Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Content

1. General Methods	2
2. Materials	2
3. General procedure	2
4. Characterization Data	3
5. References	3
6. Copies of NMR spectra and HPLC measurements of the products 3	8

1. General Methods

The products were purified by column chromatography on Merck silica gel 60, particle size 0.040-0.063 mm (230-240 mesh, flash). For thin-layer chromatography (TLC) analysis, SIL G-25 UV254 from MACHEREY&NAGEL were used. Visualization of the developed TLC plates was performed with ultraviolet irradiation (254 nm). ¹H- and ¹³C-NMR spectra were recorded at ambient temperature on Inova 400 or VNMRS 600 instruments with tetramethylsilane as an internal standard. Mass spectra and high resolution mass spectra were acquired on a Finnigan MAT 95 (EI/CI) or on a ThermoFisher Scientific LTQ Orbitrap XL (ESI). IR spectra were taken on a PerkinElmer Spectrum 100 FT-IR Spectrometer. Optical rotation values were measured on a Perkin-Elmer 241 polarimeter. Analytical HPLC was performed on a Hewlett-Packard 1100 Series instrument using chiral stationary phases (Chiralpak IA, IB, IC, AD, AS).

2. Materials

All reactions were carried out under argon. Dry dichloromethane was purchased from Acros. All other chemicals were used without further purification. Triazolium salts **A-F** were prepared according to known literature procedures.^[1] (*E*)-2-nitroallylic acetates were synthesized according to literature.^[2]

3. General procedure

Enals (0.75 mmol), (*E*)-2-nitroallylic acetates (0.5 mmol), NHC pre-catalyst (10 mol%) and K_3PO_4 (0.5 mmol) in 2 mL CHCl₃:EtOH (10:1) were stirred for 60 h at -10 °C under Argon. Flash Chromatography (pentane:ether = 30:1) afforded the desired products.

4. Characterization Data

The compound **3a** was prepared according to the general procedure. The product was obtained as a colorless solid (89 mg, 52% yield); Melting point: 97-99 °C; Enantiomeric ratio was determined as 93:7 by HPLC [Chiralpak IA, elute: *n*-Heptane/EtOH = 97:3, detector: 214 nm, flow rate: 0.7 mL/min), 30 °C, t₁ = 12.30 min (minor), t₂ = 14.08 min (major)]; $[\alpha]_D^{20}$ = + 6.4 (c = 0.5, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.25 – 7.18 (m, 6H), 7.16 – 7.14 (m, 2H), 7.12 – 7.10 (m, 2H), 5.18 – 5.14 (m, 1H), 4.08 (q, *J* = 7.2 Hz, 2H), 3.88 (dd, *J* = 12.0 Hz, 7.8 Hz, 1H), 3.55 – 3.51 (m, 1H), 3.46 – 3.41 (m, 1H), 2.86 – 2.80 (m, 1H), 2.77 – 2.72 (m, 1H), 1.11 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 173.3, 138.6, 137.9, 128.9 (2C), 128.6 (2C), 127.8 (2C), 127.5 (2C), 127.4 (2C), 91.1, 61.0, 58.9, 56.3, 49.9, 35.0, 14.0.

IR (ATR): 3063, 3031, 2980, 2933, 1722, 1603, 1538, 1496, 1453, 1374, 1292, 1268, 1216, 1182, 1095, 1024, 967, 910, 858, 834, 804, 759, 698, 661 cm⁻¹;

HRMS (ESI) m/z Calculated for $C_{20}H_{21}NO_4Na \ [M+Na]^+ 362.1363$, found 362.1380.

The compound **3b** was prepared according to the general procedure. The product was obtained as a colorless solid (110 mg, 53% yield); Melting point: 99-101 °C; Enantiomeric ratio was determined as 86:14 by HPLC [Chiralpak IA, elute: *n*-Heptan/*i*-PrOH = 97:3, detector: 230 nm, flow rate: 0.7 mL/min), 30 °C, $t_1 = 17.01$ min (major), $t_2 = 18.36$ min (minor)]; $[\alpha]_D^{20} = -13.8$ (c = 0.50, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.37 – 7.35 (m, 2H), 7.28 – 7.22 (m, 3H), 7.10 – 7.08 (m, 2H), 7.03 – 7.02 (m, 2H), 5.16 – 5.12 (m, 1H), 4.08 (q, *J* = 7.2 Hz, 2H), 3.80 (dd, *J* = 7.2 Hz, *J* = 11.4Hz, 1H), 3.50 – 3.47 (m, 1H), 3.42 – 3.37 (m, 1H), 2.84 – 2.80 (m, 1H), 2.76 – 2.70 (m, 1H), 1.13 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (150 MHz, CDCl₃) δ 172.9, 137.6, 137.5, 131.8 (2C) , 129.2 (2C), 129.0 (2C), 127.9, 127.3 (2C), 121.3, 90.9, 61.1, 58.9, 55.7, 49.7, 34.9, 14.1;

IR (ATR): 3031, 2965, 1720, 1598, 1544, 1490, 1452, 1376, 1293, 1259, 1216, 1184, 1080, 1014, 798, 695 cm⁻¹;

HRMS (EI) m/z Calculated for C₂₀H₂₀BrNO₄ 417.0570, found 417.0576.

The compound **3c** was prepared according to the general procedure. The product was obtained as a colorless solid (90 mg, 48% yield); Melting point: 92-94 °C; Enantiomeric ratio was determined as 88:12 by HPLC [Chiralpak IA, elute: *n*-Heptan/*i*-PrOH = 9:1, detector: 230 nm, flow rate: 0.7 mL/min), 30 °C, $t_1 = 10.09$ min (major), $t_2 = 10.70$ min (minor)]; $[\alpha]_D^{20} = -22.7$ (c = 0.50, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.28 – 7.18 (m, 5H), 7.12 – 7.07 (m, 4H), 5.16 – 5.12 (m, 1H), 4.08 (q, *J* = 7.2 Hz, 2H), 3.81 (dd, *J* = 12.0, 7.8 Hz, 1H), 3.53 – 3.48 (m, 1H), 3.42 – 3.37 (m, 1H), 2.84 – 2.80 (m, 1H), 2.76 – 2.71 (m, 1H), 1.13 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (150 MHz, CDCl₃) δ 173.0 , 137.6 , 137.0 , 133.2 , 129.0 (2C) , 128.9 (2C) , 128.8 (2C) , 127.9 , 127.3 (2C) , 90.9 , 61.1 , 59.0 , 55.7 , 49.8 , 35.0 , 14.1 .

