Cyclopropane Formation under Frustrated Lewis Pair Conditions

Sergei Krupski, Gerald Kehr, Constantin G. Daniliuc,^{\$} Gerhard Erker*

Organisch-Chemisches Institut (OCI), Universität Münster, Corrensstraße 40, 48149 Münster, Germany

\$ X-ray crystal structure analysis

Supporting Information

Materials and Methods. All syntheses involving air- and moisture sensitive compounds were carried out using standard Schlenk-type glassware (or in a glove box) under an atmosphere of argon. Solvents were dried and stored under an argon atmosphere. NMR spectra were recorded on a *Bruker* AV 300 (¹H: 300 MHz, ¹³C: 76 MHz, ³¹P: 122 MHz, ¹¹B: 96 MHz, ¹⁹F: 282 MHz), a *Bruker* AV 400 (¹H: 400 MHz, ¹³C: 101 MHz, ³¹P: 162 MHz), a *Varian* VNMR 500 MHz (¹H: 500 MHz, ¹³C: 126 MHz, ¹⁹F: 470 MHz, ¹¹B: 160 MHz, ³¹P: 202 MHz) and on a *Agilent* DD2-600 MHz (¹H: 600 MHz, ¹³C: 151 MHz, ¹⁹F: 564 MHz, ¹¹B: 192 MHz, ³¹P: 243 MHz). ¹H NMR and ¹³C NMR: chemical shifts δ are given relative to TMS and referenced to the solvent signal. ¹⁹F NMR: chemical shifts δ are given relative to CFCl₃ (δ = 0, external reference), ³¹P NMR: chemical shifts δ are given relative to H₃PO₄ (85% in D₂O) (δ = 0, external reference). NMR assignments were guported by additional 2D NMR experiments. The splitting patterns in the NMR spectra are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad signal. Coupling constants are

given in Hertz (Hz). High Resolution Mass Spectrometry (HRMS) was recorded on Orbitrap (Thermoscientific LTQ XL) and MicroTof (Bruker Daltonics). Elemental analyses were performed on a *Elementar Vario El III*. X-Ray diffraction: Data sets for the compounds 9 and **12** were collected with a D8 Venture Dual Source 100 CMOS diffractometer. Programs used: data collection: APEX2 V2014.5-0 (Bruker AXS Inc., 2014); cell refinement: SAINT V8.34A (Bruker AXS Inc., 2013); data reduction: SAINT V8.34A (Bruker AXS Inc., 2013); absorption correction, SADABS V2014/2 (Bruker AXS Inc., 2014); structure solution SHELXT-2014 (Sheldrick, 2014); structure refinement SHELXL-2014 (Sheldrick, 2014). For the compounds V and 10 data sets were collected with a Nonius KappaCCD diffractometer. Programs used: data collection, COLLECT (R. W. W. Hooft, Bruker AXS, 2008, Delft, The Netherlands); data reduction Denzo-SMN (Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307); absorption correction, Denzo (Z. Otwinowski, D. Borek, W. Majewski, W. Minor, Acta Crystallogr. 2003, A59, 228); structure solution SHELXS-97 (G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467); structure refinement SHELXL-97 (G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112). R-values are given for observed reflections, and wR^2 values are given for all reflections. Exceptions and special features: Compound 9 crystallized with a disordered over two positions cyclopropane group. Several restraints (SADI, SAME, ISOR and SIMU) were used in order to improve refinement stability. For the compounds 10 and 12 a badly disordered dichloromethane molecule and one half toluene molecule, respectively, were found in the asymmetrical unit and could not be satisfactorily refined. The program SQUEEZE (A. L. Spek, J. Appl. Cryst., 2003, 36, 7) was therefore used to remove mathematically the effect of the solvent. The quoted formula and derived parameters are not included the squeezed solvent molecules. CCDC deposition numbers are 1419592 to 1419595.

Starting materials. Bis(pentafluorophenyl)borane HB(C₆F₅)₂ [(a) R. E von H. Spence, W. E. Piers, Y. E. Sun, M. Parvez, L. R. MacGillivray and M. J. Zaworotko, *Organometallics*, 1998, **17**, 2459; (b) D. J. Parks, W. E. Piers and G. P. A. Yap, *Organometallics*, 1998, **17**, 5492; (c) D. J. Parks, R. E. von H. Spence and W. E. Piers, *Angew. Chem., Int. Ed. Engl.*, 1995, **34**, 809]. Tris(pentafluorophenyl)borane B(C₆F₅)₃ was purchased. Allyldimesitylphosphane was synthesized as reported in the following literature [P. Spies, G. Kehr, K. Bergander, B. Wibbeling, R. Fröhlich and G. Erker, *Dalton Trans.*, 2009, 1534].

Preparation of phosphinobutenols.

<u>1st Experiment:</u> Allyldimesitylphosphane (I) (3.24 g, 10.44 mmol) was dissolved in dry THF (50 mL). The solution was cooled to -78 °C and *n*-BuLi (1.6 M in *n*-hexane) (6.53 mL, 10.44 mmol) was added slowly. After stirring at this temperature for 30 min, paraformaldehyde (CHOH)_n (626 mg, 20.87 mmol) was added at once under an atmosphere of argon. Then the dry ice bad was removed and the reaction mixture was stirred first for 48 h at ambient temperature and then to complete the reaction for 2 h at 60 °C. The reaction was quenched with distilled H₂O (20 mL) and the organic layer was extracted with CH₂Cl₂ (1 × 50 mL, 2 × 25 mL) and subsequently the combined organic phases were dried with Na₂SO₄. After removing all volatiles by using a rotary evaporator a yellow oil (3.8 g) was obtained. Further purification was carried out by column chromatography using silica gel (50 cm x Ø 4 cm, eluent: ethyl acetate/*n*-pentane 3:7 and 1% NEt₃): three fractions were obtained, each dried *in vacuo*.

Fraction 1: Yellow oil (1.08 g), a mixture, which contains mostly allyldimesitylphosphane (**I**) and (*E*)-(prop-1-enyl)dimesitylphosphane (**II**) $[(R_f: 0.95, (4:1 (^1H))]]$.

Fraction 2: Yellow oil (0.7 g), a mixture of compounds 2-(dimesitylphosphino)but-2-en-1-ol (**III**) and 2-(dimesitylphosphino)but-3-en-1-ol (**IV**) [R_f: 0.62, (2:1 (¹H))].

Fraction 3: Slightly yellow oil (1.20 g, 34%), (*E*)-4-(dimesitylphosphino)but-3-en-1-ol (**V**) $[\mathbf{R}_{f}: 0.35]$, which crystallized upon standing for two weeks as a white crystalline solid.

(*E*)-(*Prop-1-enyl*)*dimesitylphosphane* (**II**) was obtained by column chromatography of *fraction 1* on silica gel (eluent: CH_2Cl_2 / cyclohexane 3:10) as a yellow oil (0.08 g, 2%).

2-(*Dimesitylphosphino*)*but*-2-*en*-1-*ol* (**III**) was obtained by column chromatography of *fraction 2* [R_f : 0.6] on silica gel (eluent: ethylacetate/ *n*-pentane 1:5) as a colorless oil (0.16 g, 5%).

HRMS (MicroTof): $[M+H]^+$ (C₂₂H₂₉OPH⁺): Calcd.: 314.2034, Found: 314.2029.

Elemental analysis: Calcd. for C₂₂H₂₉OP: C, 77.62; H, 8.59. Found C, 76.81; H, 8.31.

2-(*Dimesitylphosphino*)*but-3-en-1-ol* (**IV**) was obtained by column chromatography of *fraction 2* on silica gel [R_f : 0.48] (eluent: ethylacetate/*n*-pentane 1:5) as a colorless oil (0.33 g, 9%).

<u>2nd Experiment:</u> A solution of allyldimesitylphosphane (**I**) (1 g, 3.22 mmol) in THF (20 mL) was precooled to -78 °C and *n*-BuLi (1.6 M in *n*-hexane) (2.11 mL, 3.38 mmol) was added. After 30 min stirring, *p*-formaldehyde (CHOH)_n (0.1 g, 3.38 mmol) was added quickly and the mixture was warmed to 0 °C. After 1 h stirring, HCl (1 M, 10 mL) and ethylacetate (50 mL) were added to the reaction mixture. Then the organic layer was separated and washed twice with distilled H₂O (2 × 50 mL), dried with Na₂SO₄ and all volatiles were removed using a rotary evaporator. The obtained colorless oil was purified by column chromatography (see *1st Experiment*). Only (*E*)-4-(dimesitylphosphino)but-3-en-1-ol (**V**) was isolated as a slight yellow oil which crystallized upon several days as a white crystalline solid (0.2 g, 18%).

Elemental analysis: Calcd. for C₂₂H₂₉OP: C, 77.62; H, 8.59. Found: C, 76.98; H, 8.40.

<u> 3^{rd} Experiment</u>: *n*-BuLi (1.6M in *n*-hexane) (4.23 mL, 6.76 mmol) was added dropwise to a solution of allyldimesitylphosphane (**I**) (2 g, 6.44 mmol) in THF (40 mL) at -78 °C. After 1 h, *p*-formaldehyde (0.2 g, 6.76 mmol) was added. The temperature of solution was allowed to rise to ambient temperature and stirring was continued for 16 h. Then the solution was heated for 1 h at 65 °C. Subsequently a mixture of H₂O (30 mL) and of HCl in diethyl ether (2M) (3.45 mL, 6.9 mmol) was added. After 10 min, the reaction mixture was extracted four times with CH₂Cl₂ (4 × 30 mL) and the combined organic phases were dried with Na₂SO₄. Further workup was carried out as described in *1*st Experiment.

