.6), \\ & 327 \text { (18.4), } 331 \text { (sh, 16.7) } \end{aligned}$ | 429 (max, 0.7), 457 | 0.13 | $1.9 \times 10^{5}$ | $1.2 \times 10^{6}$ |
| 7-PF6 | $\mathrm{CH}_{3} \mathrm{CN}$ (298) | $\begin{aligned} & 225(16.6), 261(22.7), \\ & 277(20.6), 290(22.7) \\ & \hline \end{aligned}$ | Non-emissive |  |  |  |
|  | EtOH/MeOH (77) |  | 398, 427 (4.5), 478 |  |  |  |
| 8• $\mathrm{PF}_{6}$ | $\mathrm{CH}_{3} \mathrm{CN}(298)$ | $\begin{aligned} & 240 \text { (14.8), } 260 \text { (13.9), } \\ & 344(34.2) \end{aligned}$ | 450 (5.6), 472 (sh) | 0.07 | $1.3 \times 10^{4}$ | $1.7 \times 10^{5}$ |
|  | EtOH/MeOH (77) |  | $\begin{aligned} & 429(14.3), 443,460,473, \\ & 489,505,524 \end{aligned}$ |  |  |  |
|  | Solid (298) |  | 525 (6.4), 563 |  |  |  |
|  | Solid (77) |  | 489 (12.4), 524, 543, 560 |  |  |  |

## Supplementary absorption and emission spectra



Figure S1. Electronic absorption spectra of complex $\mathbf{1} \cdot \mathrm{Na}-\mathbf{4} \cdot \mathrm{Na}$ in $\mathrm{CH}_{3} \mathrm{OH}$ at 298 K .


Figure S2. Electronic absorption spectra of complexes $\mathbf{5} \cdot \mathrm{PF}_{6} \mathbf{- 8} \cdot \mathrm{PF}_{6}$ in $\mathrm{CH}_{3} \mathrm{CN}$ at 298 K .


Figure S3. (Left) Normalized excitation (monitored at $\lambda_{\mathrm{em}}=450 \mathrm{~nm}$ ) and emission ( $\lambda_{\mathrm{ex}}=300$ nm ) spectra of complexes $\mathbf{1} \cdot \mathrm{Na}, \mathbf{2} \cdot \mathrm{Na}$ and $\mathbf{4} \cdot \mathrm{Na}$ in degassed $\mathrm{CH}_{3} \mathrm{OH}$ (concentration around $1.0 \times 10^{-5} \mathrm{M}$ ) at 298 K . The slits for emission and excitation measurements are all 1 mm . (Right) The comparison between excitation and absorption spectra for complexes $\mathbf{1} \cdot \mathrm{Na}, \mathbf{2} \cdot \mathrm{Na}$ and $\mathbf{4} \cdot \mathrm{Na}$.


Figure S4. (Left) Normalized excitation (monitored at $\lambda_{\mathrm{em}}=450 \mathrm{~nm}$ ) and emission ( $\lambda_{\mathrm{ex}}=300$, 320 , and 345 nm for $5 \cdot \mathrm{PF}_{6}, 6 \cdot \mathrm{PF}_{6}$, and $\mathbf{8} \cdot \mathrm{PF}_{6}$, respectively) spectra of complexes $5 \cdot \mathrm{PF}_{6}, 6 \cdot \mathrm{PF}_{6}$, and $8 \cdot \mathrm{PF}_{6}$ in degassed $\mathrm{CH}_{3} \mathrm{CN}$ (concentration around $1.0 \times 10^{-5} \mathrm{M}$ ) at 298 K . The slits for emission and excitation measurements are all 1 mm . (Right) The comparison between excitation and absorption spectra for complexes $5 \cdot \mathrm{PF}_{6}, 6 \cdot \mathrm{PF}_{6}$, and $\mathbf{8} \cdot \mathrm{PF}_{6}$.


Figure S5. Excitation $\left(\lambda_{\mathrm{em}}=410 \mathrm{~nm}\right)$ and emission $\left(\lambda_{\text {ex }}=305 \mathrm{~nm}\right)$ spectra of $5 \cdot \mathrm{Cl}$ in $\mathrm{MeOH} / \mathrm{EtOH}(4: 1, \mathrm{v} / \mathrm{v})$ at 77 K .