IR (ATR): 3060, 3031, 2980, 1720, 1599, 1544, 1492, 1451, 1374, 1290, 1257, 1183, 1091, 1016, 966, 912, 820, 756, 697 cm⁻¹;

HRMS (EI) m/z Calculated for C₂₀H₂₀ClNO₄ 373.1075, found 373.1076.

The compound **3d** was prepared according to the general procedure. The product was obtained as a colorless solid (80 mg, 46% yield); Melting point: 77-79 °C; Enantiomeric ratio was determined as 91.5:8.5 by HPLC [Chiralpak IC, elute: *n*-Heptan/*i*-PrOH = 97:3, detector: 230 nm, flow rate: 0.7 mL/min), 30 °C, $t_1 = 9.20$ min (minor), $t_2 = 10.96$ min (major)]; $[\alpha]_D^{20} = + 12.8(c = 0.50, CHCl_3)$;

¹H NMR (600 MHz, CDCl₃) δ 7.32 – 7.28 (m, 2H), 7.27 – 7.24 (m, 1H), 7.21 – 7.18 (m, 2H), 7.12 (dd, *J* = 5.4, 1.2 Hz, 1H), 6.84 (dd, *J* = 5.4, 3.6 Hz, 1H), 6.77 – 6.75 (m, 1H), 5.13 – 5.10 (m, 1H), 4.16 (q, *J* = 7.2 Hz, 2H), 3.93 – 3.79 (m, 2H), 3.44 – 3.39 (m, 1H), 2.85 – 2.80 (m, 1H), 2.74 – 2.68 (m, 1H), 1.20 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (150 MHz, CDCl₃) δ 173.1, 141.9, 137.6, 128.9 (2C), 128.0, 127.5 (2C), 126.7, 125.1, 124.2, 90.9, 61.3, 59.5, 50.9, 50.7, 34.7, 14.1;

IR (ATR): 3066, 2958, 1719, 1603, 1544, 1498, 1449, 1372, 1296, 1265, 1192, 1095, 1023, 911, 852, 757, 698 cm⁻¹;

HRMS (EI) m/z Calculated for C₁₈H₁₉NO₄S 345.1029, found 345.1031.

The compound **3e** was prepared according to the general procedure. The product was obtained as a colorless solid (91 mg, 55% yield); Melting point: 70-72 °C; Enantiomeric excess was determined as 92:8 by HPLC [Chiralpak AS, elute: *n*-Heptan/*i*-PrOH = 97:3, detector: 214 nm, flow rate: 0.7 mL/min), 30°C, $t_1 = 13.87$ min (major), $t_2 = 15.88$ min (minor)]; $[\alpha]_D^{20} = + 8.8$ (c = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.27 (m, 2H), 7.26 – 7.23 (m, 2H), 7.18 – 7.13 (m, 2H), 6.18 (dd, *J* = 3.2, 2.0 Hz, 1H), 5.94 (d, *J* = 3.6 Hz, 1H), 5.13 – 5.07 (m, 1H), 4.15 (q, *J* = 7.2 Hz, 2H), 3.97 (dd, *J* = 12.0, 8.4 Hz, 1H), 3.64 (dd, *J* = 11.6, 10.0 Hz, 1H), 3.47 – 3.41 (m, 1H), 2.82 – 2.75 (m, 1H), 2.72 – 2.64 (m, 1H), 1.21 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 173.2, 151.8, 142.1, 137.7, 128.9 (2C), 127.9, 127.3 (2C), 110.2, 107.1, 90.5, 61.2, 56.0, 49.0, 47.4, 34.5, 14.1;

IR (ATR): 3119, 2929, 1722, 1604, 1546, 1500, 1453, 1374, 1336, 1295, 1263, 1217, 1193, 1097, 1074, 1017, 924, 865, 803, 734, 698 cm⁻¹;

HRMS (EI) m/z Calculated for C₁₈H₁₉NO₅ 329.1258, found 329.1260.

The compound **3f** was prepared according to the general procedure. The product was obtained as a colorless solid (80 mg, 42% yield); Melting point: 68-70 °C; Enantiomeric ratio was determined as 90:10 by HPLC [Chiralpak IC, elute: *n*-Heptan/*i*-PrOH = 97:3, detector: 214 nm, flow rate: 1.0 mL/min), 30 °C, $t_1 = 12.52$ min (minor), $t_2 = 15.81$ min (major)]; $[\alpha]_D^{20} = -15.4$ (c = 0.50, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.27 – 7.23 (m, 2H), 7.21 – 7.17 (m, 1H), 7.16 – 7.14 (m, 2H), 6.67 – 6.62 (m, 2H), 6.54 (dd, *J* = 7.8, 2.4 Hz, 1H), 5.89 (s, 2H), 5.10 – 5.06 (m, 1H), 4.07 (q, *J* = 7.2 Hz, 2H), 3.78 (dd, J = 12.0, 7.8 Hz, 1H), 3.48 – 3.44 (m, 1H), 3.41 – 3.36 (m, 1H), 2.81 – 2.77 (m, 1H), 2.73 – 2.68 (m, 1H), 1.11 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (150 MHz, CDCl₃) δ 173.3, 148.1, 147.2, 138.5, 131.4, 128.7 (2C), 127.5 (2C), 127.4, 121.1, 108.5, 107.3, 101.1, 91.2, 61.0, 58.8, 56.0, 49.8, 34.7, 14.0;

IR (ATR): 2977, 2898, 2782, 2321, 2103, 1721, 1611, 1544, 1491, 1442, 1372, 1244, 1182, 1100, 1032, 932, 864, 812, 759, 700 cm⁻¹;

HRMS (EI) m/z Calculated for C₂₁H₂₁NO₆ 383.1363, found 383.1360.