Fraction 1: Yellow oil (0.3 g), mixture of allyldimesitylphosphane (I) and (*E*)-(prop-1-enyl)dimesitylphosphane (II).

Fraction 2: Colorless oil (0.50 g), 2-(dimesitylphosphino)but-3-en-1-ol (IV). Colorless oil (0.50 g, 23%).

HRMS (MicroTof): [M+H]⁺ (C₂₂H₂₉OPH⁺): Calcd.: 314.2034, Found: 314.2027. **Elemental analysis**: Calcd. for C₂₂H₂₉OP: C, 77.62; H, 8.59. Found: C, 76.92; H, 8.58.

Fraction 3: Slightly yellow oil, (*E*)-4-(dimesitylphosphino)but-3-en-1-ol (**V**), which completely crystallized after storing for 2 days at ambient temperature. The quality of the obtained crystals (1.02 g, 47%) was suitable for the X-ray crystal structure analysis.

[*Comment*: the phosphanyl alcohols seem to react with air, therefore the column purification should be done quickly. All fractions were collected on air, followed by fast drying *in vacuo*.]

(*E*)-(**Prop-1-enyl**)dimesitylphosphane (II). *From* 1^{st} *Experiment:* Yellow oil (0.08 g, 2%). The solution of the oil in CDCl₃ was admixed with some compounds not identified yet.

^{Mes} ^{Mes} ¹**H** NMR (300 MHz, 299 K, CDCl₃): $\delta = 6.78$ (m, 4H, *m*-Mes), 6.58 (ddq, ³J_{HH} = 16.2 Hz, ²J_{PH} = 12.2 Hz, ⁴J_{HH} = 1.6 Hz, 1H, PCH), 6.00 (ddq, ³J_{HH} = 16.2 Hz, ³J_{PH} = 14.7 Hz, ³J_{HH} = 6.5 Hz, 1H, =CH), 2.25 (s, 12H, *o*-CH₃^{Mes}), 2.23 (s, 6H, *p*-CH₃^{Mes}), 1.81 (ddd, ³J_{HH} = 6.5 Hz, ⁴J_{HH} = 1.6 Hz, ⁴J_{PH} = 0.5 Hz, 3H, CH₃). ³¹P{¹H} NMR (121 MHz, 299 K, CDCl₃): $\delta = -25.4$ (v_{1/2} ~ 1 Hz).

³¹**P** NMR (121 MHz, 299 K, CDCl₃): $\delta = -25.4$ (br t, $J_{PH} \sim 13$ Hz).

¹H NMR (300 MHz, 299 K, CDCl₃) and ³¹P{¹H} NMR (121 MHz, 299 K, CDCl₃) spectra of compound II. [? not identified yet].

2-(Dimesitylphosphino)but-2-en-1-ol (III). *From 1st Experiment:* Colorless oil (0.16 g, 5%). The solution of the oil in CDCl₃ was admixed with 2-(dimesitylphosphino)but-3-en-1-ol (**IV**) (ca. 10% (³¹P)).

^{Mes} ^{Mes} ^P ^P

tentative assignment].

¹³C{¹H} NMR (101 MHz, 299 K, CDCl₃): $\delta = 142.7$ (d, ²*J*_{PC} = 14.9 Hz, *o*-Mes), 137.9 (br, *p*-Mes), 136.3 (d, ¹*J*_{PC} = 13.1 Hz, C2), 133.6 (br, C3), 129.8 (d, ³*J*_{PC} = 3.7 Hz, *m*-Mes), 129.7 (br d, ¹*J*_{PC} ~ 20 Hz, *i*-Mes), 61.6 (d, ²*J*_{PC} = 30.9 Hz, C1), 22.3 (d, ³*J*_{PC} = 15.2 Hz, *o*-CH₃^{Mes}), 20.8 (*p*-CH₃^{Mes}), 15.2 (d, ³*J*_{PC} = 4.4 Hz, C4).

¹**H**,¹**H** GCOSY (400 MHz/ 400 MHz, 299 K, CDCl₃) [selected traces]: δ^{1} H/ δ^{1} H = 5.61/ 1.80 (3-H/ 4-H), 1.80/ 4.43, 5.61 (4-H/ 1-H, 3-H)

¹**H**,¹³**C GHSQC** (400 MHz/ 101 MHz, 299 K, CDCl₃): δ¹H/ δ¹³C = 6.82/ 129.8 (*m*-Mes), 5.62/ 133.6 (C3), 4.43/ 61.6 (C1), 2.26/ 22.3 (*o*-CH₃^{Mes}), 2.26/ 20.8 (*p*-CH₃^{Mes}), 1.80/ 15.2 (C4).

¹**H**,¹³**C GHMBC** (400 MHz/ 101 MHz, 299 K, CDCl₃) [selected traces]: δ¹**H**/δ¹³**C** = 6.82/ 142.7, 129.8, 129.7 (*m*-Mes/ *o*-Mes, *m*-Mes, *i*-Mes), 2.26/ 142.7, 129.8, 129.7 (*o*-CH₃^{Mes}/*o*-Mes, *m*-Mes, *i*-Mes), 1.80/ 136.3, 133.6 (4-H/C2, C3).

³¹**P**{¹**H**} **NMR** (162 MHz, 299 K, CDCl₃): $\delta = -25.4$ (v_{1/2} ~ 50 Hz).

¹H NMR (400 MHz, 299 K, CDCl₃) spectrum of compound III.

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110³¹P{¹H} NMR (162 MHz, 299 K, CDCl₃) spectrum of compound III. [admixed with compound IV].

2-(Dimesitylphosphino)but-3-en-1-ol (IV). *From 1st Experiment:* Colorless oil (0.33 g, 9%). The solution of the oil in CDCl₃ was admixed with 2-(dimesitylphosphino)but-2-en-1-ol (**III**) (ca.: 20% (¹H)).

³¹P NMR (121 MHz, 299 K, CDCl₃) spectrum of compound IV.

From 3^{rd} *Experiment:* Colorless oil (0.50 g, 23%). The solution of the oil in CDCl₃ was admixed with 2-(dimesitylphosphino)but-2-en-1-ol (**III**) (ca.: 8% (¹H)).

¹**H** NMR (400 MHz, 299 K, CDCl₃): $\delta = 6.79$ (d, ⁴*J*_{HH} = 2.6 Hz, 2H, *m*-Mes^a), 6.77 (d, ⁴*J*_{HH} = 2.6 Hz, 2H, *m*-Mes^b), 5.62 (m, 1H, 3-H), 5.19 (dm, ³*J*_{HH} = 17.3 Hz, 1H, 4-H^Z), 5.07 (dm, ³*J*_{HH} = 10.3 Hz, 1H, 4-H^E), 4.06 (m, 1H, 2-H), 3.74, 3.65 (each m, each 1H, 1-H), 2.38 (s, 6H, *o*-CH₃^{Mes,a}), 2.34 (s, 6H, *o*-CH₃^{Mes,b}), 2.224 (s, 3H, *p*-CH₃^{Mes,a}), 2.219 (s, 3H, *p*-CH₃^{Mes,b}), 1.96 (br, 1H, OH)^t, [^t tentative assignment].

¹³C{¹H} NMR (101 MHz, 299 K, CDCl₃): δ 143.2 (d, ²*J*_{PC} = 14.8 Hz, *o*-Mes^b), 142.1 (d, ²*J*_{PC} = 14.6 Hz, *o*-Mes^a), 138.2 (*p*-Mes^b), 137.7 (*p*-Mes^a), 137.1 (d, ²*J*_{PC} = 11.6 Hz, C3), 130.8 (d, ¹*J*_{PC} = 25.5 Hz, *i*-Mes^a), 130.3 (br d, ³*J*_{PC} = 2.6 Hz, *m*-Mes^a), 129.9 (d, ¹*J*_{PC} = 22.0 Hz, *i*-Mes^b), 129.7 (d, ³*J*_{PC} = 3.7 Hz, *m*-Mes^b), 117.7 (d, ³*J*_{PC} = 10.4 Hz, C4), 64.4 (d, ²*J*_{PC} = 40.1 Hz, C1), 43.4 (d, ¹*J*_{PC} = 17.3 Hz, C2), 23.0 (d, ³*J*_{PC} = 15.0 Hz), 23.0 (d, ³*J*_{PC} = 13.5 Hz)(*o*-CH₃^{Mes,ab}), 20.8 (*p*-CH₃^{Mes,b}), 20.7 (*p*-CH₃^{Mes,a}).

¹**H**,¹**H GCOSY** (400 MHz/ 400 MHz, 299 K, CDCl₃) [selected traces]: δ^{1} H/ δ^{1} H = 6.79/ 2.38, 2.224 (*m*-Mes^a/ *o*-CH₃^{Mes,a}, *p*-CH₃^{Mes,b}), 5.62/ 5.19, 5.07, 4.06 (3-H/ 4-H^E, 4-H^Z, 2-H).