Figure S6. Excitation $\left(\lambda_{\mathrm{em}}=505 \mathrm{~nm}\right)$ and emission $\left(\lambda_{\mathrm{ex}}=330 \mathrm{~nm}\right)$ spectra of $6 \cdot \mathrm{Cl}$ in $\mathrm{MeOH} / \mathrm{EtOH}$ (4:1) at 77 K .


Figure S7. Emission spectra of 7•PF6 in alcoholic glassy solution at $77 \mathrm{~K}\left(\lambda_{\mathrm{ex}}=350 \mathrm{~nm}\right)$.


Figure S8. Emission spectra of $\mathbf{8} \cdot \mathrm{PF}_{6}$ in alcoholic glassy solutions at $77 \mathrm{~K}\left(\lambda_{\mathrm{ex}}=340 \mathrm{~nm}\right)$.

## Supplementary time-resolved emission and transient absorption spectra



Figure S9. Transient absorption spectra at selected time decays for complex $5 \cdot \mathrm{PF}_{6}$ in degassed acetonitrile at $298 \mathrm{~K}\left(\lambda_{\mathrm{ex}}=266 \mathrm{~nm}\right.$ laser pulse $)$.


Figure S10. Time-resolved emission spectra of 5•PF ${ }_{6}$ in degassed acetonitrile at 298 K ( $\lambda_{\text {ex }}=266$ nm laser pulse).


Figure S11. (Left) Variable-concentration absorption spectra of aqueous solutions of 5. Cl at 298 K. (Right) Plot of absorbance at 297 nm and 278 nm against concentrations of aqueous solutions of $\mathbf{5 \cdot} \mathbf{C l}$ at 298 K .


Figure S12. Absorption spectra of an aqueous solutions of $5 \cdot \mathrm{Cl}$ (concentration around $5 \times 10^{-4} \mathrm{M}$ ) at variable temperatures.

## SEM micrograph of self-assembled nanostructures



Figure S13. Scanning electron micrograph of 5•Cl dried from chromonic aqueous solution (5.0 $\mathrm{wt} \%$ ).

## DFT and TDDFT Caculations

Density functional theory (DFT) and time-dependent density functional theroy (TDDFT) calculations have been performed to understand the geometries and the electronic structures of $\mathrm{Au}(\mathrm{I})$ allenylidene complexes (5 and 7) using Gaussian 09 package. ${ }^{[4]}$ M06 functional ${ }^{[5]}$ with triplet zeta basis set $\left(6-311 \mathrm{G}^{*} \text { for } \mathrm{C}, \mathrm{H}, \mathrm{O}, \mathrm{N} \text { atoms, and lanl2tz for } \mathrm{Au} \text { atoms }\right)^{[6]}$ has been used for geometry optimization and TDDFT calculation. The Solvent effects have been studied using selfconsistent reaction field (SCRF) method based on PCM models. ${ }^{[7]}$
[4] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, revision D.01; Gaussian, Inc., Wallingford, CT, 2013.
[5] Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215.
[6] (a) R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650; (b) W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284.
[7] (a) O. Tapia, J. Math. Chem., 1992, 10, 139; (b) J. Tomasi and M. Persico, Chem. Rev., 1994, 94, 2027.

## Cartesian coordinates

5 ground state

| Center <br> Number | Atomic <br> Number | Atomic <br> Type |  | Coordinates (Angstroms) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | X Y | Z |
| 1 | 79 | 0 | -0.000523 | -0.001833 | -0.015233 |
| 2 | 6 | 0 | -2.003841 | 0.013912 | $-0.010366$ |
| 3 | 6 | 0 | -3.227169 | 0.026153 | -0.002387 |
| 4 | 6 | 0 | -4.612963 | 0.009403 | 0.008542 |
| 5 | 7 | 0 | -5.390718 | -1.093376 | -0.034482 |
| 6 | 6 | 0 | -4.871642 | $-2.448523$ | -0.123690 |
| 7 | 1 | 0 | -4.124361 | $-2.608632$ | 0.656009 |
| 8 | 1 | 0 | -4.407964 | $-2.610780$ | -1.099678 |
| 9 | 1 | 0 | -5.696317 | -3.148566 | 0.011331 |
| 10 | 6 | 0 | -6.713583 | -0.716510 | -0.008309 |
| 11 | 1 | 0 | -7.511912 | -1.442873 | -0.037457 |
| 12 | 6 | 0 | -6.745742 | 0.633714 | 0.054888 |
| 13 | 1 | 0 | -7.576814 | 1.321885 | 0.095596 |
| 14 | 7 | 0 | -5.441291 | 1.074340 | 0.063863 |
| 15 | 6 | 0 | -5.014432 | 2.461493 | 0.134251 |
| 16 | 1 | 0 | -5.313718 | 2.896463 | 1.090515 |
| 17 | 1 | 0 | -5.463281 | 3.027244 | $-0.684847$ |