The compound **3g** was prepared according to the general procedure. The product was obtained as a colorless solid (65 mg, 40% yield); Melting point: 72-74 °C; Enantiomeric ratio was determined as 92.5:7.5 by HPLC (Chiralpak IA, elute: *n*-heptan/*i*-PrOH = 97:3, detector: 230 nm, flow rate: 0.7mL/min), 30 °C, $t_1 = 13.04$ min (minor), $t_2 = 13.78$ min (major); $[\alpha]_D^{20} = +37.2$ (c =0.50, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ 7.32 (dd, J = 1.6, 0.8 Hz, 1H), 7.30 – 7.16 (m, 5H), 6.19 (dd, J = 3.2, 2.0 Hz, 1H), 5.96 (d, J = 3.2 Hz, 1H), 5.27 – 5.17 (m, 1H), 4.04 (q, J = 7.2 Hz, 2H), 4.00 – 3.95 (m, 1H), 3.65 – 3.58 (m, 1H), 3.43 – 3.36 (m, 1H), 2.76 – 2.68 (m, 2H), 1.09 (t, J = 7.2 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 172.8, 150.7, 142.5, 138.5, 128.7 (2C), 127.5, 127.4 (2C), 110.4, 107.8, 88.4, 61.0, 53.6, 52.1, 49.7, 34.9, 14.0;

IR (ATR): 3031, 2971, 1721, 1600, 1548, 1493, 1451, 1372, 1261, 1184, 1088, 1016, 920, 799, 742, 697 cm⁻¹;

HRMS (EI) m/z Calculated for C₁₈H₁₉NO₅ 329.1258, found 329.1247.

The compound **3h** was prepared according to the general procedure. The product was obtained as a yellowlish solid (107 mg, 51% yield); Melting point: 113-115°C; Enantiomeric ratio was determined as 93.5:6.5 by HPLC (Chiralpak IB, elute: *n*-Heptan:EtOH = 90/10, detector: 230 nm, flow rate: 0.5mL/min), 30 °C, $t_1 = 16.27$ min (minor), $t_2 = 17.46$ min (major); $[\alpha]_D^{20} = -20.4$ (c = 0.50, CHCl₃;

¹H NMR (600 MHz, CDCl₃) δ 7.22 (d, J = 8.4 Hz, 2H), 7.11 – 7.06 (m, 2H), 6.66 (d, J = 7.8 Hz, 1H), 6.61 (d, J = 1.8 Hz, 1H), 6.52 (dd, J = 8.4, 1.8 Hz, 1H), 5.91 (s, 2H), 5.08 – 5.04 (m, 1H), 4.07 (q, J = 7.2 Hz, 2H), 3.71 (dd, J = 12.0, 7.8 Hz, 1H), 3.44 – 3.41 (m, 1H), 3.37 – 3.32 (m, 1H), 2.81 - 2.76 (m, 1H), 2.72 – 2.67 (m, 1H), 1.13 (t, J = 7.2 Hz, 3H);

¹³C NMR (150 MHz, CDCl₃) δ 173.0, 148.2, 147.3, 137.0, 133.2, 131.0, 128.9 (2C), 128.8 (2C), 121.1, 108.6, 107.2, 101.2, 91.0, 61.2, 58.9, 55.4, 49.6, 34.6, 14.1;

IR (ATR): 2943, 2898, 1720, 1611, 1545, 1490, 1443, 1369, 1314, 1279, 1248, 1213, 1178, 1093, 1040, 1014, 933, 844, 814, 721 cm⁻¹;

HRMS (EI) m/z Calculated for C₂₁H₂₀ClNO₆ 417.0974, found 417.0982.

The compound **3i** was prepared according to the general procedure. The product was obtained as a colorless solid (32 mg, 18% yield); Melting point: 106-108 °C; Enantiomeric ratio was determined as 98:2 by HPLC (Chiralpak ID, elute: *n*-Heptan:EtOH = 97:3, detector: 214 nm, flow rate: 0.7 mL/min), 30 °C, $t_1 = 16.16$ min (minor), $t_2 = 17.72$ min (major); $[\alpha]_D^{20} = -6.0$ (c = 0.50, CHCl₃);

¹H NMR (600 MHz, CDCl₃) δ 7.27 – 7.23 (m, 2H), 7.22 – 7.19 (m, 1H), 7.15 – 7.11 (m, 2H), 7.10 – 7.06 (m, 2H), 6.97 – 6.91 (m, 2H), 5.13 - 5.09 (m, 1H), 4.07 (q, *J* = 7.2, 2H), 3.86 – 3.83 (m, 1H), 3.49 -3.39 (m, 2H), 2.86 - 2.80 (m, 1H), 2.76 – 2.71 (m, 1H), 1.11 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 173.3 , 162.2 (d, *J* = 244.5 Hz) , 138.3 , 133.4 (d, *J* = 4.5 Hz), 129.0 (d, *J* = 7.5 Hz, 2H), 128.7 (2C), 127.5 , 127.4 (2C) , 115.87 (d, *J* = 20 Hz, 2H) , 90.9 , 61.1 , 58.3 , 56.2 , 49.7 , 34.7 , 14.0 ; IR (ATR): 3433, 2930, 2293, 2092, 1899, 1719, 1533, 1372, 1200, 1032, 803 cm⁻¹;

HRMS (ESI) m/z Calculated for C₂₀H₂₀FNO₄Na[M+Na] 380.1269, found 380.1261.

The compound **3j** was prepared according to the general procedure. The product was obtained as a colorless solid (65 mg, 35% yield); Melting point: 64-66 °C; Enantiomeric ratio was determined as 93.5:6.5 by HPLC (Chiralpak IC, elute: *n*-Heptan:EtOH = 9:1, detector: 214 nm, flow rate: 0.5 mL/min), 30 °C, $t_1 = 7.52$ min (minor), $t_2 = 8.53$ min (major); $[\alpha]_D^{20} = -8.4$ (c = 0.50, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.27 – 7.22 (m, 2H), 7.21 – 7.14 (m, 4H), 6.76 – 6.70 (m, 2H), 6.64 – 6.60 (m, 1H), 5.17 – 5.13 (m, 1H), 4.07 (q, *J* = 7.2 Hz, 2H), 3.87 - 3.81 (m, 1H), 3.71 (s, 3H), 3.54 -3.50 (m, 1H), 3.44 – 3.40 (m, 1H), 2.84 – 2.78 (m, 1H), 2.76 – 2.70 (m, 1H), 1.11 (t, *J* = 7.2 Hz, 3H); ¹³CNMR (150 MHz, CDCl₃) δ 173.2, 159.8, 139.5, 138.5, 129.9, 128.6 (2C), 127.5 (2C), 127.4, 119.5, 113.4, 112.9, 91.0, 61.0, 58.8, 56.1, 55.1, 49.9, 35.0, 14.1; IR (ATR): 3444, 2940, 2286, 2076, 1921, 1723, 1552, 1462, 1366, 1188, 1044, 865, 767, 695 cm⁻¹;

HRMS (ESI) m/z Calculated for C₂₁H₂₃NO₅Na [M+Na] 392.1468, found 392.1457.