¹H,¹³C GHSQC (400 MHz/ 101 MHz, 299 K, CDCl₃): δ^{1} H/ δ^{13} C = 6.79/ 130.3 (*m*-Mes^a), 6.77/ 129.7 (*m*-Mes^b), 5.62/ 137.1 (C3), 5.19, 5.07/ 117.7 (C4), 4.06/ 43.4 (C2), 3.74, 3.65/64.4 (C1), 2.38/ 23.0 (*o*-CH₃^{Mes,a}), 2.34/ 23.0 (*o*-CH₃^{Mes,b}),

2.224/ 20.7 (p-CH3^{Mes,a}), 2.219/ 20.8 (p-CH3^{Mes,b}).

¹**H**,¹³**C GHMBC** (400 MHz/ 101 MHz, 299 K, CDCl₃) [selected traces]: δ¹H/ δ¹³**C** = 6.79/ 130.8, 130.3, 23.0, 20.7 (*m*-Mes^a/*i*-Mes^a, *m*-Mes^a, *o*-CH₃^{Mes,a}, *p*-CH₃^{Mes,a}), 6.77/ 129.9, 129.7, 23.0, 20.8 (*m*-Mes^b/*i*-Mes^b, *m*-Mes^b, *o*-CH₃^{Mes,b}, *p*-CH₃^{Mes,b}), 2.224/ 137.7, 130.3 (*p*-CH₃^{Mes,a}/ *p*-Mes^a, *m*-Mes^a), 2.219/ 138.2, 129.7 (*p*-CH₃^{Mes,b}/*p*-Mes^b, *m*-Mes^b).

(1) ¹H NMR (300 MHz, 299 K, CDCl₃) and (2) ¹H NMR (400 MHz, 299 K, CDCl₃)

(E)-4-(Dimesitylphosphino)but-3-en-1-ol (V).

From 1^{st} *Experiment:* light yellow oil (1.20 g, 34%). A solution of the oil in C₆D₆ was analyzed by NMR experiments (admixed with ethyl acetate).

¹H NMR (300 MHz, 299 K, C₆D₆): $\delta = 6.70$ (dm, ⁴*J*_{HH} = 2.6 Hz, 4H, Mes 3 1 OH *m*-Mes), 6.69 (ddt, ²*J*_{PH} = 17.2 Hz, ³*J*_{HH} = 16.3 Hz, ⁴*J*_{HH} = 1.3 Hz, 1H, 4-H), 5.90 (ddt, ³*J*_{HH} = 16.3 Hz, ³*J*_{PH} = 13.3 Hz, ³*J*_{HH} = 6.8 Hz, 1H, 3-H), 3.26 (t, ³*J*_{HH} = 6.5 Hz, 2H, 1-H), 2.38 (s, 12H, *o*-CH₃^{Mes}), 2.07 (s, 6H, *p*-CH₃^{Mes}), 2.05 (m, 2H, 2-H), 0.86 (br, OH)^t, [^t tentative assignment].

³¹**P**{¹**H**} **NMR** (121 MHz, 299K, C₆D₆): $\delta = -25.0 (v_{1/2} \sim 2 \text{ Hz}).$

³¹**P** NMR (121 MHz, 299K, C₆D₆): $\delta = -25.0$ (tm, $J_{PH} \sim 15.0$ Hz).

¹**H NMR** (300 MHz, 299 K, C_6D_6) spectrum of compound **V**.

From 2^{nd} *Experiment:* White crystalline solid (0.2 g, 18%). A solution of the crystals in CDCl₃ was analyzed by NMR experiments (admixed with traces of ethyl acetate).

¹**H** NMR (400 MHz, 299 K, CDCl₃): $\delta = 6.80$ (dm, ⁴*J*_{HH} = 2.4 Hz, 4H, *m*-Mes), 6.72 (ddm, ²*J*_{PH} = 16.4 Hz^t, ³*J*_{HH} = 15.6 Hz^t, 1H, 4-H), 5.88 (m, 1H, 3-H), 3.66 (t, ³*J*_{HH} = 6.5 Hz, 2H, 1-H), 2.41 (qm, ³*J*_{HH} = 6.5 Hz, 2H, 2-H), 2.27 (s, 12H, *o*-CH₃^{Mes}), 2.25 (s, 6H, *p*-CH₃^{Mes}), 1.78 (br, 1H, OH)^t, [^t tentative assignment].

¹³C{¹H} NMR (101 MHz, 299K, CDCl₃): $\delta = 141.7$ (d, ${}^{2}J_{PC} = 14.2$ Hz, *o*-Mes), 137.7 (*p*-Mes), 137.0 (br d, ${}^{2}J_{PC} = 29.8$ Hz, C3), 131.7 (br d, ${}^{1}J_{PC} \sim 18$ Hz, *i*-Mes), 130.5 (br, C4), 129.7 (d, ${}^{3}J_{PC} = 3.3$ Hz, *m*-Mes), 61.5 (C1), 38.2 (d, ${}^{3}J_{PC} = 11.2$ Hz, C2), 23.0 (d, ${}^{3}J_{PC} = 13.8$ Hz, *o*-CH₃^{Mes}), 20.8 (*p*-CH₃^{Mes}).

¹**H**,¹**H GCOSY** (400 MHz/ 400 MHz, 299 K, CDCl₃) [selected trace]: δ^{1} H/ δ^{1} H = 5.88/ 6.72, 2.41 (3-H/ 4-H, 2-H).

¹**H**,¹³**C GHSQC** (400 MHz/ 101 MHz, 299 K, CDCl₃): δ¹H/ δ¹³C = 6.80/ 129.7 (*m*-Mes), 6.72/ 130.5 (C4), 5.88/ 137.0 (C3), 3.66/ 61.5 (C1), 2.41/ 38.2 (C2), 2.27/ 23.0 (*o*-CH₃^{Mes}), 2.25/ 20.8 (*p*-CH₃^{Mes}). ¹H,¹³C GHMBC (400 MHz/ 101 MHz, 299 K, CDCl₃) [selected traces]: δ^{1} H/ δ^{13} C = 6.80/ 131.7, 129.7, 23.0, 20.8 (*m*-Mes/ *i*-Mes, *m*-Mes, *o*-CH₃^{Mes}, *p*-CH₃^{Mes}), 2.27/ 141.7, 131.7, 129.7 (*o*-CH₃^{Mes}/ *o*-Mes, *i*-Mes, *m*-Mes), 2.25/ 137.7, 129.7 (*p*-CH₃^{Mes}/ *p*-Mes, *m*-Mes). ³¹P{¹H} NMR (121 MHz, 299 K, CDCl₃): $\delta = -25.3$ (v_{1/2} ~ 15 Hz).

³¹**P NMR** (121 MHz, 299 K, CDCl₃): $\delta = -25.3 (v_{1/2} \sim 40 \text{ Hz}).$

50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 ³¹P{¹H} NMR (121 MHz, 299 K, CDCl₃) spectra of compound V. [? not identified yet].

From 3rd Experiment: white crystalline solid

HRMS (MicroTof): [M+H]⁺ (C₂₂H₂₉OPH⁺): Calcd.: 314.2034, Found: 314.2027.

Melting point (DSC): 61 °C.

X-Ray crystal structure analysis of (*E*)-4-(dimesitylphosphino)but-3-en-1-ol (V): formula $C_{22}H_{29}OP$, M = 340.42, colourless crystal, 0.11 x 0.05 x 0.03 mm, a = 15.6981(4), b = 7.4997(2), c = 16.6619(4) Å, $\beta = 93.155(1)$ °, V = 1958.6(1) Å³, $\rho_{calc} = 1.154$ gcm⁻³, $\mu = 0.146$ mm⁻¹, empirical absorption correction (0.984 $\leq T \leq 0.995$), Z = 4, monoclinic, space group P_{21}/c (No. 14), $\lambda = 0.71073$ Å, T = 223(2) K, ω and φ scans, 16993 reflections collected ($\pm h$, $\pm k$, $\pm l$), 3359 independent ($R_{int} = 0.071$) and 2313 observed reflections [$I > 2\sigma(I)$], 271 refined parameters, R = 0.072, $wR^2 = 0.166$, max. (min.) residual electron density 0.25 (-0.21) e.Å⁻³, hydrogen atoms were calculated and refined as riding atoms.

Synthesis of dimesityl(1-(trimethylsilyloxy)but-3-en-2-yl)phosphane (5).

<u>1st Experiment:</u> Trimethylsilyl chloride (0.93 mL, 0.73 mmol) and an excess of pyridine (0.24 mL) were added to a solution of 2-(dimesitylphosphino)but-3-en-1-ol (**IV**) (0.5 g, 1.47 mmol) in *n*-pentane (3 mL). Immediately, in a vigorous reaction, a white precipitate was formed. After 16 h stirring at ambient temperature, all volatiles were removed in *vacuo* and the residue was extracted with *n*-pentane (5x5 mL). Drying in *vacuo* gave a colorless oil, which was purified by column chromatography (CH₂Cl₂/ *n*-pentane 1:1, 1% NEt₃) (0.27 g, 44%).

[*Comment*: Compound **5** lost the trimetylsilyl group during chromatography resulting in the starting material **IV**].

HRMS (MicroTof): M+H⁺ (C₂₅H₃₇OPSiH⁺): Calcd.: 413.2430, Found: 413.2428.