| 18 | 1 | 0 | -3.927723 | 2.494524 | 0.045770 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 19 | 6 | 0 | 2.002926 | -0.015781 | -0.013517 |
| 20 | 6 | 0 | 3.226248 | -0.023642 | -0.008009 |
| 21 | 6 | 0 | 4.612253 | -0.005762 | 0.000761 |
| 22 | 7 | 0 | 5.392442 | 1.094897 | -0.056914 |
| 23 | 6 | 0 | 4.883547 | 2.455696 | -0.104866 |
| 24 | 1 | 0 | 3.997378 | 2.486179 | -0.740881 |
| 25 | 1 | 0 | 4.614877 | 2.796586 | 0.898086 |
| 26 | 1 | 0 | 5.653942 | 3.106046 | -0.520514 |
| 27 | 6 | 0 | 6.714606 | 0.715932 | -0.016584 |
| 28 | 1 | 0 | 7.514099 | 1.440832 | -0.050735 |
| 29 | 6 | 0 | 6.743968 | -0.633467 | 0.059966 |
| 30 | 1 | 0 | 7.573549 | -1.323280 | 0.103830 |
| 31 | 7 | 0 | 5.438666 | -1.071547 | 0.069124 |
| 32 | 6 | 0 | 5.010078 | -2.458170 | 0.141100 |
| 33 | 1 | 0 | 5.437504 | -3.021053 | -0.691400 |
| 34 | 1 | 0 | 5.331325 | -2.898493 | 1.087696 |
| 35 | 1 | 0 | 3.921536 | -2.488135 | 0.078302 |
| ------------------------------------------------------- |  |  |  |  |  |

5 Triplet excited state

Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z

| 1 | 6 | 0 | -1.949325 | -0.078237 | -0.044626 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 6 | 0 | -3.201077 | -0.081030 | -0.043892 |
| 3 | 79 | 0 | 0.000222 | -0.075101 | -0.049569 |
| 4 | 6 | 0 | 1.949773 | -0.074871 | -0.054280 |
| 5 | 6 | 0 | 3.201516 | -0.077675 | -0.056038 |
| 6 | 6 | 0 | -6.688873 | 0.585771 | -0.064719 |
| 7 | 6 | 0 | -6.682600 | -0.778684 | -0.030029 |
| 8 | 1 | 0 | -7.519539 | 1.276104 | -0.086024 |
| 9 | 1 | 0 | -7.506920 | -1.476631 | -0.010288 |
| 10 | 6 | 0 | 6.689720 | 0.587287 | $-0.046016$ |
| 11 | 6 | 0 | 6.682632 | -0.777506 | -0.064447 |
| 12 | 1 | 0 | 7.520795 | 1.277339 | -0.033624 |
| 13 | 1 | 0 | 7.506548 | -1.476147 | -0.076235 |
| 14 | 7 | 0 | -5.385147 | -1.192899 | -0.021697 |
| 15 | 7 | 0 | -5.395179 | 1.011950 | -0.070403 |
| 16 | 7 | 0 | 5.384944 | -1.191017 | -0.066965 |
| 17 | 7 | 0 | 5.396274 | 1.014238 | $-0.043780$ |
| 18 | 6 | 0 | -4.556433 | -0.086639 | -0.045212 |
| 19 | 6 | 0 | 4.556876 | $-0.084054$ | -0.055777 |
| 20 | 6 | 0 | -4.897438 | $-2.553898$ | 0.043668 |
| 21 | 1 | 0 | -4.179336 | -2.730007 | -0.761471 |
| 22 | 1 | 0 | -4.401957 | -2.734487 | 1.002394 |