5. References

[1] a) N. E. Wurz, C. G. Daniliuc and F. Glorius, *Chem. Eur. J.*, 2012, **18**, 16297; b) H. U. Vora, S. P. Lathrop, N. T. Reynolds, M. S. Kerr, J. V. R. de Alaniz and T. Rovis, *Org. Synth.*, 2010, **87**, 350; c) J. R. Struble and J. W. Bode, *Org. Synth.*, 2010, **87**, 362; d) K. B. Ling and A. D. Smith, *Chem. Commun.*, 2011, **47**, 373.

[2] C.-L. Cao, Y.-Y. Zhou, J. Zhou, X.-L. Sun, Y. Tang, Y.-X. Li, G.-Y. Li and J. Sun, *Chem.-Eur. J.*, 2009, **15**, 11384.

6. Copies of NMR spectra and HPLC measurements of the products 3

-2300 -2200 -2100 -140 -2000 -120 -1900 01 -100 -1800 ,N⁺,, -80 -1700 -1600 -60 -1500 -40 =0 -1400 -20 P -1300 -0 H₃C -1200 5.5 5.0 4.5 3.5 3.0 -1100 4.0 f1 (ppm) -1000 -900 -800 -700 -600 -500 -400 -300 -200 -100 -1 -0 1 510 2.94-1 2.2 5 5 0.39 th **BB** -200 5.0 4.5 f1 (ppm) 3.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.0 3.0 2.5 2.0 1.5 1.0 0.5 0.0

1 H NMR of **3a**

¹³C NMR of **3a**

AK Prof. Enders - Analytiklabor 4.04

 Sample name:
 ST PO3 rac

 Data file:
 C:\SNOOPY\ST\ST PO3 RAC 2IA.D

 Description:
 Laufmittel: n-Heptan/EtOH 97:3 Die Probe ist DCM/LM gelöst.

Injection date: 11/14/2014 8:41:53 AM Acq. Analysis method: CHIRALPAKIARNP.M

Column:

Chiralpak IA, (250 x 4,6) mm, 5µ, SN: IA00CE-RC036

Name ST PO3 rac				
RT [min] Type	Area%	Area	Height Widt	h [min]
4.18 BV	0.78	88.22	4.83	0.28
4.45 VB	0.95	107.76	15.58	0.10
8.14 BB	0.16	18.77	1.78	0.16
10.05 BB	0.12	13.38	1.25	0.17
10.71 BB	0.23	25.96	1.54	0.24
12.43 BB	35.15	3999.49	270.45	0.23
13.95 BB	35.13	3996.74	243.78	0.25
15.02 BV	2.54	288.99	16.83	0.27
15.64 MF	3.58	407.49	30.42	0.22
15.77 FM	9.59	1090.98	38.32	0.47
18.06 BB	11.78	1339.93	34.18	0.55
Sum	100.00	11377.72		

Agilent 1260 Infinity

Enantioenriched 3a

AK Prof. Enders - Analytiklabor 4.04

Sample name:ST P 63Data file:C:\SNOOFDescription:Laufmittel:

C:\SNOOPY\ST\ST P 63 IA.D Laufmittel: n-Heptan/EtOH 97:3 ; Die Probe ist DCM/LM gelöst.

Injection date: 4/2/2015 8:38:23 AM Acq. Analysis method: CHIRALPAKIARNP.M

Column:

Chiralpak IA, (250 x 4,6) mm, 5µ, SN: IA00CE-RC036

Name ST P 63

Area%	Area	Height Widt	h [min]
6.72	867.55	60.15	0.22
87.47	11296.12	686.05	0.26
4.44	572.78	30.90	0.28
1.38	177.86	6.57	0.41
100.00	12914.31		
	Area% 6.72 87.47 4.44 1.38 100.00	Area% Area 6.72 867.55 87.47 11296.12 4.44 572.78 1.38 177.86 100.00 12914.31	Area% Area Height Widt 6.72 867.55 60.15 87.47 11296.12 686.05 4.44 572.78 30.90 1.38 177.86 6.57 100.00 12914.31 572.78

Agilent 1260 Infinity

¹H NMR of **3b**

¹³C NMR of **3b**

AK Prof. Enders - Analytiklabor 4.04

 Sample name:
 ST P65 rac

 Data file:
 C:\SNOOPY\ST\P65RNXIA.D

 Description:
 Laufmittel: n-Heptan/iPrOH 97:3; Probe ist in DCM/LM gelöst

 Injection date:
 12/3/2015 3:02:42 PM

 Acq. Analysis method:
 CHIRALPAKIARNP.M

21. ISI

Column:

Chiralpak IA, (250 x 4,6) mm, 5µ, SN: IA00CE-RC036

Name ST P65 rac				
RT [min] Type	Area%	Area	Height Widt	h [min]
14.38 VB	2.30	2652.57	139.63	0.29
16.08 VV	0.65	752.33	35.29	0.33
16.98 MF	33.26	38277.40	1744.07	0.37
18.26 FM	37.50	43155.39	1718.52	0.42
22.48 BV	10.87	12505.05	285.44	0.69
23.97 VV	10.09	11608.42	226.67	0.73
26.35 VB	0.31	357.76	10.08	0.54
28.82 BV	2.11	2428.41	59.12	0.63
30.97 VB	1.18	1359.90	30.72	0.67
35.43 BV	1.10	1267.90	26.97	0.72
36.86 VB	0.63	727.41	17.06	0.66
Sum	100.00	115092.54		