Elemental analysis: Calcd. for C₂₅H₃₇OPSi: C, 72.77; H, 9.04. Found: C, 73.10; H, 8.80.

¹H NMR (400 MHz, 299 K, CDCl₃): $\delta = 6.77$, 6.75 (each d, ⁴*J*_{PH} = 2.7 Hz, each 2H, *m*-Mes), 5.53 (m, 1H, 3-H), 5.05 (dm, ³*J*_{HH,trans} = 16.7 Hz), 4.91 (dm, ³*J*_{HH,cis} = 10.4 Hz)(each 1H, 4-H), 4.14 (m, 1H, 2-H), 3.83, 3.75 (each m, each 1H, 1-H), 2.38, 2.35 (each s, each 6H, *o*-CH₃^{Mes}), 2.22, 2.21 (each s, each 3H, *p*-CH₃^{Mes}), 0.07 (s, ²*J*_{SiH} = 6.6 Hz, 9H, SiMe₃).

<u> 2^{nd} Experiment</u>: Trimethylsilyl chloride (1.57 mL, 1.23 mmol) and an excess of pyridine (0.4 mL) were added to a solution of 2-(dimesitylphosphino)but-3-en-1-ol (**V**) (0.84 g, 2.47 mmol) in *n*-pentane (5 mL). Immediately, in a vigorous reaction, a white precipitate was formed.

After 16 h stirring at ambient temperature, all volatiles were removed *in vacuo* and the residue was extracted with *n*-pentane (5x5 mL). Drying in *vacuo* gave compound **5** as a colorless oil (0.9 g, 89%).

¹H NMR (600 MHz, 299 K, CD₂Cl₂): $\delta = 6.784$, 6.778 (each d, ⁴*J*_{HH} = 3.2 ^{Mes} J_{1} Hz, each 2H, *m*-Mes), 5.54 (dddd, ³*J*_{HH,trans} = 17.1 Hz, ³*J*_{HH,cis} = 10.3 Hz, ³*J*_{HH} = 8.8 Hz, ³*J*_{PH} = 5.5 Hz, 1H, 3-H), 5.03 (dm, ³*J*_{HH,trans} = 17.1 Hz, 1H, 4-H), 4.87 (dm, ³*J*_{HH,cis} = 10.3 Hz, 1H, 4-H), 4.14 (dddd, ³*J*_{HH} ~ ³*J*_{HH} = 8.8 Hz, ³*J*_{HH} = 3.9 Hz, ²*J*_{PH} = 3.6 Hz, 1H, 2-H), 3.82 (ddd, ²*J*_{HH} = 10.4 Hz, ³*J*_{PH} = 7.0 Hz, ³*J*_{HH} = 3.9 Hz, 1H, 1-H), 3.76 (ddd, ²*J*_{HH} = 10.4 Hz, ³*J*_{HH} = 8.8 Hz, ³*J*_{PH} = 4.9 Hz, 1H, 1-H), 2.37, 2.35 (each s, each 6H, *o*-CH₃^{Mes}), 2.22, 2.21 (each s, each 3H, *p*-CH₃^{Mes}), 0.07 (s, ²*J*_{SiH} = 6.4 Hz, 9H, SiMe₃).

¹H{³¹P}NMR (600 MHz, 299 K, CD₂Cl₂): $\delta = 6.79$, 6.78 (each s, each 2H, *m*-Mes), 5.54 (ddd, ${}^{3}J_{\text{HH,trans}} = 17.2$ Hz, ${}^{3}J_{\text{HH,cis}} = 10.4$ Hz, ${}^{3}J_{\text{HH}} = 8.3$ Hz, 1H, 3-H), 5.03 (d, ${}^{3}J_{\text{HH,trans}} = 17.1$ Hz, 1H, 4-H), 4.87 (d, ${}^{3}J_{\text{HH,cis}} = 10.4$ Hz, 1H, 4-H), 4.14 (td, ${}^{3}J_{\text{HH}} = 8.8$ Hz, ${}^{3}J_{\text{HH}} = 3.9$ Hz, 1H, 2-H), 3.82 (dd, ${}^{2}J_{\text{HH}} = 10.4$ Hz, ${}^{3}J_{\text{HH}} = 3.9$ Hz, 1H, 1-H), 3.76 (dd, ${}^{2}J_{\text{HH}} = 10.4$ Hz, ${}^{3}J_{\text{HH}} = 8.8$ Hz, ${}^{3}J_{\text{HH}} = 3.9$ Hz, 1H, 1-H), 3.76 (dd, ${}^{2}J_{\text{HH}} = 10.4$ Hz, ${}^{3}J_{\text{HH}} = 8.8$ Hz, ${}^{3}J_{\text{HH}} = 10.4$ Hz, ${}^{3}J_{\text{HH}} = 8.8$ Hz, ${}^{2}J_{\text{HH}} = 10.4$ Hz, ${}^{3}J_{\text{HH}} = 10.4$ Hz, ${}^{3}J_{\text{HH}} = 10.4$ Hz, ${}^{3}J_{\text{HH}} = 10.4$ Hz, ${}^{3}J_{\text{H}} = 10.$

¹³C{¹H} NMR (151 MHz, 299 K, CD₂Cl₂): $\delta = 144.0$ (d, ²*J*_{PC} = 15.0 Hz), 142.4 (d, ²*J*_{PC} = 14.5 Hz)(*o*-Mes), 138.7 (d, ⁴*J*_{PC} = 0.7 Hz), 137.7 (*p*-Mes), 137.7 (d, ²*J*_{PC} = 10.3 Hz, C3), 132.0 (d, ¹*J*_{PC} = 29.5 Hz), 130.9 (d, ¹*J*_{PC} = 19.0 Hz)(*i*-Mes), 130.6 (d, ³*J*_{PC} = 2.7 Hz), 129.8 (d, ³*J*_{PC} = 4.0 Hz)(*m*-Mes), 116.2 (d, ³*J*_{PC} = 10.9 Hz, C4), 65.7 (d, ²*J*_{PC} = 48.9 Hz, C1), 42.7 (d, ¹*J*_{PC} = 16.1 Hz, C2), 23.2 (d, ³*J*_{PC} = 13.9 Hz), 23.1 (d, ³*J*_{PC} = 15.2 Hz)(*o*-CH₃^{Mes}), 21.0, 20.8 (*p*-CH₃^{Mes}), -0.4 (¹*J*_{SiC} = 59.0 Hz, SiMe₃).

¹**H**,¹**H** GCOSY (600 MHz/ 600 MHz, 299 K, CD₂Cl₂) [selected trace]: δ¹H/ δ¹H = 4.14/ 5.54, 3.82, 3.76 (2-H/ 3-H, 1-H, 1-H). ¹**H**,¹³**C GHSQC** (600 MHz/ 151 MHz, 299 K, CD₂Cl₂): δ^{1} H/ δ^{13} C = 6.784/ 130.7, 6.778/ 129.9 (*m*-Mes^{a,b}), 5.54/ 137.7 (C3), 5.03/ 116.2 (C4), 4.87/ 116.2 (C4), 4.14/ 42.7 (C2), 3.82/ 65.7 (C1), 3.76/ 65.7 (C1), 2.37/ 23.2, 2.35/ 23.1 (*o*-CH₃^{Mes a,b}), 2.22/ 20.8, 2.21/ 21.0 (*p*-CH₃^{Mes a,b}), 0.07/ -0.4 (SiMe₃).

¹H,¹³C GHMBC (600 MHz/ 151 MHz, 299 K, CD₂Cl₂) [selected traces]: δ^{1} H/ δ^{13} C = 6.79/ 142.4, 130.7, 23.2, 20.8 (*m*-Mes^a/ *o*-Mes^a, *m*-Mes^a, *o*-CH₃^{Mes a}, *p*-CH₃^{Mes a}), 2.37/ 142.4, 130.7 (*o*-CH₃^{Mes a}/ *o*-Mes^a, *m*-Mes^a).

³¹**P** {¹**H**} **NMR** (243 MHz, 299 K, CD₂Cl₂): δ = -22.3 (v_{1/2} ~ 3 Hz).

³¹**P** {¹**H**} **NMR** (243 MHz, 299 K, CD₂Cl₂): δ = -22.3 (v_{1/2} ~ 20 Hz).

²⁹Si{¹H} DEPT (119 MHz, 299 K, CD₂Cl₂): $\delta = 17.5 (v_{1/2} \sim 1 \text{ Hz}).$

¹H NMR (600 MHz, 299 K, CD₂Cl₂) spectrum of compound 5.

5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 (2) ${}^{1}H NMR$ (600 MHz, 299 K, CD₂Cl₂) and (1) ${}^{1}H{}^{31}P{} NMR$ (600 MHz, 299 K, CD₂Cl₂) spectra of compound **5** (selected area).

²⁹Si{¹H} **DEPT NMR** (119 MHz, 299 K, CD₂Cl₂) and ³¹P {¹H} **NMR** (243 MHz, 299 K, CD₂Cl₂) spectra of compound **5** (78 mol%). [? not identified (5 mol%), PH (${}^{1}J_{PH} \sim 476$ Hz, 13 mol%), **IV** (4 mol%)].

Reaction of compound 5 with HB(C6F5)

Generation of (cyclopropylmethyl)dimesitylphosphane 9 and siloxyborane 8.