| 23 | 1 | 0 | -5.739542 | -3.238078 | -0.064831 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 24 | 6 | 0 | -4.919810 | 2.377398 | -0.134206 |
| 25 | 1 | 0 | -4.206652 | 2.560274 | 0.673879 |
| 26 | 1 | 0 | -4.422071 | 2.562405 | -1.090993 |
| 27 | 1 | 0 | -5.768677 | 3.053786 | -0.029355 |
| 28 | 6 | 0 | 4.896527 | -2.552445 | -0.115568 |
| 29 | 1 | 0 | 4.178239 | -2.718166 | 0.691561 |
| 30 | 1 | 0 | 4.401097 | -2.744683 | -1.072038 |
| 31 | 1 | 0 | 5.738224 | -3.235695 | 0.001534 |
| 32 | 6 | 0 | 4.921556 | 2.380651 | 0.000748 |
| 33 | 1 | 0 | 4.221369 | 2.558061 | -0.819747 |
| 34 | 1 | 0 | 4.409350 | 2.573847 | 0.948047 |
| 35 | 1 | 0 | 5.772879 | 3.055078 | -0.095987 |

7 ground state

| Center | Atomic | Atomic | Coordinates (Angstroms) |  |
| :---: | :---: | :---: | :---: | :---: |
| Number | Number | Type | $\mathrm{X} \quad \mathrm{Y}$ | Z |
| 1 | 60 | 2.000165 | -0.394126 | -0.088189 |
| 2 | 6 | 3.222348 | -0.416503 | -0.145999 |


| 3 | 6 | 0 | 4.611463 | -0.472734 | -0.229598 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 8 | 0 | 5.253820 | -1.554839 | -0.601428 |
| 5 | 7 | 0 | 5.369566 | 0.558208 | 0.058888 |
| 6 | 6 | 0 | 4.849666 | 1.856861 | 0.519017 |
| 7 | 1 | 0 | 4.083631 | 1.703056 | 1.284010 |
| 8 | 1 | 0 | 4.381885 | 2.373516 | -0.329333 |
| 9 | 6 | 0 | 4.495783 | $-2.724315$ | -0.946563 |
| 10 | 1 | 0 | 3.885028 | -3.041646 | -0.098746 |
| 11 | 1 | 0 | 5.237300 | $-3.482342$ | $-1.189440$ |
| 12 | 1 | 0 | 3.859092 | $-2.519057$ | $-1.809782$ |
| 13 | 6 | 0 | 7.189807 | 2.025239 | 0.085854 |
| 14 | 1 | 0 | 8.200727 | 2.175288 | 0.471839 |
| 15 | 1 | 0 | 7.133020 | 2.512601 | -0.895350 |
| 16 | 6 | 0 | 6.102790 | 2.564189 | 1.007252 |
| 17 | 1 | 0 | 6.311510 | 2.283164 | 2.046987 |
| 18 | 1 | 0 | 6.002491 | 3.651315 | 0.971494 |
| 19 | 6 | 0 | 6.838774 | 0.552481 | -0.045159 |
| 20 | 1 | 0 | 7.146973 | 0.092464 | -0.987463 |
| 21 | 1 | 0 | 7.250932 | $-0.050576$ | 0.774183 |
| 22 | 79 | 0 | 0.000014 | -0.382572 | 0.000047 |
| 23 | 6 | 0 | -2.000144 | -0.394253 | 0.088107 |
| 24 | 6 | 0 | -3.222350 | $-0.416551$ | 0.145458 |
| 25 | 6 | 0 | -4.611444 | -0.472756 | 0.229441 |


| 26 | 8 | 0 | -5.253718 | -1.554825 | 0.601510 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 27 | 7 | 0 | -5.369605 | 0.558177 | -0.058929 |
| 28 | 6 | 0 | -4.495625 | -2.724300 | 0.946521 |
| 29 | 6 | 0 | -4.849793 | 1.856778 | -0.519292 |
| 30 | 6 | 0 | -6.838788 | 0.552485 | 0.045475 |
| 31 | 1 | 0 | -3.885188 | -3.041776 | 0.098526 |
| 32 | 1 | 0 | -5.237094 | -3.482256 | 1.189763 |
| 33 | 1 | 0 | -3.858607 | -2.518972 | 1.809480 |
| 34 | 1 | 0 | -4.083898 | 1.702894 | -1.284409 |
| 35 | 1 | 0 | -4.381863 | 2.373506 | 0.328923 |
| 36 | 6 | 0 | -6.103015 | 2.564052 | -1.007357 |
| 37 | 6 | 0 | -7.189850 | 2.025227 | -0.085673 |
| 38 | 1 | 0 | -7.146771 | 0.092605 | 0.987923 |
| 39 | 1 | 0 | -7.251149 | -0.050687 | -0.773685 |
| 40 | 1 | 0 | -6.311943 | 2.282914 | -2.047015 |
| 41 | 1 | 0 | -6.002705 | 3.651175 | -0.971739 |
| 42 | 1 | 0 | -8.200848 | 2.175228 | -0.471471 |
| 43 | 1 | 0 | -7.132863 | 2.512717 | 0.895457 |
| -------------------------------------------------------- |  |  |  |  |  |
| 2 |  |  |  |  |  |