Agilent 1260 Infinity

AK Prof. Enders - Analytiklabor 4.04 RWITHAACHEN Sample name: ST P66 Data file: C:\SNOOPY\ST\P66RNXIA.D Description: Laufmittel: n-Heptan/iPrOH 97:3; Probe ist in DCM/LM gelöst Injection date: 12/3/2015 3:53:53 PM Acq. Analysis method: CHIRALPAKIARNP.M Column: Chiralpak IA, (250 x 4,6) mm, 5µ, SN: IA00CE-RC036 Pressure at start: 31 bar Start flow: 0.700 ml/min Column oven: 29.99 °C AD1 B, Sig=230,4 Ref=360,100 2600-900 2400-2200-2000 1800 1600 1400 MAU 1200 1000-800-600-18.358 8.121 400-42.783 24.177 200 0 24 2 4 6 8 10 12 14 16 18 20 22 26 28 30 32 34 36 38 40 42 44 46 48 50 Time [min]

Name ST P66 Height Width [min] RT [min] Type Area% Area 8.12 BV 386.34 4.49 3412.46 0.14 17.01 VV 55014.02 2428.97 0.35 72.37 18.36 VB 8820.06 339.89 0.39 11.60 24.18 VB 0.93 703.58 9.82 0.98 38.40 BB 1156.51 21.64 1.52 0.81 42.78 BB 117.48 9.10 6914.34 0.90 Sum 100.00 76020.98

Agilent 1260 Infinity

¹H NMR of **3c**

13 C NMR of **3**c

AK Prof. Enders - Analytiklabor 4.04

 Sample name:
 ST PO 30 rac

 Data file:
 C:\SNOOPY\ST\ST PO 30 RAC 3IA.D

 Description:
 Laufmittel: n-Heptan/iPrOH 9:1; Die Probe ist DCM/LM gelöst.

Injection date: 12/15/2014 3:00:54 PM Acq. Analysis method: CHIRALPAKIARNP.M

Column:

Chiralpak IA, (250 x 4,6) mm, 5µ, SN: IA00CE-RC036

Name	ST PO 30 rac	

RT [mit	n] Type	Area%	Area	Height Widt	h [min]
4.4	3 MM	0.73	37.75	4.55	0.14
5.3	35 BV	0.17	9.04	1.48	0.10
7.6	BO BB	0.12	6.10	0.45	0.21
8.3	39 BB	0.63	32.64	2.51	0.19
9.1	7 VB	0.45	23.53	2.22	0.16
10.2	29 BV	34.12	1770.03	135.50	0.20
11.0	02 VB	33.94	1760.35	127.43	0.21
12.0	07 BV	8.39	435.48	22.29	0.29
12.6	62 VV	16.94	878.86	25.45	0.47
15.2	20 VV	2.82	146.45	4.77	0.43
16.4	I6 VB	1.68	87.17	3.61	0.36
	Sum	100.00	5187.42		

Agilent 1260 Infinity

AK Prof. Enders - Analytiklabor 4.04 RWTHAACHEN **I INIVERSI** Sample name: **ST P73** Data file: C:\SNOOPY\ST\P73NIA.D Laufmittel: n-Heptan/iPrOH 9:1; Probe ist in DCM/LM gelöst **Description:** Injection date: 12/15/2015 1:57:47 PM Acq. Analysis method: CHIRALPAKIARNP.M Column: Chiralpak IA, (250 x 4,6) mm, 5µ, SN: IA00CE-RC036 Pressure at start: 33 bar Start flow: 0.700 ml/min Column oven: 30 °C DAD1 B, Sig=230,4 Ref=360,100 950 -10.091 900 -850 -800 -750 -700 -650-600-550-500 -450 -MAU 400-350-300-250 -200 -10.704 150-100-12.184 50-0-7 8 9 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2 3 4 5 6 10 11 Time [min] Name ST P73

RT [min] Type	Area%	Area	Height Widt	h [min]
10.09 BV	87.57	10751.54	871.49	0.19
10.70 VB	11.69	1435.80	101.93	0.22
12.18 VB	0.74	90.58	4.07	0.32
Sum	100.00	12277.92		

Agilent 1260 Infinity

¹H NMR of **3d**

¹³C NMR of **3d**

AK Prof. Enders - Analytiklabor 4.04 RWTHAACHEN UNIVERSITY Sample name: ST P 85 rac Data file: C:\SNOOPY\ST\P85RIC.D Laufmittel: n-Heptan/iPrOH 97:3; Probe ist in LM/DCM gelöst Description: Injection date: 7/9/2015 4:57:02 PM Acq. Analysis method: CHIRALPAKIC1-6LNP.M Column: Chiralpak IC, (150 x 4,6) mm, 5µ, SN: IC00CD-QF015 Pressure at start: 25 bar Start flow: 0.700 ml/min Column oven: 29.98 °C 550-OAD1 B, Sig=230,4 Ref=360,100 142 500-450-400-10.86 350-300-MAU 250 200-150-100-50-437 15.836 17.193 20.616 88 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Time [min] ST P 85 rac Name

RT [min] Type	Area%	Area	Height Widt	h [min]
4.69 BB	0.19	28.14	4.29	0.10
7.44 VB	1.49	219.65	18.29	0.18
9.14 BV	47.62	7002.45	506.94	0.21
9.73 VV	0.99	145.82	8.99	0.24
10.86 VB	47.12	6928.46	367.96	0.29
15.84 BB	0.56	82.59	3.29	0.39
17.10 BV	0.62	91.14	3.63	0.38
17.46 VB	0.69	100.81	3.70	0.42
20.62 BB	0.71	104.55	2.82	0.56
Sum	100.00	14703.62		

Agilent 1260 Infinity

AK Prof. Enders - Analytiklabor 4.04

Sample name:ST P 84Data file:C:\SNOODescription:Laufmittel

C:\SNOOPY\ST\ST P 84 IC.D Laufmittel: n-Heptan/iPrOH 97:3; Die Probe ist DCM/LM gelöst.