 1^{st} Experiment: Preparation of compound 9: HB(C₆F₅)₂ (0.52 g, 1.50 mmol) was added at ambient temperature to a solution of dimesityl(1-(trimethylsilyloxy)but-3-en-2-yl)phosphane 5 (0.58 g, 1.41 mmol) in *n*-pentane (5 mL). After stirring for 2 days all volatiles were removed in *vacuo*. The collected colorless oil was dissolved in C₆D₆ and analyzed by NMR experiments (before workup: see below).

Then the oil was dissolved in CH_2Cl_2 (2 mL) and purified by column chromatography (Al₂O₃, $CH_2Cl_2/$ *n*-pentane, 1:1). After drying compound **9** was isolated as a colorless oil 0.42 g (92%). The obtained oil slowly crystallized over night at room temperature. The formed colorless crystals were suitable for the X-ray crystal structure analysis.

X-Ray crystal structure analysis of compound 9: formula C₂₂H₂₉P, M = 324.42, colourless crystal, 0.220 x 0.180 x 0.100 mm, a = 8.3322(2), b = 8.5865(3), c = 13.0867(4) Å, $\alpha = 87.833(1)$, $\beta = 85.945(1)$, $\gamma = 86.322(1)^\circ$, V = 931.5(1) Å³, $\rho_{calc} = 1.157$ gcm⁻³, $\mu = 1.262$ mm⁻¹, empirical absorption correction ($0.769 \le T \le 0.884$), Z = 2, triclinic, space group P_1 (No. 2), $\lambda = 1.54178$ Å, T = 100(2) K, ω and φ scans, 23717 reflections collected, 3344 independent ($R_{int} = 0.044$) and 2937 observed reflections [$I \ge 2\sigma(I)$], 242 refined parameters, R = 0.035, $wR^2 = 0.092$, max. (min.) residual electron density 0.30 (-0.27) e.Å⁻³, hydrogen atoms were calculated and refined as riding atoms.

HRMS (MicroTof): M+H⁺ (C₂₂H₂₉PH⁺): Calcd.: 325.2080, Found: 325.2087.

Elemental analysis: Calcd. for C₂₂H₂₉P: C, 81.44; H, 9.01. Found: C, 78.05; H, 8.76.

To improve the elemental analysis the crystals of compound **9** were dissolved in dichloromethane and passed through a pipette filled with Al_2O_3 . After removal of the solvent, the obtained white solid was crushed and then dried at 50 °C for 8 h.

Elemental analysis: Calcd. for C₂₂H₂₉P: C, 81.44; H, 9.01. Found: C, 80.72; H, 8.58.

A solution of the colorless oil before workup (mixture of compounds 8 and 9, see below) in C_6D_6 were passed through a pipette filled with Al_2O_3 and then rinsed with dichloromethane (2 mL). After removal of the solvent in vacuo, the obtained white solid was crushed and then dried at 50 °C for 8 h.

Elemental analysis: Calcd. for C₂₂H₂₉P: C, 81.44; H, 9.01. Found: C, 81.47; H, 8.76.

NMR data of the crystalline material in CD₂Cl₂ (compound 9).

Mes $\stackrel{1}{\xrightarrow{P}}$ 1 **H NMR** (600 MHz, 299 K, CD₂Cl₂): $\delta = 6.76$ (dm, ${}^{4}J_{PH} = 2.1$ Hz, 4H, *m*-Mes), $\stackrel{1}{\xrightarrow{P}}$ 2.46 (dd, J = 6.8, 2.1 Hz, 2H, PCH₂), 2.27 (s, 12H, *o*-CH₃^{Mes}), 2.22 (s, 6H, *p*-CH₃^{Mes}), 0.47 (m, 1H, CH), 0.40, 0.11 (each m, each 2H, CH₂).

¹³C{¹H} NMR (151 MHz, 299 K, CD₂Cl₂): $\delta = 142.2$ (d, ²*J*_{PC} = 13.3 Hz, *o*-Mes), 137.7 (*p*-Mes), 134.0 (d, ¹*J*_{PC} = 22.8 Hz, *i*-Mes), 130.0 (d, ³*J*_{PC} = 2.8 Hz, *m*-Mes), 33.9 (d, ¹*J*_{PC} = 16.0 Hz, PCH₂), 23.2 (d, ³*J*_{PC} = 13.4 Hz, *o*-CH₃^{Mes}), 20.9 (*p*-CH₃^{Mes}), 9.2 (d, ²*J*_{PC} = 20.5 Hz, CH), 6.5 (d, ³*J*_{PC} = 10.2 Hz, CH₂).

¹H{¹H} TOCSY (600 MHz, 299 K, CD₂Cl₂)[selected experiments]: $\delta^{1}H_{irr}/\delta^{1}H_{res} = 2.46/0.50, 0.43, 0.14$ (1-H/2-H, 3-H).

³¹**P**{¹**H**} **NMR** (243 MHz, 299 K, CD₂Cl₂): δ = -24.6 (v_{1/2} ~ 3 Hz).

¹**H NMR** (600 MHz, 299 K, CD₂Cl₂) and ³¹**P**{¹**H**} **NMR** (243 MHz, 299 K, CD₂Cl₂) spectra of compound **9**.

¹H{¹H} TOCSY (600 MHz, 299 K, CD₂Cl₂) spectrum of compound **9** (irradiation (arrow) at 2.46 ppm, response at 0.50, 0.43, 0.14 ppm)

Colorless oil before workup (see above): Reaction of compound **5** with $HB(C_6F_5)_2$ resulted in a reaction mixture of compound **9** and borane **8** (1:1 (¹H)).

Borane 8 (in C_6D_6):

¹**H** NMR (600 MHz, 299 K, C₆D₆): $\delta = 0.04$ (s, ¹*J*_{SiH} = 6.7 Hz, 1H, SiMe₃).

¹³C{¹H} NMR (151 MHz, 299 K, C₆D₆): $\delta = 148.2$ (dm, ¹*J*_{CF} ~ 245 Hz, C₆F₅), 143.2 (dm, ¹*J*_{CF} ~ 265 Hz, C₆F₅), 137.4 (dm, ¹*J*_{CF} ~ 250 Hz, C₆F₅), 131.6 (br, *i*-C₆F₅), 0.4 (¹*J*_{SiC} = 60.2 Hz, SiMe₃).

¹¹B{¹H} NMR (192 MHz, 299 K, C₆D₆): $\delta = 38.1 (v_{1/2} \sim 350 \text{ Hz}).$

¹⁹**F NMR** (564 MHz, 299 K, C₆D₆): δ = -133.3 (m, 2F, o-C₆F₅), -148.9 (tt, *J*_{FF} = 20.8, 3.6 Hz, 1F, *p*-C₆F₅), -161.3 (m, 2F, *m*-C₆F₅). [Δδ¹⁹F_{m,p} = 12.5].

¹H,²⁹Si GHMQC (600 MHz/ 119 MHz, 299 K, C₆D₆): δ^{1} H/ δ^{29} Si = 0.04/ 20.2 (OSiMe₃).

Compound 9 (in C_6D_6):

¹**H NMR** (600 MHz, 299 K, C₆D₆): $\delta = 6.69$ (s, 4H, *m*-Mes), 2.40 (m, 2H, PCH₂), 2.36 (s, 12H, *o*-CH₃^{Mes}), 2.08 (s, 6H, *p*-CH₃^{Mes}), 0.52 (m, 1H, CH), 0.32, 0.10 (each m, each 2H, CH₂).

¹³C{¹H} NMR (151 MHz, 299 K, C₆D₆): $\delta = 142.1$ (d, ²*J*_{PC} = 13.4 Hz, *o*-Mes), 137.3 (*p*-Mes), 134.3 (d, ¹*J*_{PC} = 24.0 Hz, *i*-Mes), 130.3 (*m*-Mes), 34.9 (d, ¹*J*_{PC} = 16.0 Hz, PCH₂), 23.3 (d, ³*J*_{PC} = 13.6 Hz, *o*-CH₃^{Mes}), 20.8 (*p*-CH₃^{Mes}), 9.3 (d, ²*J*_{PC} = 20.5 Hz, CH), 6.7 (d, ³*J*_{PC} = 10.2 Hz, CH₂).

³¹**P**{¹**H**} **NMR** (243 MHz, 299 K, C₆D₆): $\delta = -24.4$ (v_{1/2} ~ 5 Hz).

¹**H**,³¹**P GHMQC** (600 MHz/ 243 MHz, 299 K, C₆D₆): δ^{1} H/ δ^{31} P = 6.69, 2.40, 2.36, 2.08, 0.52, 0.32, 0.10/ -24.4 (*m*-Mes, PCH₂, *o*-CH₃^{Mes}, *p*-CH₃^{Mes}, CH, CH₂, CH₂/P).

¹H NMR (600 MHz, 299 K, C₆D₆) spectrum of the reaction mixture of compounds 8 and 9.

¹³C{¹H} NMR (151 MHz, 299 K, C₆D₆) spectrum of the reaction mixture of compounds 8 and 9.

¹²⁷ -129 -131 -133 -135 -137 -139 -141 -143 -145 -147 -149 -151 -153 -155 -157 -159 -161 -163 -165 -16' ¹⁹F NMR (564 MHz, 299 K, C₆D₆) spectrum of the reaction mixture of compounds **8** and **9**.