7 Triplet excited state

Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z

| 1 | 6 | 0 | 1.946960 | 0.459292 | -0.009009 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 6 | 0 | 3.199161 | 0.468365 | -0.015305 |
| 3 | 6 | 0 | 4.574322 | 0.493557 | -0.020361 |
| 4 | 8 | 0 | 5.300621 | 1.604214 | -0.049717 |
| 5 | 7 | 0 | 5.301308 | -0.633521 | 0.007779 |
| 6 | 6 | 0 | 4.731926 | -1.981964 | 0.013577 |
| 7 | 1 | 0 | 3.903748 | -2.048265 | -0.698252 |
| 8 | 1 | 0 | 4.330511 | -2.199140 | 1.014598 |
| 9 | 6 | 0 | 4.610002 | 2.853096 | -0.073504 |
| 10 | 1 | 0 | 3.972646 | 2.921460 | -0.959714 |
| 11 | 1 | 0 | 5.386023 | 3.615229 | -0.108866 |
| 12 | 1 | 0 | 4.002984 | 2.972681 | 0.828366 |
| 13 | 6 | 0 | 7.089782 | -2.105010 | 0.323056 |
| 14 | 1 | 0 | 8.067091 | $-2.394960$ | -0.069420 |
| 15 | 1 | 0 | 7.101715 | -2.279814 | 1.405980 |
| 16 | 6 | 0 | 5.930354 | -2.854427 | -0.320684 |
| 17 | 1 | 0 | 6.064469 | -2.904899 | $-1.408286$ |
| 18 | 1 | 0 | 5.813757 | -3.876069 | 0.048090 |
| 19 | 6 | 0 | 6.764350 | -0.648082 | 0.036679 |
| 20 | 1 | 0 | 7.136430 | 0.061199 | 0.782782 |
| 21 | 1 | 0 | 7.144561 | -0.316737 | -0.941458 |
| 22 | 79 | 0 | 0.000000 | 0.454210 | -0.000019 |


| 23 | 6 | 0 | -1.946959 | 0.459294 | 0.008989 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 24 | 6 | 0 | -3.199163 | 0.468372 | 0.015331 |
| 25 | 6 | 0 | -4.574325 | 0.493561 | 0.020388 |
| 26 | 8 | 0 | -5.300625 | 1.604220 | 0.049757 |
| 27 | 7 | 0 | -5.301308 | -0.633522 | -0.007756 |
| 28 | 6 | 0 | -4.610010 | 2.853104 | 0.073542 |
| 29 | 6 | 0 | -4.731924 | -1.981965 | -0.013563 |
| 30 | 6 | 0 | -6.764349 | -0.648090 | -0.036657 |
| 31 | 1 | 0 | -3.972640 | 2.921462 | 0.959742 |
| 32 | 1 | 0 | -5.386032 | 3.615235 | 0.108924 |
| 33 | 1 | 0 | -4.003007 | 2.972697 | -0.828337 |
| 34 | 1 | 0 | -3.903744 | -2.048267 | 0.698263 |
| 35 | 1 | 0 | -4.330510 | -2.199131 | -1.014587 |
| 36 | 6 | 0 | -5.930347 | -2.854435 | 0.320693 |
| 37 | 6 | 0 | -7.089777 | -2.105018 | -0.323039 |
| 38 | 1 | 0 | -7.136431 | 0.061193 | -0.782755 |
| 39 | 1 | 0 | -7.144558 | -0.316750 | 0.941482 |
| 40 | 1 | 0 | -6.064460 | -2.904915 | 1.408296 |
| 41 | 1 | 0 | -5.813747 | -3.876075 | -0.048087 |
| 42 | 1 | 0 | -8.067085 | -2.394974 | 0.069437 |
| -------------------------------------------------- |  |  |  |  |  |