Injection date: 7/10/2015 8:15:02 AM Acq. Analysis method: CHIRALPAKIC1-6LNP.M

Column:

Chiralpak IC, (150 x 4,6) mm, 5µ, SN: IC00CD-QF015

ST P 84 Name RT [min] Type Area% Area Height Width [min] 9.20 BV 903.73 62.26 0.22 8.13 9.78 VB 208.83 0.24 1.88 13.60 10.96 BV 86.98 9666.20 506.60 0.29 12.33 VV 0.71 78.50 4.01 0.29 15.92 BB 255.46 8.39 2.30 0.45 100.00 11112.72 Sum

Agilent 1260 Infinity

¹H NMR of **3e**

¹³C NMR of **3e**

HPLC of **3e** (racemate)

ST P 81 D:\ERNI Mobile The sam	. rac E\ST\P81RNAS. phase: n-Hept ple is solved	D ane/iPrOH 97:3; in DCM/LM	Agilent Tech	nologies
DAICELA Chiralp	AS.M Dak AS (250 x	4.6)mm 10µ		
Analyti	.cal Lab AKEN			
09: 15.	55:21 12.2015			
tions:	At Start	At Stop		
:	30.0 23.0 0.7	30.0 22.0 0.7		
g=214,4 Ref=	550,100 (ST\P81RNA	S.D)		
	6 - 12.123	15 20	25 30	35 min
Time 9.61 12.12 14.81 16.93 20.18	Width 0.66 0.78 0.76 0.90 1.00	Height (mAU) _ 3.86 474.74 413.85 5.77	Area (mAU*s) 149.16 251.25 23193.73 24296.00 489.18	Area % 0.31 0.52 47.94 50.22 1.01
	ST P 81 D:\ERNI Mobile The sam DAICELA Chiralp Analyti 09: 15. tions: : ==214,4 Ref= Time 9.61 12.12 14.81 16.93 20.18	ST P 81 rac D:\ERNIE\ST\P81RNAS. Mobile phase: n-Hept The sample is solved DAICELAS.M Chiralpak AS (250 x Analytical Lab AKEN 09:55:21 15.12.2015 tions: At Start : 30.0 23.0 0.7 j=214,4 Ref=550,100 (ST\P81RNAS 5 10 Time Width 9.61 0.666 12.12 0.78 14.81 0.761 1.001	ST P 81 rac D:\ERNIE\ST\P81RNAS.D Mobile phase: n-Heptane/iPrOH 97:3; The sample is solved in DCM/LM DAICELAS.M Chiralpak AS (250 x 4.6)mm 10µ Analytical Lab AKEN 09:55:21 15.12.2015 tions: At Start At Stop : 30.0 30.0 23.0 22.0 0.7 0.7 p=214,4 Ref=550,100 (STP81RNAS.D)	ST P 81 rac D: LERNIEST P81RNAS.D Mobile phase: n-Heptane/iPrOH 97:3; The sample is solved in DCM/LM DAICELAS.M Chiralpak AS (250 x 4.6)mm 10µ Analytical Lab AKEN 09:55:21 15.12.2015 tions: At Start At Stop : 30.0 30.0 23.0 22.0 0.7 0.7 j=214 4 Ref=550,100 (STP31RNAS.D)

AK Enders - Analytische HPLC

ST P 81 rac

Page 1 of 1

Enantioenriched **3e**

AK Enders - An	alytische HPLC	
ST P 80 D:\ERNIE\ST\P80AS.D Laufmittel: n-Heptan, Die Probe ist in DCM,	/iPrOH 97:3; /LM gelöst	gilent Technologies
DAICELAS.M Chiralpak AS (250 x -	4.6)mm 10µ	
Analytik Labor AKEN		
08:33:56 08.07.2015		
itions: At Start	At Stop	
2: 30.0 22.6 0.7	30.0 22.8 0.7	
g=214,4 Ref=550,100 (ST\P80AS.D)		
25-10 5 10	808 15 20	25 min
Time Width 5.49 0.25 5.75 0.15 13.87 0.52 15.88 0.60	Height Area (mAU) (mAU*s 5.52 51.69 360.76 12 26.75 1	Area %) 93.67 0.66 512.20 3.63 272.46 86.99 066.69 7.56
	AK Enders - An. ST P 80 D:\ERNIE\ST\P80AS.D Laufmittel: n-Heptan, Die Probe ist in DCM, DAICELAS.M Chiralpak AS (250 x - Analytik Labor AKEN 08:33:56 08.07.2015 tions: At Start :: 30.0 22.6 0.7 g=214,4 Ref=550,100 (ST\P80AS.D) Time Width 5.49 0.25 5.75 0.15 13.87 0.52 15.88 0.60 18.53 0.76	AK Enders - Analytische HPLC ST P 80 D:\ERNIE\ST\P80AS.D Laufmittel: n-Heptan/iPr0H 97:3; Die Probe ist in DCM/LM gelöst DAICELAS.M Chiralpak AS (250 x 4.6)mm 10µ Analytik Labor AKEN 08:33:56 08.07.2015 tions: At Start At Stop :: 30.0 30.0 22.6 22.8 0.7 0.7 g=214.4 Ref=550,100 (STP80AS.D) Time Width Height Area (mAU) (mAU*s 5.49 0.25 5.52 5.75 0.15 51.69 13.87 0.52 360.76 12 18.53 0.76 2.55

Total

14108.08 100.00

Page 1 of 1

ST P 80

 1 H NMR **3f**

¹³C NMR of **3f**

AK Prof. Enders - Analytiklabor 4.04

 Sample name:
 ST P 71 rac

 Data file:
 C:\SNOOPY\ST\ST P 71 RAC N3IC.D

 Description:
 Laufmittel: n-Heptan/iPrOH 97:3; Die Probe ist DCM/LM gelöst.

Injection date: 7/6/2015 1:05:59 PM Acq. Analysis method: CHIRALPAKIC1-6LNP.M

Column:

Chiralpak IC, (150 x 4,6) mm, 5µ, SN: IC00CD-QF015

Name ST	P 71 rac				
RT [min]	Туре	Area%	Area	Height Width [min	n]
3.36	VB	0.48	39.16	7.53	0.08
4.74	VV	0.60	49.01	5.91	0.12
7.09	BV	0.21	16.79	1.24	0.20
7.85	VB	0.91	74.46	4.52	0.25
11.41	BV	4.76	387.84	17.13	0.35
12.59	VB	40.53	3303.27	143.74	0.36
14.56	BV	5.35	435.89	13.88	0.47
15.83	VB	41.24	3361.28	107.42	0.48
19.66	BB	0.33	27.29	0.77	0.43
21.86	BB	4.02	327.42	10.01	0.50
23.41	BB	1.57	127.59	2.85	0.57
	Sum	100.00	8149.99		