40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 60 50 $^{31}P\{^{1}H\}$ NMR (243 MHz, 299 K, C₆D₆) spectrum of the reaction mixture of compounds 8 and 9.

 2^{nd} Experiment (reaction monitoring by DNMR). A solution of dimesityl(1-(trimethylsilyloxy)but-3-en-2-yl)phosphane **5** (30 mg, 8.8x10⁻² mmol) in deuterated dichloromethane (0.3 mL) was added to a Yong-NMR tube filled with a solution of HB(C₆F₅)₂ (26 mg, 7.5x10⁻² mmol) in deuterated dichloromethane (0.3 mL) at -78 °C. The reaction progress was monitored by NMR spectroscopy at various temperatures.

¹¹B{¹H} VTNMR (160 MHz, CD_2Cl_2) spectra of the reaction of compound **5** with $HB(C_6F_5)_2$. [temperature, overall reaction time; # $HB(C_6F_5)_2$].

¹⁹**F VTNMR** (470 MHz, 253–299K, CD_2Cl_2) spectra of the reaction of compound **5** with $HB(C_6F_5)_2$. [temperature, overall reaction time; # $HB(C_6F_5)_2$, ? unidentified compound].

³¹P{¹H} VTNMR (202 MHz, CD₂Cl₂) spectra of the reaction of compound **5** with HB(C₆F₅)₂. [temperature, overall reaction time; ? unidentified compound, # tentatively assigned as phosphiranium intermediate **7** (**5** : **9** : **7** ~ 84 : 6 : 10)].

Synthesis of compound 10.

Compound **5** (0.290 g, 0.70 mmol) and tris(pentafluorophenyl)borane (0.360 g, 0.70 mmol) were dissolved in dry *n*-pentane (5 mL) under an atmosphere of argon and stirred for 1 week at ambient temperature. During this time a white precipitate was formed, which was isolated by filtration. It was washed trice with n-pentane (2 mL) and dried *in vacuo* to give a white solid (0.500 g, 77%).

Crystals suitable for the X-ray crystal structure analysis were obtained from a saturated solution of the white solid in CH₂Cl₂ at -30 °C. The crystals were collected, washed with pentane, dried in *vacuo* and dissolved in CD₂Cl₂ for NMR spectroscopic characterization (*Comment*: Compound **10** slowly gives at room temperature in CD₂Cl₂ solution the starting materials back (Compound **5** and B(C₆F₅)₃) (0.25/1 ratio by ¹H NMR)).

Elemental analysis (crystals): Calcd. for C₄₃H₃₇BF₁₅OPSi(1xCH₂Cl₂): C, 52.35; H, 3.89. Found: C, 52.36; H, 3.87.

X-Ray crystal structure analysis of compound 10: formula C₄₃H₃₇BF₁₅OPSi, M = 924.60, colourless crystal, 0.23 x 0.10 x 0.05 mm, a = 10.8091(2), b = 25.3584(3), c = 16.9567(4) Å, $\beta = 96.133(1)$ °, V = 4621.2(2) Å³, $\rho_{calc} = 1.329$ gcm⁻³, $\mu = 0.177$ mm⁻¹, empirical absorption correction (0.960 $\leq T \leq 0.991$), Z = 4, monoclinic, space group $P2_1/c$ (No. 14), $\lambda = 0.71073$ Å, T = 223(2) K, ω and φ scans, 32591 reflections collected ($\pm h$, $\pm k$, $\pm l$), 8012 independent ($R_{int} = 0.064$) and 5621 observed reflections [$I > 2\sigma(I)$], 568 refined parameters, R = 0.070, $wR^2 = 0.196$, max. (min.) residual electron density 0.36 (-0.33) e.Å⁻³, hydrogen atoms were calculated and refined as riding atoms.

A solution of the obtained crystals in CD_2Cl_2 was characterized by NMR experiments. A mixture of compound **10**, compound **5** and $B(C_6F_5)_3$ was observed (**10** : **5** ~ 78 : 22 (¹H)). NMR data of compound **5** are consistent to those listed above.

$$\underset{(C_{6}F_{5})_{3}B}{\overset{Mes}{\stackrel{1}{\rightarrow}}}_{4} \overset{f}{\overset{}{\rightarrow}} \overset{f}{\overset{}} \overset{f}{\overset{}}} \overset{f}{\overset{}} \overset{f}{\overset{}} \overset{f}{\overset{}}} \overset{$$

19.7 Hz, ${}^{2}J_{\text{HH}} = 11.2$ Hz, ${}^{3}J_{\text{HH}} = 8.8$ Hz, 1H, 5-H), 2.67 (m, 1H, 3-H), 2.67, 2.61, 2.49, 2.45 (each br, each 3H, *o*-CH₃^{Mes}), 2.34, 2.31 (each br, each 3H, *p*-CH₃^{Mes}), 2.34, 0.78 (each m, each 1H, 4-H), -0.18 (s, ${}^{2}J_{\text{SiH}} = 6.2$ Hz, 9H, SiMe₃).

¹³C{¹H} NMR (151 MHz, 299 K, CD₂Cl₂): $\delta = 148.6$ (dm, ¹*J*_{FC} ~ 240 Hz, C₆F₅), 147.0, 146.0, 145.4, 145.3 (each br, *o*-Mes), 146.2, 146.1 (each d, ⁴*J*_{Pc} = 3.2 Hz, *p*-Mes), 138.6 (dm, ¹*J*_{FC} ~ 240, C₆F₅), 137.0 (dm, ¹*J*_{FC} ~ 250, C₆F₅), 132.1, 131.7, 131.2, 131.2 (each br, *m*-Mes), 125.3 (br, *i*-C₆F₅), 111.8 (d, ¹*J*_{PC} = 80.4 Hz), 111.2 (d, ¹*J*_{PC} = 88.5 Hz)(*i*-Mes), 60.2 (d, ²*J*_{PC} = 7.0 Hz, C5), 41.4 (d, ¹*J*_{PC} = 2.0 Hz, C3), 37.9 (d, ¹*J*_{PC} = 10.9 Hz, C2), 23.7 (br), 23.2 (br), 22.9 (br)(*o*-CH₃^{Mes}), 21.5, 21.4 (each d, *J* = 0.9 Hz, *p*-CH₃^{Mes}), 21.5 (br, C4), -1.6 (¹*J*_{SiC} = 59.0 Hz, SiMe₃).

¹**H**,¹**H** GCOSY (600 MHz/ 600 MHz, 299 K, CD₂Cl₂) [selected trace]: δ¹H/ δ¹H = 2.95/ 2.67, 2.34, 0.78 (2-H/ 3-H, 4-H, 4-H).

¹H{¹H} TOCSY (600 MHz, 299 K, CD₂Cl₂) [selected spectrum]: δ^{1} H_{irr}/ δ^{1} H_{res} = 2.95/ 2.67, 2.34, 0.79 (2-H / 3-H, 4-H, 4-H).

¹**H**,¹³**C GHSQC** (600 MHz/ 151 MHz, 299 K, CD₂Cl₂): δ¹H/ δ¹³C = 7.12/ 132.1, 7.07/ 131.7, 6.97/ 131.2 (*m*-Mes), 3.56/ 60.2 (C5), 2.75]/ 60.2 (C5), 2.95/ 37.9 (C2), 2.67/ 41.4 (C3), 2.67/ 23.7, 2.61/ 23.2, 2.49/ 22.9, 2.45/ 22.9 (*o*-CH₃^{Mes}), 2.34/ 21.5 (C4), 0.78/ 21.5 (C4), 2.34/ 21.5, 2.31/ 21.4 (*p*-CH₃^{Mes}), -0.18/ -1.6 (SiMe₃).

¹H,¹³C GHMBC (600 MHz/ 151 MHz, 299 K, CD₂Cl₂) [selected traces]: δ^{1} H/ δ^{13} C = 2.67/ 145.4, 132.1, 111.8 (*o*-CH₃^{Mes}/ *o*-Mes, *m*-Mes), 2.34/ 146.1, 132.1, 131.2 (*p*-CH₃^{Mes}/ *p*-Mes, *m*-Mes, m-Mes).

¹¹B{¹H} NMR (192 MHz, 299 K, CD₂Cl₂): δ = -13.8 (d, *J* ~ 14 Hz, **10**), 59.1 (v_{1/2} ~ 800 Hz, B(C₆F₅)₃).

¹¹**B** NMR (192 MHz, 299 K, CD₂Cl₂): δ = -13.8 (v_{1/2} ~ 50 Hz), 59.1 (v_{1/2} ~ 800 Hz, B(C₆F₅)₃).

¹⁹**F NMR** (564 MHz, 299 K, CD₂Cl₂): compound **10**: δ =-132.4 (m, 2F, *o*), -162.6 (t, ${}^{3}J_{FF}$ = 20.3 Hz, 1F *p*), -166.3 (m, 2F, *m*)(C₆F₅)[Δδ¹⁹F = 3.7], B(C₆F₅)₃: δ = -128.2 (br m, 2F, *o*), -143.8 (br, 1F *p*), -161.0 (br m, 2F, *m*)(C₆F₅)[Δδ¹⁹F = 17.2].

²⁹Si{¹H} DEPT (119 MHz, 299 K, CD₂Cl₂): δ = 21.0 (v_{1/2} ~ 1 Hz).