Agilent 1260 Infinity

AK Prof. Enders - Analytiklabor 4.04 **RWTHAACHEN** UNIVERSITY Sample name: ST P 72 Data file: C:\SNOOPY\ST\ST P 72 N1IC.D Laufmittel: n-Heptan/iPrOH 97:3; Die Probe ist DCM/LM gelöst. Description: Injection date: 7/6/2015 1:39:12 PM Acq. Analysis method: CHIRALPAKIC1-6LNP.M Column: Chiralpak IC, (150 x 4,6) mm, 5µ, SN: IC00CD-QF015 Pressure at start: 36 bar Start flow: 1.000 ml/min Column oven: 30.01 °C AD1 C, Sig=214,4 Ref=360,100 15.814 650-600 550 500-450-400-350-MAU 300-250-200-150--12.519 100-603 482 14.505 303 50 23.6 28.3 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Time [min] ST P 72 Name

RT [r	min] Type	Area%	Area	Height Widt	h [min]
1	1.48 BV	0.42	99.35	3.82	0.39
1:	2.52 VB	9.30	2199.84	76.60	0.46
1.	4.51 BV	0.39	91.51	2.96	0.43
1	5.81 VB	84.77	20050.56	636.95	0.49
2	3.60 BB	3.32	785.95	17.89	0.67
2	8.30 BB	1.80	424.76	9.16	0.70
	Sum	100.00	23651.95		

Agilent 1260 Infinity

¹H NMR of **3g**

AK Prof. Enders - Analytiklabor 4.04 **RWTHAACHEN** UNIVERSITY Sample name: ST P 69 rac Data file: C:\SNOOPY\ST\ST P 69 RAC IA.D Laufmittel: n-Heptan/iPrOH 97:3 ; Die Probe ist DCM/LM gelöst. **Description:** Injection date: 4/24/2015 9:50:20 AM Acq. Analysis method: CHIRALPAKIARNP.M Column: Chiralpak IA, (250 x 4,6) mm, 5µ, SN: IA00CE-RC036 Pressure at start: 32 bar Start flow: 0.700 ml/min Column oven: 30.01 °C DAD1 B, Sig=230,4 Ref=360,100 360 -13:481 340-320-300-280 260-240-12.261 220-200-784 MAU 180-160-140-120-100-80-60-40-11.34 20-0-1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Time [min] ST P 69 rac Name

RT [min] Type	Area%	Area	Height Widt	h [min]
11.34 BB	0.24	37.49	2.73	0.21
12.26 BB	17.49	2740.09	193.47	0.22
13.04 BV	31.96	5007.15	327.04	0.24
13.78 VV	32.39	5073.62	309.05	0.26
14.78 VB	17.92	2807.24	159.72	0.27
Sum	100.00	15665.60		

Agilent 1260 Infinity

Enantioenriched 3g

AK Prof. Enders - Analytiklabor 4.04 **RWTHAACHEN** UNIVERSITY Sample name: ST P 70 Data file: C:\SNOOPY\ST\ST P 70 IA.D Laufmittel: n-Heptan/iPrOH 97:3 ; Die Probe ist DCM/LM gelöst. **Description:** Injection date: 4/24/2015 10:40:21 AM Acq. Analysis method: CHIRALPAKIARNP.M Column: Chiralpak IA, (250 x 4,6) mm, 5µ, SN: IA00CE-RC036 Pressure at start: 32 bar Start flow: 0.700 ml/min Column oven: 30 °C 180 -DAD1 B, Sig=230,4 Ref=360,100 13.775 170-160-150-140-130-120-110-100-MAU 90 -80 -70-60-12.259 50 -40 -30-13.041 20-11.336 14.772 10-M 0-2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ŧ Time [min] Name ST P 70

RT [m	in] Type	Area%	Area	Height Widt	h [min]
11	.34 VB	0.42	14.58	0.91	0.23
12	.26 BB	15.10	522.05	36.76	0.22
13	.04 BV	6.29	217.27	14.43	0.23
13	.77 VV	77.82	2690.04	164.53	0.25
14	.77 VB	0.37	12.91	0.66	0.29
	Sum	100.00	3456.84		

Agilent 1260 Infinity

¹H NMR of **3h**

¹³C NMR of **3h**

HPLC of **3h** (racemate)

AK Enders - Analytische HPLC Sample Name: ST P 74 rac Data file: D:\GONZO\ST\P74R1IB.D Laufmittel: n-Heptan/EtOH 9:1; Die Probe ist in DCM/LM gelöst Sample Info: DAICELIB.M Chiralpak IB (250x4,6)mm Analytik Labor AKEN Säule: Säuleninfo: Operator: Injektion Time: Injektion Date: 16:49:11 01.06.2015 At Stop 30.0°C 24.0 Instrument Conditions: At Start Temperature in°C: 30.0°C Pressure in bar: Flow in ml/min: 24.1 0.50 0.50 DAD1 B, Sig=230,16 Ref=360,100 (ST\P74R1IB.D) mAU 16.274 17.458 250 200 150 100 10.802 50 21.342 12.479 19.650 7.207 0 n 10 20 30 min Ó # | Ret. Time| Width Area 🖇 I. 1 Height Area (mAU*s) Ĩ. T 1 (min) (mAU) 56.39 0.57 1 7.21 0.13 6.42 56.39 326.69 47.23 131.00 137.67 50.45 105.48 38.51 24.18| 21 10.80| 3.33 0.48 1.34 0.20| 11.31 11.89 12.48 13.32 13.77 14.18 0.27| 0.25| 0.21| 6.65| 7.74| 3.61| 4 | 5 | 1.40| 6| 7| 8| 0.34| 1.08 4.13| 2.11| 16.27| 17.46| 19.65| 9| 10| 0.25| 258.21 4148.20| 42.28 4219.65| 287.00| 240.231 43.01 111 0.31 13.99| 2.93 121 21.34| 0.331 12.34| 262.301 2.67 Total 9810.57 100.00