³¹P{¹H} NMR (202 MHz, 299 K, CD₂Cl₂): δ = -114.2 (m, 10), -22.4 (v_{1/2} ~ 25 Hz, 5). [after 1 week].

¹H NMR (600 MHz, 299 K, CD₂Cl₂) spectrum of the solution of the crystals of compound 10 in CD₂Cl₂ (admixed with compound 5 and CH₂Cl₂).

¹H NMR (600 MHz, 299 K, CD_2Cl_2) spectra of compound **10** and **5**. (1) Solution of the crystals of compound **10** in CD_2Cl_2 ; (2) compound **5** (see above).

¹**H** NMR (600 MHz, 299 K, CD₂Cl₂) and ¹**H**{¹**H**} TOCSY (600 MHz, 299 K, CD₂Cl₂) spectra of compound **10** (irradiation (arrow) at 2.95 ppm, response at 2.75, 2.67, 2.34, 0.78 ppm).

¹³C{¹H} NMR (151 MHz, 299 K, CD_2Cl_2) spectrum of the solution of the crystals of compound 10 in CD_2Cl_2 (admixed with compound 5).

¹³C{¹H} NMR (151 MHz, 299 K, CD₂Cl₂) spectra of compound **10** and **5**. (1) Solution of the crystals of compound **10** in CD₂Cl₂; (2) compound **5** (see above).

¹³C{¹H} NMR (151 MHz, 299 K, CD_2Cl_2) spectra of compounds **10** and **5**. (1) Solution of the crystals of compound **10** in CD_2Cl_2 ; (2) compound **5** (see above).

¹¹B{¹H} NMR (192 MHz, 299 K, CD_2Cl_2) spectrum of compound **10**. [# B(C₆F₅)₃].

 ^{19}F NMR (564 MHz, 299 K, CD₂Cl₂) spectrum of compound 10 (# B(C₆F₅)₃).

²⁹Si{¹H} DEPT (119 MHz, 299 K, CD₂Cl₂) spectrum of compound 10.

³¹P{¹H} NMR (202 MHz, 299 K, CD_2Cl_2) spectrum) of compound 10. [? unidentified compound]. Note: This spectrum was meausered after 1 week in CD_2Cl_2 solution.

A solution of the obtained white solid (before workup) in CD₂Cl₂ was characterized by NMR experiments.

¹¹**B**{¹**H**} **NMR** (96 MHz, 299 K, CD₂Cl₂): δ = -13.8 (d, *J* ~ 14 Hz).

³¹**P**{¹**H**} **NMR** (121 MHz, 299K, CD₂Cl₂): δ = -114.2 (m).

39

Preparation of compound 11.

 1^{st} Experiment. Compound **9** (50 mg, 0.1541 mmol) and B(C₆F₅)₃ (78.9 mg, 0.1541 mmol) were dissolved in CH₂Cl₂ (2 mL) and stirred at ambient temperature for 30 min. Then all volatiles were removed in *vacuo*. The residue was crystallized from toluene/*n*-pentane solution at -30 °C to give a white microcrystalline solid (35 mg, 27%).

Elemental analysis: Calcd. for C₄₀H₂₉BF₁₅P (+ 1/6 toluene): C, 58.17; H, 3.61. Found: C, 58.64; H, 3.59.

¹H NMR (600 MHz, 299 K, CD₂Cl₂): $\delta = 7.07$, 7.05 (each d, ⁴J_{PH} = ^{Mes - p} ^{Mes 1 2} ⁵ Θ ^B(C₆F₅)₃ 6H, *o*-CH₃^{Mes}), 2.50 (m, 2H, PCH₂) 2.37, 2.33 (each s, each 3H, *p*-

CH₃^{Mes}), 1.45 (m, 2H, BCH₂), 1.34, 0.97 (each m, each 1H, CH₂).

¹³C{¹H} NMR (151 MHz, 299 K, CD₂Cl₂): $\delta = 148.4$ (dm, ¹*J*_{FC} ~ 240 Hz, C₆F₅), 147.3, 146.8 (each d, ⁴*J*_{PC} = 3.3 Hz, *p*-Mes), 145.7 (br d, ²*J*_{PC} = 10.5 Hz), 145.1 (d, ²*J*_{PC} = 11.3 Hz)(*o*-Mes), 138.0 (dm, ¹*J*_{FC} ~ 250 Hz, C₆F₅), 136.7 (dm, ¹*J*_{FC} ~ 245 Hz, C₆F₅), 131.8 (br d, ³*J*_{PC} = 13.8 Hz), 131.7 (d, ³*J*_{PC} = 13.3 Hz)(*m*-Mes), 126.5 (br, *i*-C₆F₅), 113.5 (d, ¹*J*_{PC} = 84.8 Hz), 109.0 (d, ¹*J*_{PC} = 89.4 Hz)(*i*-Mes), 35.1 (br d, ¹*J*_{PC} = 4.2 Hz, PCH), 28.4 (d, *J*_{PC} = 5.0 Hz, CH₂), 23.4, 23.2 (each d, ³*J*_{PC} = 7.9 Hz, *o*-CH₃^{Mes}), 22.8 (br m, BCH₂), 22.4 (PCH₂), 21.5, 21.3 (each br, *p*-CH₃^{Mes}).

¹¹B{¹H} NMR (192 MHz, 299 K, CD₂Cl₂): δ = -13.6 (v_{1/2} ~ 65 Hz).

¹⁹**F NMR** (564 MHz, 299 K, CD₂Cl₂): δ = -133.1 (m, 2F, *o*-C₆F₅), -164.0 (t, ³*J*_{FF} = 20.3 Hz, 1F, *p*-C₆F₅), -167.1 (m, 2F, *m*-C₆F₅). [Δδ¹⁹F_{m,p} = 3.1].

³¹P{¹H} NMR (243 MHz, 299 K, CD₂Cl₂): δ -117.7 (v_{1/2} ~ 2 Hz).

³¹**P NMR** (243 MHz, 299 K, CD₂Cl₂): δ -117.7 (dm, *J* ~ 25 Hz).

¹¹B{¹H} NMR (192 MHz, 299 K, CD₂Cl₂) spectrum of compound **11**.

¹⁹F NMR (564 MHz, 299 K, CD₂Cl₂) spectrum of compound 11.

50 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -1:

³¹P{¹H} NMR (247 MHz, 299 K, CD₂Cl₂) and ³¹P NMR (247 MHz, 299 K, CD₂Cl₂) spectra of compound **11**.

 2^{nd} Experiment (in situ, NMR scale). Compound **9** (50 mg, 0.1541 mmol) and B(C₆F₅)₃ (78.9 mg, 0.1541 mmol) were added in a NMR tube and dissolved in deuterated dichloromethane (0.6 mL). After 10 min the reaction mixture was characterized by NMR experiments.

The obtained NMR data are consistent to those listed for compound 11 (see above).

6.5 3.5 2.5 2.0 1.5 0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.0 5.5 5.0 4.5 4.0 3.0 1.0 0.5 0

¹H NMR (500 MHz, 299 K, CD_2Cl_2) and ¹H{¹H} TOCSY (500 MHz, 299 K, CD_2Cl_2) spectra of compound **11** (irradiation (arrow) at 3.16 ppm, response at 2.52, 1.47, 1.36, 0.98 ppm).

¹³C{¹H} NMR (126 MHz, 299 K, CD₂Cl₂) spectrum of compound **11**.

¹¹B{¹H} NMR (160 MHz, 299 K, CD₂Cl₂) spectrum of compound **11**. [# $B(C_6F_5)_3$].

¹⁹F NMR (470 MHz, 299 K, CD₂Cl₂) spectrum of compound **11**. [# B(C₆F₅)₃].

 $^{31}P\{^1H\}$ NMR (202 MHz, 299 K, CD₂Cl₂) spectrum of compound 11.

Phosphane **9** (100 mg, 0.308 mmol) and $B(C_6F_5)_3$ (158 mg, 0.308 mmol) were stirred in *n*-pentane (3 mL) for 30 min, then benzaldehyde (33 mg, 0.308 mmol) was added at room temperature. The formation of a white solid was observed. The suspension was stirred for further 16 h. Then all volatiles were removed *in vacuo* giving a viscous white residue (190 mg).

The NMR spectra of the viscous white residue in CD₂Cl₂ show a mixture of compound **9** and the benzaldehyde borane adduct **12** [For a comparison see: D. J. Parks, W. E. Piers, M. Parvez, R. Atencio and M. J. Zavorotko, *Organometallics*, 1998, **17**, 1369; D. J. Morrison and W. E. Piers, *Org. Lett.*, 2003, **5**, 2857].

The NMR data of compound 9 were consistent with those listed above.

 $\overset{\odot}{\oplus}_{O} \overset{B(C_{6}F_{5})_{3}}{}^{H} NMR (300 \text{ MHz}, 299 \text{ K}, CD_{2}Cl_{2}): \delta = 9.41 (br, 1H, CHO), 8.15 (2H),$ 7.95 (2H), 7.69 (2H)(each br, Ph). $1^{11}B\{^{1}H\} NMR (96 \text{ MHz}, 299 \text{ K}, CD_{2}Cl_{2}): \delta = 4.0 (v_{1/2} \sim 250 \text{ Hz}).$

¹⁹**F**{¹**H**} **NMR** (282 MHz, 299 K, CD₂Cl₂): δ = -134.1 (br, 2F, *o*-C₆F₅), -156.3 (br, 1F, *p*-C₆F₅), -163.9 (br, 2F, *m*-C₆F₅). [Δδ¹⁹F_{m,p} = 7.5].