ST P 74 rac

Page 1 of 1

Enantioenriched **3h**

Sample Name:	ST P 75	N D757D D	hp	HEWLETT
Data file: D:\GONZO\ST\P/5IB.D			× 0.1.	PACKARD
sample info:	Die Probe :	: n-Heptan/Eto ist in DCM/LM (gelöst	
Säule:	DAICELIB.M			
Säuleninfo:	Chiralpak 1	IB (250x4,6)mm		
Operator:	Analytik La	abor AKEN		
Injektion Time: Injektion Date:	17:30:24 01.06.201	5		
Instrument Conditi	lons: At Sta	rt	At Stop	
Temperature in°C:	30.0	°C	30.0°C	
Pressure in bar:	23.7		23.9	
Flow in ml/min:	0.50		0.50	
DAD1 B, Sig=23	0,16 Ref=360,100 (ST\	P75IB.D)		
mAU -		81		
		7.4		
300-		-		
-				
250				
		· · · · · · · · · · · · · · · · · · ·		
200-				
-				
150				
-				
100				
100-				
-		0		
50 -	8	31 31	œ	
-	212	9.17	9	
0	N 7	A La A	24	
U				
0	10	20	30	min
a a size a come			1127	
# Ret. Time	Width	Height	Area	Area 🖇
(min)		(mAU)	(mAU*s)	
		0.07		0.10
	0.12	3.97	30.60	0.48
	0.19	6.28	/6.42	1.19
	0.26	23.88	406.20	6.35
4 17.49	0.27	324.42	5613.50	87.78
1 21 13.11	0.29	3./8	140 64	1.12
61 21 20				
6 21.38	0.32	1.051	145.04	2.34

ST P 75

Page 1 of 1

- 33

¹H NMR of **3i**

HPLC of 3i(racemate)

ST P 89 rac

Page 1 of 1

Enantioenriched 3i

Sample Name: Data file: Sample Info:		ST P 90 D:\GONZO\S Laufmittel Probe ist	T\90NX1AD.D : n-Heptan/EtOF in DCM/LM gelös	4 97:3; st.	HEWLETT PACKARD		
Säule:		DAICELAD.M					
Säuleninfo: Operator:		Chiralpak AD (250x4,6)mm Analytik Labor AKEN					
operator.		Analycik D	abor Anen				
Injektion T Injektion D	ime: ate:	14:52:48 16.12.201	5				
Instrument	Conditio	ns: At Sta	rt	At Stop			
Temperature	in°C:	30.0	°C	30.0°C			
Pressure in	bar:	21.8		22.0			
Flow in ml/	min:	0.70		0.70			
DAD1	C. Sig=214.8	Ref=360.100 (ST\9	0NX1AD.D)				
mAU			61				
-			7.5				
300 -			-				
-							
250							
230							
-							
200 -			1				
150 -							
1							
100							
-							
50	1		ID .				
50-	1	040	530	423			
	A	14.0	21.6	25.4			
0		le~-					
0		10	20	30	min		
	mima I	Width	Height	Area	Area %		
# Ret	. IIImel		(m) 7) [] (m)	(mAU*s)			
# Ret (m	in)		(IIIAO)				
# Ret (m 	in)	0.50	(IIIAO)	59 64	0.46		
# Ret (m 1	in) 14.04	0.50	1.52	59.64	0.46		
# Ret (m 1 2	. 11me in) l 14.04 16.05 17.56	0.50 0.48	1.52 7.71 336_04	59.64 250.10	0.46		
# Ret (m 1 2 3 4	. 11me in) 14.04 16.05 17.56 20.65	0.50 0.48 0.55 0.47	(1140) 1.52 7.71 336.04 1.77	59.64 59.64 250.10 12615.01 68.59	0.46 1.91 96.27 0.52		
# Ret (m _ 1 2 3 4 5	. 11me in) 14.04 16.05 17.56 20.65 21.63	0.50 0.48 0.55 0.47 0.48	(iiidA0) 1.52 7.71 336.04 1.77 1.10	59.64 59.64 250.10 12615.01 68.59 42.45	0.46 1.91 96.27 0.52 0.32		
# Ret]	. 11me in) 14.04 16.05 17.56 20.65 21.63 25.42	0.50 0.48 0.55 0.47 0.48 0.52	(iiiiAO) 1.52 7.71 336.04 1.77 1.10 1.60	59.64 250.10 12615.01 68.59 42.45 68.52	0.46 1.91 96.27 0.52 0.32 0.52		

AK Enders - Analytische HPLC

ST P 90

Page 1 of 1

¹H NMR of **3**j

¹³C NMR of **3j**

AK Prof. Enders - Analytiklabor 4.04

Sample name: ST P92 rac Data file: C:\SNOOPY\ST\ST P92 RAC IC.D Mobile phase: n-Heptane/EtOH 9:1; The sample is solved in DCM/MP Description: Injection date: 12/8/2015 10:25:50 AM Acq. Analysis method: CHIRALPAKIC1-6LNP.M Column: Chiralpak IC, (150 x 4,6) mm, 5µ, SN: IC00CD-QF015 Start flow: 0.500 ml/min Pressure at start: 20 bar Column oven: 29.97 °C AD1 B, Sig=230,4 Ref= 750-623 700-8.65 650 600-550 500-450-400-MAU 350-300-250-200-150 100-9.467 27.691 12.157 15.87 50-AA 0. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Time [min]

Name	STE	92 rac				
	RT [min]	Туре	Area%	Area	Height V	Vidth [min]
	7.25	BV	4.01	655.66	42.86	0.21
	7.62	VB	43.80	7166.16	690.34	0.16
	8.65	BV	44.07	7208.96	608.22	0.18
	9.47	VV	1.70	278.43	20.53	0.21
	10.18	VV	1.68	275.63	18.16	0.23
	12.16	VV	0.75	123.33	7.88	0.24
	15.87	BV	0.81	132.46	6.07	0.33
	27.69	BB	3.17	518.82	13.84	0.58
		Sum	100.00	16359.44		

Agilent 1260 Infinity

AK Prof. Enders - Analytiklabor 4.04

 Sample name:
 ST P91

 Data file:
 C:\SNOOPY\ST\ST P91 IC.D

 Description:
 Mobile phase: n-Heptane/EtOH 9:1; The sample is solved in DCM/MP

Injection date: 12/8/2015 1:08:53 PM Acq. Analysis method: CHIRALPAKIC1-6LNP.M

Column:

Chiralpak IC, (150 x 4,6) mm, 5µ, SN: IC00CD-QF015

Name ST P91

RT [min] Type	Area%	Area	Height	Width [min]
7.15 MF	2.42	160.21	16.16	0.17
7.23 FM	3.16	209.36	22.57	0.15
7.52 VB	6.06	401.35	39.80	0.15
8.53 BV	85.09	5635.80	484.91	0.18
9.32 VB	2.73	180.54	14.19	0.20
10.20 MM	0.55	36.39	2.08	0.29
Sum	100.00	6623.64		

Agilent 1260 Infinity