¹H NMR (300 MHz, 299 K, CD_2Cl_2) spectrum of the reaction mixture of the reaction of compound **11** with benzaldehyde: mixture of compounds **12** and **9**. [* *n*-pentane].

(1) ¹H NMR (600 MHz, 299 K, CD_2Cl_2) spectrum of compound **9**; (2) ¹H NMR (300 MHz, 299 K, CD_2Cl_2) spectrum of the reaction mixture of the reaction of compound **11** with benzaldehyde: mixture of compounds **12** and **9**.

¹⁹F NMR (282 MHz, 299 K, CD₂Cl₂), ¹¹B{¹H} NMR (96 MHz, 299 K, CD₂Cl₂) and ³¹P{¹H} NMR (121 MHz, 299 K, CD₂Cl₂) spectra of the reaction mixture of the reaction of compound 11 with benzaldehyde: mixture of compounds 12 and 9. [? not identified compound].

After storing the viscous white residue for ca. 4 days at -30 °C a few colorless crystals suitable for the X-ray structure analysis were obtained.

X-Ray crystal structure analysis of compound 12 formula C₂₅H₆BF₁₅O, M = 618.11, colourless crystal, 0.283 x 0.251 x 0.113 mm, a = 9.4516(4), b = 12.1427(5), c = 12.2399(4)Å, $\alpha = 110.414(1)$, $\beta = 100.070(1)$, $\gamma = 97.111(1)^\circ$, V = 1267.0(1) Å³, $\rho_{calc} = 1.616$ gcm⁻³, $\mu = 0.174$ mm⁻¹, empirical absorption correction (0.952 $\leq T \leq 0.981$), Z = 2, triclinic, space group $P_{\bar{1}}$ (No. 2), $\lambda = 0.71073$ Å, T = 100(2) K, ω and φ scans, 51651 reflections collected, 5853 independent ($R_{int} = 0.047$) and 4788 observed reflections [$I > 2\sigma(I)$], 379 refined parameters, R = 0.036, $wR^2 = 0.097$, max. (min.) residual electron density 0.37 (-0.26) e.Å⁻³, hydrogen atoms were calculated and refined as riding atoms.

Preparation of compound 13.

Phosphane **9** (100 mg, 0.308 mmol) and B(C₆F₅)₃ (158 mg, 0.308 mmol) were dissolved in *n*-pentane (2 mL). Then, after 30 min, the solution was exposed to an H₂ atmosphere (2 bar). The reaction mixture was stirred and the yellow solution turned colorless after 20 min and stirring was continued at ambient temperature for 16 h. The solvent of the obtained emulsion was removed and the separated oil was dried *in vacuo* giving a white foam (249 mg, 96%).

Elemental analysis: Calcd. for C₄₀H₃₁BF₁₅P: C, 57.30; H, 3.73. Found: C, 56.64; H, 3.61.

$$\begin{array}{c} & \overset{\Theta}{}_{\text{[HB(C_6F_5)_3]}} \\ & \overset{\Theta}{}_{\text{[HB(C_6F_5)_3]}} \\ & \overset{\Theta}{}_{\text{[HB(C_6F_5)_3]}} \\ & \overset{\Theta}{}_{\text{Hz}} \\ & \overset{3}{}_{J_{\text{HH}}} = 7.1 \text{ Hz}, 1\text{ H}, \text{ PH}), 7.09 \text{ (dm, } {}^{4}J_{\text{PH}} = 4.8 \text{ Hz}, 4\text{H}, m-100 \text{ Mes}), 3.58 \text{ (br q } 1:1:1:1, {}^{1}J_{\text{BH}} \sim 95 \text{ Hz}, 1\text{H}, \text{BH}), 2.83 \text{ (dt, } {}^{2}J_{\text{PH}} = 4.8 \text{ Hz}, 4\text{H}, m-100 \text{ Mes}), 3.58 \text{ (br q } 1:1:1:1, {}^{1}J_{\text{BH}} \sim 95 \text{ Hz}, 1\text{H}, \text{BH}), 2.83 \text{ (dt, } {}^{2}J_{\text{PH}} = 4.8 \text{ Hz}, 4\text{H}, m-100 \text{ Mes}), 3.58 \text{ (br q } 1:1:1:1, {}^{1}J_{\text{BH}} \sim 95 \text{ Hz}, 1\text{H}, \text{BH}), 2.83 \text{ (dt, } {}^{2}J_{\text{PH}} = 4.8 \text{ Hz}, 4\text{H}, m-100 \text{ Hz}, 100 \text$$

11.2 Hz, ${}^{3}J_{\text{HH}} = 7.0$ Hz, 2H, PCH₂), 2.43 (s, 12H, *o*-CH₃^{Mes}), 2.35 (s, 6H, *p*-CH₃^{Mes}), 0.89 (m, 1H, CH), 0.78, 0.39 (each m, each 2H, CH₂).

¹³C{¹H} NMR (101 MHz, 299 K, CD₂Cl₂): $\delta = 148.5$ (dm, ¹*J*_{FC} ~ 235 Hz, C₆F₅), 147.3 (d, ⁴*J*_{PC} = 2.9 Hz, *p*-Mes), 143.5 (d, ²*J*_{PC} = 10.3 Hz, *o*-Mes), 138.1 (dm, ¹*J*_{FC} ~ 245 Hz, C₆F₅), 136.8 (dm, ¹*J*_{FC} ~ 245 Hz, C₆F₅), 132.5 (d, ³*J*_{PC} = 11.4 Hz, *m*-Mes), 125.7 (br, *i*-C₆F₅), 111.1 (d, ¹*J*_{PC} = 80.0 Hz, *i*-Mes), 31.1 (d, ¹*J*_{PC} = 43.5 Hz, PCH₂), 22.3 (d, ³*J*_{PC} = 7.4 Hz, *o*-CH₃^{Mes}), 21.4 (d, ⁴*J*_{PC} = 1.5 Hz, *p*-CH₃^{Mes}), 7.1 (d, ³*J*_{PC} = 10.2 Hz, CH₂), 7.0 (d, ²*J*_{PC} = 2.5 Hz, CH). ¹H,¹H GCOSY (400 MHz/ 400 MHz, 299 K, CD₂Cl₂) [selected trace]: δ^{1} H/ δ^{1} H = 0.89/ 2.83, 0.89, 0.78 (CH/ PCH₂, CH₂, CH₂). ¹**H**,¹³**C GHSQC** (400 MHz/ 101 MHz, 299 K, CD₂Cl₂): δ¹H/ δ¹³C = 7.09/ 132.5 (*m*-Mes), 2.83/ 31.1 (PCH₂), 2.43/ 22.3 (*o*-CH₃^{Mes}), 2.35/ 21.4 (*p*-CH₃^{Mes}), 0.89/ 7.0 (CH), 0.78/ 7.2 (CH₂), 0.39/ 7.2 (CH₂).

¹H,¹³C GHMBC (400 MHz/ 101 MHz, 299 K, CD₂Cl₂) [selected traces]: δ¹H/ δ¹³C = 7.71 / 143.5, 111.1, 31.1, 7.0 (PH/ *o*-Mes, *i*-Mes, PCH₂, CH), 7.09/ 132.5, 111.1, 22.3, 21.4 (*m*-Mes, *i*-Mes, *o*-CH₃^{Mes}, *p*-CH₃^{Mes}), 2.35/ 147.3, 132.5 (*p*-CH₃^{Mes}/ *p*-Mes, *m*-Mes).

¹¹B{¹H} NMR (96 MHz, 299 K, CD₂Cl₂): δ = -25.4 (v_{1/2} ~ 45 Hz).

¹¹**B** NMR (96 MHz, 299 K, CD₂Cl₂): δ = -25.4 (d, ¹*J*_{BH} ~ 93 Hz).

¹⁹**F**{¹**H**} **NMR** (282 MHz, 299 K, CD₂Cl₂): δ = -133.9 (m, 2F, *o*-C₆F₅), -164.6 (t, *J* = 20.2 Hz,

1F, *p*-C₆F₅), -167.5 (m, 2F, *m*-C₆F₅). [$\Delta \delta^{19}$ F_{m,p} = 2.9].

³¹P{¹H} NMR (121 MHz, 299 K, CD₂Cl₂): δ -12.2 (ν_{1/2} ~ 2 Hz).

³¹**P** NMR (121 MHz, 299 K, CD₂Cl₂): δ -12.2 (dm, ¹*J*_{PH} ~ 477 Hz).

¹H NMR (400 MHz, 299 K, CD_2Cl_2) spectrum of compound 13.

11B 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50

¹¹B{¹H} NMR (96 MHz, 299 K, CD_2Cl_2) and ¹¹B NMR (96 MHz, 299 K, CD_2Cl_2) spectra of compound **13**. [? not identified compound].

¹⁹F NMR (282 MHz, 299 K, CD₂Cl₂) spectrum of compound 13.

³¹P{¹H} NMR (121 MHz, 299 K, CD₂Cl₂) and ³¹P NMR (121 MHz, 299 K, CD₂Cl₂) spectra of compound **13**. [# compound **9**].